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On the Nonlinear Boltzmann Equation of the Carrier Transport in 
Semiconductors I: Existence and Uniqueness of Solutions') 

M. HANKE 

Es werden Existenz- und Unitätssätzefur Losungen' einer stationären, raumlich homogenen 
Boltzmann.Gleichung hergeleitet, die den Ladungstrhgertrinsport in Halbleitern beschreibt. 
'Eine Besonderheit der hier behandelten Gleichung gegenuber'bekanntren Formen, z. B. des 
Strahlungstransportes, besteht darn, daB das StoBintegral mit 6-Funktionen behaftet 1st, so 
daB glatte Funktionen dadurch im allgezneinen in unstetige Funktionen ubergefuhrt werden. 
Die Untersuchung der die Boltz mann-Gleichung beschreibenden Operatoren erlaubt die Kon 
struktion geeigneter anisotroper Sobolevraume, in denen Existenz und Unität der LOsungen 
gesichert sind. 

JoHa3b1BaIoTcn TeopeMbi CI1CTB0BHHR H eHHcTHeHHocTH pewel{Hfl CTaIutoHapHOrO 
I1OCTHCTBI1H0 oJu!opollloro ypasen Boju,uiaua, onucaiaioiuero TpaIICIIOPT 110CM-
TeJlett aapn)a B noJiynpoBouuaMax. Oco6eHHocTb aJXech pacc.mOTpeHHoro ypanileunsi, Is 
0TJIII'me OT 6oiiee naBecTHE.Ix (jOpM (IlanpilMep, Teopim u3J!yeHna), COCTOHT B TOM, 4T0 
MhITeI'paJ ci'onnioneisuei BIuIIo4aeT 6-4yiiiuisn, TaK 1T0 riajije Y14ILU111 B O6ueM npe-
o6pa3013aini B paapiuuie yiiiunit. [Iop06110e 11ccJIe1013aHHe cBOtteTB onepaTopoB, 
onucb1BaIoE1Hx ypaiiemie Boju,uiaua, noaBoJlneT nocpoesrne noxosiuux HH3OTOHb1X 
II0CTIICTB Co6oeea, B HOTOpI.IX CyEUCCTBOBaHHe H eJiHHcTBeUIIOcTb peweHllft o6ec-
ne4ein,i. 

There are proved propositions on the existence and uniquenessof solutions of a steady-state, 
spatially homogeneous nonlinear Boltzmann equatiori which describes the charge carrier 
transport in semiconductors. In contrast to more known kinds of the Boltzmann equation 
(e.g. in radiation transfer theory), the form in question contains 6-functions in the collision 
integral. Therefore, smooth functions are transformed by the collision operator into disconti-
nuous ones in general. The precise investigation of the properties of the operators describing 
the Boltzmann equation leads to the construction of suitable aisisotropic Sobolev spaces, in 
which existence and uniqueness of solutions can be shown. 

Phenomena of the electron transport in semiconductors can be described by a non-
linear partial integro-differential equation, the so-called Boltzmann equation. The 
subject of this paper is the investigation of the existence and uniqueness of solu-
tions to the steady-state, spatially homogeneous Boltimann equation. A forth-
coming paper will be concerned with the numerical approximation ofthe solu- 
tions. In contrast to other kinds of this equation which are used, e.g., in the theory of 
radiation transport or in the kinetic gas theory,'the considered form contains Dirac's 
6-functions in-the kernel of the collision integral. Consequently, the integral Operator, 
transforms continuous functions into discontinuous ones in general. Therefore, the, 
investigation of the properties of the integral operator plays an important role in the 
following considerations. In the case of small electron concentrations it is possible to 

1) Der abschlieBeU,ile Tell II Numerical Approximation of Solutions wird im folgendeni Heft 
dieser Zeitschrift erscheinen. 
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use a linearized form of the equation in order to describe the transport phenomena 
adequately. Some results concerning the analytic properties of this form can be found, 
e.g.,. in [10, 13-16]. In particular [15] gave rise to some ideas presented in this paper. 

I. The Boltzmann equation of electron transport 

We investigate the equation 

: F u +ax 

= g -i_f {W( . , k') (1 _- u) u(k ' ) - W(k', .) (i - u(k')) u}z(1c').dk' 

subject to the boundary conditions	 . 

1 U ( - 1 ; t) = u(i, t)	for all	t E 02,	 (1.2) 
where G = I x G2 is a domain of the n-dimensional crystal momentum space (n> 1). 
Here, I = (-1, 1)	K with 1> 0 and G	R'' an open and bounded.domain with 
a sufficiently smooth boundary. Furthermore,'let k = (x, t)E C. 

The solution u of (1.1) describes the steady-state charge carrier distribution (of 
eleètrons or.holes) in a spatially homogeneous problem with a constant homogeneous 
electrical fieldpplied. The differential part F /ax of (1.1) (F E K, F> :0) describes 
the influence of the electrical field. Here we assumed that this field is parallel to the 
basic vector (1, 0). Since 0 usually represents a small part of a Brillouin zone (e.g., 
a neighbourhood of the conduction or valence-bond band edge), this is no serious 
restriction. By imposing periodic boundary conditions (1.2) we assume that C is so 
large that the equilibrium distribution is not essentially disturbed by the electrical 
field near the boundary of G. The interactions of the charge carriers,and the crystal 
lattice are described by the collision integral. The term W(k, k') (i - u(k)) states the 
density of the quantum-mechanical transition probability of a particle to -move' from 
a state k into the state V. The factor 1 - u(k) in this density takes the Pauli principle 
into account. z is the state density in C. The integral kernel W has the form 

W(k, k')	K3(k, k') o(E(k) - E(k') ± Wo8 )	.	 (1.3) 

where E is a continuously differentiable function defined on G (band structure) 
reflecting the energy a particle would have if it were in the respective state k E 0. 
Every term of (1.3) describes possible state transitions. The ô-function is a conse-
quence of the energy conservation principle. w08 are constants giving the amount of 
energy which a charge carrier interchanges with the crystal lattice. The occurance of 
the 6-functions has severaLimplicatioris on the properties of the collision integral. 
In dependence on the shape of the level sets of E and of the boundary of C it may 
ljappen that the integral part transforms smooth functions into discontinuous ones 
in general. Hence,,the solutions of (1.1) will not be continuously differentiable. 

In the following we will distinguish between two cases: 
: (I)	In. G there are no carrier sources or sinks: 

c10,g0.  
(11)	In C there are sources or sinks: 

.c 1 (k) ^ 0 (k E 0), c 1	0.

-I
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Case '(11) includes the possibility to take into account such processes as, e.g., band- 
to-band transition and impact ionization. 'If the particleconcentration is small, 
1 - u(k)	1, therefore it is sufficient to. use the linearized form 

F— u+c1u	 .	. 
ax 

= g +f {W(•, Ic') u(k') - W(k', .)u} z(k') dk'	 .	(1.4) 

instead of (1.1) in order to describe the charge carrier transport adequately. An 
extensive representation of the phyical background concerning the Boltzmann 
equation'in semiconductor theory can be found in [1, 9]. 

For the integral kernel W and the state density z we assume the following to be 
true:  

(Al)	(i) Let D8=-{(k,k') €	xO I E(k)	E(/c') =,w}. Then,' for s= —r......
r, to08 = —w0 8, K. € C(D3 ), K,, (k, Ic') > 0 (Ic, Ic' E .1)3). 

(ii) z E C(G), z(x, t)	z(t), and z(t) > 0 almost everywhere. 

Remarks: I. By (A1)/(i) we assume the reversibility of. the collision processes 
described by (1.3).'2. (A 1)/(i) yields w0° = 0, hence we assume the acoustic scattering 
to be taken into account. This is not necessary for the results W be valid but it simpli-

• fies the notation. 

From (Al) we have Q, € C(D8 ) where 

-	Q,(k, Ic') ='K3 (k, Ic') K_(k', k'  
and  
•	 q3 = mm (Q3 (k,k') I (Ic, Ic') € D3 } > 0.	 (1.6) 

Notations: In R' we denote the Euclidean norm by . I and the Lebesgue'measure 
by If X, Y 'are Banach spaces, let B(X, Y) denote the space of all continuous 
linear operators defined on X and mapping into Y: B0 (X, F) 9 B(X, F) be the sub-
space of all compact operators. For A € B(X, F), N(A) and R(A) denote the kernel, 
and the range of A, respectively. For a compact set K and a Banach space Z, let 
C(K, Z) denote the Banach space, endowed with the supremum norm, of all contin-
uous mappings defined on K and mapping into Z. 

2. Band structures and ëollision integrals	--	 - 

The kernel (1.3.) of the collision operator leads to integrals of the form 

f u(k)6(E(k) - w) dk.	 .	.	
( 2.1) 

-These integrals will he defined now. Furthermore, some properties of the integrals 
will be proved. For this, the properties of the underlying band structure E as well as 
the boundary of G'pla'y an important role. The following basic shapes of E are often 
used and adapted to a wide range of semiconductors: 

E(k) = ak2 ,	-	 .	-	 ( 2.2) 

E(k) = ax2 + bt2 ,	•	 '	 •	 ( 2.3) 

21*	-
/	
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E(k) (i ± eE(k)) = ak 2 ,	 (2.4) 

E(k) = ax2 + b12 - (c2 + dx2 ) 1/2 + C.	 (2.5) 

Model (2.2) was used, e.g., for p-type germanium [8], n-type indium antimonide and 
n-type gallium arsenide [12]. (2.4) is another model for n-type gallium arsenide [2]. 
In [11] (2.2), (2.3) and (2.5) were used to describe p-type tellur. The surfaces of con-
stant energy of the first three models are spheres and ellipsoids, respectively. (2.5) 
• is-the so-called camel-back structure. The qualitative behaviour of (2.5) is plotted in 

the following sketch.	 - 
5	

A 

5•••	

5	 - 

Fig.1	 I 

Our investigations will be carried out for a sufficiently large class of structures con-
taining all shapes (2.2)—(2.5). 

•	Definition: Let there exist a domain Q	lt' and a diffeomorphism : Q - 
•(k E G I grad E(k) = O) such that E(q(w, 4)) = w (wE R, .'E R'' with (w, ) E Q) 

and there exists anM E R such that	 - 
•	•	f Idet'(w,	I d 	M (wE It).	-.	 (2.6) 

-,	Q(w)	 • 

For w E RIet Q(w) = (C E R- 1 I (w, C) E Q} and set, for u E 

f u(k)ô(E(k) - w)dk = f u(q,(w, C)) Idet1'(w, C)I dC .	 ( 2.7) 
G	 •	 Q(u) 

Remarks: 1. It is easy to see that the definition (2.7) is independent of the hoice 
ofQ and .	 •	 • • 

2. For w E R, let the functional & on C°(C) be defined by 

•	(&, u) = f u(k) 5(E(k) - w) A. 
-	G 

Then â E'(G) is a well . kiown example of a generalized function (distribution) 
concentrated on a surface [3]. ô, can be defined also under weaker assumptions. The
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condition grad E(k) r= 0 for all k E G with E(k) = w is sufficient (suppose that E is 
smooth). Our condition (2.6) guaiantees that (5w, u) exists for all u € C(G) and 
6 € C(G)*. 

3. For the definition of 6,, E C(G)* for a fixed w it is obviously sufficient to use a 
neighbourhood of the surface of constant energy E(k) = w instead of G. The strong 
assumption is necessary in order to infer global propositions with respect to W. 

Consider the function 
u(I) =f /(k,Jc') o(E(k) — E(k') + w0) dk'	 (2.8) 

for some/ E - C(O x G). in order to show continuity properties of such functions we 
make the following asiimption. 

(A2)	With the notations above let the - following he true: 
(i) Q is bounded.	 - 
(ii) The transformation satisfies deL q" E C(Q). 

(iii) There are exactly rn (m	0) mutually different values E 1 , ..., Em 
.. satisfying	 - 

Emin := inf {E(k)I k € G}	E 1 < E2 < ...	 S 

<Em	Emax: sup {E(k)Ik E G} 

such that, for w € R (w (E 1 , ..., Em)), .'-'(Q(w') o Q(w)) .--^O for 
w —* w'. For w = E1, measurable sets Q, Q,	R"' exist such that 

A	—> 0 for w' — E, + 0. Here, A denotes the symmetric 
difference.	 -	 - 

Remark: This assumptions require g regularity properties of the energy structure
 as well as of the boundary of G. In the case of n = 2 :1 (A2) is fulfilled for (2.2)—(2.5) 

with m = I and E 1 = Emj,,. 

Lemma 2.1: Let (A1)—(A2)hold. Let u be de/ined by (2.8) with /€ C(G xG). if 
k E G and E(k) + W0 ' {E 1 , ..., Em), then u is continuous at k. 

Proof: Leth(k, w, 4) = /(k, (w, )) Idet '(w,	. Because of (A2), h-E C(G xQ). 
Let ke)j E N	0 be a sequence with k 1 -* kfor i —+ 00, and set 

v()= 
10, 

h(k, E(k) + w0 , ),	€ Q(E(k) + w0), 
  -otherwise, 

1 0,

h(k, E(k) ± w0, ),	€ Q(E(k) + wo), 
otherwuse\\ 

We show that (v i ) converges in measure to u. Let e > 0 be fixed and 5 > 0 such 
that Ih(k, w, ) - h(k', w', 4')I < s for all (k, w, ), (k', w', ') € 0 x_Q satisfying 
(k, w, ) — (k', w', ')} < 6. Since E is continuous, there is an j 0 € N such that 
(kb E(k) + w0) - (k,E(k) ± w0) < ô (i. i0). Regarding v() = v) = 0 if 

	

Q(E(k) + zoo) u Q(E(k) + w0), we obtain, for i ->i0 ,	 - 

- vi 
)n1({ € R' I l v j ( ^) - v()i	6}.n Q(E(k) + w) fl Q(E(k) + WO)) 

+ 2" 1 (Q(E(k) + w0 ) A Q(E(k) + w0))
=	'(Q(E(k) + w) 6 Q(E(k) + w0)).	-
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Hence, urn 2"'(fv, -	a) = 0. Since Q and h are bounded, 

s	I v i()d-^.f v)d 
•	

-	 follows from Lehesgue's.dóminated convergence theorem. But this is' equivalent 'to 
u(k,)'-.u(k) I-

Corollary: Let the hypotheses of Lemma 2.1 be fulfilled, E' =E1 + W, the indices j 
•	be selected in such a way that E fl ,, 	E1 Emax and G i = {k E G I El-' <E(k) <E} 

(j = m', ..., m" ± 1; E"'-' :=	E, : Emax). Then, for u defined by (2.8),
Ic' is cOntinuous and has a continuoith extension onto G. 
Further - below we use extensively an analgue of Fubini's theorem. Indeed, 

• • ff f(k, k') a(E(k) - E(k') + w0 ) dk' dk 

	

: 
=1)- /(k, k') (E(k) - E(k') ± w0) dkdk'	 - 

GG 

for all E C(x) and all w0 € R. 

3. On the solvabilitr of the Boltzmann equation 

In order .to derive assertions .on the existence and uniqueness of solutions we formulate the 
Boltzmann equation (1.1) as an operator equation in the Banach spaces X = C(&, H(I)) 
and Y = C(,, L2 (I)). We shall define A, B, C as the differential, the linear integral, and the 
nonlinear integral parts, respectively. Then A, B E B(X, Y) and A is bijective. We shall assume 
that B is even compact. Using the theory of positive operators in partially ordered Banach 
spaces [7] it is shown that in Case (II) the spectral radius r(A'B) is less than 1 whereas in 
Case (I) one is a simple eigenvalue of A'B which is in modulus strictly larger than the other 

• eigenvalues and the associated eigenvector can be chosen to be strictly positive. Every physi-
cally relevant 'solution of the Boltzmann equation must satisfy the inequalities 0 !E^ u(k)	1. •

	

	It is possible to find constants a < 0 and r > 1 which only depend on the functions K8 of (1.3) 
such that for allu E D :=, (u X I a < u(k) '< i) the derivative (A - B - C)' (u) = A - 
can be split into operators A u and B so that the mentioned properties also hold for A and B. 
This fact is essentially used. In Case (1) the Boltzmann equation will be supplemented by a 
condition on the number of particles 

,f u (k)z(k)dk=.
 

Then we show the existence of a regular analytic solution path u(p) of (1.1)—(i.2). In Case (Ii) 
every solution of the Boltzmann equation is isolated. 

We introduce the following notations:	 - 

•	H(I) = {v € W12(1) Iv(-l) = v(l)},	
•.	

•	 S 

• 

•	

-	 x = 0 2 , H(I)),	Y = c(2,L2(I)).	• S - 

The following continuous imbeddings are valid: X - C()	Y L2 (G). Throughut
this chapter we assume (A1)—(A2) to be fulfilled. Define the following operators •
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(with i E X, k E G):
	 -S

(3.1) 

C	 CO= 	+ . c 1 ,	c0(k) =f WW, k)z(k')dk', 

B3u(k) =f K8 (k, k') a(E(k) — E(k') ± ?1J0) u(k') z(k') dk'; 

Bu	8-i5r Bu,	 (3.2) - 

Bu(k) =f (W(k', k) — W(k, k')) u(k') z(k') dk',	 - 

Cu( k).=u(k)Bu(k), 
-/	 Tu = Au — Bu — Cu.

 

Since X is continuously imbedded into C(G), the functions Bu, Bu, Cu: G - R are 

well-defined. Obviously, (1.1)—. (1.2) is equivalent to Tu = g. 

Proposition 3.1: For all u E X and v E Y, bu/ax E Y, vu E Y, and IIvuIiy

	

II V IIy IIU !IC(G)	y VIIy Iiu!Ix for some y  R independent of u and v. 
In order to investigate the properties of the integral operators we introduce the 

Banach space PC(G). According to Assumption (A2) let Em in Ei < <Em E,nax 
be defined. Let (E',	E'') = {w E RI w = E+ w08, —r5 s 
fl (E,n1n) Emax). Assume E' < ... <Em' to hold. Set C' = {k E C I E' < E(k) <Ei+'} 
(j = 0,:.., rn' ; E° := Emt n, Em'+ l : Emax). Then let PC(S) he the Banach space, 
equipped with the supremum norm, of all real valued bounded functions u defined 
on C' = G° u	u G m' whose restrictions uIc, are continuous and have continuous 
extensions onto G.- Obviously, G i n G 0 for i j.- and G = 670  u 
Moreover, PC(G) is isomorphic to the Banach space C(GO ) x	x C(O m '). Hence, the
precompact subsets of PC(G) caii be characterized by the theorem of Arzela-Ascoli. 
From the corollary to Lemma 2.1 it becomes clear that the set bG° u	u 
contains all discontinuity points of functions of the kinds Bu and Bu: 

In the following we assume Assumptin (A3) to be fulfilled: 

(A3)	(i) c1EY. 
•	 (ii) There exists ad E R such that, f c(x, t) dx	d > 0 for all tEG2. 

•

	

	(iii) , 1 ({xEJlE(x,t)=E i})=0 for -all t€G2,j='O,...,n?'+1.	
S

Proposition 3.2: Let (A1)--(A2) betrue. Then B E B(X, PC(G)). 

Proof: By the corollary, of Lemma 2.1, Bu E PC(G) for all u € X. Because of 
(Al) there exists an N > 0 such that K3 (k, k'>z(k') 	N((k,k') € D3 ). Then 

•	

IB3uIpc = sup f K8 (k, k') u(k') 6(E(k) — E(k') + w 8) (k') dk' 

^ Sup K3 (k, k')z(k') IIuIIcm f ô(E(k) — E(k') ± W08) dk' 
(k.k')El),	 C	 —	 • 

^5.NyIIuIIxM I	• ,	
0	 - 

Au(k) = F -- u(k) + c(k) u(k), 
ax
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This gives rthe to the question which conditions have to be fulfilled such that

	

R(B)	Y holds. It turns out that Assumption (A3)/(iii) is sufficient for that. 

Lemma 3.3: Let (A3) hold. Then PC(0) is continuously imbedded into Y. 
Proof: Let u E PC(G) and v: 02 -* L2(I) be defined by v(t) (x) = u(x, 1) ((x, t) E 0'). 

Because of (A3)/(iii) the measure of 

	

-	 m'-4-1 

V (t ) = U, (XE IjE(x,t)=Ei)	 I	 - 
j=O 

vanishes for every t E 02. Hence v(t) is defined for almost every x E 1. Since v(t) is 
continuous on every component of the open set I \ V(t), (t) is measurable, and 
from 'the hounded ness of u we get v(t) E L2 (1). Let (t I )I EN _ 02 be a sequence with 

-^ t. Since u is continuous at every k = (x, 1) E (I \ V(t)) x {t}, v(t 1 ) (x) = u(x, t1) 
- u(x, 1) = v(t)(x) for all x € I \ V(t). Using the boundedness of u, v(t) - v(t) in 
L2(1) follows from Lebesgue's dominated convergence thedrem. Consequently, v € Y. 
The continuity of the imbedding is now obvious 

Reihark-: (A2)/(iii) is also essentially necessary for the continuous imbedding 
PC(0) —* Y to hold. For instance, (A2)/(iii) is fulfilled if the level sets (k E G 1 E(k) 

Ei) are finite unions of strictly convex sets. This is the case for (2.2)—(2.5). 
Corollary: Let (A1)—(A3) hold. Then B € B(X, Y) and E Y. 
The incliision , B E B(X, Y) is too weak for our purposes. We suppose B to be even. 

a compact operator: B € B0 (X, Y). Our , previous assumptions are not sufficient to 
ensure this property. In order that B € B0 (X, Y) holds we need further assumptions 
on the band structure E. The sample structures (2.2)—(2.5) have this property. 

	

(A4)	The band structure E and the state density z are such that the integral 

	

-	operator B E B(X, Y) defined by (3.2) is compact for each integral kernel 
Wsatisfying(A1). 

A proof of (A4) for a given band structure is loaded with technicalities. WENDT 

[15] has suggested a general scheme for proving the compactness. In Chapter 4 we 
illustrate this scheme by proving (A4) for a very simple band structure. 

We summarize the properties of the operators A and C. 
• Lemma 3.4: Let (A1)—(A3) hold. Then A E B(X, Y). Moreover, A'is bijective 
and, consequently, continuously invertible on Y. 

Proof: Because of Proposition 3.1 and the corollary of Lemma 3.3, A € B(X, F). 
A simple calculation shows that Au = to if and only if 

u(x, t) = f G(x, 1, ) w, 1) d,	 -	- 

Ih(z.) 11,	—1 <	x < 1,	 - 6(x, 1,	
= F I	e'	e 1 ',	—1 < x < K 1,	 (3.3) 

h(x, t) = --fc($, t) d. 

From this representation we get the estimate
/	21	- 

0 < 0(x, t, ) ^ a and	H A' 5 a (21)2 + -- Icv2
)1f
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where
exp (F_1(21)1/2 Icily)  -	

exp(—d/F)) 

This yields the assertions I 

Lemma 3.5: Let (A1)—(A3) hold. Then:	- 
(i) Cu € Y for all u E X. and C: X - Y is analytical. 

(ii) C'(u) v = uBv + vBu (u, v € X) and C' € B(X, B(X, Y)).	 - 

Now we are in the position to prove our main results. At first we consider the lineal 
rized equation (1.4), (1.2). in operator notation it reads (A - B) u = g In the follow-
ing an eigenvalue of (A, B) be a 2 € C such that the complexified operator A - 2B 
has a nontrivial nulispace. 

Theorem 3.6: Let (A1)—(A4) be true. Then we have: 
(i) For all z € C, the complexi/ied operator A	zB is Fredholrn with index zero. The 

eigenvalues have no finite point of accumulation. 
(ii) There exists an eigenvalue A € It hiving the properties 
a) 2 > 0 and 121 > ).o for all eigenvalues 2	2 of (A, B). 
.b) The eigenvatue 2 is algebraically simple. The eigenvector è € X belonging to 2 

can be chosen to be strictly positive,i.e., e(k) > 0 for all k E U. 
(iii) In Case (I) it holds that 2 = 1, whereas'). 0 > 1 in Case (II). 

Proof: (i) Since A is bijective and B is compact, the assertion follows from Nikol-
skij's theorem [6: Theorem X1II.5.1].	- 

(ii) Let Kr = (u EX I u(k) 0 for all k € G) denote the cone of all nonnegative 
functions of X and Ky the corresponding cone of all nonnegative functions of Y. The 
interior mt K = u € X I u(k) > 0 for all . k € U) is nonempty. The operator A-1B 
€ B0 (X) is strictly positive, i.e., for every u € X, u	0, there exists ann-E N such
that (A-'B)" u € mt K (cp. (Al), (3.3)). Theorems 2.5, 2.10, 2.13 'of [7] imply the' 
existence of an algebraically simple eigenvalue	€ II, y, > 0, and of an associated 
elgenvector e E mt Ky of A-'B. .Mdreover, for all a € (A-'B), 1u	we have 
hal < ,o . Since, for 2	0, 2 is an cigenvalue of (A, B) if and only if 2' € 
the assertion follows with 2 = 

(iii) For the eigenvalue 2 and the eigenvector e we have 

F	e ± (co , + c,) e = 2f W(. , k') e(k') z(k')dk'.	- - -	(3.4) 

Denote	 -	 - 

-	a = f  W(k, k') e(k') z(k') (1k' z(k) dk = f c0 (k') e(k') z(k) dk' >0, - 

a' = f c(k) e(k) z(k) dk. 

In Case (I) a' = 0, whereas a' > 0 in Case (II). Integrating (3.4) yields..+ a' = 20a, 
and the assertion follo's immediately I	 - 

From Theorem 3.6 we conclude the following corollary on the solvability of the 
linearized Boltzmannequation (1.4), (1.2).
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Corollary: Under the hypotheses 0/Theorem 3.6 we have: 
(i) in Case (IL) the equation Au . — Bu = 0 has, except for a constant real factor; 

exactly one solution u E X. This solution can be chosen to be strictly positive. 
(ii) In Case -(II) Au —Bu = g has' exactly one solution it E X for every right-hand 

side g E Y. It g is a nonnegative function, u is so, too. 

Returning to the nonlinear equation (1.1), (1.2), from Lemma 3.5 we see that 

T: X - Y is analytical and T'(u) = A — Bu where 
:A UV=AVVBU,	Bv=Bv+uBv .  (u,vEX);	 (3.5) 

A simple calculation shows that A and 'B have the following representations: 

Bv = f W,( . , k') v(k') z(k') dic',
 

W(k, Ic') = W(k, Ic') -i-- (W(Ic', Ic) — W(k, k')) u(k) I 

	

(K3 (k,	+ K 3 (k', Ic) — K8 (k, k) u(k)) 

X o(E(k) — E(k') + Wo8),	 (3.6) 

-:	 a • A,,v = F.---- v + c,v, 
ax 

C ,	CO ."	co=fW(k )z(k)dk	/ 

Every physically reasonable solution of the Boltzmann equation must have the prop-
erty 0	u(k)	1. In the following we consider only solutions. belonging to the 
open set D	X defined below which contains all relevant solutions. With (1.6) let 

q -' mm	q 	= max	max 93 (k, k'). 
s=—r. ..r k,k')ED 

Moreover, with  

	

- I ( — ) ', + 1,	[(1 — q)-', q	1, 

	

-,	- 

	

=1,	 +.00,	q=1, 
let]) = {u-EX I cl' < u(k) < r for all IcE ). From the definition of Q it follows that 
q<1<. Hence, a<0 and >l.	— 
- Let now u E D and i = max {u(k) I Ic E G} and it = mm {u(k) I Ic E G}. Then 

e= min {1+(q-1)'i,	1+(q--1)u}>0. 
By (1.5), .K3 (k, 'Ic') + (K..3 (Ic', k) — K8 (k, k')) u(k) > eK3 (k, Ic'). Now (A3), (3.6) 

yield	 S 

-.	 c0,,(k) ^ cc0(k), Ic E G, f c(x, t) dx > Ed >0, t € 6,.	. 
I 

Hence we have shown the following essential result. 
be mm a 3.7: Let (Al)— (A4) be true. Then, for all u E D, the statements of Theorem 

3.6 hold for T'(u) = A — B if A and B are replaced by A u and B, respectively. 
As an Immediate consequence we obtain 
The ore 'in 3.8: Consider Case (11). Let (A1)—(A4)'be true. Then we have: '. 
(i) Let a E D and 'Ta = g. Then there exist open neighbourhoods U. X, V	F 

of u, g, respectively, such that T = T Iu : U	V is bijective and T-' is continuously
differentiable.  

-	 S
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• (ii) There exists a5 >,O such that, for al l . g € Y . With IIIIy <a the equation Tu = g 
has a solution u€D; 

(iii) Let u € D such that Tu(k)	0 for all k € d. Then u is a nonnegative function. 

Proof: (i)is a consequence of the implicit function theorem, and (ii) follows 
from (i)since TO = 0. 

(iii): We define a mapping 8: D x X-* Y by S(u,v) = A,2v - B 12v. AU/2 and 
Bj2' are defined according to (3.5). Obviously, S(u, u) = Tu (u € D). Since u/2 € D, 
(A,2 —.B,2)-' € B(Y, X) exists and is positive. Therefore, v 0 follows from 
S(u, v) ='g O for all u € D. Setting Tu = g we obtain the assertion I 

Remark: Using the same methods it is possible to shbw that u(k)	1 follows 
from Tu f,- c, for u € D. But this proposition is useless since the condition g	c 1 is 

	

•	often not fulfilled. 

Lemma 3.9: Let (A1)—(A4) be true and 

= Jv E Y f v(k)z(k) dk	0}.	 (3.7) 

Then T'(u) X = .Y'-for all u ED and TX	Y' in Case (I). 

	

•	Proof: The inclusions TX	Y' and T'(u)X 9 Y' follow immediately frm (1.1),
(3.5) and T'(u) = A - B. Because of Lemma 3.7, dim N(T'(u)) = codim R(T'(u)) 
= 1 (u € D). Since Y' = Y is closed and codm Y' =1, the identity R(T'(u)) = 
must hold I 

. In Case (I) the Boltzmann equation 'has no isolated solutions. But Lemma 3.9, 
Lemma 3.7 and Theorem 3.6 suggest the following consideration: For all u € D, 
N(T'(u) = span e) where eu € int'Kx. If g € Y', the set L of solutions of the equa-' 
tion T'(u) v	g has the representation L = (v0 + fle,, I fl E R}. If e € X, e	0,
is a positive functional (i.e. e*, u) ^ 0 for all u € Ks), for every a € R there exists 
exactly one solution v of the system T'(u) = g, (e* , v) = a. For physical reasons it is 
advisable to choose e* as the operator which assigns the number of particles to each 
distribution u. More precisely, let Y' be given by (3.7) and H: X x R -> •Y' x R be. 
defined by	 t 

TU 
•	mu, p) = (K*	) 

where (e* , u) = f u(k) z(k) A.	•	 (3.8)	 0 

U

Itistead of (1. 1), (1.2) we consider the equation H(u, p) = 0.	• 

Theorem 3.10: Consider Case (I). Let (A1)—(A4) be true. With Pmax = (e*, 1 
and D' = fu * E D 1 0, --̂' u(k) :!^ 1 we have:	

0 

(I)	H(u, p) is bijective for all (u, p) € D x R. 
au 

(ii) H(O, 0) = H(1, Pmax) = 0.	 0 

(iii) If U: (p 1, P2) D is a continuous solution path to the equation H(u, p) = 0, 
then it holds for all a, satisfying p <a < <P2 that u(a) (k) <u(,) (Ic) for all 
k€G.

(iv) If u € D, p € [0, Pmax], and H(u, p) = 0, then u	0 implies uf,- 1.	
0 

(v) 'There exists a unique analytic solution path u: [0, Pmaxl -* D' of H(u, p) = 0 
with u(0) = 0 and U(pmax) = 1. Moreover, the equation H(u,-p) = 0 has no further 
solutions in, D' X [02 Vruax].'
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Proof: We have, for (u, p) E X x It, 

H(u, p) v 
= ( (e'*, ;')	(v E X). 

Assertion (i) follows from Lemma 3.9, Lemma 3.7 and Theorem 3.6; (ii) is obvious. 
(iii): We remark first that 11 is an analytic mapping, and hence 'every continuous 

solution path is also analytic. Consequently, u'(p) exists and 

qt, (P) = -
	

H(u(p), )]	-- .H(u(p), p), -	p E (Pi, P2). 

Equivalently, u'(p) is the solution of the system T'(u(p)) u'(p) = 0, (e*, u'(p)) = 1. 
Because of Lemma 3.7 and Theorem 3.6, u'(p) E mt K, and the assertion follows. - 

(iv): Let u E D and E [0, Pma] such that H(u, p) = 0 and u(k) > 0 for all k E 0. 
Then, v = 1 - u is a solution of the system 4v -	= 0, e'1', v = P,,iax - p where 

, B are definedaccording to (3.1), (3.2) using the integral kernel W(k, k') = W(k, k') 
W satisfies (At). Hence, v ^> 0 (i.e. u < 1) by Theorem 3.6. Let now u	0.

u lies on a continuous and strictly monotone solution path. because of (i), (ii). Let 
P < Pmax For > p we have u() > u	0. Hence, u() ;5;, 1. Since 1)' is closed in 

U :!E^ 1 follows. If p = Pmax, we have u() > u for a-> Pmax• Furthermore, v = v(a) 
•	: = 1	u(a) is a solution of the system Av -	= 0, (e, v) = Prnax - < 0. 

Using , Theorem 3.6 we obtain v.^ 0. Hence, u(a)	1, and by the continuity of 
u	1. Since (e*, i) = Pmax) U = 1. 

(v) This assertion is a consequence of (i)—(iv). A detailed proof is given in [5] I 
•

	

	According to Theorem 3.10/(v) the following representation of , ' the Boltzmann
equation is appropriate iii Case (I): 

c([0, Pinax], x),	1 = OR Pmax], Y' X It), 

— f,	Yu(p) = 'H(u(p), p),	p E [0, Pmaxi. 

-	/ 

(1.1), (1.2) is described by Tu = 0. This equation has exactly one solution (which is 
analytical). Moreover, the derivative T'(u) is bijective for all u'E Y):= j qt € 7 
u(p) € D}. This representation will be advantageous-when invstigating the conver-
gence of numerical methods for the approximate solution of (1.1), (1.2). 

Sometimes it happens that the domain G is not given in the cylindrical form I x G2. Due to 
physical considerations it is known that the probability that the charge carriers reach large 
energy values nearly vanishes. Hence, it is sufficient to consider the Boltzmann equation n 
such a domain Go where the energy does not exceed a given maximal value. To be more pre- 
cis 0' R'2 be a domain and E,,,. a given real constant (of maximal energy). Let E be, 
band structure defined on 0'. Set 

00 = {k E G'I E (k)< Bmax), 

0, = {t € 1t- I (x, t) E Go for some x E R} , 

I = {x € H I (x, t) € Go for some t € R'—'}. 

We assume G to be open, bounded, and convex. Set 0 = I x 02, and 00 (t) = {x € It I (x, t) 
€ G}, x1 (t) = min 00(t), x 2 (t) = max G0(t) Let equation (1.1) be given on the domain G o with 
the modified boundary conditions	 .	.	. 

u(x1 (t), t) = n(z2 (0, t)	(t €	.	 .	 . -	(3.9) 

We relate this equation to an equivalent equation (1.1) with the boundary conditions (1.2) 
defined on the domain G. The equivalence is to be understood in the following sense: For a
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•	given function 'u E C(G0 ) a function ii E C( is defined by 

-Ü(x t)	Ju(x,t),	(x, t) €	,	 . 
, u(x'(t), t)	otherwise. 

If the' f unctions K3 are extended onto U x 57 by zero, then it holds: If u is a solution of.(1.1), 
(3.9) on G, then ü is a solution of (1.1), (1.2) on 0 and vice versa. Taking suitable subspaces 

X and Y" Y,equipped with new norms it is possible to show results of the kind given 
above. A detailed representation can be found in [4]. The modified form becomes important 
when solutions are computed numerically. The approximation of the integral operators does 
not lead tofull matrices because of the 6-functions. Using the modified formulation the num-
ber of nonvanishing elements decreases again. 

• 4. A compactness proof	 . I. 

In our previous consideration we used the compactness assumption (A4) extensively. 
Here, we supply a proof of (A4) for a sample band structure. In an attempt to avoid 
as many technicalities as possible we choose the simplest case. Nevertheless, the 
essential ingredients are clearly seen. - 

In proving (A4) we follow the lines of WNDT [15]. He has suggested the following 
general scheme: For a fixed s, Bu(k) i considered to be a superposition of a linear 
operator and  linear functional. More precisely, let Z be a Banach space and (PL. I 
k € 0)	B(X, Z), ilk I k E 0)	Z* families of bounded. linear operators and func-

• tionals,. respectively, such that Bu(k) = lkPkU, k 0. Assume the following to be 
• true:	 S 

(i) The familis { lk} and - {Pk} are bounded.	 - 
•	(ii) For every j (0 	m') and every e > 0 there exist a 6 > 0 such that, for-

everyk, k' € G1 and u E X, 1k - k'I < 6 implies j ( lk - ik- ) Pk'uI	IIIIx. 
(iii) The mapping k i- . Pk is uniformly continuous on G (0	j	m')	- 

Let j be fixed. For given e,> 0we.obtain	-	- 
IBu(k) - B3u(k')I = IlkPku - lk'Pk'UI 

I1k ' ku - tkPk'UI ± lkPk'U - lk'Pk'uI 

II lkllIk - Pk'II IIUHx + 1 01, - 1k') Pk'uI	CE IuIIx: 
if k, k € 0' aiid lk - k') sufficiently small. Hence, for every bounded set U X, 
AU is equuicontinuous on G. Therefore, BU is precompact in PC(G) and, conse-
quently, in Y. We show using the simplest example how this algorithm works. Let 
02 = (0, 1), 1 = 1, the band structure be given by (2.2) with a = 1, and the state 

• density be z(k) = 2rt. This state density arises if a three-dimensional probiem with' 
cylindrical symmetry is transformed into a two-dimensional model. Let G 
= {k € 0 J x> O} and G- =(k E 0 I x <0). Then set 

B3u(k) =f K3 (k, k') u(k') 6(E(k) - E(k') + o8 ) z(k') dk'. •	 •	

• I 

Obviously, R(B8 ) PC(0) and 133 = B3 ± B3 . We consider only B8 since the 
proof can be done analogously for B8-. We choose T and Q as follows: 

D	J(w, E R210<w<2, 0<C<w
1/2	(w:E^: 1) 

-	(w— 1) 1 / 2 < < 1 (w > 1)J	• 

•	f(w, )\	/(w - 
- (w,)

	01 = k	•	 )' .	 S
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/ 

The point in this choice is the fact that t = , i.e., is orthogonal to the electrical 
field. Now, let Z = L' (G,). Define'Pk E . B(X, Z) and 1k E Z* by 

u( i(w(k), t'), t')	 ,	t' €	(w), 
Pku(t) =	 1(w(k), t) 

0	 - otherwise, 

1kV = f K8 (k, ç 1 (w(k), t')) v(t') dl', 
Q(w(k))	 S	 - 

W(k) = E(k) + w08 ,	k E 0.	5 

Then B8 4(k) = lkPu (k E ). Lt C be ageneric constant independent of u, V; k, 
• k' in the following. Denote for short k 1 = ç(w(k), t") hnd k 1 ' = 9 (w(k'), t") (k, k' E 0). 

A simple calculation shows that the families {lk} and {Pk} are hounded. Moreover, for 
(k,k'EG)

at 
1(k, k') =	r	

-	
dg"	 0 

J	-	1 (w(k'), t'') 
S	 Q(w(k))\Q(w(k))	

0 

J(k, k')	f	1 9, 1 (w(k),  "):' - 91(w(k'), g)1 sit" 
-	 Q(w(k'))flQ(w(k))	 - 

we have I, J. E C(x) and I(k, k= J(k, k) = 0. Let now E > 0 be given. Since 
•	K8 E 0(D8), q E C(D), and w E'0(0), a 6 > 0 exists such that, for all k, k' E 0 - 

(1 k - k'I < 6) and t" E Q(w(k')) n Q(w(k)), K,(k, k 1 ) - K3 (k, k1')I < e. • Further-
more, there exists a 62 > 0 such that 1(k, k') < e for 1k - k'I <62. Hence, for 

- -	jk—k'I<o:= min {6 i ,62 },	 S	 -	 • 

I (1k	lk) Pk'uI	0	 -	 S	 •	 - 

•	

r	
1K3(k, k 1 ) - 'K3(k', k 1 ')I Iu(k')l	 dl" - -

	• S 

S	

j 	 •	 S	 •	 ,i(w(k'), t'') 

S	 -

 

Q(w(k')) n Q(w(k)) .	 S	 • 

IK8(' k1 ') u(k 1 ')j	 dt" 
J	-.	2i(w(k),t )	

-	S - 

Q(w(k))\Q(w(k))	
0 

IIu IIctm' w ( k ' ) 112 + C JuIIc(a) I(k, k')	& IlUlix .	 • - 

Hence, (ii) holds. In order t6 show (iii) we may .estimate	
0	•	

0 

II PkU - Pk-uIIz = f Pu(t") - Pk'u(t")I dl"	•	 - 
-	 0 

I	u(k1)	 - u(k 15)	 dl 
•	 S	•	-	J	q1(iv(k), t'')	 i(w(k'), t'')	 - S	 •	Q(wUc)n1(w(k)) 

-	•	+	 u(ki)l	 dl" 
f -	 i(w(k), t'')	 - 

•	 -	 Q(w(k))\Q(w(k))	 - 

S	 -	 +	•	I	u(k1')	-	•	dl" 
-	 j	-99, w(k'), t'') 

Q(w(k))\Q(w(k)) -	 S	•
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•	 ^	r	u(k1) - u(k1')I	
tt	

dt" 

Q(w(k))flQ(w(k))	
p1(w(k'), t'') 

± IUC(Th J(k, k') + IIuIIc[J (ic, k') + 1(k', k)]. 

The first term (call it T) may 	furtherestimated: 

T =	- r -p-- u(, t") d	,	dt" / f J	X	 1p1(w(k'), t") 
S	

Q(w(k'))OQ(w(k))	',(w(k),t") 

f	1 (w(k), t") —. 1 (w(k'), t") 112 lIU IIx	 dt"	(4.1 )•-
-	 -	 1(w(k ), t ) Q(w(k))nQ(w(k))	 S 

Taking into account the continuity of 1, J, u,	we obtain for sufficiently small 
lk - k'I that IPtu - Pk'UIz IIu!Ix, i.e. (iii). Now we conclude that B3 is compact 
independent of the specialchoiee of the kernel K3 . Treating B3 - analogously we obtain 
(A4). Note that we used essentially the differentiability of u with respect to x in (4.1). 
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