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A Lattice Problem for Differential Forms in Euclidean Spaces 

R. SCnUSTER'	 -

I 

Tm n-dimensionalen Euklidischen Raum E' wird in Veraligemeinerung eines Gitterpunkt-
problems ein Gitterproblem für (l-automorphe p-Differentialformen gelost. (Ii iàt dabei eine 

• eigentlich diskontinuierliche Gruppe von Isometrien des E ll mit kompaktem Fundamental-, 
bereich. Zur Behandlung werden Mittel wertoperatoren für Differentialformen und em' Landau: 
,,ches Differcnzenverfahren verwendet.	 S 

- Hax o6o6ueHue 0H0 ceToHofl IIpo61IeMbL B n-MepHoM eB}cJJHoBoM npocTpaHcTse E' 
pemaeTcceToHan npo6JleMa j.un ®-aBToMopHMx B44epeH[1aJ1bHMx 4OpM cTeneHIf P. 
11pM aTOM (J .- BnoJIbHe paapblsHafl rpynna }I3oMeTpntl C IcoMnaxTHoft 4yHJaMeHTanbH0t 
o6nacTb10 n E". Ji31n pelueHHn np06JleMbI.Iicfl0J1b3y10TcH onepaopii cpegero 31iaqeHMH 

1n u144epeHLuaJiblwx opM H MTO cerox JTaiijay. 

Generalizing a lattice-point problem we solve a lattice problem for i-automorphic differential 
p-forms in the n-dimensional Euclidean space E', where li is a properly discontinuous group 

• of isometrics of E' with compact fundamental domain. Our approach essentially uses mean ,'ean - - 
value 'operators for differential forms and a Landau difference method. 

1. Introduction  

• Let Q3 be a 'properly discontinuous 'group of isometrics of the n-dimensional Euclidean 
space E" with a compact fundamental domain T. By generalizing the Landau ellip-
soid problem, P. GYNTHER [8] studied the estimation of	 - 

A(t, x, y) =	' 1	for t —a. 00  
bE8 

	

Y(x.by)<t	 /	I 

with the Euclidean distance r(x, y) of the points x, y € E". In [8] the elements of Gi 
(with the exception of the identity map Id) were supposed to be without fixed points, 
but. instead of simply counting the lattice points, certain unimodular weights were 
used. The order of magnitude of the leading term and of the lattice remainder used 
there are the same as in the classical case treated by Landau.'We refer to F. FRICKERJ 
[3] 'and A WALFISZ [18] as basic references, see also the literature quoted there. Pro-
blems with weaker assumptions for the fundamental domain have recently been 
investigated by P. D. LAX and R. S. Pnn.urs [14]. In this paper we want to discuss a 
generalization involving alternating differential forms, and we will call it a lattice-
form problem Every b € 0 induces a mapping b* for differential forms, see [11]. We 
call a differential form x on E" i-automorphic if b*ex = x is valid for all b € 03. 
Following [7] we define components of differential forms. Let (x', ..., z") be a Carte-
sian coordinate system of E". The component of a p-form a= .'. , dx1' A ... A dx1
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in the direction df the vector v = (vi) then shall be defined by 

Iv = p IEv lL 2 V	 dz1' A . A dxiv 

and the component a orthogonal to	by	= , - . Evil denoted the Euclidean 
- norm of the vector v. We adopt the convention of summing over repeated'indices. 

[.. Il ...] shall denote the alternation without i. We lower and raise indices by the 
covariant and con travariant metric tensors b ij and ô, respectively. Let be the 
'parallel displacement of p-forms from the pointy € E' to x  E" along the straight 
line joining these two points. We now define 

A'[x] (t, x, y) =	'	TX.bYaIX_bV(by), b€c 
O<r(z.by)<t	 -	- 

(1) 
A0 [a] (1, x, y) =	'	T ,b x 11X — by (by). 

	

bE(	 -	- 

We are interested to estimate A'[aJ and Aa[] for a -automorphic differential form 
a fort .-. o. For p = 0, a = 1 this lattice-form-problem for AO reduces to the problem 
for A(t, x, y) mentioned above. 

Our approach essentially uses kernels, of mean value operators for- differential 
forms which are defined by means of double differential forms a; r introduced by 

, P: GUNTHER [5]. The fact that the forms a, -r are intimately related with the con-
stl-uetion of the components of p-forms and their parallel displacement makes them 

• -well-suited. We will apply some standard arguments of the theory of Euler-Poisson-
Darboux equations, but we will not make use of the approach by means of theta 
functions and Jacobi transformation laws, cf. [8]. We use the Fourier method, which 
also plays an important role in [8]. Mean value formulas turn out to be quite useful 

• ' for this purpose. In the space of i-automorphie p-forms which are quadratically 
integrable over Jr there exists in the sense of L 2-norms over a complete orthonor-. 
mal system of -automorphic eigenforms { w jP} jcç of the Laplace oem-atoi- _a2/ 
(axl ) 2 - ... - 02/(ax)2 with the corresponding eigenvalues u 1 : ziw = 1a'w. To 
estimate AG, k the harmonic forms co, P, ..., w turn out to be quite important. 
Thereby B denotes the multiplicity of the eigenvalue 0. If , the elements of G3 are' 

• without fixed points (with the exception of id), B,, is the ptI Betti numbeiof the Clif-
ford-Klein space form corresponding to 03. Using the scalar product of the differen-
tial forms

a =	dx' A ... A dx1 ,	=	dxi' A ... A dx 

defined by a	=	 and the norm hail = (a . a) 1 /2 , we can State the
'following 

Theorem :The lattice remainder defined by 

P[a] (I, x, y) = Al[a] (I, x, y)	•	 '	 , 

P	 _ 

. •	
'

	

(71 
-F- 

2) (a .	.P) (y) w V(x) tt2	•	 -	( 2) 

satio/ies the relation	 - 

hI P [a ] (t, x	)El = 0	jJ(y)IJ.	-	•	'•	 •	 -
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The 0-ter7h does not depend on . We get ananaloows result for a instead o/ r if we re-
place the coefficient p/n of the'leading . term by (n - p)/n.a is always supposed to be 
0-automorphic and continuous.	 . 

The property 'of A(t, x, y) to be monotonic in t does not hold in general for 
II A ' [a ] (t, x, y). Nevertheless the lattice remainder is still estimable by 0(t-2'"') 
in the case of j)-forms. The order of magnitude of the leading terms 9 f A(t, x, y) and 
Al[a] (t, x, y) for t -> co are the same, too (if we suppose B 0 and p 4 0). The 
theorem points out the fact that the leading term of II A ' [a] ( t, x, )Ii is essentially 
depending on the harmonic component	 - 

(c . w) (y)	.P() 

As an illustration we giva simple consequence of this theorem. Let n = 2 and write 
the elements,of E 2 as complex numbers. Let 03 be the translation group 

u - u ± k 1v + k2w =: uk .	(u v, w E C; k 1 , k2 € Z), 
vw 4 0, arg (v/w) r 0.	-'	 - 

Corollary: We have - 

'	sin 2 (arg Ukk) =	 t2 ± 0(t).	- 
k,.k€Z	 2 (IM (v w)) 2	 -

j U kk < 

2. Mean value operators for differential forms 

Our treatment of the mean value operators is based on the double differential forms 

a0 (x,y) = 1,	r0 (x,y)= 0,  
a, (x, y) = r(x, y) dtZ r(x, y),	-r 1 (x, y) = dr(x, y) 1r(x, y), 

a=—a_ 1 AAa 1 ,	r=r1AAa_1,
p 

introduced by P. GUNTHER [5] for spaces of constant curvature K + 0. , A'hall 
denote that d, A refer to the second variable y. As shown by P . ,GtNTHER [6, 7], 
there is a geometric interpretation for these double differential forms: 

.= (-1)P r(x, y) • c(y), 

= (—! )P a(x, y) . a(y). 

Following G. DE RHAM [15] we can write the Laplace operator in the form A = 
+ ôd, using the differential oeratord and the cod if ferential operator 6 = (_1)Pfl+fl+' 
* d * for a p-form and the Hodge dualization *. The eigenforms we can suppose 
to be' closed (dw P = 0) or coclosed (w 9 = 0), cf. [1]. Let K(x, t) be the 'ball and 
S(x, t) the sphere around x E E" with radius t. P. -GUNTHER [6, 7] treated the spherical 
mean values	- 

M°[] (t, x) = (_ Or co
f 

a(x, y )	(y ) dos, 
S(x.t) 

M'[] (t, x) = ( - 1)9 4 f r(x, y) . x(y) do	- -. 
Str,t) 

N
4
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with co F(n/2)/2n/2. Motivated by the Riemann-Liouville integrals used in the 
papers of A. MErNSTEIN [19] and P. GUNTHER [8] we take for A n + 3 

•	r  
.M1 [x] (1, x) = c1131 J (1 2 - r2) 2	rl(Afc + .2W') [x] (r, x) dr, 

	

-	
I	

(4)• 

NA [] (1, x)	C10 –A 2 )
 ( 12 - r2) 2	rn+I(M0	M')[] (r, x) dr 

0	 - 

• with c 1 =2/B	-	1). Then it follows that 

M 1 [] (1, x) = c2 (— 1)9 0

	

	(t2 - r2 (x, y)) 2	(a9(x, y) + r9(x, y)) . (y) dv, 
K(z,t) 

N2 [a] (1, x) = c2 (— 1)P t'_- J (t2 — . r2(x, y)) 2 (ap(x,y) - r(x, y)) r2 (x, y) x9 (y) dv 
K(x.I) 

with c2 = (
A _ . 1)/r (A_ n— 1)fl/2 We want to use methods of Euler-Pois- 

son-Darboux theory with respect to the parameter A. For this reason, we define 
•	z(1, A, 1u) for t	0 to . be the unique solution of the differential equation 

d2 • -z(t, A, i) +	z(t, 2, ) ± zz(t, A, ) = 0 

with the initial conditions z(0,)., 1u) = 1, -- z(t, A, 1u)o = 0. It should be noted 
that-	 dl 

z(t,A,) = r(	
1)()2, (t),

	> o, 

using the Bessel function J, with index v. Asa consequence of a correspondence prin-
ciple of Euler-Poisson-Darboui theory we have the recursion'-formula	- 

z(t, A,	
= (A	1

± 1) z(t, A + 2,,u).	
•	•	S 

We set	
. S 

• u(tA	) 
= 2A 

2-1	z(t, A, ) • z(t,). —2, ),	•,	 S 

	

•	v(t, A, )	— 2 2q)1 z(t, ),L)+ z(t, A - 2, ) 

with q(A) = p + (A - - 1)/2. By using the recursion formula for z(t, A, 1u) -we 
obtain

01 A, = T:::— i	
+	

A + 2, ,	• 

0
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• the same equatin is valid for v( . , •, •)insteadofu(•, 
•, •). One observes that closed 

or coclosed eigenforms of the Laplace operator are at the same time eigenforms of 
mean value operators. To make this more precise, we state the 

Proposition: The following mean value formulas are true: 
(i) For zlw =	one has M i[w] (t, x) = z(t, A - 2,.1u)6(x).	 -• 
(ii) For Acu = w, dto =0 one has N1 [w] (1, x) = u(t, ),,u) w(x). - 

•	(iii) For Lie) = saw, 6 = 0 one has N1 [w] (t, x)	v(t, A, u) i0(x). 

Proof: By referring to [6: Satz 2], it is quite easy to-establish the following , result: 
(i) For Aw =aw,de =O one has 

M°[w] (1, x) 
=	z(t, n+ 1, u) o(x),	 . 

M'[wJ (t, x) 
= (_n	z(t, n + 1, i) + z(t,n - 1, /2)) 

(ii)ForAw= /zw,&o=O one has 

M°[] (1, x) = 
(- z(t, n + 1, t) + z(t, n - 1, /2)) 

M '[w] (1, x) =	z(t, n + 1, z) w(x).  

Note that p=0 and dw=0as well asp=n and- 3w=0impliesu=0. Now the 
proof follows ,straightforward from (4) by applying the following integral euation 
for Bessel functions (12	A l + 2 ^t 2): 

-	2t'2'	 - 
z(t, 2 2, i) =

	

	1. (1 2 - T2)	2	r1 'z(-r, A l , ,u) dr I
B 

Let 0 be a properly discontinuous group of isometries of E'. This shall mean that 
for every x € E' the set of bx for all b E 0 has no accumulation point. Let 7 be a 
fundamental domain, that means first that the sets bY, b E , cover the space E n and. 
secondly that bY n cY with b, c E 0, b L c, has Lebegue measure 0. We suppose 

• cT to be compact. Without loss of generality, we can suppose, Y to be the closure of an 
open, connected domain. For i-automorphic differential forms x we can rewrite the 

• ntegration as an integration over a fundamental domain Y: 

.IIfj[a] (1, x) = t3_1 f.c/JtA(t, x, y ) x(y) dv	•	 • / 

with	 -

	

A-tl-3	 - 

41) (t, x, y) = c2(-1)P E (1 2 —r2 (x, by))	b*(ap(x, by) + r(x, by)) 
•	 -	 r(x.by)<	 • 

and	-•	• . 

'JV,[a] (1, x) = 1'	f dV1 (1, x, y) a(y) dv,	•	-	-	- •	•	3	 •
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with
1—n-3 

X201 x, y) = c2 (— I )P	((2 - r2(x, by)) 2	r2 ( x, by) b*(ap(x, by) - r(x, by')). 
r(r.by)<1 

The induced mapping b* is to be taken with respect to the second variable of the 
double differential forms. Since i was supposed to be properly discontinuous only 
a finite number of terms in those integral kernels do not vanish. We immediately 
obtain

0- - 11 tt1(t, x, y)• =	62(t, x, y)	 (5) 

and an analogoueuation for X. Using b*ap (x, by) = (bl)* (y, b- Ix) and thana-
logous equation for -r we find that 

4(1(t, x,.y) = 4t1 (t, y, x),	iV2((, x, y) = iI 1 (1, y, x).	- 
In view of the mean value formulas, it is possible to expand theintegral kernels with 
respect to the complete eigenform system {e}1EN: 

4(A( t , x, y) =

	

	z(t, 2 - 2,	wP(x) aP(y),
IEN 

íV1 (t, x, y) =	" n(t, 2, 141P) t-'w(x) w(y)	 - (6) 

-	 + k" v(t, 2, u P) (A_1 wP(x) w P(y),.	- 
lEN 

where the sum i"- is taken over eigenvalues of closed eigenfoi-rns of tI (i" for co-
closed 'eigenforms, respectively). First one has to understand the equations- (6) in V - 

L2-sense over T with respect to y. But for 2> 2n + 2 one gets that (6) is pointwise 
valid with respect to x and y by standard continuity arguments if one uses the well-
known asymptotic behaviour of the eigenforms (see [4, 8, 10]) 

Iko?(x)112 = 0( nI2 ).	 -	 - 

This implies by partial sumriation	 - 

2'	Ico1(x)Il 2 (u')	= 0(I2 -Q)	for o < n/2, 
V	 - 

Z. Iw'(x)II2 ( ,_,p 	for > n/2.	 - 

Further on one has to use -	- -	 - 

Iz(t, 2, 10 ^ C3t/2I4	for> x>0,2	1,  
c3 of coiVurse not depending on t and u, see [8].	-	 V 

1.	3. Proof of the theorem 

-	On account of the kernel expansion above, the asymptotic behaviour of 41 2 , dV4 is 
quite clear for 2 large enough. We now want to extract information about the case 

	

n + 3. This interest is motivated by the geometric interpretation -of	- - 
-	''+3 To go further, we shall usea variant of a Landau difference ethod. We now
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break up the kernels into two parts:'  
0	 8, 

9'C(t, x, y) = tA732' 1 P() a,1'(y), 

(t x, x, y) = 4t2 (t, x, y) - XA(t, x, Y), 
-	 I lip 

'1' •	 9(t, x, y) =	- 2	1A—	'	P() w1P(y), 

811'(t, , y) = 14 (t, x, )-	 with q(2) = 
 

X2 and are the leading terms of Aj and X A , respectively. We will give error 
estimates for 81 1 and J1'. Next we-define a difference operator for a mapping I from 
R into an arbitrary vector space by  

Vm /() = E 
(m)	

l)m- /( + vii) with 77 = form E N a E (0,1) 

see [9]. For convenience we transform = tJ2 and write this as 
•	'-	x, y) = A, (t, x, y), '-4r1(, x,	= JV2(t, X, Y) 
and soon. Combining this with (5), we get  

C4 f f	f JJ( 3 (?1 1 )d71 1 .:. 

with a constant c4 depending on m and n, we have-omitted the argument x and y. 
'This formula is also valid for X, 81, X, X', 81' instead of X. We deduce that 

+'2 '7,s±7	7.+'7 -' 

•	Vm44+3+2m() = ci f	f	f	n+3(?7i) 4?71  

Using the above decomposition* 	find that  

•	-	c5 3() = Vm.n+3+2m(fl  

•+'7 17,,,±'7	'7+'7 
+ C5 f	f	- rfl +3()) d1 1 ... 

C5 f f	f	- 44 +3()) u?1 1 ... d77m	(9) 
'7,,,	17.	 0 

with a constant c5 . This formula is also true if we replace EAt, X, .81 by ,V, X', 81',-
respectively. The next point on the agenda is to obtain estimates for the right-hand 

- side. To do this, we could use an 'a-priori estimate for the integrand of the last term. 
'But an easier way is' given by applying the known result for p = 0, see [8]. In [8] GJ 
was supposed to be without fixed points, with the exception of id, but it is obvious 
how to generalize the argumentation to our case. If we want to express the dependence 

• of the kernel forms on the degree p, we write at2 P and so on. We recall that the norm 
of a double differential form - 

- -	=	'1pjjp dx" A ... A dxi' ilyi'	...	dyi'	 -	-
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can be given by	 S	 I 

119, 11,= (P T q'. ••	

•	 1 

see [4]. After a short computation, we see that the coefficients of ci(x, +y) and r(x, y)' 
are bounded. From this we concludethat Ii(x, )II :^- c6, Ir(x, )IJ 5 c6 with a con-' 
stant c6. Using (9) twice (a second time for p = 0), takingthe norms and combining 
this with the estimate

AO n+3('71) — An 13(011,	-

we get the inequality 

II+3()II	 ' 

+ IVm+3+2m ()II ± IIVm+3+2m(4)II 

.+ f	I	f IP°+3(7i) — "fl43()II di 1	dilm 
E	,, 

•

-+ ff •.. I. IP°+3(?li) — 0f3() 
II di 1	dim).	(10) 

From [4], it is apparent how to bring 11 under the integral sign. According to [8] 
we-have	 - 

•n	n 
fl 3()j ^	 for ^	 -	 (11) 

o > 0 arbitrary small. We consider the3' and 4" summand of the right-hand side, 
of (10). Choosing p = 0 we get the corresponding result for the 2' and 5" , summand. 
We take up the case of-even n and set m = n/2. The considerations for odd n are 
analogous.	 - 

3rd summand -: We break up the series-	-	 -	- 
x, y) = '	2n + 1, pP) w P(x)w,P (y)	- 

	

• into two parts	- 

	

-0 1 =	.	2n + 1, eu?) w(x) w 1 (y),	-	 S 

02.=	' 1 2+(, 2n + 1, P) (0,"(x) w 1i'(y)	 S 

	

-	 -	 - 

with a constant b > 0 which we may choose later. We estimate	with the aid of 
(8) with 2 = 2n + 1:	-	- 

IVm{(2fl+ 1-,	)} ^	()I( + v	+ v, 2n + 1,	)I 
0 

	

-	2n+1 2n-1	-	 - 

< C(U,)	.	-	- -	(12) 

On the other hand, we will use (8) and the law of mean of the differential calculus in 
orderto prepare the estimation of : 

V 1{(, 2n + 1, P)}	 2n ± 1,	)} =TF 
-	 t;+1 n-i -	
< C9 ?7m	i2(, n+ 1, u)E=I 	6711(P)	 (13)
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with E (, + mi). Here we have used (8) with A = n + 1. Using the estimates (7), 
(12) and (13) we see that	 S 

2n-1 b	n	n—i n1	 - 
•	- 1 2fl+3() x , y)II^ c ( 4,4 +	 -	(14) 

Wechoose b optimally by minimizing the right-hand side of (14), we find that 
b = 1 -. 2a. Inserting this in (14) gives 

lmn+3, X, )II ^ C 12 22 . '.	 0	 (15) 

4" summand: Using the estimate	'. w(x)w,(y)	c1 we get	- 
-	 S	 S 

I'	r	
J f
	 n+2 n-2 

I	I	I -	 - 

J	J	110n' + 3070- +°+3()II d72 1	dm !_5; C14 2	2	 - 

E	.,,•	 - 

Next we choose a optimally by minimizing the sum of the 3 and 4th summand of 
•	(10): we find that a = 1/(n + 1). Combining this with the corresponding result for 

p= Oand (11), we get	 - 
II	fl	

0 

•

	

	 II-q+3(, x, )II ^ C i4 2tI5I	for	o..	 (16)

With small changes the arguments above give the estimate for ? +3 . Since 3,3(t) 

= t _2 
f r2 d31(r) we obtain from 11)	 -	

0 

±3()H !_5 c7'	n+i	for >	 (11)' 

-	By analog' with (12) we get	 S	 --

•	Vm'i(, 2n + 3, )l 

2n + , )}I	
12m + 2—q(2n + 3)	 S 

•	± IVm{, 2n + 1, iz))I 

	

/ 2n+i	2,3+3	2n+3	2n+1 <
	

- 
 C8	Ia	+	 •)	 •	 (12)+ 

and	 -i

/• 2n+i	2n+3	2'8+3	2n+i \ 
S	 IVm{E5(, 2n + 3, 1u)} ^ c8" k	 +	1a	).	(12)" 

	

From the recursion formWas for z( . , •, •) and u( . , •, •) we deduce, that (2)(1_ 3)1	S 

A - 2,,u) arid(2)( A )I2)	;" ,U) satisfy the same recursion formula 

	

{(2 +11	; A ± 2, Ia)) = (2 — 1) ((2)10I2	, 

29 Analysis Bd. 7, Heft 3 (1988) -	 -



• 450	R. SCHuSTER

	

/	 S 

This property is intimately con nected with the equations (6). So by analogy with (13) 
we get

dm 
Vm{'11(E,2fl + 3,i)}I	m	 + 3,u)}	- T$-

I&= 

	

n+2	 , 

'I	
^ C77	2 .ii(E, n + 3, i) 

(	n+1	n+3	n+3	n+l'l 
4. /z	4 f	•	(13)' 

and an analogous equation for V. These equations imply by analogy with (14) 

/ 2n+3 b	2n+1 3b 

•	 IIVm+3(, X, )II ^ C1i t	' +	• 

+ fa++) 

If we set b = 1— 2a, we obtain (0 <a < 1) 
•	 n-1 3	 n+1 a	-	•n+I a 

•	IIVmn+3(, , )II =	+ O(T)	0 

For the 4th Summand we get	•	 • 

:	-	
1 

•	 C	C	1' 	/,n+2 _+ n 

J	J	J lIJ'+3(Th)	°?+a()IF7i	dm	0 2	2 

If we use a = 1-/(n + 1), we get 
/n	n\ 

[ J f3(, x, )II = 0 iTi)	for	 •	 (16) 
by inalogy with (16).	 • • 

•	We are interested in 
•	 (n+2\ •	• 

X 3(t, x, y) = (1)1'	 •	- b*(a(x, by) - r(x, by)). 
-	 -.	O<r(z.by)Z 

•	Using JV+ 3 we can rewrite X+3 as a Stieltjes integral	 • • 

•	X 3 (t, x, y) = X^3 (t0 x, y) ±f r 2 dV +3 ( ., x, y) (r) •	• -_ 

1. 

for a small t 0 > 0. We split	into	•	 •	- 

3 (t, x, y) = n+2 
X P (t x,y)	- • 

and	 •	 • 
fl! 3(t, x, y) = X +3(t, x, y) -• X 3 ((, x, y) 

and get	 • 

I + (t, x, 011 ^ c 16t'	for t	t0	.	 (17)
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Combining this with (16), we get the"asmptotic behaviour of 
.fo (t , x, y) = c17 2: b* i (x, by), 

be® 

	

O<r(z.by)<t	
(18) 

• J"(t, x, y)	c 17 Z b*r(x, by) 
be®

O<r(z.by)<i 

with c17 = (-1)1' .['((n + 20) T'2.In fact, setting 

,A, (t, x, y) = Y'a (t , x, y) -
	I' 2: cop(x) w P(y),	 (19) -	 .fl	i=O 

we have  

1 0 (t, x, 01 ^ C 18t	'	fort	10	 (20) 

and a similar estimate if we take r and n - p instead of a, p, respectively. Recalling 
the equations (1)—(3), (18) and (19) we see that 

Al[a] (1, x, y) = c 19 Y'(t, x, y) a(y), 
P'[x] (1, x, y) = ,c i9 flt(t , x, y) x(y)	 - 

with c19 = yzI2/P((n + 2)/2). From (19) and (20) we deduce the theorem I 
To prove our corollary we use dxjU = 1u12(Re-u)2dx+' uJ-2 Re u Im udy 

for the i-automorphic 1-f6rm dx and get thereby 

A'[dx] (1, 0, Oj =	
((Re Uk,,k.)2 dx 

+ (Re Uk,k,) ( IM' Uk,k,) dy). 
-	 L.A,eZ	Uk,k.I	 S 

•	
SO<UkkJ<	 -	 - 

• We set v = (v 1 , v2 ), w = (w1 , w2), D v1w2 - v2w1 and get D = Tm (vw). dr/D and 
dy/D form an orthonormal basis of the -automorphic harmonic 1-forms. As a conse-
quence of the theorem above weet

dx A'[dx] (1, 0, 0) - - -- = 0(t1)	- 

and thereby our conclusion is proved I	•. 

We remark, that we also could write the conclusion in the form	•	 • 

(u 1 + k1v 1 + k2w1 ) 2	- 
kZ (u 1 + k1 v 1 + k2w1 )2 + (u2 + k1v2 + k2w2)2 

t Uk,.k.I< t	 I 

	

S	

•	 +0(1213).	
5 

2 (v 1w2 - v2w1 ) 2	 .	 S 
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