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On the Nonlinear Boltzmann Equation of the Carrier Transport

.in’' Semiconductors; 11: Numerical Approximation of Solutions?)

M HANKE

Zur numerischen Losung einer speziellen Form der stationiéren Boltzmann-Gleichung, wie man

' sie in der Transporttheorie in Halbleitern benutzt, wird ein. Ko]lol\ntxonsverhhren vorge-

schlagen und dessen Konvergenz-bewiesen. : -

l'lpennaraef'cn METOI KOJJIOKALMIH JUIAl YNCIHEHHOTO PEUleHHA CTAUNOHAPHOTO yPABHEHMHS
BosabumaHa cnenyuanbHOro BuAa, BOSHHKAIOMEro B TEOPHA TPAHCNOPTA Hocn’renen 3apAna B
‘TIONYNPOBOAHKKOE, U A0Ka3HIRAeTCA C‘(OllH\lOCTb 3TOrO MeTONa.
A, collocation ‘method for the numerical solution of a special kind of the steady-state nonlinear’
Boltzmann equation used in the transport theory in semiconductors is proposcd and the con-
vergence of the method is proved.

A L ' R R

‘This paper is concerned with numerical methods for solving a spccial kind of a Boltz-

mann equation, which is used in the ‘carrier transport theory in semiconductors. In
Part I of this paper [12] we formulated this equation as an operator equation in suit-
able anisotropic Sobolev spaces and proved the existence and umqueness of solution
under rather general supposmons Two cases were distinguished :.in a first case we

- assumed that no carrier sources or sinks exnst In a second case we took sources and

sinks into account.

In case of small carrier concentrations it is convenient to use a linearized form of
the Boltzmann equation in order to describe the transport phenomena adequately -
[16] There are already some works which are devoted to the solution of the linearized
equation. The methods used are: Expansion of the solution into a Fourier series with
respect to Legendre polynomials and truncating after a finite number of members
[7], Monte Carlo methods [5, 14], transformation of the equation into an integral
equation and computation.of an eigensolution [3, 16, 18, 19], finite-difference methods
(1, 15, 25—27]. If the solutioh is expanded with respect to Legendre polynomials,
the coefficients satisfy a system of ordinary differential equations. This system has .-’
a satisfactory solution only for small numbers of. coefficients. The use of more coeffi-
- cients leads to inaccurate results. The Monte Carlo technique'is used for investigating
many substances. But for computing a sufficiently accurate solution a high-computa- -
tional expense is necessary. The finite-difference method and the integral-equation
method are closely related. Essentially they dlffer in the derivation and representation
_of the difference equations.

The finite-difference methods turned out to be favourable. In our paper we intro- -
duce a special collocation method. This method.is constructed in such a way that
close relations exist to finite-difference methods. As basis functions we use tensor

1 Pgrt’.I: Existerice and Uniqueness of Solutions is published in issue 4 (1988) of this“joumal. ’
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products of piecewise linear spline functions. The set of collocation conditions consists

of pointwise conditions and averaging conditions (subregion method [17, 24]). We

- prove the convergence of the method by means of a discretization theory developed

by StuMMEL [21] and VAINIKKO [23, 24]. For the solution of the discretized equa.t,lons

in [8—10]. Section 1 summarizes the supposmlons and.essential results of Part I of
this paper [12], which will be needed in the following. In Section 2 we construct the

consbructmg discrete approximations of spaces C(K, Z), where K is a compact set
and Z is a Banach space, supposed that we have discrete approximations of C(K)
and Z: Section 3 contains the convergence proof of the collocation method if carrier
sources and sinks are taken into account (Case (II)}, whereas we prove the convergence

for the equation free of sources and sinks in Section 4 (Case (I)) All proofs will be,

done.using a 2-dimensional phase space. This is due to the evpenswe notations. But a
thorough-analysis of the proofs shows that the results are valid in hlgher dimensional

. phase spaces, too.

" Acknowledgement. T am ‘indebted to my collea.gues at the Division of Numerlcal

Mathematlcs and especially to W. Wendt for many helpful discussions during the pre- *

paration of my thesns Y
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In this Section we summarize-the suppositions and essential results of Part I of this paper [12]
in order to facnlltate understanding. For a detailed discussion of these facts we refer to [12].
Fmally, we quote some results of a discretization .theory [21 23, 24], which vull be used exten-
sively in the following.

We investigate the equation
., 0 o
F 7 u + clu =g

+ f {W V(1 — w)ulk) — Wk ) (1 — w(k)) u} 2(k') k' (1.1})
, . .

- subject to the boundary conditions

=Lt =ull,0) forall re G,. oo (1.2)

Let G = I>< Gy, I = (=L l)=R(>0)and G; & R"~! open and bounded. Further-
more, let k = (x,t) € G where z € I and t € G,. Suppose z € C(G),.z(z, t) = z(t) = 0
almost everywhere. Let FeR,F > 0 be fixed. The integral kernel W has the form

8§=~—r

Ec¢ C"(G) is & given function (level structure), and w,® € R. anmples are found in ,
T12]. A definition of the integrals with the kernel W is also given in [12]. We distin-

guish between‘ two cases:

»

I 61#0,950- .
(D) (k) =0 forall k€@, c,=%0.

" ‘it is appropriate to use multigrid methods. A convergence proof can be found in [11]."
Numerical results using models of p-type germanium and p-type tellur are contained .

_ discrete approximations of the Banach spaces used. We prove a general principle for -

Wk, k)_LKkk 6(E ~ B() +wy). L),
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We introduce the Banach spaces X and Y:
Hp‘(l)- - {v e W) | o(=1) = 'v(l)},
= C(G., H,\D)), Y = C(G’z, LAI)).-

'Here for a compact set K and a Banach space Z, C(K, Z) denotes the Banach space,
equnpped with the supremum norm, of all continuous mappings defined on K and -
mapping into Z. The normsin W'3([) and L¥(I) are denoted by. ||-{|, and |f-|lo; respect-
ively. The followmg continuousimbeddings are true:

.

X - C(G) - Y — L¥G).

We denote the. Banach space of all continuous lmear operators. defined on X and
‘ mapplngmto Y by B(X Y). Let By(X, Y) S B(X, Y) be the subspace of all compact

linear operators. If Z is a Banach space, let I be the identity mapping of Z. For’
" Ae B(X,Y), N(A) and R(A) denote the kernel and the range of 4, respectlvely
Letc, € Y. We define the following operators forallu, v € X (k, k' € G’)

‘Au(k) =F % u(k) + c(k) u(k), . : _ o : (1.4)

Ce=cy oy colk) = [ Wk, k) 2(k') dk’, : a
. - ¢ - '

B@(k) — [ Wk, k) uik’) 2(k') dk’, ‘ ' S (1.5) .
G . . .
Bu(k) = [ (W(k', k) — W(k, k)) w(k')2(k’)y dk’; T (1.8)
G . . ) . .
Culk) = u(k) Buk), - . T T
Tu — Au — Bu — Cu, | o _ - C(1.8)
CWk B = Wk B + (W) — Wk E) u), - (19)

. 2 .
Apw=F — v+ c,v,
S ox

G = ¢t Conr . Coulk) = / Wk, k) 2(k) dk,
Byw(k) = fWu(k k)v(k)z(lc)dlc’ | - L (1'10) .

bquatuon (1.1)—(1.2) is equxvalent to ' A
Tu=g, weX. o A T (L11)

" Moreover, T' is analytical and it holds that T'(u) = A, — B,. Suppose thab there is-
ad¢R such' that,

fc(x,t)dx2d>0 "forallteég. ‘ . .

I . . SN /

" In the following, an eigenvalue of (4, B)isa 2 € Csuch that, the complexified opera-
tor A — AB has a nontrivial null-space. Under additional assumptions on. & and E
given in Part I the following theorems-are true. ‘
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Theorem 1.1: There are constants ¢ <0 and > 1 suck that for all w € D
= 1{ue X|o<uk) <t forall k@), it holds: .
(1) 4, € B(X,.Y) is bijective and B, € B(X, Y) is compact.
. (it) For all z € C, the complexified operator A, — 2B, is of Frédholm type with index
zero. The ezgenvalues have no finite point of accumulatwn
(1) There exists an eigenvalue A, € R possessing the properties:
a) A > 0 and |4 > A, for all eigenvalues A5 24 of (A, B,).
b) 2, is algebrazcally sumple. The eigenvector e € X belonging to 2, can be ckosen to
be strwtly positive, i.e. e(k) > 0 for all k € @G.
(iv) In Case (I) 7y = 1 holds, whereas 2y, > 1 in Case (II).

Theon em 1.2: In Case (IT) we have:

( ) Let w ¢ ]) and Tu = g. Then there exist open nezghbourkoods UCSX,VESYo
u, g, respectively Y, such lhat T=rT lv : U=V is bijective and T-' is contzmwusl Y
dz//erenuable

(i1) There exists 6 > 0 such that the eguatzon Tu = g has a solution u* E D /or all
g€ Y, lglly <o B

In Case (I) the dcrlvatlve T'(u) = A, — B, is smgular for every u € D because of
Theorem 1.1. But it holds

. , . . Y b
Lemma_ 1.3: Let A !

Y = {v €Y | [ o(k) z(k) dk = 0}. L (1.12)
Then, in Case (I), T'(w) X = Y’ forall u € Dand TX & Y.
Therefore, we introduce the following notations:

Ce* e X*,  (e*,uy:= [ wu(k)z(k)dk,
- G
H.XxR>Y xR, Hu y=( T
° . i (7‘»77 - <€* u>_p ¢
Instead of (1.1)—(1.2) we conSJder the equatlon H(u, p) = 0.

. \Theorem 1.4: Let py,, = (e¥, 1) and D’ fue X|0 < uk) < 1 forall ke G’}
An Case (I) it holds: .

<

(1) — H(u p) s bz]ectne for all (u, p) € D"x R.

(it) Tkere is exactly one analytic soluidion path u*: [0, pmm] — D’ of H(u, p) =0
with u*(O) = 0 'and u*(Pmax) = 1. Moreover, the equatzon H(u p)=0 kas no further
solutions in D' X [0, Pmax]-

Regarding Theorem 1.4, the following representation of t,he Boltzmann equa-
" tion is appropriate in Case (I):

o L =00 pusx), X), Y = C(0, Prax], ¥’ X R),
T =Y,  Tulp) = H(up), ). '
(1.1‘)—(1.2) is replaced by Ju = 0.

- {1.13)

~
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Co rollary The equation J u = 0 possesses exactly one solution w* € D= {u €|

“u(p) €D /or all p € [0, Ppaxl}. Furthermore, the derivative J '(u) is bzyect_we for all

uE.‘D s

Let Im be a directed infinite index set. Let Z,, Z,, Z,;, Z,, be Banach spaces for b € Im. Let
A(Zy, T2, P) and A(Z,, [TZ,p, Q) be discrete approximations of Z, and Z,, respectively.

- The discrete convergence shall bedefiried by restriction operators P = (Py)p¢rm and Q = (@n)reim-

Let A € B(Z,, Z,) and A4, €.B(Zy;, Z,;) be continuous linear operators. The sequence (4,)
<converges discretely to 4 if and only if this sequence is stable and consistent with 4. The.
“sequence (4;) is called inversely stable if there are hy > 0 and § > 0 such that, for all {A] < &,

AV € B(Zy, Z,,) exists and ||4,-Y| < B. Obviously, a sequence (4,) of Fredholm operators

-with mdex zero is inversely stable if and only if there are k, > 0 and y > 0 such that y ||u,liz,,

= []A,,u,,l[zm for all |h| < hgand all u, € Z,,. The sequence (A,,) is called regularly convergent to .

A if (4,) converges discretely to A and every bounded sequence (u) € []Z,,is discretely com-

pact if (A,u,) is discretely compact. In the following we denote the discrete convergence and

the convergence in norm by the same symbol “—’ since there is no fear of ambiguity. The

notation “‘u, — u (k € Im’)” denotes the convergence of the subsequence (u;)nesm for Im” & Im.

. Theorem' 1.5 [24]: The following p}oposztlons are equivalent:
(i) (4,) converges to A regularly, 4, (b € Im) are of Fredholm type with mdez zero, N(4) = {0}.
(i) (4,) com;erges discretely to A, (A,) is tnversely stable, R(A) = Z,.

\

Theorem 1.6 [24]): Let T: DS Z, - Z,, Ty: D,, c ém—>ézh, g€Z, and (g,,) € ITZg.
Let the /ollowmg be fulfilled :

(i) The eqmtzon Tu =g hasa solutwn u* € D and T ts Frechet dz//erentwble at-u*., ) )

(ii) There is a & > O such that the operators T, (h € Im) are Frechet dt//erenhable in the corres-
ponding balls |u, — Pyutlz,, = 6 of Zyy, and for any € > O there is a J; € (0, 6) such that, for
every h € Im, ||T)/(up) — Ty (Ppu*)|| = ¢ wheneber |l — P,,u“‘llzm = 8,

(i) |1Tp Ppu* — gyliz,, > 0.

(iv) (Ty' (Ppu*))nerm converges to T'(u*) reqularly, Ty’ (P,,u*) are Fredholm operators o/ index
zero, N(T"(w*)) = {0}.

Then there exist hy > 0 and &, € (0, 8) such that the eqwmon T,,u,, = g;, has, [or |h| < hgy @
unique solution u,,‘ in the ball [ley — P,,u llz,n < 8. Besides up* — u* with an ‘error estimate
(cl, cy > O) .

¢ I]T,,P,,u* — gillzen S llup* — Ppu¥z,, = e IThPru* — gallz;,-

Theorem 1.7 [28]: Let K = R™ be compact. Let (Ap)nerm be a sequence of operalors Ay
" K — B(Z,y, Zyp) with the properties:

() {An(t))necrm is inversely stable for all t € K.

(ii) For all t € K, (tM)herm S K, and every bounded sequence (u,,) € ITZyp (Apth) — Ap(t) uy
=0 th >t .

* Then there are hy > 0 and y > 0 such that y luallz,s é IIA,,(t) upllz,, for all u, E Z,,,, te K>
“and |h| < k.

~

2. Discrete approximation of anisotropic Sobolev spaces

\Iow we introduce the discrete approximations of the Banach spaces X,Yand ¥, Y, respec-
tively. At a first stage, we prove a general method for const,ructmg approximations of spaces
,of the kind C(K, Z) by means of tensor products. Then, using spaces of piecewise linear resp.
constant spline functions we obtain the desired discrete approximations.

Tensor products of Banach spaces are well known (cf. e. g. [6, 20, 22]). We use the notation
of [20]. Let C and Z be Banach spaces. First, we defme the product space C (© Z: Consider the
set

M"{Zx,-®yi|'m€N,x,-€C,y,-EZ}
i=1
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in which for two'elemcents the addmon and multlplxcatlon by a scalar & € R are defined accord-
ing to . ~

~ (.Zm‘lx;®y,~)f+ (.f?z/@y,?) Zx ®y; + ):lx, e ® Ve
R i= j=m+1 "
a(Elx,-cay,-) zm ®y.
1= .

. We introduce an equiva]ence relation in M calling the two elementfs above equivalent if

‘a) m’ = m, and z; = ozx, s ocy, = y;’ for some ote Rorz/ = = Za(j). Yj = Yn(j) for some
o permutation n of {t,. B n} (7 =1,...,m),or - )

b) m =m+'1 and 2z =2, y'=y; G=1...m—1), and y,' =y = Yu
Ty =5 + x;,,' or z,’ = z;n' =T Ym = Ym' + y;'l'?. ’ .

. \ ! \ . fp . ..
or if one element can be transformed into the other by a finite number of successive applications
of these rules. Then, by definition, C (© Z is the related factor space of M in which we introduce
the following horm (Z2-norm-in-the notations of [20]): .

m L
2z ®y;
=1~

= sup { )’."" flz;) 9(y;)
c®2z j=1

| e s g ez =Toll = 1}.
, .

Finally, the tensor product C ® Zof C and Z is defined by the completion of C (O Z in the norm
.II-IlC®z}' , . i : .

The following lemma is well known (cf. [6, 9, 22]).

Lemma 2:1: Let K =R bea compact set. and Z a Banach space Then C(K) VR Z
= C(K 2).

Let C and Z be further Banach spaces, R: C — ¥ and 'S:Z — Z be given linear
operators. The product RoS8S:COZ->C0Z defmed by

)

®os(Eneu)=Lrnesy ,-
’_

1s-a linear operator. 1f R and S are bounded, then R ® S is so, moreover, ||R ol

© = ||R|| IS|l, and its unique extension R ® S onto-C & Z is ca‘lled the tensor product

o of Rand S. -

Theo rem 2.2: Let K = R".bé a compact set and Z a separable Banach space. Let

-

(A(C(K) Il Cy, R) and A( Z, [T Z,, S) be discrete-approximations of the Banach spaces’

C(K) and Z, respectwely Every operator R, and S, be linear. Then, <A(C(K ) © Z,
[7 Cy ®-Zy, (R,, 0] S,,)) s a discrete approxzmatwn of the set C(Iﬂ ® Z, which is dense
- C(K, 2). .

Proof It is sufficient to show that, for every re C(K) O

“(Rn © S zlle,wz, — ||x||0(1( 2)-. . ’ (2.1)

4 Let z = Za: ® Yj- For every ¢ > 0, there are functnonals f e Cf )* and g € Z*
such that | ||/|| — gl = 1 and c o
f’l

— |2 fzp gt
j=1

since C(K) and Z are separable, there exist functionals fr € C* and g, E.Z,,* such

llzllcix.2) < &.

that fo.—f, Ufall = I/l ga —.g, lgall = lgll (€ Im) ([23: Theorem 1 (37)]; Here.



Boltzmann Equation of Carrier Transport 459

,, =’ denotes weak discrete convergence) Hence

\ ’

é‘l fn(th i) gh(Shy))
(1£all ligall

lim (B, © Sh) 2lcspz, 2 li 1——
helm

m
g 9(?/;)| Z/HxHC(K 2 — &

Therefore llm Ry @ Sy) x”c,.@z,. 2 lellcm 2)- Suppose now that im {|(R, ® S5) zllc,@2,
helm
> Ilelc(,, z, Then there would be an ¢ > 0, a subsequence Im’ S Im and functionals

fn € Ca*, gn € Zp* (h € Im’) which [Ifyll = llgall = 1, SR .

N

.2,_; n(Biz;) gu(Shy;) = IZllcik.z) + & (b € Im).
i= .

‘As C(K) and Z are separable, there are functionals f.€ C(K)*, g € Z*, as well as a
- subsequence Im’" S Im’ such that f, -~ f, g — ¢ (h € Im'’) [23: Theorem 1 (47)]
Using i = lim Woll =1, Tgl < Jim g = 1 we obtain

”x”C(K 2+ € S lim
helm’

Z: fn (R,,a:,) gn(Sn?/;)
i

i

ﬂl

X ) (J,)' = llxllek 2 - o
;=l . ! :

Thls contradiction ploves (2 1)

1 .

When constructing concrcte approximations of a Bunach space E it is- possxble, in most
cases, to define the restriction operators S, on a dense linear manifold E4 S E. But there exists
an extension of 8, onto £ such that A(E, JTE,, S) is a discrete approximation of E. Thisexten-
sion is uhiquely determined up to equivalence. Usually, the operators S, are lincar such that
the extensions can be chosen to be linear (not necessarily bounded) [23: Theorem 1 (18)].
Hence, the supposition on the linearity of the restriction operators in Theorem 2.2 is often.

fulfilled. ; .

- N ,
If C, € C and Zh Z are subspaces, Cy ® Z, can be viewed as a linear subset of
C®Z. Let z = Z Ry €C, O Z,, If f e C*, then f|c,‘ € Cy* and [If|c,ll = IIfil-
o j=1 .
Therefore, IZllc,@zn = lIZllcez- Let fe O,, » g€ Z* such that llzllc,@z, — "' / (x;)
“xgy) |/ A gl < e By the Hahn-Banach Theorem, there exist extensxons/ E C*,

g-€ Z* such that |If|| = |Ifl, 1§l = llgll. Hence, llzllc,@z, = llzllcgz Consequently,
C',. ® Z, is a subspace of C ® Z
In connectlon with plolectlon m(,t,hods the following theorem is useful

n Theorem 2.3: Let K << R*® be a compact subset and Z a Banach space. Let J(C(K);
[7 Ch, ) R) and A(Z, [[Zy, S) be discrete approximations of C(K) and Z, 7espectnely, such
that, for all b € Im, Cy S-C(K) and L s Z are subspaces and [

a) R, € B(C(K), Ch), IRsx — zllc(x) ~ O for all z € C(K),
b) Sy € B(Z, Zy), 1Sy — yllz >0 forally € Z.  ~



460 M. HaANRE

Then d{(C(K Z), [70,, ® Z,, (B ® S,,)) is a discrete approxzmatwn of C(K, Z) with
 the properties .-

(i) R, ® Sy € B(C(K, 2),Ch ® Zy), b € Im. ‘
(i) (By ®-8h) * — allek.z) ~ O for all x € C(K; Z).

Pr?of- It is sufficient to show (ii) for :r, €CK)OZ since the sequence (||R;, ® S,
is bounded because of a), b). Let z = 2 x; ®' Yj- l‘hen

BRN

”(Rh ® Sp) x — x!lcm z) -
< -5, IRy ® $1) (5 @ 9)) — 2 & yjllew.z

Ik

= (HR,,x Zilleao ISwyillz + llwjllc) 1Sxy; — yillz) -0 B

i=1 . o
\ . - N .

Let us remark that the above construction can be applied recursively. If I, J — R
are compact intervals, then C(I) & C(J) = C(I x J) [6]. '

For our purposes we use the construction principle according to Theorem 2.3. We
confine ourselves to the case of the two-dimensional Boltzmann equation, i.e.
G, = (a, b) = R. This is mostly due to the complicate notation. The results are
easily extended to the higher dimensional case. The Banach spaces Cla, bl, H,Y(a, b),

L’(a, b) are apprommated by spaces of spline functions. Let z, o be given grlds w here

n:—l =z \‘A‘l\<“~ < Ty =1, L e
ora =1t <ty <..<t,=0b. )

We define the folloxﬁng B-splines:

. . 1, z € [z, ;) 1=1,...,m\ "
B: = 3 ’
. "_l(x) : 0, otherwise zel
z— xi, .
m, x € [2i, 7] . s
Bia@ Sy mnc @ e ( vel )

Tipr — ;-

0, otherwise
t—t; ‘ '
’——’] t G [tl‘l’ti]

/-
o g — )= e )
Bj(t) = | T——, tE€[tt] (t€fa, b)) -
’ by — i,-» -
, {0,  otherwise ’
Now, let_

Sp(’z l)—lm {B,1|z—1 ., m},
Sp(n, ) = {Z xiBio | x; € R(i =0,...,m),a = a,,,ll«,
i=0 :

Sp(e,3) =lin{B;;|j=1,...,n}.
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Denote by Im a dlrected infinite index set. Let, for every h € Im grlds a(h), g(h) be -
given according to (2.2). We denote ,

da(k) = max {z; — x,_x}, Va(k) = min {z; — z;_,},
1Sism : . 1sism
dp(h) = max {t; — t,_,; '
"S]Sﬂ

“Suppose that there i is an & € R such that An(k)/Vn(h) < « for all h € Im. If h € Im,
let || = max {An(k), dp(k)}. We assume h — O (k € Im) to hold. The dependence: of

- the knot sequences n(h) and g(h) on k will not be noted for the sake of simplifying the
_notations. Let.

Cr = (Spleth), 3), Il lleta.1) »
. = (Sp((h), 1), I-ll),
- . Wa=(Sp(a(h), 2), II-I)-

We choose the restriction operators as follow:

Ry: C[%'b] ~>Chy . By = 2 u(t;) B3,
i=1
» ' ©m z .
Sp: LX) — Ly, S = Y (xi — 2;)7! f v(§) déB; .

. isi Zi-
o ' \ “m
‘Sh,l: le(l) - Wy, _ Shau :_;; u(z;) Bi.z-

"The following lemma. is well known (cf. [2]).

Lcmma24 We have: >

(1) Ry € B(C’[a b, Cy), HR,,u — lciapy — O for all u € C[a b].

(ii) Sy € B(L3(I), L), IS — vlly — O for all v € L¥(I). . .
v (ii) Spa-€ B(HMI), W), [18h, 1% — ull; — O for all w € HMI). -

Let A S ' - . :
=00W, P=RQ@S: Nn=00Q0L QAG=FR®S.

Corollary 1: A(X []X,,, (P,,)) and oi(Y TTY (Qn) ) are discrete appro:umatzons
" ‘of the Banach spaces X and Y, respectively, by subspaces Moreover, P, € B(X, X,),
.Qw € B(Y, Y,), IPsu — ulx — 0 (he. Im), ||@w — vlly - 0.~

The operator Q, has for v € Y the representation

z - . -

R U= I o =w) v(s,‘z,)deB,.aB;,l. - - (@3)

i=1 j=1 . Zi-1

" In order to solve the Boltzmann equation in Case (I) it is necessary to approximate
_the Banach space Y’ X R. If we want to preserve the bijectivity of oH(u, p)/ou
(Theorem 1.4(i)) while dicretizing, we have to ensure the condition dim X,
.='dim (¥’ X R). Therefore itis appropuate to approximate Y" by spaces ¥,’ & Y,
with codimension 1. We choose Yy = Y,n Y. Let a sequence (e,)seim <= Y3, having
the propertles ' » R

(k)ZO(IceG),wfeh(k)z(k)dk=l, en>ecY
¢ . _ .
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‘be fixed. Now, set - »
Vo€ B(Ys Yy), © Vi =0 [ok) (k) dk e,
k .
Qn = Vth~

Corollary 2: c/l(Y’ X R, [1(Yy X R), (Q,,x IR)) is a discrete approximation of
Y’ x R. Moreover, (119 IREB(Y' xR, Y,'’ X R)and ||(th IR) (v, &) — (v, )|y’ xr = 0
forall ve Y’ anda € R.

“Finally, we'define

C[O Pmax] ® XA, ‘?n = ICIOpm.,l & P,
% cro, Pma(] ® (Yn x R), &y = Icp, Paas] ® (Qn X In)
4

. Corollary 3= (A(Y T, Q,.)) and A(Y, [7}/,., (@) are discrele approxzmatzon
of the Banach spaces X and. U, respectively. Moreover, P, € B(X,Z;), &, € B ]j Yy
||¢9’,,u — ully - 0 and ||62,,v — vlly - 0 forall u ¢ & and all v.€ UY.

)

- 3. Diserete approximation of the Boltzmann equation in Case (II)

- In this section the collocation method is introduced and its convergence will be proved.

The operator. T := @QT|x., b € Im, desoribeé t,he‘dianlefi;ation of the Boltzmann
equation (1.1)—(1. 2) in Case (II).'Namely, if g, € Y, is an approwmatlon ofge ¥,
e.g. gn = g, (1.1)—(1. 2) is appm\lmated by the equatlon .

Tyuy = g - - ‘ o (3 1)’

If drn = @y, (3.1) is eqmvalent to Q,.(Tu,, —g)=0,u,€ X,, Regardmg the represen-
tation (2.3) of @,, thls 18 equlvalently ngen by

o . !
Zy

o i=1,.,.,m
| z‘j_' (Tu,,(é,t) ,it?)) d51= 0 (un € Xy; =1, 7@)'
These are the collocation equations, where averaging condlt,lons (in the z- dlrect,lon)
and pointwise conditions (in the ¢-direction) are_used.

We recall that'the operators 4, and B, arc defined by (1 9)—(1 10) for » € X.

Lemma 3.1: Let u, u* € X (h € Im) and |ju® — ully —>0 Define’ By, = Q,B u"lX,,
Then, the sequence (Bp.u)nerm is discretely compact and consistent with B,.

Proof: For all v ¢ X it holds / . 7
(B, — Bu)olly = ||<u — ") Bolly < o e — wllx [ollx - '

Hence, ”B — Bullax, y)—>0 By Corollary 1 of Lemma 2.4, the sequence (Q,,) is
bounded. Using B, ,v = @B + Q,,( — u) v for all » € X,, a.nd Theorem 1. 1(1)
we obtain the assertions 1 :

Lemma 3.2: Let u€D, ute X (he Im) and ||u"— ully — 0. Define A, , = QrA | x,-
Then (A,..) converges regularly to A4,, N(4,) = {0}, and every operator 4, , is of Fred-
holm type with index zero. : . . .

o
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Proof: (1) N(4,) = {0} is a consequence of- Theorem 1.1: Because of dim X,
= dim Y,, for all b, every operator Ay, is of Fredholm type with index zero. It holds.

”(Au" — Au) vlly = l(co,u — o) lly
= v lico,u — Connlly IWlx = < yIB(u* — w)liy ”'U”x
Sy IIub —allxlblly

for all v € X. Therefore, ||A,» — u”B(X vy = 0. By Coxollary 1 of Lemma 2.4, the
sequence (4, ,) is stable and cons;stent, w1th A,. Hence, 4, , —~ A,.

(1) It remains to show that the sequence (A,, «) converges regularly to 4,. For
¢ 6 [a, b], let A,(t) € B(H (1), Lz(I)) and 4, ,(t) € B( W,,, L) (b € Im) be defmcd by.

A, t)v = Aw(-,t),  wz,t) =) -
Aﬁ,u(‘) vp = Apwa(-, 1), wh(x )y =wu(t) ' (z€ I)

Since A“(t) is bijective' N( ot )) {0}. Because of dim W, = dim L, every opemtor
Ay () is of’ Fredholm type with index zero. Now, let v, € W, and v € H,X(I) such
that v, — v. Therefore, the elements w, and w fulfil w, — w. Hence, —

14a200) on — Aa(t) vllo < sup 1 4nu(s) % — Ayls) vl
. . s€la.b] !
— [ Ap0n — Agully — 0«

- -since by (i) 4,,, — 4,. But this implies 4, ,(t) — A,(t) for every t € [a b]. 4
C (i) \'ow let v, € Wi, loalh = = < o0 such that the sequence (A,. u(t) ?,,,) 1s discretely -

compact. Since the sequence (v,) is bounded, it is precompact in C(I). Therefore,
{c.(, s)vy | h € Im} is precompact in L¥(I) for every s € [a, b]. Because of

”Cu"( % 8) Up — 'U”o g "(cuf( P 8) - Cy.( * 8)) le'"'o + ”cu( ] 6,') U _ v”o
g y= ”Cu"( ] 8) - Cu( Ty 3)”0 + flew( -, S) - v”o .
. for every v € L3(I), - : oo

{cur(+, 8) v | b € Im} is precompact fgr' every s € [a, b]. ‘ (3.2)

-

(cun) is & convergent sequence, therefore, it is also precompact. By the Theorem of

*  Arzela-Ascoli [4: Theorem 7.5.7], the set (c,») is equicontinuous with respect to s.

"Now, the set M = {c,»wy, | b € Im)} is equicontinuous with respect to.s. Together with
(3.2) we obtain by the Theorem of Arzela-Ascoli that M is precompact in Y. Since: the
.sequence (@) is stable, @,(M) is precompact. Moreover, the set ’{Q,,cunw,,( Y1k € Im}
is precompact. Using the discrete compactness of (A,,,u(t) v4) we conclude that the
. seqnence(Fv,, Ynerm i8 discretely compactin vfl(L2 (1), []Ln, { S,,)) (cf. (1.4)). The bounded-
ness of (v,) in H (1) 1mp11es the precompactness of (v;) in L#(I). Hence, (v,) is dis- -
. cretely compact m ai(L2 )y [TLss (Sh) ) Summarizing we obtain that (vp) I8 dlsuctcly ’
compact in u(( I) HW,,, (Sh, l)) Step. (i1), of the proof and Theorem 1.5 provide

the inverse smblhty of the sequence (A,, u(t)) .

(iv) Now, let ¢ € [a, b] be fixed and (*)se1m S [a, b] a sequence such that t* — ¢.
. Moreover, let (v;) € JJW, be a bounded sequence. Wc will investigate the sequence
((Ah u(t ) - Ah u(t)) vh)helm Let’

Xt = f éun(C, ) va(C) d¢ (Z =1,..., m).

2 j=1,..,n
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We fix j,j(k) € (2,3, ..., %}, such that t € [t;_, t;], * € [tjim—1, tjm]. Using (2.5) we
obtain ’ S

1
$

v ||(4n,u(t) - A{l.u(th)) vallo?

\

m . )
= X (@i — zin)™t (2 max {|0‘i; — &imlb lai; — «iimal,
L i=1 .

i1 — & I(h)l i, o1 — & jmy - lh)E - .

(cp) is a sequence comcrgmg in Y, therefore, it is cqmcontmuous in partlcular Let
¢ > 0 be given. Then there is a § > 0 such that, llewa(, 81) — Cun( -, 82)llo < € for all
8y, 83 € [a, b] such that |s, — s,| << 6 and all & € I'm. Choose hy, > 0 such that, for all
k& Im with |k < ko, it holds that max {|t; — t;jwl, It — Liwl, 1t; — ' timy-1)s |t,_
— tjw-al} < 6. This is possible because of t" —t and |h| — 0. Hence, for all 1,V
€ {4, 7 — L, j(h), j(h) — 1},

Li-1

) o » . 1/2 .
Ui — xir] =y lloally (0 — 2io)H? ( f (Cu"(C b)) — cun( )2 dC) . o
If floplhy < =, we have ’ ’ A

(An.u(t) — Anu() valls?

m . Lo . ' .
= X4l f (cu»(c, t) — cur(l, )2 dE S (2yxe)?.

i=1* B 7Y

" Therefore, (An,u(t) — A, u(t?) 5 —> 0:
- (v) Because of dim X, = dim Y}, every operator 4, , is Fredholm type withindex
zero. Using (iii), (iv), and Theorem 1.7 we obtain the inverse stability of the sequence
(Ay,4). Now, A, , converges regularly to 4, by (i) and Theorem 1. 5 | I

After this preparation we are in the position to prove the main theorcm of this
scetion on the convergence of the solutions of the discrete equatxons (3.1) to the solu- -
tion of (1.11). :

Theorem 3.3: Let the suppositions 0/ the Case (IT) be /ul/zlled Letu* ¢ Dandg €'Y
such that Tu* = g. Moreover, let (g,) € [T Y, be a sequence such that g, — g. Then there
exist hg > 0 and 6o > 0 such that, for every h € Im with {h| < ho, we have:

(i) The equations Tyu, = g, have unique solutions u,* in the balls defined by
IPru — wpllx < . :

(ii) These solutions fulfil u,* — u*. Furthermore, the following two-sided error esti-
mate is true (c,, ¢, > 0):

o [IThPyu* — gilly  lwp®* — Py = 02||TnPnu* — Gally-

Proof: The statements are consequences of Theorem"1.6. Obviously, assumptlons
(i)-and (iii) of Theorem 1.6 are fulfilled. Assumption (ii) of Theorem 1.6 holds, since
Ty () = Qa7 (wn)lx,(un € Xp; b € Im) and the sequence (@p)rerm is bounded. By
Lemma 3.1 and Lemma 3.2, T/’ (P,u*) converges regularly to 7"(u*) [23: Theorem

2 (55)]. N(T u*)) {0} because of Theorem 1.1. Obviously, every operator Ty (Pyu*)
18 of Fredholm type w1th index zero. Hence assumption (iv) of Theorem l 6 is fulfilled,
too i . .

It remains to solve the discrete equatlons (3. l) Under the hypotheses of Theorem
3.3 the Theorem of KaxToROVIE [13: Theorem XVIIIL. 1.6] applies such that the
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~

method of Newton-Kantorovi¢ is appropriate for solving.(3.1). Since sufficiently fine
grids lead to high-dimensional discrete problems, the expense for solving the arising
linear systems ‘of equations becomes considerable. The special ‘structure (1.3) .of the
integral kernel W does not lead to full matrices certainly, nevertheless, there are
relatlve]y many non-zero entries. Therefore it is advisable to use iterative methods.
“In [9] the convergence of special block-Jacobi and block-Gauss-Seidel procedures is
investigated:. But, in practical cases sufficient efficiency is not obtained unless multi-
grid methods are applied. A convergence proof is given in [11], whereas [10] contains -
some numerical results: - \

4. DiscreteAapproximation of the Boltzmann equation in Case (I)

In Case (I) the collocation method is sllghtly modified. The reason is t,he specnal structure of

" thei image space ¥’ (1. 12) Therefore, the convergence proof is con51derably more comphca.ted

The operator J ,:="&,J |, , k € Im, defines the dlscretlzat;on of the equatlon
Ju = 0, where J is given by (1.13):

- . .

T =0, u ey o @)
Let «;; denote the e\pansmn coefficients of e of (2 4): .
m n
ek=2 Z IBA 1B13 N

I
©

Il
-

i
Now, (4.1) lS equivalent to

= - X fi=1,...,m
[T t) de = (2 — 2i-)) d(up) o (7. —q ), ‘

e*, up) = p, . pE [0 Pmax], d(up) 1= (¢*, T yup)-

In order to show the convergence of: the solutlons u,,"‘ of the equations (4 1) to the
solution u* of Ju = 0 we will use Theorem 1.6 ‘again. The most expensive part of
the proof consists in establishing its assumption (iv). For this, we need resolvent '
integrals [21]. Let Z!, Z2 be. Banach spaces over the field C of the complex ‘numbers
and U, V € B(Z', 2, V compact. Assume that the spectrum o(U, V) consists of at
most countably infinitely many values which possess no finite point of ‘accumu-
lation. Let 4 S € be a,bounded domain such that its bounda,ry I' = 84 is a rec-

tifiable Jordan curve and I’ n a(U ~V) = 0. Denote S$(2) = U — 2V for 4 € C. Then
the integrals . ' '
—1 -1 : B S
A NtV - 1)-1 .
r = 2yzi.fS(A) Vda, 7= 5= fVS_(A)_( d}.. , (4 2)

e\lst (1 — imaginary unit). r € B(Z‘) and g€ B(Zz) are projections which mduce the
decompositions

2=—m@ze, Zm=wn2), 2°=(— "2,

(4.3)
Zz Zzl@zaz’ - Z‘“=q(Z2), ‘Zee = ([_q) (Za). .

Denote . \ _
= Ulgy, Vi=Vigy, j=12. . o (4.4)

. [ : .. :
30 Andlysis Bd. 7, Heft 5 (1988)
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Then U!, Vi € B(2", Z%). For the spectra it holds
o(UL, V) =o(U, ¥)nd,  o(U2, V) =o(U, V)\A ' (4.5)°

Lemma 4.1: Let w.€ D. Then the sequence (<7 ,, (‘9’,,11,)),,& 1m converges regularly to
T '(u), the operators T ' (Pyu) are of Fredholm type with index zero, and N (<7 (u)) {0}.

. Proof: (i) By the corollary of Theorem 1.4, I (u ) is bijective, that means in parti-
.cular also N(<7'(u)) = {0}.
 (11) In the sequel we assume all spaces and operators to be complexified. For the
.. time being let p € [0, Pmax] be fixed. We only write uinstead of u(p). Let 4, and B,

- be defined by (1.9)—(1.10) and set 4,, = Q,,Ap,‘.‘]x,‘, By,. = QuBp,ulx,, and Ihou -
= (Iy, — V4) (Ay,y — By,) for b € Im. Then T'(u) = — B, and

QT (Pyu) = Apu — Bn " - Jhue - " (4.6)

(iii) By Lemma 3.2 and Theorem 1.5, the sequence (4,,,) is stable and mvexsely .
stable, and consistent with 4,.

(iv) By Lemma 3.1, the sequence (B, ,) is discretely compact and consistent with B
(v) Let V € B(Y,.Y’) be defined by

Vv=v—fv(k) z(k)dk e, veEY
G .
with e given by (2.4). Obviously, the sequence (V) coﬁvergcs discretely to V. Hence,
.(th — V,) converges to Iy — V. Let (vp)nerm, Im' < Im, be a ‘bounded sequence

withw, € Y. This lmphes that the sequence {f ws(k) 2(k) dk VR Im’ 2! < € is boun-
ded. Therefore thereex1st ana E Cand asubsequence Im’’ < Im’such that f (k) 2(k)dk

—« (h € Im'"). Since ef —>e (b€ Im) the sequence ((Iy,. — V) v,,),.u,,, converges.
Hence, the sequence (Iy, — V,,) is discretely compact. Because of the steps (1u) ]
and (1v) the sequence (J},,) is so, too. By Lemma 1.3, (Iy — V) (4, — B,) =

This implies- Jy , — 0 (k € Im). Moreover R(th — V,) =ilin {e,,} holds such that
every operator J, , is’compact. - _ '

(vi) The number 1 is an algebraically simple elgenvalue of the pair (4,, Bu) which
has the smallest modulus among all eigenvalues (Theorem 1.1). Iet 4 = {z € C| |2|
< 1 + ¢ such that 4 no(4,, B,) = {1}.and ¢ > 0. By [21: Theorem II-3.2(8)] and
. steps (iii)—(v), for eévery k € Im, |k| sufficiently small, there exists exactly one eigen-
value A, € 0(Ap .y, Bru + Jhu) (which is algebraically simple) such that 4 no(4,,,,
Byy + J4.u) = {44}. Moreover, 4, — 1. Furthermore, for every 2, there.is an eigen-
vector w, € X, such that w, —> w. Here, w denotes a strictly positive (real) eigem’rectpr
of the eigenvalue 1 of (4,, B,). On the other hand, since {(e*, (4, — By,u' — J,u) ¥):
= 0 for all v € X,, h € Im, by the definition of J,, w 1 € o(dp, u By, + ) for all
h € Im. Hence, 2, = 1. But this implies that the real part of w, is also an eigenvector.
Because of wy, — w, this real part is strictly positive for sufficiently small |h|, say for
|h| < hy. We assume without loss of generallty that Wy has a va.mshmg imaginary .
part. Hence, we obtain :

wk) > 0 (k€ G), (e mp) = a >0 (e Im, |h| < ko). 4T
" (vii) Let kg > 0 be chosen such that (4.7) ho]ds Let I' = 04. We define for h € Im, .
Al < ko (cf. (4.2)—(4.5)): : .
. f(Au — ;.Bu_)—l Budﬂ., g= 2_1 By(4, —iB,)dJ

2ni 1
r
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m="5= [ (dru = ABou + ) Brw +au) d2, -
27 .

o —1 . T . : .
qh ZTmf (Bh,u + Jh,u) (Ah._u - }'(Bh,u + Jh,u'))-l di,t
o r ’ :

={x—=n(X), Y=(y-—-g) ()
Xh2_=.(1x,.—7'n) (X}, Y, = (IY,.*QI.)(YA),
Az_AuIX’ Bz_lel . .
! Ahu—AhuIX,.: BI2|u—‘(Bhu+']hu)|X;. » I

"It holds that' 4,2, B¢ B(X?, Y?) and 43}, B},¢ B(X,?, Y,,) A(X2 [1X:2,
((IX — ) P,,)) and A(Y? []Y,, ((th — ) Q,,)) are discrete approximations of X2
and Y2 respectively [21: Theorem I1-3.1(8)]. For them, the following is true: '

(4% .) is consistent with 4,2 as well as mversely stable (cf. step (iii)).
(B%.,) is consistent with B2 as well as dlscrete]y compact (cf. step (IV))

Using [21: Theorem II- 2.2(1)] we obtam that, for all 2 € o(4,% B,?), there is an
ho(2) such that 42, — B? ¢ B(X,? Y,%) is bijective for every |h] < ho(2) and
(A%, — 2B )" — (4,2 — AB2)! (h € Im, |h)| <_h0()_.)). By (4.6), this is true in .
particular for 2 = 1. Hence, there is a f# € R such that = :

7 (AR — Bﬁ HH=B (h € Im, [h| <'ho(1)). ' - (4.8)
' (vm) Next we show that Y2 = ¥". Lety€ Y’ = R(4, — B,). Let v € X such thab
(dy — B,)v = y. Assume v = v, + v, with v € R(r) and v € R(Iy —r)=
Since the cigenvalue 1.is algebraically snmple N(4, — B,) = R(r) [21: Theorem II l.
3 (14)—(16)]. Hence, (4, — B,)v = (4, — ) —(A 2 — B,%) v, = y.€ Y2 Thus,
* we obtain the relations R(4,* — B*) € R4, — B,) & Y? = R(A4,2« B,?) which

prove Y% = Y'. Analogous]y, one shows Y,, Y2 for h€ Im, ]h] < ho(1), using
step (vii). - ’
(ix) Now we return to the real spaces. If y € ¥,’, y can be viewed as an element of
. the respective complexified space with vanishing i 1magmary part. (A3, — B2,)"ly
is well defined for .|h| < ho (1) and has vanishing imaginary part. Thercfore,
(4%, — Bi,)'€ B(Y,, X,) is well defined as an operator acting in the real spaces.

(x) For fixed p € [0, ppas] we have Ty(Pp) (p) = (9"7;6(,{) "T‘;”’)). We -de-

fine, for (y,, u)€ Yy X R, k| < he(l),

’ \ - .
A2. _ B2.u)_l Y ©e -

o vy = [ - <C*, WH wyp + (Ajy — B%.u) “Yn,

with w, defined accoxding to step (vi) with (4.7). We will show ,that the operator G,:

(yn, 1) > vy is the inverse of J '(Pyu) (p). Let v € X, suchthat T, (Pyu) (p) v = 0.

By (4.6) and step (vi), v = tw, for some ¢t € R and (e*, v) = 0. This implies v = 0 be-

cause of (4.7). Hence, J ' (Pyu) (p) isinjective. Next weproyed ' (Pyu) (p) Gy = Iy, xr-

Then, together with the'injectivity, the assertion will follow. Let (Yns ,u) €Yy xR,

Because of w, € N(dp,, — Bpu — Jp,) it holds .
(Ah,u - le.u - Jh.u) Uy = (Ali " Bh'u - Jh,u) (A?lu - B%.u)_l ?/h"

Finally, one easnly computes (e*, vy = 1.

30*
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(=) Let o, /3 be chosen accordmg to (4. 7) and (4.8). Forall.k E Im, |h| < ho(1), and
all (yn, )EY,,XR » . _ <.

)

 Toallx = 1G(on )l o » ,
: + ”(A%.u - B%.u)_‘ yh”\’ )

G, (A= BR) U
‘;“[" '"(ef’ (e*, wn) ﬂ"’

< e () 1 oo, 1) 13— B i) + WAL — B ol

M

o'(lpl ¥ (e*, 1) yB llyally) + B 12 IIJ:JIy
< const f[(yn, )l xr-
" Since dim X, = dlm Y, x R, every opemtox <7,, (Pu) (p) is of Fredholm type with
index zero. Hence, the sequenge (f,, (Pyu) (p)) is inversely stable.
(xii) For every D1, P2 € [0, Pmax] (cf. (1.4)—(1.8)) :

O Patp) — O'(Pant ).
0

N . . )

| Ti@a) 1) — T ¥ (Pi) (p2) = (
Using (1.7) we obtain .
Ilfn («7’::“) (Pl) T (Pyu) (o)l < const Jlu(py) — u(pa)llx -

Becsuse of u € 2 and step (\u) the assumpt]ons of Theorem 1.7 are fulfllled Henﬂe
there is a y > 0 and an h, > 0 such that for all v, € L, and |h| < hy, y loslts,
.= TN (Pru) ”th,.
(xiii) In order to obtain the inverse stability of the sequence (Y,, (?,,u)) it remains
to show that, for B[ < h,, T (Pyu) is surjective. Let (yy, 1) € Y, By step (m) for -
every p € [0, Pmax], there is exactly one solution u,(p) of the equation I (J’,,u va(P)

="(ya(p), #(p)): But
 loae) — on(pe)llx |
= "[yn (Pae) ()] (ya(p1) #(Pl)) — [T (Pwu) (P2)]7} (Jn(?’z 1’2) MNx
(a(pa), wp) = (ya(pe), (2 lyxr ,
+ }"2 an (Pyu) (pr) — T ¥ (5’»“) (Pz)ll ||?/(n (P1)s 1 1’1 Ny xr

. on account of step (xii). Hence, v,: [0, pmu] —>X,, is continuous. This glves finally
- Uy € “TII and 47-,, (f,‘u) Vy = (yh’ /t) P .
(xiv) The assertions of the lemma follow from steps (i), (xi1), (xm), and Theorem

1.5 A : -

-

Theoxem 4. 2 Let u* €D be a solution of the equatwn Ju=0. Then there are
ko > 0 and 8, > O such that, for all b € Im with |h| < hq, the equations J yu, = 0 have -
unique solutions wy* in the balls {uy | |luy — Prully < ). Besides, up* — u* (b € Im) )
with the error estimate (cy, Cy > 0) :

(A ”jh‘?nu*”y = Hun — Pty = 02 ”J‘h‘?hu*”y

Proof: The assertions are an immediate consequence of Theorem 1.6 and Lemma
4.1 8
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i

For sufﬁcient;ly small |k|, there is a solution path u,* € C([0, Pmaxl, X») of the dis-
crete équations which is unique’in a neighbourhood of P,u*. Since, for every h € Im,
the functions » = 0 and u = 1 belong to £, #,*(0) = 0 and %,*(Pmax) = 1. For com-
putingthe solution path usual homotopy methods can be applied if locally conver-
gent iteration methods for solving equations of ‘the ‘’kind J ju,(p) = 0 are known
[29: Theorem 2.3]. In [9] the Newton method is used. In every iteration step there
occur overdetermined linear systems of equations which possess a unique solution
however. For solving thesc_ systems a least-squares method and a special iteration

. method, respectively, are applied, But it .is more favourable to~use the multigrid
method proposed in [11] instead of the Newton method. As a smoothing procedure,
e.g., a simple nonlinear Jacobl method in connection w1th the power method can be
used. .

The construction of the dJscrete operators J , depends on a ‘sequence (e,,),,u,,,,

..which can be chosen arbitrarily in certain limits. By this sequence the properties of
J » can be slightly modified. But for all'’h € Im and-u; € X, ,the estimate -

1@xTually = V4l IIQnTunlIy__ + lle*ll [lenlly Qe Twlly

holds Since the sequence (e;) converges there exists a bound independent of A for
the factors 1 + |le*|| |leslly- Hence, the sequence (@47 )seim is not worse than.the se-
quence (@1 )aesm With respect to the approximation quality. The concrete choice of
(e;) should be made in dependence on the semiconductor model under consideration.
As a rule of thumb, e,(k) should be large where a solution peak is expected. But in the .
same measure as |h| tends to zero, (e* Q,,Tu,,) decrcases such that the influence of the

sequence (e,) vamshcs .
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