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Necessary Optimality Cnditions for Nonsmooth Problem 's with Operator 
Constraints  

R.-P. SCHEFELER and W. SCHTROTZEK 

Es werden verschiedene Approximationen fur nichtglatte Operatoren eingefuhrt und deren 
Beziehungcn zueinandr untersucht. Für nichtglatte Optimierungaprobleme mit Operatorun-

• gleichungen als Nebenbedingungen werden F. John- und Karush-Kuhn-Tucker-Bedingungen 
bewiesen. 

BB0HTCH paaJm'IHbIe anapoHcHriaLtHH 1pin I1erflaHI4x orlepaTopoB it ilccJIeJIyloTcH CIM13M. 
ey HHMM. AJIH HeraagHMX aaaq OflTi1MII8UI1H C orpaiiiieitittm Tuna oneparopuiix 

H8BHCTB joicamaiocn yCJIOBHit 1). 1oiia it Hapywa-lyiia-Taxxepa. 
For nonsmooth operators, different kinds of approximations are introduced and their relation- 
ships are studied. With the aid of these approximations, F. John and Karush-Kuhn.Tucker 
conditions are established for optimization problems with operator inequality contraints. 

1. Introduction	-	 - 

Local optimality conditions for nonsmooth optimization problems aie based-in one 
way or another, on some concept of generalized derivative. NEUSTADT [10] introduced 
the concept of upper convex approximations which, sometimes in modified form, was 
also studied by PENIèNYJ [12], PENOT [11], GAHLER [4] and others. In the case of 
local Lipschitz functionals, the generalized directional derivativé'of-Ci.&RKE [1] is an 
important instance of an upper convex approximation. In Section 3 of this paper, we 
consider upper convex approximations for mappings between normed real vector 
spaces: Here "upper convex" refers to the preorder generated in the range space by a 
closed convex cone. We also introduce the'conce/pt of weak upper convex .approxima-
tions which is a scalarjzed variant of the former concept. It is shown that in certain 
impbrtant cases the two concepts coincide (Theorems 1 and 2). Further we consider 
generalized subdifferentials that extend corresponding concepts studied by CRAVEN 
and MOND [2], GLÔvER [6], and others. In Section 4 we consider the problem f 
minimizing an extended real-valued functional subject to operator-inequality and/or 
operator-equation constraints . We establish necessary optimality conditions not only 
in terms of upper convex aproximations . (Theorem 3, cf. GAHLEP. [4, 5]) but also in 
terms of generalized subdifferentials (Theorems 4 and 5). The latter results supple-
nent those obtained by SOBIROTZEK [17, 18] for scalar-valued constraints and extend 
those obtained by GLOVER [6] to a broader class of operator constraints. An applica-
tion of these optimality conditions to problems of best approiimation is contained in 
a forthcoming paper bySCREFFLER [16]. 

2. Notation 

If F is a normed real vector space and C is a cone in F, we denote by F' the topologi-
cal dual of F and by C* the polar cone to C, i.e. C* = {u € F' I (u, -x) Ofor each 
x € C}, where (u, x)denotes the value of u at x. Further, forrx0 E Eand 9 > 0, B(x0 ; e)
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denotes the (closed) ball in E with center x0 and radius e. if E and F are norined real 
vector spaces, L(E, F) denotesthe vector space of all continuous linear mappings of 
E into F. Let M be a non-empty subset of E. Then mt M and cl M will denote the 
interior of M and the closure of M, respectively. if M is a subset of E', then cl* M 
denotes the weak*closure of M. Moreover, T(M, x0 ) denotes the usual tangent cone 
to Mat x0 E . M. The set of all real numbers and all nonnegative real numbers is denot-
ed by R and R, respectively. If Yo is an element of a vector space, then we write 
R,y0 = {z I t = .Yo for some'). E R..}. If / is an extended real-valued functional on 
E, i.e., /: E - R  {+oo}, then 'dom / = {x E E .1(x) < +°o} For 2 E R, x E dom f; 
y E E we write  

Jf0. , x,y) = -- [Ax + 2y ) - 

the analogous notation being used for an operator 0: E -* F,-'Where E and F are 
normed real vector spaces. 

3. Upper convex approximations 

Throughout this section let E and F be normed real vector spaces, let . L be a closed - 
convex cone in F, and let 0 he an operator with domain E and range in F. Recall 
that an operator. H: B - F is said to be Li-convex if x, y E E and 2 E (0, 1) imply 
2H(x) ± (1 - 2) H(y) - H(2x + (1 — )) y) E L. H is said to be L-sublinear if H is 
Li-convex and positively homogeneous. We now define the basic concepts of this 
paper. 

Definition 1: An operator H: E F is said to be an upper convex approximation 
of Oat x0 E E (with respect to the cone L) if Ij is L-sublinear and if for each y E E \ o) 
and each e > 0 there exist ô > 0 and y >0 such that for each 2 E (0,) and each 
y ' E B(y; y) one has 

40(2, x0 , y') - H(y) E B(o; e) — L.' 
The set of all upper convex approximations' of 0 at x0 will be denoted by A L (G; x0). 

- Remark: Let f: E -- R  (oo). A functional h: E - R  (+oo} is said to be an 
upper convex approximation of / at x0 'E dom / in the sense of PENINYJ [12] if h is 
sublincar andsatisfies h(o) = .0 and 

h(y)	urn sup 4/(A, x0 , y')	for each y E E\ o}, 

where in the limit superior y' varies over neighbourhoods Of y 'in E and 2 varies 
over open intervals (0, ô) in R.... We shall denote the set of all such h by A'(/; x0). It 
is clear that if f, h are real-valued functionals on E, then h € A(/; x0 ) if and only if 
h  A.(/;x0).  

In the general case of an operator 0: E - F, it is' easy to verify the following 

Lemma 1: Let H E A L(G; x0 ). Then for each y E E \ {o} and each u E L* one has 

(u, H(y)	urn sup u, 40(2, x0 ,y')).	 (2) 

This lemma motivates the concept introduced in 

Definition 2: An operator Ii: B -. F is said to be a weak upper convex approxi-
mation of 0at x0 (with respect to the cone Li) if H is L-sublinear and for each y E B \ {o}

hi
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and u € L* inequality (2) holds true. The set of all weak upper convex approximations - 
of G at x0 will be denoted by AWL (G; x0 ):	-	- 

According to Lemma!, A L (G; x0) is always a subset of AWL (O; x0 ). Now we shall 
consider important special cases in which these sets coincide. The first result applies 
to certain polyhedral cones. 

Tb core m 1: Assume that L = {z E F I (u 1 , z) > 0 for i = 1, ..., m} where u 1 , ..., 
are positive-linearly independent element:s of P. Then A L (G; x0 ) = A WL (G; x0). 

Proof: By assumption, the convex hull, say ill, of {u 1 , ..., Um} does not contain 
the zero element o of P. Since M is weak*compact, M and o can be strongly separat-
ed, i.e., there exists a Lo > 0 and an element z0 E F (considered as a weak*continuous 
linear functional on F') such that (v, z0) > o for each v E M. Now let H € A WL (G; x) 
be given. Further let y € E\ {o} and a > O. For each, i = 1, ..., in there exist real 
numbers 6 > 0 and y j >0 such that for each A €(O, (5) and each y' E B(y; y) one 
has (ui , dG(2, x0 , y') - H(y)) :!E^ co/I 1 z011 and thus, with z 1 = zo/lizoll, also 

(u 1 , AG(2, x0 , ii') - H(y) - a;)	0.	 '	 (3) 

Let 3 = min{ô 1 , ..., m} and = inin {y, ..., Ym) . Then (3) holds for each A E (, ), 
each A E (0, (5), each y' E B(y; p), and each u1 (i = 1, ..., rn) and hence also with u 
replaced by an arbitrary clement of the convex cone generated by {u 1 , ..., Urn}. How-
ever, according to the Farkas lemma, the latter cone coincides with L*. Thus (3) 
implies that for each A € (0, (5) and each y' E B(y; ) one has zlG(2, x0, y') - H(y) 
- a; E _L** . Since L** = L and a; € B(o; a). it follows that HE A L (G; x0 ), and 
the proof is complete 

Theorem 1 applies in particular to the case F = Rm , L =	More precisely, fOr

i = 1..... m let g1 : E -^ it and h1 € A R,(gI ; x0 ). Further let 0 = (g1, ..., g)T and 
H	( h 1 , ..., hm ) T . Then H E AWR (0; x0 ) and so, by Theoretn 1, II € A +.(0; x). 

Under the assumption of Theorem 1, the convex hull of {u 1 , .., u,,j is obviously a 
compact base for the cone L* . The next result shows that A L(G; x0) and A Wa(0; x0) 
coincide whenever L* possesses any compact base, provided that ' and U satisfy 
suitable hypotheses. Recall that L* possesses a compact base if L is generating and 
L* is locally compact (cf. JAMESON [8: p. 144]). We shall say that 0 is locally Lipschitz 
at x0 if there exist a > 0 and fl> 0 such that 

jjG'(xo + y)	G(xo)II ;5 fi Ilyll	for each y  B(o; a). - 

In contrast to this, we shall say that 0 is locally Lipschitz around x0 if there exist 
a>O and fl>O such that 

II G (xo + y)	O(x0 - y 'JJ	fi Iiy - y 'II	for all y, y' € B(o ;a). 

Furthermore, 0 is said to be uniformly differentiable at x0 E E (cf. 1OFFE and Ticño-
iuraov [7: p. 209]) if for each yE E the directional derivative G'(x0 , y) = lirn 4G(A, 
x0 , y) exists and for each y E E and all a > 0, there are 6>0 and a > 0 such that 
2 E (0, (5), y' E B(y; y) imply 

JG02, x0 , y') E G'(x; y) + B(o; a).	 (4) 

T h e or m 2: Assume that F is a reflexive Banach space and that L* possesses a 
compact base. J/ 0 is locally Lipschitz at x0 or uniformly differentiable at x 0 ; then A L (0; x0) 
=AWL(G;xO).



422	H.-P. SCIIEFFLER and W. SduIao'rzEK  

Proof: Let B denote a compact base of L* and let H E AWL (G; x0). Further let 
y E E\{o} and e >0 be given. Then for each u E B there exist 5(u) > 0 and y(u) > 0 
such that 2 E (o, 5(u)) and y' E . (y ; y(u)) imply 

(u, JG(2, x, y'))	(u, H(y)) + 4- .	.	.	
'.	 (5) 

We'first consider the case that U is loally Lipschitz at x0 . Then choosing 5(u) 
sufficiently small, one can find > 0 such that for each 2 € (0, 5(u)) and for each 
y' E B(y; YOU))  

11 G(0'+ ly') -' G(x0 )11	P2 liY'll . )	 .	 (6) 

Now let c(u) ='fl lly ll + fly(u) + H(y)Il. Since B is compact, there exist u1 , ..., u, € B 
such that .	- 

m 
B	I 'U v € F' I liv - u 1 jj < 

1=1	 .	2c(u1)	 .	I 

Let = mm (6(u,),

	

(u.)),	= miii {y(u1 ), ..., y(u)} and. take arbitrary ele- 

merits 2€ (0,S), y' E B(y; fl . For each u E B' there exists i E {1.... . m} such that 

•	lu - u111 < e/2c(u1 ). Hence (5), (6) and the definition of c(u) imply. 
•	 .	(u, AGO., x0 , y') - H(y))	 .	. 

= Ku - u1 , zlG(2, x0 , y') - H(y)) + (u1 , AG(;., x0 , y') - H(y)) 

lu	u ii (P 1101 + IIH (y)ii) +	<e. 

Since B is a compact base of L* and F is reflexive, there exists a z E F such that 
B = (u E- L* I (u, z) = 1). Obviously one may assumè'that J JzJJ = 1. For eachu E B, 
(7) implies Ku, AG(2, x0 , y') - H(y) -	0, whence	

0 

zlG02,'x0 , y') - H(y) - ez € _L** .	 .	/	 (8) 

The lattret equals —L and (8) holds for all 2. E (0, b), y' E B(y; ). It follows that 
H E A L (G; x0 ), and the proof is complete if U is locally Lipschitz at x0. 

Suppose now that G is uniformly differentiable at x. Then for each u E B, one can 
choose 5(u) and y(u) such that (4) and '(5) are satisfied for each 2 € (0, 5(u)) and each 
Y' € B(y; y(u)). Now define c(u) by c(u) = II G'(xo, )tl + + IIH(y)lI, and define 
u1 , , p as above. Then we obtain, instead of (7), the estimation 

Ku, tiG(2,'x0 , y') - H(y))	 - 

= (u - u1 , L1G(2, x0 , y') - H(y)) +' (u1, A G(2, x0 , y'), - H(y)) 

^511u — u ii c (u)+	e 

for each u € B, 1€ (0, ')and y' € B(y;'). I'ow the proof is completed just as in the 
first case I 

Using weak upper convex approximations, wenow define' generalized subdifferen-
tials of the operator . 0. Notice that for H E AWL(G; x0) and u E L* , the functional 
u o H is sublinear on E and so the usual subdifferential a(u o H) (o) is well defined - 

- ' though possibly empty. If u oH is lower semicontinuous, then a(u o H.) (o) is known
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- to be non--empty and to satisfy 

(u o H) (y) = sup {(v, y) I v E (u 0 H) (o)} (9) 

(cf. I0FFE and TxcoMxnov ['i': Chap. 4]). The operator H is said to be L*lower semi-, 
continuous if for each u E L* the functional u o H is lower semicontinuous. 

Definition 3: For HE AWL (G, x0) the set 

-' HG(xo) := U a(uo H)(o)

uEL 

is said to be the H-subdi/ferential of G at x0 .	 - 

Notice that since o E L*, àne always has o E eHG(xO ) and so the H-subdifferential 
is never empty. Sets such as 11 G(x0) have been already considered by GLOVER [6]. 
Among others, GLOVER [6] showed that if H isL-sublinear and L*.lower semiconti-
nuous,then	 - 

cl*( U (uo H) (o)\ = _(H[_L])*.	 (9a) 
tzEL	 J 

GLOVER [6] further obtained the remarkable result that if, in. addition, E and Fare 
complete and H[E] + L = F, then U a(uo H) (o)is weak*closed. 

uEL' 
In the following proposition we consider operatrs G, G2 : E F. 

Proposition 1: If H, (i . = 1, 2) is L*.lower semicontinuous and belongs to ALA; 
X0) or A WL(0 5 ; x0) and a i are nonnegative real numbers, then H = a 1 H1 + 02H2 
belongs to A L(G; x0 ) or A WL (G; x0), respectively, where G = a 1 G1 + a202 , and one has 

	

11 G(x). = U Cl* (a 1	o H 1 ) (°) + a2 3(uo H2 ) (o)).	 (10) 
u€ L' 

Proof: We only verify (10), the first statement being evident. Let u E/L*. We shall 
show that - 

a(uo H) (o) =) cl* (a i (uo H 1 ) (o ) + a2 a(uo H2 ) (o)).	(11) 

It is *easy to see that the right-hand side of (11), A for abbreviation, is contained in 
the Jêft-hand side. Suppose now that v E E' is not in A. Then by the strong separa-
tion theorem, there exist y E E and e >0 such that for all v 1 ,E a(u o H . ) (o) (i = 1, 2) 
one has (a 1 v + a02 , y) + e < (v, y). In view of (9) it follows that u 0 H(y) < (v, y) 
and so, again by (9), v cannot belong to a(u o H) (o). The proof is thus complete I 

In the notation of Proposition 1,	G(v) can in genei'al not be represented by - 
aG 1 ( 0). If, however, u o H 1 is éontinuous for each u E L, then one has 

a110(x0) c 011 a 11 G 1 (xo) + 012 a 1 G2 (x0).	 - 

This follows from (10) since now a 1 a(u o H1 ) (o) is weak*compact 'and so a 1 e(u o H1) 
(o) + a 2 (i o H2) (o) is weak* closed. Proposition I further implies that if H 1 , H2 
are (weak) upper convex approximations of the same operator G, then for each 
a E (0, 1), aH 1 + (1 - c)H2 is also a (weak) upper convex approximation of G. 

Now we shall consider important special cases in which (weak) upper convex appro-
ximations exist. First, it is clear that if Gis Fréchet differentiable at x0 , then the deri-
vative G'(x0) belongs to AL(G; x0), and one has 

= fu 0. 0'(x0) I It E- L*}.
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Next 'we shalishow that a rather broad class of mappings studied by GLOVER [6] 
admits weak upper convex approximations. For this, we recall some definitions (cf. 
[6]). The operator G: E - F is said to be L*qua5sidi/ferentiable at x0 E E if for each 
y  Ethe limit 

G'(x0 , y) = lim LIG!(A, x0 , y) 

exists in the weak topology of F and for each u E L* there exists a non-empty convex 
weak*cIosed subset of E', denoted by (u o 0) (x0), such that for each y E E 

(u, G'(x0 , y)) =sup {v, y) I v E (uo 0) (x0)}.  

If E is a Banach space, then using the principle of uniform boundedness it can 
be shown that (u o ) (x0 ) is veak*eompact , which implies the continuity of 
(u, O'(x0 , -)) for each u E L*. 

Proposition 2: Let 0 be L*quasidif/erentiable at x0 E E. Assume further that for 
each it E L* , u o 0 is uniformly differentiable at x 0 . Then G'(x0 , •) is L*lower semi-
continuous and belongs to A W L (G; x0 ). Moreover, one has a' 0 -G(x0 ) = U (u o'G) (x0). 

UEL' 
Proof: Let u € L* . Then (u, O'(x0 , -)), as the support functional of the convx 

weak*-closed set a(u o 0) (x0), is sublinear and lower semicontinuous, and one 
has (u o G'(x0 , •)) (o) = o 0) (x0 ). It remains to be shown that (2) holds for 
11 = 0'(x0 , -). By assumption, the equation 

Jim sup (u, zlG()., x0 , y')) = (u, 0'(x0 , y) 

is valid for each u € L* and each y € E. This completes the proof I 

In connection with Proposition 2, we mention that if 0 is L*Lquasidifferentiable 
at x0 ; then a is uniformly differentiable at x0 provided that 0 is locally Lipschitz 
around x0 or G is Hadamard differentiable at x0 'ith respect to the weak topology on 
F (what GLOVER [6] calls arewise directionally differentiable at x0). DEMJANOV and 
RuBINov [3] have introduced another concept of quasidifferèntiability for operators. 
Let E and F be Banach spaces and let L c F be a closed convex cone generating a 
preorder on F such that F is a conditionally complete vector lattice with a mono-
tonic norm. An operator 0: E --F is called quasidif/erentiable at x0 E E if for each 
y € E the directional derivative 0'(x0 , y) exists and there are continuous sublinear 
opeiators -Q, F: E - Fsueh that G'(x0 , •) can be represented in the form G'(x0 , •) 
= P + Q. The set DH(x0 ) = [QO(x0 ), ea(x0 )}, where 

aG(x0 )={SEL(E,F)}Py—SyEL for any yEE} 
and

G(x0)=-s{TE LIE, F)TyQyEL for any yEE} 

is called a quasidi/ferential of 0 at x0. 

Proposition 3: Let 0 be quasidif/erentiable and uniformly differentiable at x0. 
Then for each T € bG(x0), the mapping HT = P + T belongs to A L (G; x). Further-
more, the relation 

aH TG(XO)	(3 cI' {u o (T + S) I S € G(x0 )}	 (12) 
uEL 

is saiis/ied.
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Proof: The continuity of P and'Q implies that for each y E E (cf. VALADIER [19]) 

one has	 .	 . 
P(y) max Sy	and	Q(y) =min Ty.	 . 13) 

SEG(z,) 

Under the assumptions on G the limit urn 40(2, x0 , y') exists for each y E E, 

and equals G'(x0 , y). Therefore for each T E G(x0 ) it follows that 

lim 4G(A, x0, y')	P(y) + Ty	and	HT E A L (G; x0). 

Now formula (12) will be verified. It is easily seen that for 'each u E L* one has 
a(UOHT) (o) cl* {uo (T + 5) SE G(x0 )}. Suppose that, for some u E L* , there. 
is v E (uo HT ) (o) which does not belong to the right-hand side, denoted by A, of 
the upper inclusion. Since A is .veak*closed, A and a(u 0 Hr)(o) are strongly se- 
parable, i.e., there exist 9 E E and e > 0 such that for all T E 0(x0) one has v, 
> (u, T + (u, S) +s. From this and (13) we obtain the contradiction (u, HT()) 

(v,) ^	T) + (u, S) + e ^! (u, HAP)) + '	 . 
We remark that if 0 is quasidifferentiable at x0 and L i 'schitz around x0 , then 0 is 

nniforrnly differentiable at x0. 

4. Optimality conditions 

Let  and F be normed real vector spaces, let M he a non-empty subset of E and let 
L be a closed convex cone in F with mt L 0. Further let /: E R  {+o°} and 
0: B -- F. We consider the following optimization problem: 

(P)	Minimize /(x) subject to x E M, 0(x) E —L. 

In all that follows, let x0 denote a Jocal solution of (P) and let h E A(/; x0), 
HE AL (G; x0). The following lemma will be the basis for the optimality conditions to 
be derived in the sequel. 

Lemma 2: There does not exist any y E dom h n T(M; x0 ) such that 

h(y) <0	and	H(y) E -mt L - R0(x0).	 (14) 

Proof: Suppose there does exist y E domh n T(M; x0) satisfying (14). Then for 
some 1u E R, we have H(y) E -mt L - iG(x0). Since the latter 'set is open, there 
exists e > 0 such that 

H(y) + B(o; e) c -mt L -,u 

	

,q(xo). 	 ,	(15) 

Further, since y E T(M; x0), there exists a sequence (().,, yn)) in (0, + oo) < B con -

verging to (0, y) such that x0 + 2y, E M for each n. Since H and h belong to A ,(G; x0) 
and A(/; x0), respectively, and y r= o, it follows that for all sufficiently large n, say 
n^! no, wehave 

-	 4G(A, x0 , y,,) E H(y) + B(o; e ) -
	 (16) 

xo, y,,)	h(y) H- -- Ih(y)I <0.	 (17)

/
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From. (16) and (15) we conclude that, again for all n ^!- n0,. 

•	0(x0 + )y) E (1 - ).fl Eu) 0(x0)— int'L. 

But if n is large enough, then 1 - ).,u 0 and so 0(x0 ± Any) E —L. It follows that 
the sequence (x0 + eventually satisfies the restrictions of (P). On the other hand, 
(17) implies, that x0 is not a local solution of (P) which contradicts the hypothesis. 
This proves the lemma I 

Now we can establish a multiplier rule for (P) in terms of upper convex' approxima-
tions. 

Theorem 3: Let'K be a convex subset of T(M; x0) with o E K: Then there exists 
(, u) E' R,. x L* such that (, u) == o, (u, 0(x6)) = 0 and 

h(y)+(u,H(y))_ 0 for each yedomhK.	. '	 (18) 
Proof: Consider the space F0 = li xF equipped with the, product, topology and 

let
Lo=R+x(L±R+G(xo)), 
K0 = {(a, z) € F0 I y  dom h nK:(h(y) - a, H(y) - z) ,E _intLo}. 

It is obvious that 4 is a convex cone with non-empty interior and K0 is a non-empty 
convex set. Moreover, Lemma 2 implies K0 n (—int.L0) = 0. Hence K0 and —L0 
can be separated by a closed hyperplane, i.e., there exists (, u) E R x F' such that 
(i9,u)=l=oand	'	'

(19) 
for each (a, z) E K0 and each (, ) E -4 . Since -4 is a cone, it follows that 

+ (u, ) 0 for each (, ) E -4 and so fl. ^t 0, u E (L + R+G(xo))* . The latter 
inclusion implies u E L* .and (u, G(x0)) 0. Since, on' the other hand, 0(x0) E —L, 
the condition (u, '0(x0 )) = 0 is verified. Now let y E dom h n K and choose some 
z0 E mt L. Since z0 E mt L, for each ô > 0 inequality (19) applies with a	h(y) ± ó, 
z = H(y) + 6z0 , 5z = 0, 1 = 0. By letting 6	+0, we finally obtain (18), and the

theorem is proved! 

In Theorem 3, a possible choice for K is Clarke, s tangent cone to lit at z0 . If T(M; x0 ) itself 
is convex (which is the case if, for instance, 'M is locally convex at x0), then T(M; x0) is of coursç 
the "best" choice for K.	. 

Optimality. conditions closely related to Theorem 3 have also been established, among 
othei-s, by GAHIER [4, 51. This author allows / to be also vector-valued, but he does not derive 
the complementary slackness condition (u, 0(x0 )) = 0. 

With the aid of Theorem 3 we shall now establish a multiplier rule for (P) in sub-
differential form. For this, we need . the following sandwich result of LANDSBERG and 
SCaLROTZEK [9: Cor. 31.  

Lemma 3: Let p, q: E-+R u +oo) be proper'convex fitnctionals such that —q(y) 
p(y) for each y E E. Assume that the cone generated by dom p - dom q is a vector 

'space. Then there exist a linear junctional v on E and a real number a such that —q(y) 
(v,y),±ap(y) for each yEE.  

For each (, u) € R.4. X L* we define a sublinear functional q:E - R  {±oo} 
by	'	 ' 

9'p.u(Y) = Ph(y) + (u, H(y))	for each y E E.
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Theorem 4: Let K. be a closed convex subset of T(M;x 0 ) with  E K. Assume that 
one of the following conditions (i)—(iii) is satisfied: 

(i) For each (, u) € R L*, 97p, is-continuous at some point of Kr mt dom h. 
(ii) intK'n mt dom. h 4r 0.	-	 - 

(iii) E is complete and K o dom h is a generating cone in E.	 - 

Then there exists (, u) E R, x L* such that (, u) 4 0, (u, G(x0 )) = 0 and (K n dom h)* 
+ 0	 S 

Proof: According to Theorem 3 there exists a (, u) € R x L* such that (fl, u) =l=o, 
(u, 0(x0)) = 0 and u(Y) 0 for each y € K n.dom h. It is easy to see that Lemma 3 
applies to p =. pu and q = a, where a denotes the indicator functional of the convex 
set K n dom h. Hence thereexist a linear functional v on E anda real number a such 
that	(.	.	 . )

 + I 
q(y)	for each y E E, 
O	for each yEKndom.h. 

Choosingy = o yields a = 0. Moreover, if (i) or (ii) holds, then v is bounded above or 
below, respectively, on a non-empty open set and so is continuous. If (iii) holds, then 
continuity of v follows from its nonnegativity on the generating cone Kn dom h (sees 
SJIIAEFER [14: p. 228]). In any case, we have y E' (K n dom h)* n aft(o), and the 
theorem is proved I	 S 

Remarks: 1. The following condition (iv) is obviously sufficient for (i): 
(iv) K n mt dom h is non-empty, h is continuous on mt dom h, and H is L*. 

continuous, i.e., for each u E L* the functional y -> (u, H(y)) is continuous 
on E.  

2. If K n• mt dom h + 0 or. mt K r dom h + 0, then one has 

(K ndomh)*= K* +(domh)*. 

3. If h is continuous on the non-empty set mt dom h or H is L*continuous, then 
by a well-knowt result of convex analysis, one has 

t9q2p(o) = ( h) (0) + a(u o H) (0). 

4. The multiplier in Theorems 3 and 4 is positive and so can be chosen equal to 
1, if the following constraint qualification (C) is satisfied 

(C)	There exists a Yo E K n dom h such that H(y0) € — mt L + RG(x0). 

In fadt, let (C) hold and suppose that = 0. Then u + o and so (u, H(y0)) <0. On 
the other hand, (18) implies (u, H(y0)) 0. Notice that (C) is a generalization of 
Cottle's constraint qualification in the differentiable case. Furthermore, this regu-
larity condition implies that (18) holds with P = 1 and for each yE K. 

The preceding remarks indicate how to obtain from Theorems 3 and 4 further opti 
mality conditions in terms of upper convex approximations and subdifferntials, 
respectively, by imposing one or the other additional hypothesis. For instance, we 
have the following  

Corollary: Let K be a closed convex subset of T(M ;x0 ) with o E K. Assume that (iv) 
and (C) are satisfied. Then there exist u E L and v E K* such that (u, 0(x)) = 0 and 
vEh(o)+3(uoH)(o),.	 S	 '
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Finally we consider problem (P) with 

M=	 (20)


in other words, we consider the problem 

(P1)	Minimize 1(x) subject to x-E'E, G 1 (x) E —L,,. O(x) E —L. 

Here G is an-operator of E into another normed real veôtor spa"ëe F 1 and L 1 is a closed 
- convex cone in F 1 . In contrast to L, the cone L 1 is not assumed to have interior points, 

thus L 1 may consist of the zero element of F1 only. We assume that there exists some 
H 1 E A WL,(G I ; x0 ) and we now put - 

K = ci JJ_1[_J - JL01(x0)J. 	(21) 

It is. immediately clear that H 1 E A WL ,( 0l ; x0 ) implies H E A W L,(0l ; x0 ), where L2 
is defined by ci (L 1 + J.t+G1(x0)}.	 - 

Applying the above results'With M and k . as defined in (20) and (21), respectively, 
we can derive various optimality conditions for problem (P1). For instance, applying 
the corollary and noticing (9a), we obtain	 - 

Theorem 5: Assume that, with M and K as defined by (20)'and (21), respectively, 
the conditions K T(M; x 0), (iv) and (C) are satis/iedc Then there exists u E,L* such 
that (u, 0(x0)) = 0 and  

0 E ah(o) + (u o H) ( o) + cl* {(w o 91 ) ( o ) 1 me € L* ,'(w , 0 1 (x0 )) = 01. (22) 

This is an asymptotic optimality condition of Karush-Kuhn-Tuker type. If, in particular, 
B and F1 are complete and 11 1 [E] ± L 1 + R+G1 (x0 ) = F1 , then, according to the above. 
mentioned result of CLOVER [6: Lemma 3], the closure operation in (22) can be dropped and so 
(22) passes into a nonasymptotic condition. 
GLOVER [6] considers vector optimization problems, where the objective and restriction 

operators are assumed to be L*quasidifferentiablc (and arc-wise directionally differentiable). 
He establishes F. John and Karush-Kuhn-Tucker conditions with a complementary slackness 
condition in asymptotic form- [6: Cor. 2]. Tnstead of IC	T(M; x0 ), Glover assumes that the 
restriction G 1 (x) € —L is locally solvable at x 0 .	 - 

Beside (C), the crucial hypothesis of Theorem 5 is the regularity condition 
KcT(M;x0)or	- 

- R+G 1 (x0 )]	T(01 [—L i ]; x0 ).-	 (23) 

We mention two special eases in which (23) is satisfied. First, if E and F l are com-
plete, 01 is continuously Fréchet differeniable at x 0 and one has 0 j '(x0 ) [E]. + L1 
+ R.G1 (x0 ) = F1 , then with Il = 0 1 '(x0 ), (23) holds true according to the stability 

- - theorem of R0BrNsON [13: The 	1] (cf. also ZOWE and KURCYIJSZ [20]). Second,

for the norismooth case, we have the following 

Proposition 4: Assume that mt L 1 is non-empty, H 1 € AL,(OI; x0 ), and there exists 
E such that H 1 () € - mt L 1 + &01 (x0 ). Then (23) holds. 

' The .proof runs along familiar lines. First, it is shown that each z € E satisfying 
H, (z) € - mt L - R0 1 (x0 ) belongs to the right-hand side of (23). Then, if y € H1-1 

/

/
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[—L1 - R+G 1 (x0 )], one applies the first step to z =	+ (1 - x) y, where 0 < x < 1. 
Letting a --^- +0 yields the desired result I 

As in the differentiable case, the regularity condition in Proposition 4 can be modi-
fied if F = Rm and L1 = R m . Thus let G 1 (x) =(g1(x), ..., gm(x))T for x E .E, where 
g•: E —* H, and let h• E A R,(g; x0). Then H 1 defined by H, (x) = (h1(x),..., hm(X))T 
belongs to AR ,-(G,; x0) (cf. the remark following the proof of Theorem 1). 

Let 1 denote the set of all i e {1.... . m} such that g1 (x0 ) = 0. It is immediately 
verified that the existence of 9 E E satisfying h 1 () < 0 for each i E I implies H1() 
E --int L1 - R,G(x0) and so (23). Here we still need h1 also for i 4 I. However, as 
in the differentiable ease, the regularity conditions can be weakened so that they 
involve upper convex approximations h i of g i for i E I only (cf. SCHHtOTZEK [17: 
Prop 3.3]. 
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