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Necessary Optimality Condltlons for Nonsmooth Problems with Operator
- Constraints

8

H.-P. SCHEFFLE_R and W. SCHIROTZEK

Es werden verschiedene Approxlmatlonen fur mchtg]atte Operatoren eingefithrt und deren
Beziehungen zueinander untersucht. Fiir nichtglatte Optimierungsprobleme mit Operatorun- .
gleichungen als Nebenbedingungen werden F. John- und Karush-Kuhn-Tucker- Bedmgungen'
bewiesen.

3 . .
Beogarca PasJINYHBE ANOPOKCHMALUM NJIA HErJIAAKHX onepaTopOB H HCCNEeAYITCA CBA3K. -
MEMAy HUMH. IIJIR HeryagKux 3azay ONTHMH3ALMH € OTPAHHYEHUAMH THIA ONEepaTOPHBLIX

HEPaBEHCTB uoxaausalo'rcn yciaosua @. Mona u Kapywa-Kyna- Tam(epa

For nonsmooth operators, different kinds of approximations are introduced and their relation-
ships are studied. With the aid of these approximations, F. John and Karush-Kuhn-Tucker
conditions are established for optimization problems with operator inequality contraints.
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1. In‘troduction ’

‘Local optimality condmons for nonsmooth optnmlzatlon problems arc based,.in one
way or anotheér, on some concept of generalized derivative. NEUSTADT [10] introduced
the concept of upper convex approximations which, sometimes in modified form, was

- also studied by PSENISNYJ [12], PENOT [11], GAHLER [4] and others. In the case of

local Lipschitz functionals, the generalized directional derivative of CLARKE [1] is an
important instance of an upper convex approx1mat10n In Section 3 of this paper, we
consider upper convex approximations for mappings between normed real vector

spaces. Here ‘‘upper convex’’ refers to the preorder generated in the range space by a
closed convex cone. We also introduce the concept of weak upper convex approxima-

" tions which is a scalarized variant of the former concept. It is shown that in certain
important cases the two concepts coincide (Theorems 1 and 2). Further we consider

generalized subdifferentials that extend corresponding concepts studied by CRAVEN
and MonD [2], GLOVER [6], and others. In Section 4 we consider the problem of
minimizing an extended real-valued functlona.l subject to operator-inequality and/or
operator equation constraints’ We establish necessary optimality conditions not only -

in terms of upper convex approx1mat10ns (Theorem 3, cf. GAHLER [4, 5]) but also in -

terms of generalized subdifferentials (Theorems 4 and 5). The latter results supple-
ment those obtained by SOEIROTZEK {17, 18] for scalar-valued constraints and extend .
those obtained by ¢ GLOVER [6] to a broader class of operator constraints. An a.ppllca.-
tion of these optimality conditions to problems of best approximation is contained in
a forthcoming paper by SCHEFFLER [16].

1

2. Notation

If E is & normed real vector space and C is a cone in E, we denote by E’ the topologi-
.cal dual of E and by C* the polar cone to C, i.e. C* = {u € E’ | (u, ) = 0 for each
z € C}, where (u, z) denotes the value of u at z. Further, for z, € E and ¢ > 0, B(z,; ¢)
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420 . H.-P. ScHErFFLER and W. SCHIROTZEK

denotes the (closed) ball in E with center x, and radius . If E and F are normed real
vector spaces, L(E, F) denotes'the vector space of all continuous linear mappings of
E into F. Let M be a non-empty subset of E. Then int M and ¢l M will denote the
interior of M and the closure of M, respectively. If M is a subset of E’, then cl* M
denotes the weak*-closure of M. Morcover, T(J, z,) denotes the usual tangent cone
to M at x, € M. The set of all real numbers and all nonnegative real numbers is denot-
ed by R and R,, respectively. If g, i5 an element of a vector space, then we write
.R+J0 {z| 2z = 2y, for some’ 2 € R,}. If { is an extended real-valued functional on
E,ie,f: E— Ru{+o0), thendom/— xEEI/ <+oo} I‘or}ER ;2 € dom f;
y € E we write .

8 2, ) = 5 U + i) — f@]:

s

the analouous notation being used for an operator G: E — F, where E and F are
normed real vector spaces.

. 3. Upper convex approximations

Throughout this section let £ and F be normed real vector spaces, let L be a closed
convex cone in F, and let @ be an operator with domain E and range in F. Recall
-that an operator. H: £ — F is said to be L-convex if z,y € E and 2 € (0, 1) imply
AH(z) + (1 — 2) H(y) — H(Az + (1 — A)y) € L. H is said to be L-sublinear if H is
L-convex and posmvely homooeneous We now define the basic concepts of this -
paper.

Dcfmition 1: An operator H: E — F is said to be an upper convex approximation
of G at xy € E (with respect to the cone L) if H is L-sublinear and if for each y € E\ {0}
and each ¢ > O there exist § > 0 and 7 > 0 such that for each 2 € (0,.6) and cach
Yy’ € B(y; y) one has

AG(2, %, y') — H(y) € Blo; &) — L. : ' (1)
The set of all upper convex approximations of G at xo will bc denoted by 4 ,(G; z,).

- Remark: Let f: £ > Ru {o0}. A functional h: E — Ru {400} is said to be an
upper convex approximation of f at x, € dom f in the sense of PSEx16NYs [12] if % is
sublinear andsatisfies k(o) =.0 and

h(y) = lim sup 4f(4, 2y, ¥') for each y € E\ {o},
(V' Dy, +0)
where in the limit superior y’ varies over neighbourhoods of y'in E and / varies
_over open intervals (0, §) in R.. We shall denote the set of all such 2 by A'(f; z). It
is clear that if f, b are real- valued functionals on E’ then h € A°(f; xo) if and only if
h € Ar+(f;2,). :

In the general case of an operator G: E — F, it is easy to verify the following
Lemma 1: Let H € 4,(G; :1:0 . Then for eaéhy € E\ {0} and each u € L* one has
{u, H y)) = lim sup- (u, AG(%, z,, y ). ' (@

W=y, +0)

" This lemma motivates the concept introduced in

Definition 2: An operator H: E — F is said to be a weak upper convex approxi- .
“'mation of G at x, (with respect to the cone L) if H is L-sublin.ea-r and for each y € E\ {0}
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andu € L* inequality (2) holds true. The set of all weak upper convex approx1mat10ns
of ¢ at z, will be denoted by AW (G; z,). - - '

Accordmg to Lemma-1, 4,(G; x,) is always asubset of AW, (G; z,). Now we shall -
consider important spe01al cases in which these sets commde The flrst result applies
to certain polyhedral cones..

Theorem 1: Assumethat L = {z € F | {u;, z) = 0fori = 1, s m}, where uy, .. ., U
are positive-linearly independent elements of F'. Then A (G; x,) = AW (G; 7).

Proof: By assumption, the convex hull, say M, of {u,, ..., u,} does not contain
the zero clement o of F. Since M is weak*-compact, M and o can be strongly separat-
ed, i.e., there exists.a o > 0 and an element z, € F (considered as a weak*-continuous
linear functional on F’) such that (v, z,) = pforeach v € M. Now let H € AW (G; %,)
be given. Further let ¥ € E\ {0} and ¢ > 0. For each.7 = 1, ..., m there exist real
numbers §; > 0 and y; > 0 such that for each 4 €(0, ;) a,nd each Yy € B(y;; yi) one
has (u;, AG(/ %o, ¥') — H(y)) =< &ofll20)] anid thus, with z; = z/|lz|, also

(i, AG(2, 20, y') — H(y) — e2,) < 0. Co 3)

" Let 6 = min {3,, ..., 8.} and ¥ = min {y,, ..., ¥»}. Then (3) holds for cach 4 € (0, 9),
each i € (0, d), each y’' € B(y; ¥), and each u; (i = 1, ..., m) and hence also with »;
“ replaced by an arbitrary element of the convex cone generated by {x,, ..., u,}. How-
-ever, according to the Farkas lemma, the latter cone coincides with L*. Thus (3)
implies that for each 4 € (0, 8) and each %' € B(y; 7) one has AG(4, zy, y') — H(y)
N — gz) € —L**, Since L** = L and ¢z, € B(o; ¢), it follows that H € A (G’ %,), and
the proof is complete - , ’

’

. Theorem 1 applies in particular to the case F = R™, L = R ™. More precisely, for
i=1,...,m let g;: E — R and h; € Ag,(g;; z,)- Further fet G = (915 -5 gm)T "and

= (h,, <oy B)T. Then H € AWg «(G; z,) and so, by Theorein 1, H € A (G} o).

Under the assumption of Theorem 1, the convex hull of {u,, ..., u,} is obviously a
compact base for the cone L*. The ncxt result shows that 4,(G; z,) and AW (G; z,)
coincide whenever L* possesses any compact base, provided that F and ¢ satisfy
suitable hypotheses. Recall that L* possesses a compact base if L is generatingand
L* is locally compact (cf. JAMESON [8: p. 144]). We shall say that G is locally Lipschitz
at x, if there exist ¢ > 0 and § > 0 such that -

G + ¥) — G(zo)l S Blyll ~ foreachy € Bo;e).-

In contrast to this, we shall say that G is locally Lipschitz around z, if there exist
e > 0 and g > 0 such that P

IG@e +¥) — Glao + ¥ S Blly —yll  forally, ¥’ € Blo.s).

Furthermore, G is said to be untformly differentiable at z, € E (cf. IoFFE and T1ciO-

MIROV [7: p. 209)) if for each y€ E thc directional derivative G’(z,, y) = lim A4G(4,
A—>+0
Z,, y) exists and for each y ¢ E and all £ > O there are 6 >0 and ¢ > 0 such that

2 € (0, 6), y € Bly;y) lmply
AG(2, xo,J)EG(xJ-{-B(o €). i @)

' Theorem 2: Assume that F is a reflexive Banach space and that L* possesses a -
compact base. If G is locally Lipschitz at x, or uniformly differentiable at x,, then A L(G Zo) -
= AWL(G xo) . . . ¢
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" Proof: Let B denote a compact base of L* and let H € AW (G; z,). Further let
y€ EN{o}and ¢ > 0 be glven Then for each u € B there exist 6(z) > 0 and y(u) > 0
such that 2 €(0,6(u)) and y' € B(y, y(u)) imply

(u, 4G(2, =, ¥) S @, H(y)>+ - : R ~(5)
. Wer flrst consxder the case tha.t G is locally Llpschltz at x,. Then choosing 6(u)

sufflclently small, one ‘can find g > 0 such that for each 1 € (0 6(u)) and for each:
e B(y; y(u)) : .

IG(ze + Ay') — Glaoll < B2 Il?/ -, - ' ' O
l\dow let c(u) = ﬁ flwll 4+ ﬂy(u) + ]|H(y ). Since B is compact, there exist uy, ..., U € B
. such that . \ . v
(v . C ) £ ' -
C ;g{v6F||lv_.n<2(u') S
Let 6 = min {é(u,) con Oug)), 7= min {y(uy), ..., Y(un)} and. take arbitrary ele-.

ments 1€ (0, 8), ¥ € B(?/ 7). For each u € B'there exists ¢ € {1, ..., m} such that
lu — will < ¢/2¢(u;). Hence (5), (6) and the definition of c(u) lmply ’

R 460, %, y') — Hy) IR
= (= 460 %0, y) — HUy) + (i, 460, 2 y') — Hiy)

\

= =l (6 W1+ 1) + F<e | R

Smce B is a compact base of L* and Fis reflexnve there exists a z € F such that
B = {u € L* | (u, z) = 1}. Obviously one may assume that ||z]| = 1. For each u€ B,
(7) 1mp11es {u, AG(4, xo, y) — H(y) — &2) S 0, whence . A '

AG(h 7o, y') = Hly) — ez € —L**. L L e

The latter.set equals —L and (8) holds for all 2 € (0, 8), ¥’ € B(y; 7). It follows that
H € A4,(G; %), and the proof is complete if G is locally Lipschitz at x,.
‘Suppose now that G is uniformly differentiable at z,. Then for each u € B, one can
choose d(u) and y(u) such that (4) and (5) are satisfied for each 4 € (0 o(u) ) and each -

y' € B(y y(u)) Now define: c(u) by c(u) = ||G'(z, y)ll +'e + H®)|l, and define
u;, 6, 7 as above. Then we obtain, instead of (1) the estimation

<u’ AG(Z,'IO, ?/ ) - y» o .
= (u - w;, 4G, %o, y') — H(Y)) + (wi, 4G(3, 0, y'), — H(y)) .

Sl —wlew 45 Se o
for each u € B, 4 € (0, d) and ¥’ € B(y;'7). ). Now the proof is bompletéd'just. as in the
first case ) N : ‘

Using weak upper convex approximations, we now define generalized subdifferen-
‘tials of the operator G. Notice that for H € AW ,(G; z,) and u € L*, the functional
% 0 H is sublinear on E and so the usual subdifferential d(u o H) (0) is well defined -
though possibly empty. If u o H is lower semicontinuous, then d(u o H) (0) is known
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to ‘be non-'emptyva,n'd to satisky . |
(wo H) (y) = sup {(v, )| v € d(uo H) (o)} : ()

(cf. IOFFE and TICHOMIROV (7T: Chap. 4)). The operator H is said to be L*-lower semi-
‘continuous if for each u € L* the functlona.l uo His ]ower semicontinuous.

Defmltlon 3: For H € AW (G, x,) the set . ,
8,,0(2:0) = U a(uo H) {o) . - _ ’

is said to be the H- subdz/jerentzal of G’ at xo

Notice that since o € L*, one alwa,ys has o € 6HG(xo) and so the H-subdlfferentla,l
is never empty. Sets such as 95G(z,) have been already considered by GLOVER [6].
Among others, GLOVER [6] showed that if H is'L- sublmear and L*-lower semiconti-

- nuous, then -

cl* (utjb.a(u o H') (o))

—(HY[—L)*. S (9a)

'(xLOVEB [6] further obtamed the remarkable result that if, in. addltlon, E and F~are
complete and H(E] + L = F, then U d(uo H) (o) is weak*-closed.

uelL*
In the followmg proposition we consider operators G,, G,: E - F

Proposition 1: If H; (1,= 1, 2) is L*- lower semicontinuous and belongs to AL(G.,
©xo) or AW(Gi; xy) and «; are nonnegative real numbers, then H = x,H, + x,H,
belongs to A(G; x,) or AW (G x,), respectively, where G = x,G, + %sGo, and one has

\ ouGam) = ol* (-oc. 8w 0 Hy) (0) + o o Hy) (0)). BGUN

ANEN

' Proof We only verify (10 ), the flrst statement bemg ev1dent Let u €/L*. We shall
show that - ~ _

a(uoH) (o) _)cl‘ (o1 3(uoH)(o) +¢x2 duo Hz) o)) | _ ' (11)

It is easy to see tha.t the right- hand side of (11), A for abbrevnatnon is contained in .

the léft-hand side. Suppose now that v € B’ is not in 4. Then by the strong separa-
tion theorem, there exist y € E and ¢ > 0 such that for all v; € d(uo H;) (0) (1 = 1, 2)
one has (o‘,'v, + a9, ¥) + £ < (v, ¥). In view of (9) it follows that u o H(y) < (v, »)
and so, again by (9), v cannot belong to 8(x o H) (0). The proof is thus complete i

In the notation of Proposition 1, 84G(z,) can in general not be represented by -
© 9yGilz,). If, however, w0 H, is k(':ont;inuous for each u € L*, then one has .

85G(xo) S &) 0, Cr(%) + 3 Oy, Galo) -

This follows from (10) since now &, d(u o H,) (o) is weak* -compact and so «, d(u o H )
" (0) + xg 8(u 0 Hy) (0) is weak* closed. Proposition 1 further implies that if H,,
are (weak) upper convex a,pproxxmatxons of the same operator G, then for ea,ch
x € (0,1), xH, + (1 — &) H, is also a (weak) upper convex approximation of G. ,

Now we shall consider 1mportant special cases in which (weak) upper convex appro- .
ximations exist. First, it is clear that if G'is Fréchet differentiable at z,, then the deri-
vative @' (:z:o) belongs to AL(G z,), and one ha.s ,

' 36 =zG(@) = {uo & (o) | w-€ L*).
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_ Next ‘we shall show that a rather broad class of mappings studied by GLovER [6]
admits weak upper convex approxnmatlons For this, we recall some definitions (cf.
[6]). The operator G: E — F is saud to be L*. quaszdz/ferentzable at x, € E if for each
y € E the limit

G (%, ¥) = hm AG(/ %o, Y)

exists in the weak topology of F and for cach u € L* there exists a non- -empty convex
weak*-closed subset of E’, denoted by d(u o @) (x,), such that for cach y € E

/7

(u, (2, ) >—sup (v, y>:vef>uoa>(xo>}

IfEis a Ba.nach space, then using the principle of uniform boundedness it can
be shown that 5(uo G) (%) is weak*compact which 1mphes the contmmty of
(u, G’(z,, +)) for each u € L*.

Proposntlon 2: Let G be L*-quasidifferentiable at z, € E. Assume further that for
‘eack w € L*, wo G is uniformly differentiable at z,. Then G'(z,, -) is L*. lower semsi-
" continuous and belongs to AW (G xy). Moreover, one has 8g+(,.,G(%o) = U 6(u o’Q) (x,).

Proof Let u € L* Then {u, G'(z,, -)), as the support functlonal of the convex
weak*-closed set O(u o G) (o), is .sublinear and lower semicontinuous, and one
has 6(uo G (2, -))( ) = (w0 @) (zo). It remains to be shown that (2) holds for -
H = (’ (%o, +). By assumption, the equation :

lim sup (u, 4G(2, x5, y )— (u, G (%o, ¥))

(7 D—p.+0)
i3 vaIid for each » € L* and each y € E. This complebes the proof §

In connection with Proposmon 2, we mention that if G is L*: quasndlffcrentla.ble
at zy; then @ is uniformly dlffcrentlable at z, provided that  is locally Lipschitz
around z, or G is Hadamard differentiable at x, with respect to the weak topology on
F (what GLOVER [6] calls arcwise directionally differcntiable at z,). DEMsaNoOV and
RuBINOV [3} have introduced another concept of quasidifferentiability for operators.
Let- E and F be Banach spaces and let L < F be a closed convex cone generating a
preorder on F such that F is a condmona]ly complete vector lattice with a mono-
tonic norm. An opcrator G: E — F is called quasidifferentiable at x, € E if for each
y € E the directional derivative G'(z,, y) exists and there are continuous sublinear .
operators —@Q, P: E — F such that ('(z,, -) can be represented in the form G'(z,, -)

= P + @. The set .DH(z,) [6G(x0), 3G( (%)), where
9G(z,) = (S € L(E, F)| Py — Sy € Lfor any y € E}
and ' )
3G(xy) = \T € L(E, F)| Ty — Qy € Lfor any y € E}
is called a quaszdz/ferentwl of G at x,.

Proposition 3: Let G be quaszdt//erentzable and um/ormly dz/ferentmble at .
Then for each T € ¢G(x,), the mapping Hr = P + T belongs to A,(G; x) Further-
more, the relation

04, (Z,) = 3.01*' fwo (T + 8)| S € 26(z,)) . S (12)

'

is satisfied.
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Proof The contmulty of P and Q nnphes that for each y € E (cf. VALADIER [19])
" one has

S€FC(zo) T€3G(2,)

" Under the assumptlons on @ the limit 11m AG’() :1:0, y') exists for each y € E,
Ly )—(+0.p)

and equals @'(x,, y). Therefore for each 7' € 0G(x,) it follows that
lim  AG(A, x,, _/) < Py)+ Ty . -and Hr € A)(G; z,).

Ay 1= (+0.p) -

Now formula (12) will be verified. It is easily seen that for ‘each u € L* one has .
6(u o.Hyp) (0) > cl* {uo (T + S)| S € 9G(2,)}. Suppose that, for some u € L*, there.
is v € é(u.o Hy) (0) which does not belong to the right- hand side, denoted by 4, of
the upper inclusion. Since 4 is weak*:closed, 4 and d(uo Hy) (o) are strongly se- -
parable, i.e., theré cxist § € E and & > 0 such that for all T € 8G(z,) one has (v, §)
= (w, T%) + (u, 8F) . From this and (13) we obtain the contradlctlon (u Hr(g)y
= (0,9) 2 (w T + @, 87) + ¢ = (w, Hr(@) + el

We remark that if G is quasidifferentiable at zy and Lipschitz around z,, then G is
.nniformly differentiable at z,. '

~

4, Opt.imalify conditions ‘

Let, E and F be normed real vector spaces, let M be a non- empty subset of E and let
L be a closed convex cone in F with int L = @. Further let f: E— R u {-} oo} and
" G: E - F. We consider the fo]lowmg optlmlzatlon problem

(P) Minimize 1(x) suchct tox € M, G(z) € —L. . N

In all that follows, let xo denote a local solution of (P) and let & € A(f; x), -
He¢ 4,(G; xo) The following lemma will be the basis for the optimality conditions to

be derived in the sequel. .

" Lemma 2: There does not exist any y € dom k n T(M xo) such that
, hiy) <O an;l H(y) € —int L — R, G(x,). (14)

Proof: Suppose there does exist y € dom'h n T(M ; z,) satisfying (14). Then for
-some g € R,, we have H(y) € —int L — uG(x,). Since the latter 'set is open, there
exists ¢ > 0 such that ’ ! '

H(y) + Blo; &) = —int L — uG(z,). ' | ' (15)

Further, since y € T(M; x,), there exists a sequence ( s Yn ) in (0, +-00) X E con-
verging to (0, y) such that 2y + 2.y, € M for each n. Since H and % belong to A4,(G; z,)
and A'(f; z,), respectively, and y == o, it follows that for all sufficiently large n, say
- n = ng, we have ‘

‘ AG(hn, 70, y) € H(Y) + B(o; &) — L, ' (16)

Ak %o, ) = hly) + |h(y)| <0. . ()
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'From',»(lﬁ) and (15) we conclude that, again for all n = n,,.-
Gl + ) € (1 — Zap) Glan) — int L, ‘ )

But 1f n is large enough, then 1 — ),,,u 2 0 and s0 G(xy + Amy,) € —L. It follows that
.the sequence (z, + ),,y,,) eventually satisfies the restrictions of (P). On the other hand,
(17) implies that z, is not a local solutlon of (P) which contradicts the hypothesm
This proves the lemma. | :

Now we can esta.bllsh a multlpller rule for (P) in terms of upper convex: approxnma-
tlons :

"Theorem 3: Let K be a convex subset o/ T(M; z,) with o € K: Then there exzsts '
(B, u) € R, x L* such that (ﬁ u) %o, (u G(xy)) = 0and

Bh(y) + (u, H(y))ZO/oreachyEdomhnK . ' (18).

Proof Consider the space F, = R X F equlpped wuth the product, topology and
let

Lo = R, x(L + R.G(xp)), 0
= {(«, 2) €F,lye domh nK: (}l(y) —a, H(y) —2) € —tho}

Tt is obvious that L, is a convex cone with non-empty interior &nd K, is a non-empty
convex set. Moreover, Lemma 2 implies Ko (—int.Ly) = @. Hence K, and —L,
can be separated by a closed hyperplane, i.e., there exists (8, u) € R X F’ such that
(8, u) + oand : N . .

o8+ (0 2) 2 88+ (0,3 T (19)

for cach’ (x; 2) € K, and each (a, z) € —L,. Since —L‘, is a cone, it follows that
&B + (u,z) < 0 for each (x,%2) € —L,and so . =0, u € (L + R.G(z))*. The latter
inclusion implies % € L* and (u, G(zy)) = 0. Since, on the other hand, G(z,) € —L,
‘the condition (u, G(z,)) = 0 is verified. Now let y € dom 2 n K and choose some
z0 € int L. Since 2, € int L, for each 6 > 0 inequality (19) applies with « = h{y) + 4,

H(y) + 6zy, & = 0, 2 = 0. By letting 6 — +-0, we finally obtain (18), and the
theorem is proved ]

In Theorem 3, a possible choice for K is Clarke’s tangent coneé to M at z,. If 7(M; z,) 1tself
is convex (which is the case if, for mstance, ‘Mis locally convex at zo), then T'(M; ,) is of course
the ““best” choice for K.

Optimality. conditions closely related to Theorem 3 have also been established, among
others, by GAHLER [4, 5]. This author allows f to be also vector-valued, but he does not derive
: the complementary slackness condition (u, G(xo)y = 0. -

" With the ald of Theorem 3 we shall now esta,bhsh a mu]tlpher rule for (P) in sub-
differential form. For this, we need the followmg sandwich result of Lax DSBERG and
ScHmroTzEK [9: Cor. 3]. N : :

Lemma 3: Let 2,9: E— Ru {+00} be proper convex /unctwmls such that —q(y) .
=< p(y) for each y € E. Assunw that the cone generated by dom p — dom q s a vector
space. Then there exist a linear functional v on E and a real number o such that —q(y)
= (v, y)—{-agp(y)/oreachyEE

For each (ﬁ u) € Ry X L* we define a sublinear functional ¢g,: E — Ru {400}
by :
s.u(y) = Bh(y) + (u, H (y)> foreach y € E.
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Theorem 4: Let K be a closed convezx subset of T(M; z,) with o € K. Assume that
one of the following conditions (i) —(iit) is satisfied:
‘(i) For each (8, u) € R, X L*, @p,u is° contmuous at some pomt of K nint dom h
(ii) int K'nint dom A =% @. - -
(iii) E s complete and K ndom h is a generating cone in E.

Then there exists (B, u) € R, X L* such that (ﬂ u) =#: 0,{u, G(z,)) =0 and (K n dom k)*
n a‘Pﬂ u(0) + 0.

Proof: According to Theorem 3 there exists a (8, u) € R, X L‘ such that (8, ») + o,
(u, G(%,)) = 0 and @ .4(y) = O for each y € K ndom h. It is easy to see that Lemma 3
applies to p = @, and ¢ = §, where & denotes the indicator functional of the convex
set K ndom k. Hence there‘exist a linear functlonal von E and a real number « such

" that ‘.

’

!

: .(C) There exists a y, € K ndom & such that H(y,) € —int L + RG(x,).

< @p.uly) for_ea,chyeE; _
(’U,?/)-{-a{ 0 . for each y € K ndom k. o N

Choosmg Yy = o yields « = 0. Moreover, if (i) or (ii) holds, then v is bounded above or
below, respectwely, on a non-empty open set and so is continuous. If (iii) holds, then
continuity of » follows from its nonnegativity on the generating cone K n dom A (see,
SOHAEFER [14: p. 228]). In a.ny casé, we have v'€ (K ndom A)* n dg,u(0), and the
theorem is proved B - ] ]

Remarks: 1. The follo“mg condition (iv) is obviously sufficient for (i):

(iv) K nint dom k' is non-empty, k is continuous on int dom A, and H is L*-
‘continuous, i.e., for each u € L* the functional y — (u, H(y)) is contmuous
onkE. o

2.If K nintdom & 4= @ or.int K ndomh:,‘:@ thenonehas
" (Kn dom k)* = K* 4 (dom &)*.

_ 3. If h is continuous on the non-empty set int dom & or H is L‘l contmuous then
by a well-known result of convex analysis, one has : :

995.u(0) = 9(Bh) (0) + d(uo H)(0). . S

4 The multiplier ﬂ in Theorems 3 and 4 is posmve and so can be chosen equal to
, if the following constraint qualification (C) is satisfied:

LN

.

In fact, let (C) hold and suppose that # = 0. Then « = 0 and so (u, H(y,)) < 0. On
the other hand, (18) implies (u H(yo)) = 0. Notice that (C) is a generalization of
Cottle’s constraint qualification in the differentiable case. Furthermore, this regu-
larity condition implies that (18) holds with g = 1 and for each y€K.

The preceding remarks indicate how to obtain from Theorems 3 and 4 further opti-
. mality conditions in terms of upper -convex approximations and ‘subdifferentials,
respectively, by 1mposmg one or the other additional hypothesis. For instance, we «
have the following . :

Corollary: Let K be a closed convex subset of T(M; xo) with o € K Assume that (iv)

and (C) are satisfied. Then there exist u € L* and v € K* such that (u, G(z)) = 0 and

v € k(o) + 2(uo H) (o).

RN
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E Finally we consider problem (P) \v{th
' M= Gl—lt—L,],‘ | ' o)
in other words, we consider thé problem | . .
- (P1) " Minimize f(x) subject to 2-€ E, Gy(x) € ~Ly; Glx) € —L.-

Here G, is an'operator of E into another normed real vector space F, and L, isaclosed
convex cone in F. In contrast to L, the cone L, is not assumed to haveinterior points,
thus L, may consist of the zero clement of F, only. We assume that there e\nsts some
H, € AW (Gy; z,) and we now put

K= cl Hi [ —L — R.Gy(2)). - | ' , - (21)

It is.immediately clear that H, € AW, (Gl ; Zo) lmphes H, ¢ AW,_,(Gl ; To), where L,
is defmed by el {Ly + R.Gy(z,)}. .

Applying the above results with M and K as defined in (20) and (21), respectlvelv
we can derive various optimality conditions for problem (Pl) For instance, applying -
the corollary and noticing (9a), we obtain '

Theorem 5: Assume that, wzth M and K as defined by (20) and (21), respectively,
the conditions K — T(M ; x,), (iv) and (C) are satisfied. Then there exists u €, L* such’
that (u, Q(xy)) = 0 and ' . ' - : :

0 € h(0) + B(u o H) (0) + cI* (3w o Hy) (0) | w € L* (w, G, (x,) )=0. (22)

This is an asymptotic optimality condition of Karush- Kuhn Tucker type. 1f, in particular,
E and F, are complete and H,[E] + L, + R.G\(z,) = F,, then, according to the above-
mentioned result of GLOVER [6: Lemma 3], the closure operat,non in (22) can be dropped and so
(22) passes into a nonasymptotic condition.

GLOVER [6] considers vector optimization problems, where ‘the ochctlve and restriction
operators are assumed to be L;*-quasidifferentiable (and arc-wise directionally differentiable).
He establishes F. John and Karush-Kuhn-Tucker conditions with & complementary slackness
condition in asymptotic form [6: Cor. 2). Instead of K = T(M ; xy), Glover assumes that the
restriction G,(z) € — L, is locally solvable at z,. -

Be51de (C), the crucial hypothesis of Theorem 5 is the regularity condition
K < T(M; xz,) or

H 4@[—1,,'— R, G (z0)] = T(6 -1[—L,]- ) - o @23

We mention two special cases in whlch (23) is satisfied. First, if £ and F, are com-
plete, G, is continuously Fréchet differentiable at z, and one has G,’( (zo) (B} + L,
+ R;G\(2o) = F,, then with H, = G,’(x,), (23) holds true according to the stability
- -theorem of RoBINsON [13: Theorem 1] (cf. also ZowE and KURCYUSZ ["0]) Second,
for the nonsmooth case, we have the followmg —~

Proposition 4: Assume that int L, is non-empty, H, € A, (G,; z,), and there exists
7 € E such that H,(7) € —int L, + R.G,(z,). Then (23) holds. .

«The proof runs along familiar lines. First, it is shown that each z € E satlsfymg
H\(z)¢ —int L, — R G’,(xo) belongs to the rlght hand side of (23). Then, if y € H,~

-
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’

[— Ll —R Gl(xo)] one applies the flrststep toz = of + (I — )y, whereO <a< 1
Lettmg « — +0 ylelds the desired result §

As in the differentiable case, the regularity condition in Proposition 4 can be modi-

‘fied if /', = R™ and L, = R,™. Thus let G,(x) =‘(g,(:'z:), oo g,,.(x))" for z € E, where

gi: B — R, and let h; € Ar.(g;; %,). Then H, defined by H,(z) = (hy(2), ..., kn())T
belongs to Ag (Gy; %) (cf. the remark following the proof of Theorem 1).

Let T denote the set of all z € {1, ..., m} such that g;(x,) = 0. It is 1mmed1ately'
verified that the existence of 7 € E satisfymg hi(g) < O for each 7 € I implies H,(¥)
€ —int L, — R,G,(x,) and so (23). Here we still need A; also for i ¢ I. Howcver, as
in the differentiable case, the regularity conditions can be weakened so that they’
involve upper convex approxnmatlons h; of g; for 7 € I only (cf. ScHIROTZEK [17:
Prop: 3.3].

“
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