Zeitschrift fir Analysis
und ihre Anwendungen °
Bd. 7 (6) 1988, S. 511 —518

An Improved Multi-Parameter Adjustment Algorithm
for Inverse Eigenvalue Problems

B. HoFMANN

Es-wird ein Algorithmus zur Behandlung von Problemen der Mehrparameterregularisierung
vorgestellt und begrindet. Auf der Grundlage von numerischen Experimenten bei einem inver- -
sen Elgen\vertproblem kann eine verbesserte Version des Algorithmus gefunden w erden.

HpennaraeTcn [} mo'ruBupyeTcn anroputm obpabotku mnpobiem \\1noronapa\:e'rpu-{ecwn
peryasapuaanui. Ha ocHoBe BHYMCINTENbHHX 3KCOCPUMEHTOB NpU 0iHOI 06paTHOIl 3azaun
Ha COGCTBCHHLIC 3HAYEHUA BO3MOAHO HANUTH yJjlyuylleHHAs BEPCHH aATOPHTMA.

A multi-parameter adjustment algorithm for regularization is established and motivated.
Based on numerical experiments concerning the solution of an inverse elgenvulue problcm an
improved version of this algorithm can be suggcsted ’

1. Introduction

We are going to consider a discretized inverse problem
Az =z (x€ D= R®, z¢€¢ R ‘ ' ) (1) -

(cf. [2 Chap. 3]). The openaton A: D — R™ will be continuous and in general non-
linear. Moreover, the set D of admissible solutions z of problem (1) is assumed to be
closed and convex. Let 4 = (A4,, 4,, ..., 4;) and’z = (2, 2,, ..., %) denote a pair of -
decompositions of the operator 4 (lescrlbmg the direct problem and of the observa-

tion data vector z, respectively, where 4;: D — R™ are also continuous operators . -

and z; € Rm (1 =1,2,...,k; my + --- + m = m) the associated observation sub-
vecbors We’suppose the discreti/ation error of problem (1) to be negligible in com-
parison with the observation errors §; > 0 according to the data z; (¢ = 1,2, ..., k).

" The model under consideration also applles to control problems. Then 2 is bhe v ector
of desired values which are to be achieved by an appropriate choice of the control
vectorz € D. - .

Using the (llscrepancy principle (cf. e.g. [2, Chap. 4]) for obtaining a regularized
solution to the finite-dimensional problem (1), the optimization problem

minimize Q(z) A . (2)
-z€X§ ' ’ . .
with
X,—{xéD ldx — zill < 6; G =1, 2,.., k)

has. to be solved. Here, £2 desngnates a nonnegative continuous stabllumg functional
on R7, ie., the level sets {x € D: £2(x) < ¢} are compact or empty for all ¢ = 0.
Furthermore, ||-|| is the Euclidean vector norm in finite-dimensional spaces. ‘We assume
X; & 0. Then there is at least one minimizer 2,y of 2 subject to X,. One can show
. that the non-empty set X, of solutions to problem (2) stably depends on the data z.

)



512 B. HoFMANN

Note that for nonlinear operators 4;.a minimizer zyp, of 2 subject to X; is difficult
to compute ina straightforward manner. This is due to the fact that the domain X,
frequently fails to \be convex and connected. For such optimization problems no
advanced direct numerical methods are available. Therefore, we consider the class
of multi-parameter auxiliary problems ' :

minimize F(z, 2} . (2 € R,*) : : : ' (3)
o zeD . . .

with . : '

- -R+k ——“.-n{)‘ .E_—_R!‘.': )'l) LR ;'k g Ol:

F(z,2) = Zk? Aifldir —zlP + ) (A€ R+l‘)-
. . $=1 .

The well-posedness (existence and stability of solutions) of problem (2) carries over
to problem (3) since 2 has stabilizing character. Thus at least oné minimizer z; of
F(., 2) subject to D exists for all 2 € R,*. However, contrary to problem (2) the
advantage of solving (3) numerically lies in the convexity of the domain D.

,

2. The multi- parameter adjustm(,nt algorlthm

In thls section, we w15l1 to study the chances of appronmatmg minimizers Tope ac-

cording to problem (2) be an iteration process exploiting minimizers x; of (3) for
appropriately chosen parameter vectors 2. The values 4; = 0 (i = 1, 2, ..., k) play
the role of Lagrangian multipliers. Obviously,

k-
Lz, 4) = Z' Az —zlk — & 2) + Q)  (eRp

represents the Lagrangian functional of the basnc problem (2). If there is a palr of
vectors (%, 4) € D X R.* such that o

L%, A) S L% 1) < L(x }.) forall zx € D, A€ RJ. y . (4)

then (%, ) is a saddle point of the Lagranglan saddle point problem accordmg to (2).

Hence, & = z7 solves problem (2). ]

Lemma: A couple of vectors (%, A) € DX R+ satzsfzes the inequality (4) if and only
if = x7 is a solution of problem (3), provzded that 2 = A fulfils the requzrements

([|Ax—z||2—6)—0 t=12,...,k) . (5)
and | .’ L ‘ ‘
|m¢—m§6¢/2401@=hzm¢y, (6)
Proof: In view ofAL(x, .) = P(x, 2) — (1,6,2 + -+ + 246;?) the right-hand inequali-
ty of (4) is equivalent to £ = z3. he left-hand mequalxty corresponds to the estl- )

mation -
. k . :
2 A —2)(l4E — 22 =63 20 (A 4 20).
=
This coincides with (5) and (6). Thus the proof is complete |

" For an arbitrary chosen value 4 > 0 the equation (5) may be rewritten equxvalently

" as |
Mwaaw—¢o=0 (i=12..k)
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and '
~ s A& =z

,1‘_,1._6_“__ (zf1,2,.i.,k). ’ : (7).
Based on fbrmula (’7) we ‘can propose an iteration process that yields vectors 2
( =0,1,2,...) approaching zop. Let :

(@m0 = @w)jzor AP = (4D, ..., ). ’ ' (8)

be a sequence of solutions to problem (3) accordmg to the parameter vector sequence
(A9);z0 determined by °

1da® —zfp N f(i=1,2, ...k o -
D = 2 Lo dt.d L ,
max ( e ¢ =012 .. | ®
" where the small value ¢ with 0 < ¢ << 1 and an initial guess 2@ with strictly positive
components 40 >0 (z = 1,2, ..., k) are chosen in an appropriate way. For the -
introduced iteration process we can formulate the following proposition.

Theorem: Provided that there exists a pair of vectors (%, A) € DX R.* such that
|29 — 1|| — 0 and ||x‘l’ — Z|| > 0 as §j — oo, then this pair satisfies the rekmons (5).
and (6), 1.6, T = Zopt zs a solution of problem (2). '

Proof From L(x,u,), ARy < L(x, A9 it follows L( ) < L(z, 1) for ‘all z € D.
Owing to formula (9) we obtain the equation .

i; = A, max (—llA‘x — il
K 3

i.e., either A4, = 0 or ||[4;% — z;| = 6; for all i = 1,2, ..., k. This provides equation
(5). Whenever i; = 0, then there is a monotonically non-increasing subsequence of
positive numbers A" -0 as j, — oo. That means, |42 — 2i||/6; =1 for all
"4,. Consequently, ||4;z — z;|| = ¢; 1f ii= = 0. Hence the requirement (6) is sablsfxed
and the theorem 1s proved 1

,e) (=12 ..k,

Multi- -parameter adjustment a]gorlthm (MPAA)

Step 1: Choose 1 > 0,0 < e 1, ¢ % 0, 4 > 0 and a maximum number Jrnax
of iteration steps. Set j:= 0.

Ste.p 2: Coﬁlpute 2!} {= x;0 by, solving an optimization problem of the form (3).
If § = jmax, then set s, :== = and stop, otherwise compute AU+ accordmg to for-
mula’ (9).

Step 3. If U+ — 20 < e,, then set xa,g =z and stop, otherwise set
j:=47 + tand return to Step 2.

Remark 1: anuc ideas of the algorithm MPAA were already proposed by the author in
(2, p. 97] and in [7]. An advantage of the special kind of Lagrange multiplier estimation sug-
gested above is the immediate availability of the right-hand side of formula (9). Thus, the total
_ amount of computational work for the iteration process is sufficiently small and can essentially
be reduced to the costs of solving the.associated optimization problems (3). Note that a quotient-
. type corrector iteration based on the rlght -hand side of (7) for 4= 1 is also proposed in [6,
p. 149— 157] for spline- problems.

‘ e
R_ema,rk 2: The introduction of a small value ¢ > 0 in formula (9) is of great theoretical
importance for the convergence of the iteration process towards a solution of problem (2).
By introducing such an ¢ > 0 we exclude a situation characterized by 4, =0 (j =7, + 1,

.
33 Analysis Bd. 7, Heft 6 (19888)
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fo + 2,...), 1420 — 2| = 0, but ||4;z) — 2> d; for all j > j,. For practical computations
one can expect, however, that a rapidly decreasing sequence (%*9)jz0 points out a limit Z; = 0.

Remark 3: The algorithm MPAA describes a fixed point iteration possessing the intrinsic
well-known properties of such an iteration type. However, it is very.hard to formulate suffi-
cient conditions for the existence of limit vectors Z and 2 for given initial guesses ). Numerical
experiments show the utility of the algorithm for wide and very different classes of discretized
inverse problems. Nevertheless, it may occur that the iteration converges slowly or fails to
converge, especially if the exponent u is chosen too small or too large. Therefore, an improve-
ment and refinement of the algorithm is required in order to overcome these bad situations. In :

- this context, an adapted choice of the exponent value 4 > 0 plays an important part. It seems”
to be necessary to find ideas for improving the algorithm MPAA from numerical experiments.
Thus it may happen that optimal heuristic strategies somewhat’ depend on the particular
problem under consideration. In the following sections we shall try to find an exponent gontrol
for inverse eigenvalue tasks, ' ' -

.

3. A particular inverse eigenvalue problem

Now we consider an inverse problem of control type which corresponds to the compu-
‘tation of eigénvalues of a quadratic matrix. This inverse eigenvalue problem may be

written in the form of (1) and (2) with k=mand m; =1 (=1,2, ..., k). Here,
the vector z € D := R,* is to be determined so that a nonnegative continuous stabi-
- lizing functional 2 attains its absolute minimum over a set X, of feasible vectors. A

vector x with nonnegative components belongs to X, if and only if the symmetric
"positively semidefinite matrix of dimensionl =k - .

M(a'g) =M, + My + - + 2 M, - (10)

possesses the k largest eigenvalues v (x) = vy(2) = -+ = w(x) = 0 such that [7i(z)
—zf £6; (¢ = 1,2, ..., k). In this context, the vector z ¢ R.* of desired eigenvalue
approximations z, = z, = --- = 2z, = 0 and, the symmetric positively semidefinite
matrices of dimension I, M; (¢ = 1,2, ..., n), are prescribed. The in general nonlinear
operator 4: D — R® — R* (cf. formula (1)) transforms the vector = of multipliers
in (10) into the k largest eigenvalues v;(z) (i = 1, 2, ..., k) of the /ma.trix M(z). Inverse
eigenvalue problems regarding matrices with an additive structure (10) are for
example examined in [5] (see also [1, 3] or [2, p. 55]). The difficulties of our particular ~ v
problem are associated with the numerical solution of the optimization problem (2). In
order to find minimizers of 2 subject to X, the algorithm MPAA of Section 2 and. the
improved version introduced below in Section 4 may be applied. The immediate
reduction of the constrained problem (2) to a problem without or with easy constraints
were desirable since no Lagrange multipliers had to be estimated after that reduction. .
However, all numerical experiments which tried to solve auxiliary problems

k .
minimize {ﬂ 2 max (([v(2) — zi| — 6;)%,0) + Q(x)} ; (11)
zeR," i=1 .
with a penalty parameter f# > 0 have completely failed. The objective function to
be minimimized in (11) tends to get ill-conditioned whenever 8 becomes sufficiently
- large. Thus, minimization routines of Newton or Gauss-Newton type are seldom able
to find satisfactory approximations of the wanted absolute minimum.
In comparison with the algorithm MPAA or its refinements the solution of (11)
requires a many times higher amount of computational work. By our experience the
difficulties mentioned above also occur if a one-parameter family of optimization
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problems . .

: minimize{ max i@ — 2l + a.Q(x)} . (12)

- zeRyr USisk 6 o

is conmdered Using this approach, the regularization parameter & > 0 should be
controlled by the discrepancy principle such that max,<;<, ([v,(x) — z;|/0; ) =1 holds
at the minimum point of (12). Consequently, from the numerical point of view there
‘seems to be no way of avoiding multi-parameter regularization problems (3) when (2)
" is to be solved with small costs. Especially, if £(z) represents a quadratic form with

respect to z, problem (3) for given 2 € R,* may be solved by Levenberg-Marquardt
modlflcatlons to the Gauss-Newton method in an efficient manner.:

S
~

4. The improved algorithm ' ' - - ‘

The algonthm MPAA was tested for efficiency in solvmg the inverse exgenvalue
problem described in Section 3. Numerical . -experience proved that for exponents
1 = u = 2 the iteration process (8), (9) in general converges. It becomes evident that
a constant exponent x > 0 for all residual components throughout the whole itera:
tion is not optimal. If 4 = 1, then the multipliers 4,/ converge to A monotonically.
However, the rate of convergence.is rather small. For u = 2 we obtain an oscillating
iteration, but the geometric mean of two consecutive-iterates A and AY+V fre-
quently provides a good estimate of i. Whenever x4 < 1 or u > 2, the slow conver-
gence or oscillation i8 the more strengthened the smaller or greater, respectively,
the value u becomes.

We can summarize that an nmprovement of \IPAA requires the permanent in-
spection of monotonicity with respect to the multiplier sequences 4,9 (j =4j, — 1,
Jo, Jo + 1) (cf. formula (9)) for fixed u. If there is no monotonicity, i.e., (}.i‘i"“’ — }.;‘i°’) :
X (Ao — 25e—D) < 0, then the iteration should be continued with a smaller ‘value

B = fnew (€.8. Mnew := max (1, ,u/2)) and ).,nc = JAa2,Ue+D, In the monotonicity -

case, (A;Ueth — jli0) (39 — 34e=1) > 0, it seems to be a good heuristic strategy
to enlarge the iteration exponent. Thus we replace u by un.w satisfying the equation

AU = e || A xlie—D — zi”“newlé‘l‘n;",
le., _ ‘ ' ' .
fnew = In (002 00=0)/In ([|Aztie=1) — 2;]|/5;).

This would provide an acceleration of the multiplier iteration. Obviously, the answer
to the monotommty question and consequently the .exponent u = ,u, thus always
depend on 1. :

Improve_d multi-parameter adjustment algorithm (IMPAA):

Step 1 (Inisia,lization) Choose pimax > 1, 1 < pp < Kmaxs & > 0, 4O > 0and a
maximum number 7m,,x of iteration steps Set j:=0.

Step 2 (First iteration step): Compute 2@ := z;@ (cf (3)) and'
A0 = 200 |4 2@ — zfjre[dHe (z = %, 2,...,k).
\

Set 2% := M, pii=pe (1 = 1,2,...,k)and j:= L

33*
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4

Step 3 (Intermedzate stép): Compute 2 := z; (cf. (3)) and set z*:= x‘l’ If
§ = 7,“,, set Tayg i = x“ and stop. Otherwme compute _
AUt .= 28 IIA;SC“ — z,|l"'/6p‘“ (t=12,...,k o o
and set A®:= AU+ If AP — 28| <, then Zaig 1= x* and stop, otherwise set j :=j + 1.

Step 4 (Predictor step): Compuﬁe 2 := zp (cf. (3)) and set 2® := 2D, If § = jpax,
set Xy 1g := 2® and stop. Otherwise compute

) Aic,!__‘-_—: ;qb IIAix"..—.zi||“'/¢'S;"‘ (Z =1, 2,,’0) . - e T

If ||a¢ — 2Y| < ¢, then set Zyg:= a® and stjoi), otherwise continue.
Step5 (Coirector step): For i := 1(1) kdo: If (2, — 2?) (4> — 4#) < O, then set
i=max (1, u;/2yand 2,i+V := V)»-"/"f, otherwise set - i

. In (2;¢]2#) ’ " [|4;2® — z;||
- , = o 14 — &l
#4i= min (“"’“" oz —zj5)) - A

endfor

Step 6 (Return step) If ||/.‘7+” — 20| = g, then zqg:= a® and stop, otherwnse
. set /®:= AU+D, j:= j 4 1 and return to Stcp 3.

6. Computational réshlts

We complete the paper with a comparison of the efficiency of the algomthm MPAA
versus IMPAA applied to the inverse eigenvalue problem descnbed in Section 3.
'Assume k=n=1=3,2-)=|-|?and

4 20 -2 : 4 2 1 110
My=(0 3 -1}, M={(22 0], M=|131
' 2 —1 3 ' 1 0 1 \0 1 2

Moreover, let z = (11.359. .., 7.0, 2.641...) be the vector of eigenvalues »; ( = ‘1 2,3) .
to the matrix M = M, + M2 + M, and 6, = 0.2, §, = 04, 63 = 1.0. The problem
under consideration , :
minimize ][ o ' .13
Z€{EER+'€|V1(§)—21|561 (1=12,3)} . L.
(cf. (10)) has a unique solution z,, = (0.945..., 1.175..., 0.715...) with [vi(Zopt) — 2]
= 0.2, |vp(xopt) — 23| = 0.4 and ¥a(Zopt) — 23| = 0.403... There is also a uniquely
det,errmned multiplier vector 2 = 4 = (1.060..., 0.151..., 0) such that the solution z;:
of . :
P
minimize {Z) [vi(z) — 2; |2 +4- ||x||2} (14)
z€R,? i=1 )

" coincides with 4. Now choose 2@ = (1,1, 1), jmax = 30, ¢ = 10716, ¢, = 1074 and
#max = 10 in order to apply the algonthms MPAA and IMPAA for vanous values 4

and u,, respectively.
All the optimization problems (14) were solved on a 'ROBOTRON EC 1056 com-
puter using the globally convergernit derivative-free Gauss-Newton methods imple-
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mented by the program DNLQ?) i in form of the FORTRAN program REGN LG?). The

" required eigenvalues were computed by EISPACK routines (see [4]). A characteristic
measure for the amount of computational work is the number of exgenvalue routine
calls.

Table 1 provndes the results of MPAA. The given number of lterat,lon steps j and
of. EISPACK 'calls is required for computing 1 with an ¢, precision. The achieved

‘approximation of Zop and of the associated eigenvalues is in general still somewhat
- better.

Table 1: Results of MPAA

\ o n Lot 05 10 15 20 30
j |30 - 24 10 13 30 30
Calls fail 356 184 194 fail fail

For u = 0.5 and ¢ = 2.0 more than ju,, = 30 iteration steps are requifed to complete
the iteration. On the other hand, for u = ‘3 the iteration completely fails due to an
extreme oscillation of the iterates.

Table 2 shows the cost reduction of the improved version IMPAA in dependence '
on .

" Table 2: Results of IMPAA

we | 10 - 15 20 - 25 3.0 50 .
i 6 6 - 6 ‘s 10 30
“Calls 120 113 109 137 157 fail

In order to avoid overestimating of u; during the starting phase of the iteration pro-
cess, the initial guess o = 1 may bé recommended as a safe version. However, as
Table 2 shows, IMPAA is not sensitive with respect to greater values y, if.these
values are not too large (cf. uo = 5). Also, if IMPAA begins with a non- monotomc
strating phase (zo = 2, uo = 3), the results are fairly satisfactory.

Finally, in Table 3 we glve an survey of the behaviour of u; in IMPAA, Thus the
monotomclty behavnour of the iteration can be studled in deta.ll

Tn.ble 3: The development of iteration exponents in I\IPAA

po=1 '

i 1 2 3 4 5 6
2 1.0 1.31 1.31 1.52 1.52 1.0
P 1.0 141 - 141 1.69 169 224
s 1.0 1.88 1.88 3.73 373 7.46

1) Program package ,,Nichtlineare Gleichungen*'* Techn. Univ. Dresden (GDR) 1977.
3) Wiss. Inf. Techn. Hochsch. Karl-Marx-Stadt 26 (1981).
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¢

Table 3 (Continuation)

. o =2 - .
j 1 2 3 4 5 6
wo . |20 1.0 L 1.0- 1.0 L0, 113
pe |20 10 10 131 1.31 1.67
N 20, 41 - 41 821 8.21 10.0
Mo =3 :
j T 2 4 6 8 10
w30 15 10 - 10 - 129 1.0
P 3.0 1.5 L0 118 150 1.0
iy 3.0 652 . 10.0 10.0 00 <100

’

Note that a constraint: (here, ¢ = 3). which is not active (i, = 0) leads to growing.

exponents u; throughout the iteration. This is really a good way to handle such multi-
plier components. The maximum value pn.x, however, is responsible for avoiding
overflow and underflow effects durmg the iteration. ) :
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