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An Improved Multi-Parameter Adjustment Algorithm 
for Inverse Eigenvalue Problems 

B. HOFMANN 

Es wird ein Algorithmus zur Behandlung von Problemen der Mehrparameterregularisierung 
vorgestelit und begriindet. Auf der Grundlage von nurnerischen Experimenten bei eincm inver,-
son Eigenwertproblem kann eine verbesserte Version des Algorithmus gefunden werden. 
flpea.ilaraeTca ii MOTUBIITCF1 anroplITM OI)a60TK1I npo6JleM M}IoronapaMeTpIt'1ecHoft 
peryJ1npn3aInhI. I-la ocoue Isbl'IHcJnlTeJlbHhIx 3KCnCpHMeHT0B npu oioft o6paTHofl aaa'iii 
iia co6cTnelIniie 3Ha'IeHM8 B03MOHOIO HaI4TH yJIyIlIIeIIHan n ,epclta aJlropnTMa. 
A multi-parameter adjustment algorithm for regularization is ' established and motivated. 
Based on numerical experiments concerning the solution of an inverse cigenvalue problem an 
improved version of this 'algorithm, can be suggested. 

1. Introduction 

We are going to consider a discret.ized inverse problem 

Ax=z	(xEDc:R', z€RI)	 ( 1) 

(cf. [2, Chap. 3]). The peiator A: D - R14 will be continuous and in general non-
linear. Moreover, the set D of admissible solutions x of problem (1) is assumed to be 
closed and' convex. Let A = (A 1 , A 21 .., A) and'z = (z, z21 ..., z) denote a pail' of 
decompositions of the operator A describing the direct problem and of the observa-
tion data vector z, respectively, where A 1 : D -* are also continuous operators, 
and z 1 € RmL (i = 1, 2, ..., ic; m 1 + ... + me = nr) the associated observation sub-
vectors. We suppose the discretization error of problem (1) to be negligible in com-
parison with the observation errors b i > 0 according to the data z 1 (i = 1, 2, ..., k). 
The model under consideration also applies to control problems. Then, z is the 'vector 
of desired values which ae to be achieved by an appropriate choice of the control 
vector x E D. 

Using the discrepancy principle (cf. e.g. [2, Chap. 4]) for obtaining a regularized 
solution to the finite-dimensional problem (1), the optimization problem 

minimize Q(x)	 .	(2) 
'xEXã  

with
Xo={xED:!IA ix, — z 1H31 (i=l,2,...,k)} 

has, to be solved. Here, Q designates a nonnegative continuous stabilizing functional 
on R", i.e., the level sets {x € D: ,Q(x) c} are compact or empty for all c 0. 
Furthermore, is the Euclidean vector norm in finite-dimensional spaces. We assume 
X6 + 0. Then there is at least one minimizer x. pt of Q subject to X6 . One can show 
that the non-empty set X,, pi of solutions to problem (2) stably depends on the data z.
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Note that for nonlinear operators A.a minimizer x0 of Q subject to Xa is difficult 
to compute in a straightforward manner. This is due to the fact that the domain 
frequently fails to be convex and connected. For such optimization problems no 
advanced direct numerical methods are available. Therefore, we consider the class 
ofniu1ti-parameter auxiliary problems 

minimize F(x, ).j	(2 € R,k )	 (3) 
zED 

with 
- R^={2€R.:2l,...,Ak	O},	 0 

k 
F(x, 2)	' ;.i ItAx - z 111 2 + Q(x)	(A € R+k).

i1 

The well-poseciness (existence and stability of solutions) of problem (2) carries over 
to problem (3) since Q has stabilizing character. Thus at least one minimizer x 1 of 
F( . , 2) subject to D exists for all 2 € R!'. However, contrary to problem (2) the 
advaptage of solving (3) numerically lies in the convexity of the domain D. 

2. The multi-parameter adjustment algorithm 

In this section, we wish to study the chances of approximating minimizers x 0t ac-
cording to problem (2) be an iteration process exploiting minimizers x 1 of (3) for 
appropriately chosen parameter vectors A. The values A > 0 (i = 1, 2, :.. ,k) play 
the role of Lagrangian multipliers. Obviously, 

k 
L(x, 2) = ' 2 (lIA 1x - z1)2 - 32) + Q(x)	(2 E RP) 

i=1 
represents the Lagrangian functional of the basic problem (2). If there is a pair of 
vectors (2, 1) € D x R'k such that	 - 

L(, 1)	L(2, ) ;5 L(x, )	for all x € D, 2 €	 (4) 

then (2, ) is a saddle point of the Lagrangian saddle pbint problem according to(2). 
Hence, 2 = xi solves problem (2). 

Lemma: A couple of vectors (2,1) € D x R+k satisfies the inequality (4) if and only 
if 2 = xj is a solution of problem (3), provided that 1 = 1 fulfils the requirements 

z 2 - ô) = 0	(i = 1, 2, ..., k)	 (5) 

and

IIA2 — z II	ifAi =O	(i=1,2,...,k).	 (6) 

Proof: In view of L(x, 2)' = F(x, ).) - (li6 i 2 + ... + )kôk2) the right-hand inequali 
ty of (4) is equivalent to 2 = xi. The left-hand inequality corresponds to the esti-
mation	 - 

-	1=1 

This coincides with (5) and (6). Thus the proof is complete I 
For an arbitrary chosen value z > 0 the equation (5) may be rewritten equivalently 

as
A,(IIAe2—z1II'— bi ll ) ==0	(i= 1,2,...,k)
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- and
IIA	 — zIl	(i = 1,2,...,k).	 (7) 

Based on formula (7) we 'can propose an iteration process that yields vectors xi 
(j = 0, 1, 2,...) approaching x01,. Let	 0 

(x(i)) 0 =	 2i = (A1 'I ), ..., 1 i ) ,	'	 (8)

be a sequence of solutions to problem (3) according to the parameter vector sequence 
().(i))10 determined by 

= 2 i> ma (IlA ix(j) ___ zJI'	
)	

(i = 1 2:...,k)	',	(9) 

where the small value e with 0 < E .c 1 and an initial guess 0) with sti-ictly positive 
components A 1 0 > 0 (i = 1, 2, ..., k) are chosen in an appropriate way. For the 
introduced iteration process we can formulate the.following proposition. 

Theorem: Provided that there exits a pair of vectors (, A) E D x R,k such that 
- AI -*0 'and IIxW -	—p. 0 as j —* oo, then this pair satisfies the relations-(5).€

and (6), i.e., = x01,1 is a solution of problem (2). 

Proof: From L(x (J) , 2(i)) ;5 L(x, 2' i ) it follows L(2, )	L(x,1) for -'all x E D.€
Owing to formula (9) . we obtain the equation 

=	max (I!A2_zI ,
	

(i = 1,2,..., k), 

i.e., either A =0 or IlA it - z 111 = b i for all i = 1, 2, ..., Ic. This provides equation 
(5). Whenever A, = Q, then there is a monotonically non-increasing subsequence of 
positive numbers	-*0 as j, —+ 00. That means, IIA 1 x( i ) —	1 for all 

'j,. Consequently, 11 A5 — z 111	5, if A, = 0. Hence the requirement (6) is satisfied 
and the theorem is proved I	 - 

Multi-parameter adjustment algorithm (MPAA): 

Step 1: Choose It > 0, 0 < e	1, e	0, 2(0) > 0 and a maximum number max€

of iteration steps. Set j': = 0. 

Step 2 Compute x(j ) :'= X2() by solving an optimization problem of the form (3). 
If j = nax, then set Xaig := x1 and stop, otherwise compute A(i+1) according to for-, 
mula(9).  

Step 3: If 112(j+1) - 2 ' i II	e, then set XaIg :=	and stop, otherwise set 
j := j + 1 and return to Step 2. 

Remark 1: Basic ideas of the algorithm MPAA were already proposed by the author in 
[2, p. 97] and in [7]. An advantage of the special kind of Lagrange multiplier estimation sug-
gested above is the immediate availability of the right-hand side of formula (9). Thus, the total 
amount of computational work for the iteration process is sufficiently small and can essentially 
be reduced to the costs of solving theassociated optimization problems (3). Note that a quotient-
type corrector iteration based on the right-hand side of (7) for U.= 1 is also proposed in [6, 
p. 149— 157] for spline-problems.	

0	 / 

Remark 2: The introduction of a small value € > 0 in formula (9) is of great theoretical 
importance for the convergence of the iteration process towards a solution of problem (2). 
By introducing such an c > 0 we exclude a situation characterized by ).(i)	0 (j 

'= 0 + 1, 

33 Analysis flU. 7, Heft 6 (1988)
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o + 2, ...), !Axi') —'z 1 11 = 0, but JA 1x(i) - ;Ii'> 61 for all j > j0. For practical computations 
one can expect, however, that a rapidly decreasing sequence (A,'i)) 0 points out a limit A = 0. 

Remark 3: The algorithm MPAA describes a fixed point iteration possessing the intrinsic 
well-known properties of such an iteration type. However, it is very.hard to formulate suffi-
cient conditions for the existence of limit vectors and A for given initial guesses .V°. Numerical 
experiments show the utility of the algorithm for wide and very different classes of discretized 
inverse problems. Nevertheless, it may occur that the iteration converges slowly or fails to 
converge, especially if , the exponent z is chosen too small or too large. Therefore, an improve-
ment and refinement of the algorithm is required in order to overcome these bad situations. In 
this context, an adapted choice of the exponent value u> 0 plays an important part. It seems 
to be necessary to find ideas for improving the algorithm MPAA from numerical experiments. 
Thus it may happen that optimal heuristic strategies somewhat' depend on the particular 
problem under consideration. In the following sections we shall try to find an exponent control 
for inverse eigenvalue tasks.	'	 - 

3. A particular inverse eigenvalue problem 

Now we consider an inverse problem of control type which eoresponds to the compu-
tation of eigenvalues of a quadratic matrix. This inverse eigenvalue problem may be 
written in the form of (1) and (2) with k = m and m, ==1 (i = 1, 2, ..., k). Here, 
the vector x E D = R,k is to be determined so that a nonnegative continuous stabi-
lizing functional Q attains its absolute minimum over a set X 6 of feasible vectors. A 
vector x with nonnegative components belongs to X h if and only if the symmetric 
positively semidefinite matrix of dimension 1 k 

M(x) = x1 M1 + x2 M2 -- + XnMn	 (10) 
possesses the Ic largest eigenvalues v1 (x)	v2 (x)	...	v(x)	0 such that 1v1(x)
- zd :E^ ô, (i = 1, 2, ..., k). In this context, the vector z E R,c of desired eigenvaluè 
approximations z1 ^;; > z 0 and the symmetric positively semidefinite 
matrices of dimension 1, M (i = 1, 2, ..., n), are prescribed. The in general nonlinear 
operator A: D c R' --D,- Rk (cf. formula (1)) transforms the vector x of multipliers 
in (10) into the Ic largest eigenvalues v 1 (x) (i = 1, 2, ..., k) of the matrix M(x). Inverse 
eigenvalue problems regarding matrices with an additive structure (10) , are for 
example examined in [5] (see also [1, 3] or [2, p. 55]). The difficulties of our particular7 
problem are associated with the numerical solution of the optimization problem (2). In 
order to find minimizers of Q subject to X5 , the algorithm MPAA of Section 2 and. the 
improved version introduced below in Section 4, may be applied. The immediate 
reduction of the constrained problem (2) to a problem without or with easy constraints 
were desirable since no Lagrange multipliers had to be estimated after that reduction. 
However, all numerical experiments which tried to solve auxiliary problems 

minimize I#^ max ((1v1(x) - z11	)2 a, 0) + Q(x)}	 (11) zCR.,."	i=1 
with a penalty parameter j9 > 0 have completely failed. The objective function to 
be minimimizeci in (11) tends to get ill-conditioned whenever ft becomes sufficiently 
large. Thus, minimization routines of Newton or Gauss-Newton type are seldom able 
to find satisfactory approximations of the wanted absolute minimum. 

In comparison with the algorithm MPAA or its refinements the solution of (11) 
requires a many times higher amount of computational work. By our experience the 
difficulties mentioned above also occur if a one-parameter family of optimization
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problems

minimize I max Iv(x) - Z.1+ Q(x)}	 (12) 
zER+"	t1sk	' 

is considered. Using this approach, the regularization parameter x > 0 should be 
controlled bythe discrepancy principle such that maxlk (1v 1(x) -- z 1l/ô ) = 1 holds 
at the minimum point of (12). Consequently, from the numerical point of view there 
seems to be no way of avoiding multi-parameter regularization problems (3) when (2) 
is to be solved with small costs. Especially, if Q(x) represents a quadratic form with 
respect to x, problem (3) for given 2 E R+k may be solved by Levenberg-Marquardt 
modifications to the Gauss-Newton method in an efficient manner. 

4. The improved algorithm 

The algorithm MPAA was tested for efficiency in solving the inverse eigenvalue 
problem described in Section 3. Numerical experience proved that for exponents 
1 :!^ 1u 2 the iteration process (8), (9) in general converges. It becomes evident that 
a constant exponent z > 0 for all residual components throughout the whole itera 
tion is not optimal. If y = 1, then the multiplier's 2i) converge to A monotonically. 
However, the rate of convergenceis rather small. For z = 2 we obtain an oscillating 
iteration, but the geometric mean of two onsecutive- iterates 2 0) and A (H 1) fre-
quently provides a good estimate of A. Whenever u < 1 or u > 2, the slow conver- 
gence or oscillation is the more strengthened the smaller or greater, respectively, 
the value a becomes. 

We can summarize that an improvement of MPAA requires the permanent in- 
spection of monotonicity with respect to the multiplier sequences A' i (j = lo - 1, 
j0, Jo + 1) (cf. formula (9)) for fixed a. If there is no monotonicity, i.e., (1 1i'') - 21'i)) 
X ( ) i.	A(i')) <0, then the iteration should be continued with a smaller value 
It = iUnew (e.g. jU fl ew := max (l,,u/2)) and	2(io)2i.+I). In the monotonicity 
case, (A(io+l)	A) (A 1' - Ahio1)) > 0, it seems to be a good heuristic strategy 
to enlarge the iteration exponent. Thus we replacey byUn,w satisfying the equation 

A 100— ' IA x (i. — -. Zjllew/oll4n_, 

i.e.,

= In (2i'+')/2i'")/ln (h A x i'' —i 

This would provide an acceleration of the multiplier iteration. Obviously, the answer 
to the monotonicity question and consequently the exponent a = yj thus alwys 
depend on i. 

Improved multi-parameter adjustment algorithm (IMPAA): 

Step 1 (Initialization): Choose Umax> 1, 1	/2o </Lznax, e 1 > 0, A(°) > 0 and a 
maximum niimbei max of iteration steps. Set j := 0. 

Step 2 (First iteration step): Compute x° :=x2 (cf. (3)) and 

= 2(0) IA x(°) - zjIP./ô U	(i = 1, 2, . . ., k). 

Set 2a:=2(l),1a1:=po(i=1,2,...,k)andj:=1.	- 

33*	.
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Step 3 (Internediate step): Compute xø) := x. (cf. (3)) and set Xa :=	If
jmax, set xaIg:= X& and stop. Otherwise compute 

2(i+ 1 ) := Aa IIAx' -	 (i = 1, 2, ..., k)	. 
and set ).b := ).(j+D . If).b -	€1, then Xalg := xa and stop, otherwise set j := j 1. 

Step 4- (Predictor step): Compute x(1) := XXb (cf. (3))and set x b 	x(h. If j = 
set Xa!g := x' and stop. Otherwise compute 

C:	1	 (i =	 2.... . , k). 
If IIAC - 211 (1	e, then set Xag := xb and stop, otherwise continue. 

Step 5 (Corrector step): For i := 1(1) k do: If ().,c - ).,b) ().gb -	< 0, then set 
:= max (1, 1u 1/2)and 2 1 (i+ 1) : j/),b)c, otherwise set	- 

	

in (1.C/)a)	\	) (j+1) .	. 11 Il A 1x - zgII' u i : = mm (lu-"' in (((A 1x' - z(J/6))'	. =  

endfor. 

Step 6 (Return step): If	- ) (i)	s, then XaIg := x(J) and stop, otherwise 
set 25 := 2(1+1),	+ 1 and return to Step 3. 

5. Computational results 

We complete the paper with a comparison of the efficiency of the aigorithni MPAA 
versus IMPAA applied to the inverse eigenvalue problem described in Section 3. 
Assume Ic = n = 1 = 3, Q( . ) = 11.1 2 and 

/20 2\ /42 1\ /110 
M 1 =(o 3 —i), M2 =(2 2 0	), M3 =(1 3 1)- 

\2 —1 3/ \i 0 1 / \o 1 2

Moreover, let z = (11.359...., 7.0, 2.641...) be the vector of eigenvalues v 1 (i = 1, 2, 3) 
to the matrix M = M 1 + M2 + M3 and ô = 0.2, 63 = 0.4, 63 = 1.0. The problem 
under consideration 

minimize	11x112 (13) 
xEER+':I t()-zgIôg (i1.2.3))	

.  

(cf. (10)) has a unique solution x0 = (0.945..., 1.175..., 0.715...) with Iv1 (x0 ) - z1j 
= 0.2, 1v2(Xopt) - z2 1 = 0.4 and lv3 (x01) - z3 1 = 0.403... There is also a uniquely 
determined multiplier vector 2 = A = (1.060..., 0.151..., 0) such that the solution xr 
of

1	 1 
minimize	)'i I v(x) - z d 2 -I- IlxII 2	 (14) 

xEP.+'	Li=1	 J 

coincides with x0 . Now choose 1(0) = ( 1, 1, 1), lma = 30, e = 10 16 ,	= 10 and
/2max = 10 in order to apply the algorithms MPAA and IMPAA for various values ,a 
and , respectively.	 .	 .	. 

All the optimization problems (14) were solved on a ROBOTRON EC 1056 com-
puter using the globally convergent derivative-free Gauss-Newton methods imple-
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mented by the program DNLQ') in form of the FORTRAN program REGNLG 2). The 
required eigenvalues were computed by EISPACK routines (see [4]). A characteristic 
measure for the amount of computational work is the number of eigenvalue routine 
calls. 

Table 1 provides the results of MPAA. The given number of iteration steps j and 
of. EISPACK 'calls is required for computing with an e precision. The achieved 
approximation of x0 and, of the associated eigenvalues is in general still somewhat 
better.

Table 1: Results of MPAA 

•	0.1, 0.5 1.0 1.5 2.0 3.0 

j 30 24 10 13 30 30 

Calls fail 356 184 194 fail fail 

For y = 0.5 and 1a = 2.0 more than max = 30 iteration steps are required to complete 
the iteration. On the other hand, for u :^-_ 3 the iteration completely fails due to an 
extreme oscillation of the iterates. 

Table 2 shows the cost reduction of the improved version IMPAA in dependence 
on 1u0 .	 - 

Table 2: Results of IMPAA 

1.0	1.5	2.0 •	 2.5	3.0	5.0 

j	 6	6	6	8	10	30 

Calls	120	113	109	137	157	fail 

In order to avoid overestimating of It i during the starting phase of the iteration pro-
cess, the initial guess 1a0 = J may be recommended as a safe version. However, as 
Table 2 shows, IMP AA is not sensitive with respect to greater values U 0 if.these 
values are not too large (cf. = 5). Also, if IMPAA begins with a non-monotonic 
strating phase (1u0 = 2, u0 = 3), the results are fairly satisfactory. 

Finally, in Table3 we give an survey of the behaviour ofy, in IMPAA ? Thus the 
monotonicity behaviour of the iteration can be studied in detail. 

Table 3: The development of iteration exponents in IMPAA 

/10=1 

j 1 2 3 4 5 6 

Jul 1.0	• 1.31 1.31 1.52 1.52 1.0 
1.0 1.41 1.41 1.69 1.69 •	 2.24 
1.0 1.88 1.88 3.73 3.73 7.46

1)Program package ,,Nichtlineare Gleichungen" Techn. Univ. Dresden (GDR) 1977. 
2) Wiss. Inf. Techn. Hochsch. Karl-Marx-Stadt 26 (1981). 
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( 
Table .3 (Continuation)  

P0=2

1	2	3	4	5	6 

2.0	1.0	.1.0	1.0	1.0	1.13 
P2	2.0	1.0	1.0	1.31	1.31	1.67 -	

S	 2.0	4.1	-. 4.1	-	8.21	8.21	10.0 

yo 
1	2	4	6	.8	10 

3.0	1.5	1.0	1.0	1.29	1.0 
3.0	1.5	1.0	1.18	1.50	1.0 
3.0	6.52	.	10.0	10.0	10.0	10.0 

Note that a constraint. (here, i = 3): which is not active ( = 0) leads to growing. 
exponents 1u 1 throughout the iteration. This is really a good way to handle such multi-
plier components. The maximum value max, however, is responsible for avoiding 
overflow and underflow effects during the iteration. 
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