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;011 the Nonlinear Boltzmann Equation of the Carrier Transport in
Semiconductors: I: Existence and Uniqueness Q'i' Solut-i(')nsl)b

M. HANKE

. Es werden Existenz- ‘und Unitédtssiatze: fir Losungen' einer stationdren, rdiumlich homogenen
. Boltzmann-Gleichung hergeleitet, die den Ladungstragertrinsport in Halbleitern beschreibt.
‘Eine Besonderheit der hier behandelten Gleichung gegeniiber bekannteren Formen, z. B. des
Strahlungstransportes, besteht darin, daB das StoBmtegml mit 8-Funktionen behaftet ist, so
daB glatte Funktionen dadurch im allgemeinen in unstetige Funktionen ibergefiihrt werden.
Dic Untersuchung der die Boltzmann-Gleichung beschreibenden Operatoren erlaubt die Kon-
struktion geeigneter anisotroper Sobolevrdume, in denen Existenz und Unitit der Losungen
gesichert sind. , . :

Jl0Ka3LIBAIOTCH TeOpeMbl CYLIECTBOBAHMA M eXMHCTBEHHOCTH petileHuit  CTaUNOHAPHOTO
NPOCTPAHCTBEHHO OAHOPOTHOr0 ypaBHeHHA BomblmaHa, ONHCHBAIOIIET0 TPAHCHOPT HOCH-
Teself 3apAma. B MOAYNpoBOAHMKAaX. OCOGEHHOCTh 31eCh PACCMOTPEHHOr0 YpaBHEHHA, B
ornuue or Gosee u3BeCTHHX (opM (Hanpumep, TeopiH H3Ny4eHHus), COCTOMT B TOM, UTO
MHTErpajl CTOJIKHOBEHUA BKOYAeT S-pyHKuui, Tak 4to raaakue QyHKuuu B obileM mpe-
oGpasoBannl B paspeiBubie ¢ynkuuu. I[logpobuoe ncciacnoBaAme CBOACTB OMepaTopos,
OMICHBAKWINX ypaBHenne BonblMana, no3BojIsAET MOCTPOEHUE NOTXOQAIMX AHMIOTPONHBIX
npocrpancts CoGosneBa, B KOTOPHIX cymccwosaune M eIMHCTRECHHOCTD peLIeHHit o6ec-
MeYyensl.

’

, .
There are proved propositions on the existence and uniqueness of solutions of a steady-state,
spatially homogeneous nonlinear Boltzmann equation which describes the charge carrier
" transport in semiconductors. In contrast td more known kinds of the Boltzmann equation
(e.g. in radiation transfer theory), the form in question contains d-functions in the collision
integral. Therefore, smooth functions are transformed by the collision operator into disconti-
nuous ones in general. The precise investigation of the properties of the operators deséribing
the Boltzmann equation leads to the construction of suitable anisotropic Sobolev spaces, in
which existence and uniqueness of solutions can be shown. i

’

Phenomena of the electron transport in semiconductors can be described by a non-
linear partial integro-differential equation, the so-called Boltzmann equation. The
subject of this paper is the investigation of the existence and uniqueness of solu-
tions to the steady-state, spatially homogeneous Boltzmann equation. A forth-.
_coming paper will be concerned with the numerical applommatlon of the solu-
tions. In contrast to other kinds of this equation which are used, e.g., in the theory of
radiation transport or in the kinetic gas theory, the considered form contains Dirac’s
d-functions in-the kernel of the collision integral. Consequently, the integral operator,
transforms continuous functions into discontinuous ones in general. Therefore, the,
- investigation of the properties of the integral operator plays an important role in the
following considerations. In the case of small electron concentrations it is possible to
1) Der abschlicBende Teil LI Numerical Approximation of Solutions wird im folgenden Heft
dieser Zeitschrift erscheinen. : '
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use a lmearlzed form of the equamon in order to describe the- transport phenomena
adequately Some results concérning the analytic properties of this form can be found,
, eg.;in[10, 13—16] In partlcular [15] gave rise to some ideas presented in thls paper.

g

1. The Boltzmann equation of electron transport

We investigate the equation - o ' >
‘lFaiu—{—clu' . B Coe '
o= B T _ v . (L.1)-
=g+ [{WC ) (1 = w)u®) — WE, ) (1 — u(k)) u} 2(k') dk"-
. é .
,silbjéct to the boundary conditions ‘ T N .
a(—Lt) =ul,t) forall te@,, : (2

where G = I X G;is a domain of the n-dimensional crystal momentum space (n > 1).
Here, I = (—1,1) = R withl > 0 and ¢, = R*—! an open and bounded. domain with
a sufficiently smooth boundary. Furthermore,'let k = (z, ) € G.
The solution  of (1.1) describes theé steady-state charge carrier distribution (of

ele¢trons or holes) in a spatially homogeneous problem with a constant homogeneous

" electrical field'applied. The differential part F du/oz of (1.1) (F € R, F-> 0) describes
the influence of the electrical field. Here we assumed that this field is parallel to the
basic vector (1, 0). Since @ usually represents a small part of a Brillouin zone (e.g.,
a nelghbourhood of the conduction -or valence-bond band edge), this is no serious
restriction. By imposing periodic boundary conditions (1.2) we assume that G is so -

. large that the equilibrium distribution is not essentially disturbed by the electrical
field near the boundary of G. The interactions of the charge carriers and the crystal
lattice are described by the collision integral. The term W(k, k') (l — u(k)) sta.tes the
density of the quantum-mechanical transition probability of a particle to' move from

" astate kinto the state &’. The factor'1 — u(k) in this density takes the Pauli principle
intova;ccount. z is the state density in G. The integral kernel- W has the form

Wk, k') = z K, k k) a(E(k) E(k') + w?) , (1.3)
§=—7 ' . . .

where E is a contmuously differentiable function defmed on @ (band structure)

_reflecting the energy a particle would have if it were in the respective state k € G.

Every térm of (1.3) describes possible state transitions. The §-function is a conse-

quence of the energy conservation principle. wy® are constants giving the amount of

energy which a charge carrier interchanges with the crystal lattice. The occurance of

. the é-functions has several implications on the properties of the collision integral.

In dependence on the shape of the level sets of E and of the boundary of G it may

})appen that the integral part transforms smooth functions into discontinuous ones
in general. Hence, the solutions of (1.1) will not be continuously. differentiable.

In the following we will distinguish between two cases: -

(I) Tn. ¢ there are no carrier sources or sinks: s .
¢ =0,9g=0. v : ' - v
“ (1D In G there are sources or sinks:

Lalh) 2 0 (k € B), 0, % 0. o



’

Case’ (II) includes the possibility to take into account such processes as, e. g-, band-
to-band transition and impact ionization. 1f the particle ¢oncentration is-small,
1 — u(k) =~ 1, therefore it is suff|c1ent to.use the linearized form
. . a 3 7’

F ™ u + cu

=9+ ]'{W(& E)u(k') — Wk, -) u} 2(k') dk : (1,4)

~instead of (1:1) in order to describe the charge carrier transport, adequately. An

"by ¥, 1f X, Y 'are Banach spaces, let B(X, Y) denote the space of all continuous -

~

extensive representation of the physical background concerning the Boltzmann .

equation in semiconductor theory can be found in [1, 9).
- For the integral kernel w and the state densmy z we assume the following to be
true: . \ .

(A1) (i) Let D, =-{(k, k’)erG|E(lc) - B(k') = w,). Then for s’=_ —r,.
7w = —wy?, K, € C(D,), Ky(k, k') > 0 (k, k' € D,).

(u) z 6 C(G), z(z, t) = 2(), and z(¢) >0 almost everywhere.

.oy

Remarks: 1. By (A1)/(i) . we assume the reversibility of. the collision processes
described by (1.3).2. (A1)/(i) yields wy® =0, hence we assume the acoustic scattering

to be taken into account. This is not necessary for the results to be valid but it simpli- .
- fies the notation. . -

From (Al) we have Q, € C(D,) where

L QU E) =K ) KSR B | s

and - )
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-~

2= min Q6 ) | (6 K) € D) > 0.7 ()

Notations: In RY we denote the Euclidean norm by |- and the Lebesgue measure

linear operators defined on X and mapping into Y. By(X, ¥Y) S B(X, Y) be the sub-

space of all compact operators. For 4 € B(X, Y), N(4) and R(A) denote the kernel

and the range of A, respectively. For a compact set K and a Banach space Z, let

C(K, Z) denote the Banach space, endowed with the supremum norm, of all contin-
uous mappmgs defined on K and mappmg into Z. 4

N

/

2. Band structures and collision integrals

" The kernel (1.3) of the collision operator leads to integrals of the form .

AY

K ju(/g),és(E(k)—w)dk. o Co I (2.1)
I . . . . .

‘These integrals will be definéd now. Furthermore, some properties of the integrals

will be proved. For this, the properties of the underlymg band structure E as well as
the boundary of @ play an important role. The following basic shapes of E are often
used and adapted to a wide range of semlconductors ) \

E(k) = ak?, B o : i : . (2:2)
E(k) = az® + b2, ' » T . (23)

21% ’
/ N

~
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E(k) (1 + eE(k)) ; ak?, . - : (2.4)
E(k) = ax® 4 bt2 — (¢ + ola:z)ll/2 +c. T (2.5)

Model (2.2) was used, e.g., for p- type germanium [8], ‘n-type mdlum antimonide and

n-type gallium arsenide [12]. (2.4) is another model for n-type gallium arsenide [2].

In [11] (2.2), (2.3) and (2.5) were used to describe p-type tellur. The surfaces of con-

stant energy of the first three models are spheres and ellipsoids, respectlvely (2.5)

is-the so-called camel-back structure. The qualitative behaviour of (2.5) is plotted in
the followmg sketch.

" Fig. 1 /
, .

‘Our investigations will be carried out, for a’ sufflmently large class of structures con-
ta,lnmg all shapes (2.2)—(2. 5) - : ~

Defmltlon Let thcnc exist a domain O — R and a diffeomorphism ¢: Q — G :
= {k € G| grad E(k) & 0} suchthatE(«pw C)—w(wER ¢t e R ‘vuth(u, é € 0)
and there exists an'M € R such that )

[ Idet &'(w, )| dt < M (w € R). o (2.6)

’ Quw) . » '
For w € R:let{ Q) = {¢t € R} | (w, ) € £} and set, for u € Q(@),
J u(k)$(E(k) — w) dk = [ ulp(w, $)) 1det ¢'(w, 1)1 dC.- (2.7)
K G Q(w)

-

Remarks 1. It is easy to sce that the definition (2.7) 1s mdependent of the choice
of 2 and ¢.

2. For w E R, let the functional 6, on C3°(G) be defi_ned’; by
(0 1) = [ u(k) 3(E(k) — w) dk. ’

G

Then 6;, 6’..‘1)’(6’) is a well-‘kﬁown‘example of a generalized function (di"st,ribu‘t,ion)
concentrated on a surface [3]. 6, can be defined also under weaker assumptions. The
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-condition grad E(k) &= 0 forall k € G w1th E(k) = w is sufficient (suppose that E is

smooth). Our condition (2.6) guatantees that (5,, u) exists for all u € C(G) and
60 € C(G)*. ,

3. For the definition of 8, € C(G)* for a  fixed w it is obviously sufficient to use a

nelghbourhood of the surface of constant energy E(k) = w instead of G. The strong
assumption is necessary in order to infer global propositions with respect to w.

Consider the function

u(k) = f f(k, &) 5(E(k) = E(k') + wo) dk’ " (2.8)

for some.f € -C(G ><G’) ln order to show contmmty properties of such fun(,tlons we
make the followmg assnmpt,lon

(A2) With the notations above let the following be true:

(i) Q is bounded. .
(ii) The transformation ¢ satisfies det ¢’ € Cc(). :
(ii1) There are e\acbly m (m =0). mlltua]ly different values E, ..., E,

_ satisfying . .
Enn = inf {E(k)] ke G} é El < E, <
- < Ep < Epax:= sup {E(k) | k € G}

such that, for w € R (w ¢ {E,, ..., En}), 4" {Qw') & Qw)) -0 for
w — w'. For w = E;, measurable sets Q;%, 2,7 — R"~! exist such that
}."‘I(Q(w’) A‘.Qii') — 0 for w' — E; 4 0. Here, » denotes the symmetric
difference. E A ’
Remark: This assumptions requires regularity properties of the energy structure
as well as of the boundary of G. In the case of n = 2, (A2) is fulfilled for (2.2)—(2.5)
withm = 1 and E, = E . : ' '

Lemma 2.1: Let (Al)—(A2) hold. Let u be defined by bJ (2.8) with f € C(G ><(x) 1f
k € G and E(k) + w,'§ {Ibl, oo, B), then u is continuous at k.

Proof: Let_h(lc, w, ) = f(lc, p(w, ,)) |det @' (w, £)]. Because of (A2), h-€ C(G ><.Q).
Let {k;)iex = G be a sequence with k;, — k.for ¢ — oo, and set o .
h(k;, E(k;) + w,, £), ¢ € QE(k;) + wo),
vi(l) = .
0, .otherwise,
: h(k, E(k) + “ ¢), ¢ e QE®X) + ws),
0, otherwise!

We show that ' (v;) converges in measure to u. Let ¢ > 0 be fixed and 6 > 0 such
that |h(k, w, £) — k(K',w', £')| < & for all (k,w, ), (kK',w',{') € G x 0 satisfying
[(k, w, &) — (K', ', ')} < 6. Since E is continuous, there is an i, € N such that
|(ki, Bks) + wo) — (K, B(K) + wo)| <8 (i 24). Regarding o(¢) =vi(() =0 if
¢ ¢ QE(k) + wo) v QB(K) + w,), we obtain, for i = i, : ' :
i — o] 2 ) | .
< An1({E € RO [oil8) — Q)] 2 .0 Q(B(ki) + wp) 0 Q(E(K) + w))
A QB + wo) & AB(K) - w)) ‘
= Y AE(k;) + w,) o QE(K) + wo)).
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\

Hence, lim‘/"."’—‘([v; — vl 2¢)=0. Since 2 and & are bounded,
v [ eyt — . [ w(t)de

' Rn-? Rn-?

u(k;)y — u(k) B .

- Corollary: Let the hypotheses of Lemma 2.1 be fulfilled, Ei = E; + w,, the indices
‘be selected in such a way that Eniy < B! < Epay and 61 = (k€ G | Ei-t < E(k) < E)
G=m,\...om’ +1; E"~Vi= By, E""41:= Epn.y). Then, for u defined by (2.8),
ulgs ts continuous dnd has a continuous extension onto G1. | ‘

' . . : ’ C ¢ .
follows from Lebesgue’s déminated convergence theorem. But this is equivalent to

"Further‘below we use extensively an analogue of Fubini’s theorem. Indeed,

s

LS 1 R (B — B +w) dkdk
G6 . . -
=T i k) o(BG) — B(k) + w,) dk ak
: GG S . -

forallf € C(G xG)and allwy € R. ~ C

‘3. .0n the so_lvability of thevBoltzmanp equation

In order to derive assertions on the existence and uniqueness of solutions we formulate the

Boltzmann equation (1.1) as an operator equation in the Banach spacés X = ¢(G,, Hy(I))

“and ¥ = C(@;, L*(I)). We shall define 4, B, C as the differential, the linear integral, and the
nonlinear integral parts, respectively. Then 4, B € B(X, Y)and 4 is bijective. We'shall assume
that B is even compact. Using the theory of positive operators in partially ordered Banach
spaces [7] it is shown that in Case (II) the spectral radius 7(4-1B) is less than 1 whereas in
Case (I) one is a simple eigenvalue of A-1B which is in modulus strictly larger than the other

- - eigenvalues and the associated eigenvector can be chosen to be strictly positive. Every physi-
.cally relevantrsolution of the Boltzmann equation, must satisfy the inequalities 0 < u(k) = 1.
It is possible to find constants 6 < 0 and v > 1 which only depend on the functions K, of (1.3)
such that forallu € D :={u ¢ X | 0 < u(k) < 7} the derivative (4 — B — C) (u) = 4, — B,
can be split into operators 4, and. B, so that the mentioned properties also hold for A, and B,.
This fact is essentially used. In Case (1) the Boltzmann equation will be supplemented by a
condition on the number of particles ‘

1

. f ulk)z(kydk = p.

c - .

Then we show\the existence of a regular analytic solution path u(g;) of (1.1)—(1.2). In Case (11)
every solution of the Boltzmann equation is isolated. . .

We introduce the following notations: -

HYI) = (v € Wa(I) | o(—1) = o)},
X = 0@, HYI)), Y = C(G., L¥(])).

-

x

: ' - S
The following continuous imbeddings are valid: X — C G) > Y > L(G). '.l‘hroughélit
this chapter we assume (A1)—(A2) to be fulfilled. Define the following operators

'
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i ,

(with 4 € X, k € G): S o h

. - - '/ T :
Cdul) = F 2+ ke, . @D
RPN col) = [ Wk k) 2(k) d¥ S '
Byuk) = j K(k i) 6(E(k) — E(K) ‘+.w0«) u(k’) 2(k') dk’;
' Bu — Z B, | b (3.2)
Bu(k) = [ (W(k', k) _ W (k, k') w(k') z(k') dk', .
G N T . ) -~

Cutk) = u(k) Bulk), |
Tu—Au—Bu——Cu -

Smce X is continuously 1mbedded into C(G), the functions Bu, Bu Cu: G — R are
~well-defmed Obviously, (1.1)—(1.2) is equlvalent to Tu = g.

Proposntlon 3.1: For all we X and ve Y oufoxeY, vu E Y, and ||vu||y
< |plly lulled = v Iwlly liullx for some y € R independent of u and v.

In order to investigate the properties of the integral operators we introduce the
" Banach space PC(G). Accordmg to Assumption (A2)let Epiy < B, < - < Ep < Eax
be defined. . Let {El, ..., E®) = {we€ R|w = E; + wy, —1 < s‘Sr 175 m
n (E,mn, nm3.,() Assume E‘ .< E™ tohold. Set Gi = (ke G| El < E(k) < Eith.
7=0,. E° .= Emm, E”' oy := Epax). Then let PC(6€) be the Banach' space,
equnpped w1th the supremum norm, of all real valued bounded functions u defined
on G = Gy --- u ™ whose restrictions u|g; are continuous and have continuous
extensions onto - Gi.- Obviously, GinG@i =0 for i+ j and @ =GO v am.
Moreover, PC(G) is isomorphic to the Banach space C(G°) X --- X C(G™). Hence the
precompact suibsets of PC(G) can be characterized by the theorem of Arzela- Ascoh _
From the corollary to Lemma 2.1 it becomes clear that the set 9G%u --- v aG’" :
contains all discontinuity points of functions of the kinds Bu and Bu:
In the following we assume Assumptlon (A3) to be fulfilled: ’

(Ad) (i) e € Y . .
(n) There exists a'd € R such that f clz, t)ydx = d > 0 forallt € Ge.

(iii) /.‘({:c €1 E( x,t) = Ei}) = 0 forallt € Gy, j =~Q, ce,m 4 1.
Proposition 3.2: Let (A1)=(A2) be true. Then B € B(X, PC(G))-

Ploof By the corollary, of Lemma 2.1, Bu € PC(G) for all u ¢ X. Because of
(A1) there exists an N > 0 such that K, s(k, * )z(k’) < N((k,. k') € D,). Then

I.IB,ul|pC(r;) = sup f K,(k, k') u(k’) 8(E(k) E(Ic') + wy?) 2(k') dl;"

< sup K,k k) ( ) el f o(E(k) — E(Ic’.)—f—w’o‘) dk’

(k.kIED,

N

SNyl MU
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o~

" This gives rise to the question which conditions have to be fulfilled such that

R(B) S Y holds. It turns out that Assumption (A3)/(iii) is sufficient for that.
Lemma 3.3: Let (A3) hold. Then PC(G) is continuously imbedded into Y.
Proof: Letu € PC(G)and v, G, — L¥(I) be defined by u(t) () = u(z, ¢)

Because of (A3)/(iil) the measure of
i m+1 _ )
Vi) = U {z € I'| Ex,t) = B}

j=0

((x, t) € G’). o

vanishes for every t € G,. Hence v(t) is defined for almost every « € I. Since (t) is

continuous on every component of the open set 7 \ V(¢), »(t) is measurable, and
" from the boundedness of u we get v(t) € L3(). Let (t:)ien <= G, be a sequence with
t; —t. Since u_is continuous at every k = (z, ¢) € (IN\V(@) x {8}, v(ty) (x) = u(z, t;)
= u(z, t) = v(t)(z) for all x € I\ V(t). Using the boundedness of u, v(t;) — v(t) in

LA(I) follows from Lebesgue’s dominated convergence theorem. Conse

The continuity of the imbedding is now obvious |l

quently, v € Y.

Remark: (A2)/(iii) is also essentially necessary‘ for the continuous imbedding

PC(G) — Y to hold. For instance, (A2)/(iii) is fulfilled if the level sets {
=< E’} are finite unions of strictly convex sets. This is the case for (2.2)

. Corollary: Let (A1)—(A3) hold. Then B € B(X, Y) and G €Y.

ke G| Ek)

‘The inclusion B € B(X, Y) is too weak for our purposes. We shppose B to be even.
a compact operator: B € By(X, Y). Our previous assumptions are not sufficient to

ensure this property. In order that B ¢ BO(X, Y)
on the band structure £. The sample structures (2.2) —(2.5) have this property.

holds we need further assumptions

(A4) The band structure £ and thé state density z arc such that the integral .
~ operator B € B(X, Y) defined by (3.2) is compact for each integral kernel -
: o :

W satisfying (A1), .

A proof of (A4) for a given band structure is loaded with technicalities. WENDT
- [15] has suggested a general! scheme for proving the compactness. In Chapter 4 we

illustrate this scheme by proving (A4) for a very simple band structure.
We 'summarize the properties of the operators 4 and C.

- Lemma 3.4: Let (A1)—(A3) kold. Then A ¢ B

and, consequently, continuously invertible on Y.

Proof: Because of Proposition 3.1 and the corollary
© A simple calculation shows that Au = w if and only if

wz, t) = [ Gz, t, &) wi&, t) de,
o1

' ' 1 eto-nzo (1
Glx,t, &) = F 1 = o-fun {e—h'(l.l),
' z
' 1
h(z, t) = F fC(S,t)duf.
.=t

From this representation we get the estimate

0< Gz té)<ax and A < o ((21)2 +

—l<i<z<

(X, Y). Moreover, A-is bijective

of Lemma 3.3, 4 € B(X, Y).

7’

=l<e< <,

2l
F?

licliy

)1/

5}

(3.3)
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_ where .
exp (F-1(2)"/2 |ic|ly) '

- F(1 — exp(—d/F)).

This yields the assertions 8

" Lemma 3.5: iet (AL);(A3)- hold. Then: . k
(i))CueY forallu € X and C: X — Y is analytical.
(i) C'(u) v = wBv + vBu (v, v € X) and C'e B(X, B(X, Y)).

Now we are in the position to prove our main results. At first we consider the linea: .
- rized equation (1 4), (1.2). In operator notation it reads (4 — B) u = ¢. In the follow-

ing an eigenvalue of (4, B) be a 2 £ € such that the complemfled opera.tor A — )B
has a nontnvnal nullspace. .

Theorem 3.6: Let (A1)—(A4) be true. Then we have:

(1) For all z € C, the complexified operator A — 2B is Fredholm with index zero. The
eigenvalues have no finite point of accumulation.

(ii) There exists an eigenvalue 2, € R having the propertzes

a) Ag > 0 and || > 2, for-all ezgenvalues i == Ao of (4, B). .

.b) The eigenvalue. Ay is algebrazcally stmple. The ezgenzector e€ X belongmg to 24
can be chosen to be strictly positive, i.e., e(k) > O forall k € G.

(i) In Case (1) it holds that 2, = 1, whereas' 24 > 1 in Case (II).

Proof: (1) Since 4 is bijective and B is compact. the assertlon follows from \Ilkol-
skij’s theorem [6: Theorem XI1II.5.1].

(ii) Let Ky = {u €. X | w(k) = 0 for all k € G} denote the cone of all nonnegat)ve'
“functions of X and Ky the corresponding cone of all nonnegative functions of Y. The

" . intérior int Ky = fwe X | u(k) > 0 for all-k € G} is nonempty The operator A-1B -

€ Bo(X) is strictly positive, i.e., for every u € X, u == 0, there e\lsts an n-€ N such
that (A-1B)" u € int Ky (cp. (Al), (3.3)). Theorems 2.5, 2.10, 2.13 of [7] imply the
. existence of an algebraically simple eigenvalue y, € R, o > 0, zmd of an associated
eigenvector e € int Ky of A-1B. Moreover, for all u € o(A-'B), u == py, we have
|| < uo. Since, for i &= 0, 1 is an elgenvalue of (4, B) if and only if A~ € o(4- B)
the assertion follows with )0 = po7! :

m) For the eigenvalue i %y and the elgenvector ¢ we have

F 6— e (co +¢)e = )of W e(k’) z(lc’) dk'. : : (3.4)

Denot-e . ‘ -
= [ Wk, k)ek)2(k') dk’ z(ic) die = [ co(k') e(k') 2(k") dk' >0,
. GG . G .

= [ ¢,(k) e(k) z(k) dk.
G

In Case (I) &’ = 0, whereas o’ > 0 in Case (II). Integratmg (3.4) yieldsix .+ o' = ioa,
and the assertion follows immediately 8

\

From Theorem 3.6 we conclude the following corollary on the solva.blllty of the -
" linearized Boltzmann equation (1.4), (1.2).
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Corollary: Under the hypotheses of. Theorem 3.6 we have:

(i) In Case (I) the equation Au — Bu =0 has, except for a constant real /actor
exactly one solution u € X. This solution can be chosen to be strictly positive. .

(i1) In Case- (II) Au —Bu =g has exactly one solution v € X for every right- ha,nd :
stde g € Y. If g is a nonnegative function, u is so, foo.

Returnmg to the nonlinear equatlon (1.1), (1.2), from Lemma 3.5 we see that -
T: X -> Y is analytical and T"(u) = 4, — B, where ‘ .

. Av_Av—vBu Buv—Bv—f—qu (u,v € X))o - (3.5)
A simple calculation shows that 4, and B, have the following repr esentatlons

Bw _f Wy, ) o(k') 2(k'y A/,
uwméwmw+www—wwmwQT

= 3 (Bl &) + (KoK, ) — Kk, ) u(hk)

x o(B(®) — BU) +w), (3.6)

.-Au’l) Z‘F.%'I) + Cu0,

=+ oy Coi= [ Wk, )2(k)dk.
. = |

Every physically reasonable solution of the Boltzmann equation must have the prop-
erty 0 < u(k) < 1. In the following we consider only solutions. belonging to the
open set D & X defined below which contains all relevant solutions. With (1.6) let
. g¢= min q's, § = max max Qk, k).
- 8=—1,...1 - s=-—r,..r (kk)ED,

N i - ,

“ Moreover, with _
-t (1—9g=*1,
G = T ,
: g +o0," g=1, .
let D = fu€ X | o< ulk) <zforall I3 € G). From the defmlt,lon of Q, it follo“s that

g=1<=4q. Hence,s <0Oand 7z > 1. : '
' LetnowuéDandu——msn{()]kEG } and & == min {u Ic)lkEG.Then

2 e=min{l+(g= DT, 1+~ 1y >0.

By (15), Ki(k*) + (K(k, by — K,(k, &) ulk) = K,k ). Now (A3), (3.6) °
yield : : .

— 00, q_‘l

 Coulk) = eco(k), ke@, [cuzt) dx >ed >0, t€G,.

. o _ ]

t

~ Hence we have shown the following cssentlal result. : ’
Lemma 3.7: Let (Al) (A4) be true. Then, for all w € D, the statements of Theorem

* 3.6 hold for T"(u) = A, -~ B, if A and Bare replaced by A4, and Bu, respectwely '

As an immediate consequence we obtain

Theorem 3.8: Consider Case (1T). Let (A1)—(Ad) be true. Then we have:

(1) Let w € D and Tu = g. Then there exist open nezgkbourhoods UeX, Ve Y
of u, g, re_spectweh , such that T = T|y : U — V is bijective and T-! is contznutmsif
differentiable. ‘ , o I Lo

~
\
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" (11) There exzsts ad>0 such that, for all g € Y with ||g||y < d the equation Tu.= g
has a solution u € D:

(iii) Let w € D such that Tu(k) = 0forallk €@, Then u is a nonnegative function.

" Proof: (i)-is a consequenice: of the implicit funct,xon theorem and (n) follows
from (i).since 70 = 0.

(iii): We define a mapping S: D x X - Y by S(u,v) = Ay, ;v — Byv. A4y, and
B,y are defined according to (3.5). Obvnously, S(u, u) = Tu (u € D). Since u/2 € D,
(Ayje — ,,/2) 1 ¢ B(Y, X) exists and is positive. Therefore; v = 0 follows from
S(u, v) =g =0forallu € D. Settmg Tu = g we obtain the assertion I

Remark: Using the same methods it is possnble to show that u(k) < 1 follows
from Tu < ¢, for u € D. But this proposntlon is useless since the condition g < ¢, is
often not fulfilled. :

Lemma.39 Let (Al1)—(A4) be true and | ' '
Y'=Ive Yifv(k)z(k)dk'_—;o}. | ' I | "(3.7)

Then T" (u) X =Y" forall w € Dand TX S Y' in Case (I)

Proof: The inclusions 7X < Y’ and T" (u) X < Y’ follow 1mmedla,tely from (1. 1),
(3.5) and T'(u) = A, — B,. Because of Lemma 3.7, dim N(T"(u)) = codim R{T"(u))
=1 (u € D). Since Y’ — Y is closed and codlm Y =1, the 1dentlty R(T'(u)) =Y
must hold

.In Case (I) the Boltzmann equation’ has no isolated solutlons But Lemma. 3 9,
Lemma 3.7 and Theorem 3.6 suggest the following consideration: For all u € D,
N(T (u)) = span {e,} where e, € int'Ky. If g € Y, the set L of solutions of the equa-'
tion T"(u) v = g has the representation L = {v, + fe, | B € R}. If e* € X*, e* &= 0,
is a positive functional (i.e. {e*, u) = Ofor all u € Ky), for every « € R there exists
exactly one solution v of the system T"(u) = g, (e v) = «. For physical reasons it is
advisable to choose e* as the operator which assigns the number of particles to each
distribution u. More premsely, let Y’ be given by (3.7) and H: X' x R— Y x R be
defmed by o ' N

T
) = ('

Instead of (1' 1),‘(1 2) we consider the equation H(u, p) = 0.

Theorem 3.10: Conszder Case (I). Let (AI)—(A4) be true. With Pmax = (¥, 1> ;
andD—{ueDIOSu(k)Sl}wehave -

'p) where  (e*, u) = [ u(k) z(k) dk. " (3.8)
v 2T 4

(i) '—- H(u_, p) is bijective for all (u, p) € DX R.

(11) H(O 0) = H(1, Pmax) = 0. : :

(iii) If w: (p), P2) — D is a continuous solution path to the equation H(u, p) =0,
then it holds for all «, B sans/ymg P <« < g < pz that w(«x) (k) < u(B) (k) for all',
keG. . N

(iv) Ifu € D, p € [0, Pmax), and H{u, p) = 0, then u = 0 implies u < 1.

(v) There exists a unique analytw solution path w: [0, Pmax] =D’ of Hu, p) =0
- with w(0) = 0 and u(Pmax) = 1. Moreover the equation H(u,p) = 0 has no further
. solutionsin D' X [0, Pmax].- .

. N
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" Proof: We have, for (u, p) € X xR,

P Ty
.a—u‘H(u,,p)v_((e*’w) (UEX),'

Assertion (1) follows from Lemma 3.9, Lemma 3.7 and Theorem 3.6 (ii) is obvious.
(iii): We remark first that H is an analytic mapping, and hence every continuous
. solution path is also analytic, Consequently, u'(p) exists and

r

. : a -1 T
o w(p) = — [— H(u(p), 7))] % H(u(p), p), - PE(P, Po)-
- Equivalently, « (p) is the solution of the system T (u p)) w'(p) = 0, {e*, u'(p)) = 1.
Because of Lemma 3.7 and Theorem 3.6, u’(p) € int Ky, and thc assertion follows.

(iv): Let w € D and p € [0, pmax] such that H(u, p) = 0 and u(k) > 0 forall k € G.
Then, v = 1 — wu is a solution of the system Av — Bv = 0, {¢*, v) = puax — p where .
A, B are definedaccording to (3.1), (3.2) using the integral kernel W (k, ¥') = W(k, k')
Xu(k). W satisfies (A1). Hence, v = 0 (i.e. w < 1) by Theorem 3.6. Let now u = 0.
u lies on a continuous and strictly monotone solution path because of (i), (ii). Let
P < Pmax- For « > p we have u(x) > u = 0. Hence, u(x) < 1. Since D’ is closed in
'X, u = 1 follows. If p = ppay, we have u{x) > u for a~> ppax. Furthermore, » = v(x)
=1 — u(x) is a solution of the system Av — Bv = 0, {e*, v) = pyax — « < O.

Usmg Theorem’ 3.6 we obtain v.< 0. Hence, u(x) = 1, and by the continuity of
u(x), w = 1. Since (e* U) = Pmax, % = 1. :
(v) This assertion is a consequence of (i)—(iv). A detailed proof is given in [5] l

Accordlng to Theorem 3.10/(v the fol]owmg representation of ‘the Bo]t/mann :
equatlon is appropriate in Case (l)

T = OO0, pusch X), Y = O[O, paac), ¥ % R,
I X — Yy, . <7’LL(P) = ,H(u(p), p), P € [0, Pmax]-

(1.1), (1.2) is described by J u = 0. This equation has exactly one solution (which is
analytical). Moreover, the derivative J '(u) is bijective for all u€¢ D:= {u e I |
u(p) € D). This representation will be advantageous-when investigating the conver-
gence of numerlcal methods for the approumate solution of (1.1), (1.2). '

~

Sometlmes it happens that the domain G is not given in the cylindrical form I x G,. Due t6
physical considerations it is known that the probability that the charge carriers reach large 4
energy values nearly vanishes. Hence, it is sufficient to consider the Boltzmann equation on
such a domain G, where the energy does not_exceed a given maximal value. To be more pre-
" cisé, let G = R® be a domain and E ey a given real constant (of maximal cnergy). Let £ bea
band str uoturc defined on (. Set

= {k € G| E(k) < Emaxb,
'\GQ— ft € R"=1]| (a,t) € G, for some z € R}, "
I={ZzcR|(zt)€ G, forsomctER"'l}._

We assume G, to be open, bounded, and conve'x. Set G = I x .G‘_., and Gy(t) = {z € R | (z,t)
€ Gy}, 2'(t) = min Gy(t), 2%(t) = max Gy(t): Let equation (1.1) be given on the domain G, with
the modified boundary conditions : : . . o

w@(t), ) = u(@),t)  (eG). . . (3.9)

We relate this equation to an equivalent equation (1.1) with the boundary conditions (1.2)
defined on the domain G. The equivalence is to be understood in the following sensé: For a

<



/

N

. On the Boltzmann Equation of Carrier Transport L3338

given funcblon u E C(G,) a function € C(G’) is defined by

. ,,;(x’ t) = {u(z,t), (x,t) € Gy, : I

(z'(t), t) . ) 0therw1se A

\ -

If the' functions K, are extended onto G x G by zero, then it holds: If » is a solution of. (l 1),°
. (3.9) on @G, then @ is a solution of (1.1}, (1.2) on & and vice versa. Takmg suitable subspa.ces
X" Xand Y C Y. equipped with new norms it is possible to show results of the kind given
above. A detailed representation can be found in [4]. The modified form becomes important
when solutions are computed numerically. The approximation of the mtcgral operators does
not lead to.full matrices because of the 4- functions. Using the modlfled formulation the num-
ber of nonvamshmg elements decreases again.

4. A compactness proof ' 7 '

In our previous consideration we used the compactness assumptlon (A4) e\tenswely
Here, we supply a proof of (A4) for a sample band structure. In an attempt to avoid

as many technicalities as possible we choose the s1mplest case. Nevertheless, the

" essential mgredlents are clearly seen. -

"~ In proving (A4) we follow the lines of WENDT [15] He has suggested the following

. general scheme: For a fixed s, Byu(k) is considered to be a superposition of a linear

. operator and a linear functional. More premsely, let Z be a Banach space'and {P, |
k€ Gy S B(X,Z), {l, | k€ G} < Z* families of bounded. lincar operators and func-
tlonals, respectlvely, such that Bulk) = LPyu, k € G. Assume the followmg to be
‘true: .

(1) The familics {&;} and-{P;} are. boundcd

(11) For every 7 (0 < j < m’) and every ¢ > 0 t,herc exist & 6 > 0 such that, for - '
everyk, k' ¢ Glandue X, |k — k| <6 1mplles ](lk — le) Pru| <.e|jul.
_(iii) The mapping k +> P, is uniformly continuous on G7 (0 < j < m ")

'

Let j be fixed. Foi given ¢ > 0-we.obtain
| Bsu(k) — Bou(k')| = |kPxu — e Py u|
. s < |kPou — L Ppu| + [LPeu — b Pk.u| .
' < WPy — Peelt el + (e — be) Pe| < Ce lully -
if k, Ic' € G and |k — k'] sufficiently small. Hence, for every bounded set U — X,
_B,U is equicontinuous on GJ. Therefore, B,U is precompact in PC(G') and, conse-
“quently, in Y. We show using the simplest example how this algorithm works. Let
Yy = (0, 1), I = 1, the band structure be given by (2.2) .with a = 1, and the state
. density-be z(k) = 2nt. This state density arises if a three-dimensional problcm' with"

cylmdncal symmetry is transformed into. a two-dimensional model. Let G*
kEG]x>0}andG‘ ={keG|z <0} Then' set .

Byru(k) = f K,(Ic, k) u(k') 8(B() — BR) + wyf) 2(k') dk'. '

_Obviously, R(B,*) & PO(G) and B, = B,* + B,". We consndcx only B,* 'since the ..
-proof can be done analogous]y for B,~. We choose @ and 2 as follows:

{(w¢)€m|0< <z (w, 1)112<r<1(w>1)}

o _ (»tw, o):(( 42)”2)
P 8) s '(%(W, ¢) ¢
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-

" The point in thJs choice is the fact that ¢ = ¢, i.e. C is orthogonal to the electrlcal

fleld Now, let Z = L}(G,). Defme P, € B(X, Z) and l, € Z* by

st

k), —— t e Qw(k)),
Pat) = u(‘pl(w ) t) t) ( (%), t) € (w( ))
, 0 . . . otherwige,
L= [ Kk, tplw(k),l)) wyar,,
, 9 o A -

;w(k) E(lc) + w,?, k 6 G.

"“Then B,*u(k) = l,Pku (k€ G) Let C be a~ genenc constant independent of u, v; k,

k' in the following. Denote for short &, = - p(w(k), t”) and ky' = p(w(k’), t") (k; k' € G).
A simple calcu]atlon shows that the families {/,} and {Pk} are bounded. Moreover, for
(k, k" € G)

- . ]

1k, ) = — T,
V q)l(w(k ): ¢ C
SRR 2wtk IN(wk))
Jk, k)= " [ | pa(eotk), )} — q:l(w(k) z" ]-:t"dt"
CQuik)n .O(w(k)) [T

. we have I,J.¢C@G ><G') and Ik, Ic) J(k k) = 0. Let now & > 0 be given. Since

K, € C(D,), ¢, € C(2), and w € C(G), a 6, >0 exists such that, for a,ll ki €G .
(k — k| < &) and ¢t € Qu(k)) n Qu(k)), |K, (k, ky) — Kk, k)| < & Further-
more, there exists a 8, > 0 such that I(k k') < & for Ik — k'| <'6,. Hence, for
|k—kl<6_mm{6,,62} .

I lk —_ lk) Pk u| .
! . . '4 7 8,,
= Rl ) — Kok ) k) —
Qw(k) N Q(wik)) . . )
+ f Kk, k) uk)] —_ae
» 1 1 -, . .
8 ) K (p](u}(k‘l), tu)

Q(w(l;’))\o(w(k))

< & |ullo@ mw(k)H2 + C Hu”f(é) Ik, k') < €C lullx -
Hence, (ii) holds. In order to show (iii) we may estimate '
|IPew — Prullz = f |Pau(t’) — P,‘lu(t")[dt“
at'’ - o F1724 dé}'

(k) —— — ulk)
" et ) ) ek, )

A~ -
. [>)

Q(wik") 0 2(wik)
4
1

nt'’
. + f [u(ky)] ———— dt"”
. : ‘pa(w(k), £)
\ ) Qwik) )\ 2wk’ )) )
B ﬂt“ - .
+ k) e at
[ e

Q(wikH)\2(wtk)) : S



=

2(wik’)) n Awik))
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\ 3

17
il "

fulky) — u(k )I——
C etk )

: X
‘ + lllie@ J(k, &) + lelle@ I (k, &) + 1(F', k)]
The first term (call it T) may be further estimated:

’

T =

-

" 0(wk)) 0 Q(wik)) | (tetk)7)

Q(wik’ ;)no(w(k))

%(W(k).t"‘) ,

¢ . ,

= ( 11) d§ _.__—" 1 )
ox 9’1("/(1‘7'):‘ ’) o

"lt“

—_dt”. 4.1).
;(w(k'), v “h

|os(etk), ) —. qo,(w(k'), t" |"2 froell

Taking into.account the continuity of I, J, u, @, we obtain for sufflcnently small
e — k') that |Pyu — Prul; < e llully, i.e. (iii). Now we conclude that B,* is compact
independent of the special choice of the kernel K,. Treating B,~ analogously we obtain
(A4) Note that we used essentially the dlfferentlablllty of u with respect to z in (4.1).
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