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"How to Measure Smoothness of Distributions on Rlemanman Symmetnc
\Iamfolds and Lie Groups? I

H. TRIEBEL

. ‘2 ‘ : .
. ’,er dlskutlercn verschiedene Arten von Mlt,t,elblldungcn auf Riemannschen (global symmetn

schen) Mannigfaltigkeiten, hyperbolischen Mannigfaltigkeiten und Lie- Gruppcn, ihre gegen-
‘seitigen Bezichungen und damit zusammenha.ngende Funktionenriume.

Mu 06cysicnaeM pasHoro poaa CpeiHMX Ha PUMAHOBBIX (Fi106ajIbHO CHMMETPHYHBIX) MHOTO-
06pa3um\ ruriepGoIuecKuX’ MHOr000pasiiAX 1 rpynn Jlir, ux BcaliMHbIE OTHOIIEHHA I
cRA3AliNEE NPOCTPAHCTBA dyHKImit, .

‘We discuss sev.eral types of means on Riemannian (globally symmetric) manifolds, hyperbolic
manifolds and Lie groups, their mutual interrelations and related function spaces. -

1. Introduction -
‘Let R* be the cuclidean n- space and lef, B = {y ||yl <,1} be the unit ballin R". Lét

k be a function defined on the real line such that y—> k(]y[) is a 0% functlon on R",
7supported by B. We mtroduce the means . .

k(t,mx)—fkuw x+ty)d1, FCRMES0, | '”(1)’

which- make sense for any f€ D’ (R") (approprlately mtelpreted) let L o(R%) wnt,h
0 < p <.co be the usual spaces quasi-normed-via

AR ZL ( ()P dx)w, 0<p<oo, - (2)
. . R® .

with the usual modification if p = oo. Let k, be a second function defined on the real

line such that y — ky(|y|) is a C* function on R®, supported by B. Let ky(t, f) (z) be

the - corrésponding means. Let —oo < s < 00, 0 <& < oo and 0'< r < oo. Let

either 0 < p.< 00,0 < g=ocoorp=gq=o0. Undel -additional assumptions for k,

and k, whxch will be described in detail in Subsectxon 3.1, we introduce the spaces

Fig(R®) = 1f € D'(R) | |f | Fig(RO)lS5* : R
VA

- r 1

. ‘ ) . d - .

= llkoe, f) | Lo(R™)| + f o ke, f) ()l || LR < oo
0 .

‘ ' : : - (3)

(with the usual modlflcatlon if ¢ = ), whlch are mdependent of ko, k, ¢ arid r. Let
—c0o <8< 00, 0<pZLoo and O<q$oo Let —oo<so<s<s,<oo and

S
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= (1 — 0)so +'Gsl. Then we intvrodu’ce the spaces i .
B} (R?) = (Fi,(R®), F3,(R")ey -~ . (4)

via the real interpolation method (*s “)o.q» which are mdcpendent of the chosen num-
~ bers s, and s,. These two scales F$,(R") and Bj,(R") coincide with the spaces extensi- .
vely treated in [13]. The above local-global approach goes éssentially back to [14],
see also the recent surveys [19] and [7], where the latter paper describes what has
been done in this direction by the Russ:aq scho’ol We mention that the two above
scales cover many well-known classical function’spaces: :

the Hélder- Aygmund spaces 8¢ = F3,,, withs > 0;

the Besov spaces A%, = Bj, with s >0, 1 <Pp<oo, 1 =g o0

the fractional Sobolev spaces H, = Fj; with —oo <<'s < 00, 1 < p < 00;
the Sobolev spaces Wt = Fj, with | <p < oo s=0,1,2,...;

the (mhomogeneous) Hardy spaces b, = F,,2, 0 <pZ 1.

The characterxst,lc feature of (3) reads as follows Smoothness is measured locally
via means, in particular via the behaviour of k(t, f) (x) from (1) for ¢t — 0 (x fJ\ed)
Afterwards-some global growth restrictions thh respect to € R™ are xequlred The
advantage of (1) compared with the Fourier-analytical approach preferred in [13]
is its local nature, which is the basis to extend (1), (3) to morc general structures: .
Riemannian manifolds and Lie groups. In this context it is more naturahto introduce '
spaces of type F3, first and then the spaces of type B, via real interpolation. We
followed this path 1n a series of papers, see [15—18]. The flrst task is to-find an appro-
priate counterpart of (1), As far as connccted complete Riemannian manifolds M
(with positive injectivity radius and bounded geometry) are concerned we interpreted
the integration over R® in (1) as an_integration over the tangent space 7. M and
z -+ ty as the Riemannian geodesw c(x ¥, t) with ¢(z, y, 0) = z and dc(z,.y, 0)/dt = .
In the case of a (connected) Lie group-G'we replaccd T,G by the Lie algebla g and iwe
preferred the Lie geodesics z - exp (ty) instead of the (left-invariant) Riemannian geo--
desics. However, beside these two mtcrpretatlons of the euclidean means (1) on more
" general structures (Riemannian manifolds and Lie groups) there are few other possi-
bilities, for example as spectral means via the Laplace operator or as convolutions.
The aim of this paper is to study these diverse possibilities and their mutual inter-
. relations. However, there'is little hope (by the restricted knowledge of the author) to
-handle’ effectively Fourier analytical tools, spectral means and convolutions on
genera] complete Riemannian manifolds with bounded geometry and positive injec-
“tivity radius. The situation improves essentially if one restricts the.considerations to
Riemannian globally symmetric manifolds or, even more restrictive,' to hyperbollc
manifolds. Then tools from the theory of Lie groups are available.

The paper is organized as follows. In Section 2 we discuss several types of means on
manifolds. Section 3 deals with spaces on Riemannian (globally symmetnc) manifolds
and Lie groups. Spectacular new results should not be expected. It is our aim to
* discuss the diverse possibilities and to link our approach developed in 15— 18] with

', Fourier analytlcal techmques in symmetnc manifolds and Lle groups . LN

2. Several types of means

2.1. Manifolds. Let M be a connected n-dimensional C* Riemannian manifold with
. bounded geometry- and positive injectivity radius 7,. For details and references
about this definition we refer to [15, 16]. Let 7'M be the tangent space at the point
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N

P ¢ M and let | X} = Vgp(X, X) where gp(X, Y) with P'e M, X € TPM YeTpM,is

a positive definite bilinear symmetric form standing for the Riemannian metric g on '

M.Let P€ Mand X € TpM, and let o(R, X, t) be the geodesic with ¢(P, X,0) = P
“and de(P, X, 0)/dt = X where ¢ |X] is the arc length. Let (2, ) be a local chart with
‘P e Mand let U = ¢(£2). Then one possnble replacement of the euclidean means (n
is given by . .

kR, f) (P) = [ k(le)/(c(Pm))dX .

TpM ' § ~

Tq,(p) U

where the latter expression is the definition of the former one, 0 < ¢ small. In particu-
- lar, kR(t, f) (P) is independent of the chosen local chart (2, ). For details we refer-
again to [15, 16]. Next we specialize the above local chart by (2, expp~1), where expp
stands for the.exponential map. We ldentlfy ToU with R* (recall expp 0 = P) and
expps X with X. Then we have )

>

;

kﬂ(z f (P fk ]X] f o exppl tX) dX, , , . (6) '

0 <t <, \vhere’ro has the above meaning. _

. . , , 3 i

2.2, Symmetric manifolds. Next we specialize the above manifold M. We assume that
M is a connected analytic Riemannian globally symmetric manifold, see {3; IV, §3~
p- 205] or [8;2.2) or [9; XI] for a definition and properties (usually “symmetric man,i-
folds™ are called ““‘symmetric. spaces but we prefer here the word -“manifold”, i
ordér to avond confusions with the ¢ spaces” F3%,and BS). In particular, the Lie group
I(M) of all 1sometr|es on M acts transitively on M. Let @ € M be a fixed point and
“let Ugp € 1(M) be an isometry which maps Q in P, where P is an arbitrary.point. Tet
Qp(r) be the geodesic ball centered at P € M with radius 7, where 7 < 7,. Then we
have the distinguished local charts (Qp(r), e\po 1o Upo) w1th Upg = UQP and (6)
looks as r

R, ) (P) = [ K(XI)fo Ugpoexpg (X)X, . o m
. Rn ’ o ’

0'<t < r (all functions are extended outside of the unit ball by zero‘). In other words,
first we shift f from Q3(r) into Qq(r) via UpgRp(r) = £24(r), and then. we use (6) where

= HipaX1) /Otp (C(w(P),.%X{t))‘Vldetgwml doeX - B

3.

~ R" is identified with ToM. In particular, (7) has'to be understood as an integralon - -

the tangent space T'oM. We modify (7) somewhat. In (7) we equipped the tangent
space ToM = R" with the eudlidean metric Videt go| dX. A second possibility is to

equip R” (in a neighbourhood of the origin) with the Rlemanman metric }|det gx| gx|dX
connected with the local chart (Qp(r) expgto Upo) First {7).can be rewritten as

kR(t: /) (P) =f k‘(lxl)lfoUonequ (X) dX, : . (8)
R» . S . . .

'0<tSr with - ‘
k'uXI)—t"k(ean . R ()

Now the mod:flcatlon we have in mind reads as )

Ret, f) (P) = fk'uxnfoUOPoevpuX)Vdetgx X, . - (19

-~
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-
0 <t =7 (again functlons arc extended outside of a ball of ladlus t by zero). The
retransformation in the sense of (9) yields B

kR, N = [ KX} f o Ugp o expq (LX) Videt gzl dX, - " (11)
R» \ S
0<t S 7. Ho“ ever, (10) can bc mterpreted as an integral on M itself. Let

!
k(y) = k ‘|e-\Po yl) if y € Qo(r), 12)
0 L if ye M\ Qq(r) ‘ .
and let dy be the Riemannian volume element on M Then (10) can be rewritten a's
Rit, ) (P) = fk‘Q )10 Uorly) dy. . (13)

i

Finally one can retransform (11) (and hence also (13)) in the sense of (5) with TpM
*.as basis. We have |~

k'_‘(t, NPy = J UXD He(P, X, 1)) Videt gop.xn| dX, _ (14)

TeM
0 < t < 7 (again functions arc extended outside of the unit ball by zero). ThlS follows
from- the mentioned independence of the means in (5) of their concrete realization in

local coordinates: for this purpose one has torreplace f in (5) by f}|det ¢ and to inter-
pret R®in (11) as Ty p, U with ¢ = expy~! o Upg. Now (5) and (14) show thedifference
_between these two means. .

2.3. Convolutions. T.et again M ke the Riemannian’giobaily symmetric manifold from

Subsection 2.2. It is our aim to rewrite the means kE(¢, f) (P) as convolutions. For
this purpose we have to recall some known facts for Riemannian globally symmetric
manifolds. Let ¢ be the identity component of the group of all isometries on M. Then
G'is a connected Lie group. Let K be the subgroup of G which leaves a given point
Qe fixed. Then K is compact and G/K is analytlcally diffeomorphic to M under
the map yK — y o @ with y € G, see [3: IV, 3, p. 208] or [8: 2 -2). We assume in addi- -
tion that ¢ is unimodular (this holds also for K because K is compact). We put
M = G/K. Let dy be the Riemannian volume element (invariant under ¢) and let
du be the (right- and left-invariant) Haar measure on G. Let { be an integrable func-
tion on M. Then we may assume that dy and du are normed in such a way that

Ji@)dy = [fyo@du ‘ Cs)
M . G . .

holds. As far as (15) is concerned we refer to [2: V, 3, in particular Proposition 5,
Theorem 9, Proposition 16 and the first example on p. 267]or [10: 111, § 1, Theorem 1].
A special case may also be found in [4: p. 77] where M = SU(1, 1)/S0O(2) is the uiit
circle in the complex plane equipped with the Poincaré metric. We wish to reformu-
iate (13) in the sense of (15). The necessary extension of (15) to compactly supported
- distributions h(y) € D’(M) and k(y 0 Q) € D’ (G) causes no pnoblem We ma.y assume
Ugp € G in (13). Further we remark

k2(y 0 Q= Ayt 0 Q). - . , | (16)
This is a consequencé of (12). Then (13) and (15), (16).yield . ‘
kR(t, f = [ K710 @) [(Uar o 70 Q) dp

_fl‘“‘) yroUepo@) flyol) dﬂ—/*k'QUOPK) (i7)
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This is the convolution on Lie groups G and on manifolds M = G/K. We refer to
[6: § 20, (20.10)] and [4: p. 77], the latter as far as the last formulation is concerned
Ct. also [2 v, 4].

2.4. Hyperbolic manifolds. A further specializatioh of the Riemannian globally sym-

metric manifolds trated in the Subsections 2.2 and 2.3 are the hyperbolic manifolds

(again we spcak about “hyperbolic manifolds” instead of “hyperbolic spaces”, where -
the latter is the usual notation). We restrict.ourselves to » = 2 mostly for sake of
convenience and in order to have a quick reference.to [4]. The general case may be
found in 5], we refer also to [8: 1.11, 3.8]. Let n = 2. Then Poincaré’s model of the
non-euclidean plane is given by the open unit disk D in the plane R? furnished with-
the.usual Riemannian metric

d32=(1 —x2—y2) 2(dx2-+—dy) S - (18)

The Riemannian xolume element and the Laplace- ‘Beltrami operator are given by e
- dxdy oo [ O% | ° .
dz—m and A——(l—.l} —J) (6x2+-8;7 s . (19)'

respectively. As usual in-this case we prefer the complex notation z = z + iy. Now D
becomes a Riemannian globally symmétric manifold via the interpretation

) D =8SU(1, 1)/S02). + - ‘ " (20)
Here SU(1, ‘1\) is the Lie group :

. Su(L, 1) = {((gg) a and b complex, |a|* — |b]2 = 1}. . — . (21)

The action ' , ‘ \
yz—>az+b, zED, : ) - (22)

bz +'a N !

is isometric and transitiv. SO(2) stands for the subgroup of all rotations with the origin
O as the fixed point (b = 0 in (21)). We refer to [4: pp. 48—52] for more details.
SU(1, 1) (and of course also S0(2)) is unimodular: This follows from the fact that
SU(1, 1) is isomorphic to SI(2, R) (which is well known and stated’ e}\pllcxtly in[12:
p- 80], mcludmg the Iwasawa decomposnmon of SU(1, l)) and the known assertlon
that SL(2, R) is unimodular (which is stated explicitly in [10: p. 4]). Hence the con-
siderations developed in the Subsections 2.2 and 2.3 are applicable. It is our aim to’
connect the means kR(¢, f) from (10), (13), (17) with some spectral means, i.e. with”
@(—A4) where ¢ is an appropriate function and 4 is the above Laplace-Beltrami
.operator from (19). Let (z, b) be the distance of the horocycle & (with sign) form the
origin O withz€ £and b€ énaD (ie. &5 the circle in D tangentlal to 8D in the-
pomt b and with z € §), cf. [4: p. 53). The Fourier transform in D is given by

/(, b) = f/ el= u+n(zvo>d‘ . 4 (23)
5 .

cf. (19), ‘where 4 is complex and b € 8D. The inverse Fourier transform is given by

fz) = —ff/) b) eti+1Kzb) tanh( )dbd . » (24)

with fdb = 1. We refer again to [4' pp- 55/56]. Let[ be a radial C°° function in D :

oD
with compact suppOIt Then f(2, b) from (23) is mdependent of b € 8D and coincides
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* with the spherical transform f(4) in [4:.pp. 66/67]. Let fl and f, be two such radial

~

functions and let f, * f, be the convolution,see (17) and [4: p."77]. Then we have
(fi * f2)” (2, b) = Fa(2, B) /22, " beoD. -, ST (25)

ThlS follows from [4; pp. 77/78]. Next we use the fact that e+ 1ED) § is an eigenfunc-
tion of 4 with nespect to 2, where 2 complex and b with |b] = 1 are fixed,

A(etr+ 1)(. D) = — (2T 4 1) e(u-rl)(z b - (26)

_cf. [4;p. 55] Furthermore 4 is formally self- adjomt ‘At least fox ‘compactly supported

C= functionis in D it follows fl om (23) and (26)
(AN~ (2, b) = —(/2 1) f(i,6), 2 complex, b€ aD. ' 2
i,
Let ¢ be an appropriate function on the real line R. Then it follows in the sense of the

spectral theory of the positive definite self-adjoint Laplace- Belbraml operator —4'
in LyD)y = . o

f
((p(—/l)/) (/b)_(p(l—r—/)//b), ;eRbeaD ‘ (28)-

: cf also the mappmg properties of j—»j described in [4: p. 57, (iii)] (Plancherel S

formula). Now we return to the means kR(¢, /) (P) speuallzed to the hyporbollc mani-
~fold M = D under consideration. We put Q = 0, the origin, in (12) and (17). Then
kO(y) with y € D is a radial compactly supported 0 function in D. Let us assume

. that f is also a radial compactly supported C°° function in D. Then (17) and (25).

Cyield s . . ,
lchtf) ”*—L”‘/b;/\/ b), _' B (29). °

‘whe_re all the functlons are mdepende‘nt of b. If one compares (28) and (29), then

1

PR =), ieR, o 30)

- (where we omitted b) is desirable. First we remark that, k‘°(/) is an even entire func-

tion of exponential type, see [4; Theorem 4.7, p. 68]. Thén we find a 0°° functlon @
on R with (30). Then (28)—(30) yield

RGN G (J) = ¢ (=D f(y), . yeD, B (31)

- under the-above restrictions. The moral of the story: For hyperbollc manifolds there

is a connectlon between the Rlemanman means k“l hH and some spectral means

“@H(—4) f.

3. Spaces

3.1. The euclidean case. All notations have the same meaning as in the Jnt,roductmn
We must clarify what conditions the functions & and k, have to satisfy such that the
definition of F4 (R®) in 3) makes sense. We assume that there exists a rotation-

symmetric C* function » in R® supported by the unit ball B, such that

Yo o2 \N - - : ' o .

k(lJI) (Z—) %(y), - y€R", , . (32)
i 1 0y;® '

where the natural number N will be determined later on. Let x4(y) = ko(|y|), and let

2, and % be the Fourier transform of %o and », respectlve]y We assume SR

#0) %0 and  2(y) £ 0 forallyER"' : L (33)
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Now we are in the position to give a formal definition of the spaces Fj (R") from (3):
Let —.ool<s<oo 0<e<ooand 0<r< oo. Let either 0 < p < 00, 0 <gq
< oo or p = q= oo. Let k, and k be the above functions satisfying (33) and (32)
with 2N > max (s, n(1/p — 1), 0). Then F7 (R") is given by (3).

Then one defines B’ J(R7) by (4) Corgments and references may be found in the Intro-

duction. '

Y

3.2. Riemannian manifolds. We assume that Mis the manifold from Subsectlon 2.1

with the positive injectivity radius 7, > 0. Let again- Qp(r) be the geodesic ball
centered at P € M with radius 7 < 7. If & > 0 is sufficiently small, then there exist
auniformly locally finite covering of M by a sequence of balls 2p(8) and a corre-

, sponding C* resolution of unity y = {y;} with supp y; < 2p,(9): We refer for details:

and necessary explanations to [15, 16]. Coverings of this type have been used first by
- CarasIr and AUBIY, see [1]. Now we define the spaces F3, (M) as follows: Let —oco <'s
< oo and let either 0 < p < 00,0 < ¢ < o0 or p = g = oo. Then '

P (M) = {fe D'(M) | |If | Fo( M)l

/4 - I ' \
(ZIlw;foe\Pp,lF’q(R")ll”) <oo} - (34)

(modxflcatxon if p = o0). Of course in (34) we extend y,f o expp, outside ‘of expp, 2p,(0)
by zero. Let ——oo<so<s<s,<oo 0 <p = oo, 0<q<ooa.nds_(1 — 0) sq
+ 0s,. Then )

Bl (M) = (F“(M), 5 (M))aq - to@s) .

where again (-, -)g, stands for the real mter'polatlon method. Again we refer for ne- ‘

_ cessary e\planatlons to [15, 16]. One of the main aims of the just cited:papers is to
give intrinsic descriptions. . This is possible for both the spaces F (M) and By (M).

But for sake of brevity we restrict ourselves to F5,(M).\In comparison with [15, 16] it -

is clear how the corresponding formulations for the spaces Bj, (M) look like. We assume
that the means kR(¢, f) (P) and kR(¢, f) (P) are given by (o) and (14), respectively,
where the latter makes also sense for the manifold under consideration, which need
‘not be globally symmetric. Furthermore k and k, have the same meaning as in Sub-

~ section 3.1, in particular we have (32), (33)- Then it is clear what is meant by ko®(t, HP) '
and koR(t, f) (P). Let L,(M) with0 < p S oo be the counterpart of L,,(R"), cf. (2), -

- now with respect to the Riemannian volume element on M.

~ Theorem 1:.Let —00 < 8 < oo and let ezther0<p<oo,>0<q§ooor\p=q
= oo. Let 0 < 7 < 19, € > 0 be small and -

~

N > max (s, 5 -+ 2n/p) + max (0, n(1/p — 1)). S @8y
Then C )
_ ) . - | dt e : -
e, 1 Lo + | [ ¢ Ww‘(t DR | L (37)
and ’ ) L A
C - . [or _ @ l/q . . ,
" llkeR(e, ) [ Lp(MON + f"” kR (¢, f) (N Ly(M) C. (3%

(}nodijicatz:on if ¢ = oo) are equivalent quasi-norms in F§ (M).
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Remark 1: It was one of the main aims of [15, 16] to prove this assertion as far as the quasi-
norm in (37) is concerned. The corresponding claim for the quasi-norm (38) is new. But one can

. follow the arguments in [15, 16] with few technical changes. Then one obtains the desired asser-
© tion with respect to (38) :

Remark 2: If M is the above manifold, then one would prefer the means kR(4, f), i.c. the
quasi-norms (37), because they look simpler and the use of the tangent space seems to be quite

natural. But if one knows in addition that M is globally symmetric, then the means k-i(t, f)are

more attractive, because we have now the reformulations (13) and (17). In the case of hyper-

bolic manifolds one has also the (somewhat vague). connection with spectral means described

in (31).

3.3. Lie groups Let _be a n-dimensional connected Lie group (|t is suffluent to

assume that G consists of a finite number of ‘connected components). Let e be-the ~

unit element of G and let ¢ = T,G be the corresponding Lie algebra. Let g be a réal

positive definite symmetric bilinear form on g. Let L,:  — ax be the left translation .

on (f, where ¢ € ¢ and z € G. Then the pull back operation g, = (L,_,),* g witha € ¢
gencrates a left-invariant analytic Ricmannian metric. This n-dimensional manifold

.is connected and complete, it has a positive injectivity radius and a bounded geo-

metry. Hence we can apply the above theory, in particular we can.introduce the
spaces Fj (G) and B} (G) via (34), (35) (with M = G). 1t is easy ‘to see that these
spaces are independent of the chosen bilinear form ¢ on g. Hence we have Theorem 1
with respect to this left-invarinant Riemannian metric. However, it seems to be

reasonable to replace the Riemannian means Ic“(t f) and ER(¢, f) by the Lie means

: tf)(x) fk]X|)f(x e;\p(tX))dX Cwed, ' (39)

i~

0-< t < r, where the Lie algebra g is equipped with an euclidean metric, and exp -
“stands f for the usual exponential map on (7. We assume again that k and ko have the

same meamng as in Subsection 3.1, in particular we have (32), (33). Then it is clear
‘what is meant by k,%(¢, f) (z). Let L (G) with 0 < p =00 be the counterpart of L,(R"),

see (2), now with respeet to a fi\ed left-invariant Haar measure on G (which may be

identified with the Rlcmanman volume element of the above left-invariant Rieman-

nian metric).

Theorem 2: Let G be the above Lie group. Let —oco < s < 0o and let either 0< P
< 00,0 <g=ooorp=gqg=co. Let ¢ > 0and r >0 be sufficiently small and let N
be given by (36). Then '

r g : ' -

) . s d
Ika(e, /) | Ly(@)l + f coie ) O F | (L@ - (40)

0
s an equivalent qmsz norm in Fp(Q) (modification if ¢ = oo)

Remark 3: In {17, 18] we sketched two dlfferent, proofs of this theorem (and its obvious
Bj;-counterpart). The first proof in [17] is baed on the CZmpbell-Baker-Hausdorff formula.
The second proof in [18] used the fact that z- exp (¢X) coincides with the geodesics of a left-
invariant covariant derivation in the sense of [8; 1.7.7, 1.7.10, 1.7.13], see also [3; pp. 102 and
104]. Below we sketch a third proof which uses on the one hand the just cited left-invariant

covariant derivation on G and on the other hand the above introduced means kE(t, f).

Proof of Theorem 2 (outlme) Similarly as in the case of Riemannian globally
symmetric manifolds we have also for the above Lie group G the group {L)scc of
isometries (with respect to the introduced left-invariant Riemannian metric) which
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acts transitively on G. Let kR(¢, f) (z) with ¢ > 0 small and = € G be the Riémannian
means given by (10) or'(11) with respect to the above left-invariant Riemannian
metuc We put P =z, Q = e and Ugp = L,. Then (13) ylelds in our case

kR () (2) = fk'w)/x ydy, ‘ -

{

with the counterpart of (12), i.e.
| Ke(y) = cok(1~" lexp,(w)) ’ | (42)
in a neighbofxrhbod of e. Here dy is the left-invariant Haar measure on @ and exp,
is the exponential map from g = TG’ into @ in the Riemannian sense. We trans- -
form the result with the help of the Lie exponential map exp to g:

ER(, f) (x) :

= f/(x exp Y)t "k(t 1 |exp,! o exp Y|)|dexp Y|dY

_f/(x exp (tX)) k(- llcxpe-loexp X)) & e\p (tx)| dax. L 43)

i

We wish to compare (43) with (39). For this purpose we remark that X — exp,™!
oexp X is a diffeomorphic map near the origin of R” = g. However both maps
X —»>expX and X — exp, X are governed by systems of ordinary differential equa-
tions for geodesic lines. This is obvious for X — exp, X and it follows for X —.exp X
from the above remarks about left invariant covariant derivation, sce the cited
references. Then we have :

“exp,lo exp (tX) tX + o@d), . - ' ‘ : (44)

where 0(t?) stands’ for an ana]ytlc e\pnessmn in X and ¢ of the 1ndlcated order Fur-
thermore

'

de exp (tX) = 1 %+ 0(1), , © (45)

where O(t) is also an analytlc expression of the indicated order. We put (44), (45) Jn
-(43). Then (39) and (43) yield

KR, f) (2) = KL ) (@) + f flz - exp (¢X)) O() ax, " | o (46)

N

w hat means that kR(¢, f) and kL(¢, f) coincide besxde a harmless perturbatmn Let s be’
large. Then we developed in [15:4.2] in detail a machinery how to handle such pertur-

bation terms, see also [17]. Then Theorem 1, in particular (38), (46) and this technique

prove that (40) is an equivalent quasi-norm in F}, (G). The extension of this assertion

to arbitrary values of s can be done.by a lifting procedure described in [15, 16]

Remark 4: We have Jexp,~'y| = [exp,~'y~!| because L, is an isometry on G: the Riemannian

distance between y=* and e is the same as between e = Lyy~tand y = Lge. Hence we can replace

kte(y) in (41) by k*¢(y~1). In other words, KR(t, f) () = [ » kt%(z), where the latter stands for
the convolution on G, see [6: (20.10)]. .

Remark 5: In general exp and exp, do not coincide. But if G is compact {or abelian), then
" we have exp = exp,. Then the Lie geodesics coincide with the Riemannian geodesics and the
above constructed left-invariant Riecmannian metric is bi-invariant. We refer to [11: 4.2, 4.3],
see also [3: IV, §6].

’ \
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