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_ Interpretation of Variations of the Earth’s Vector
of Rotation Using Inverse Solution?)

H. JocHMANN

Globale geophysikalische Prozesse verursachen Variationen des Rotationsvektors der Erde.
Liegen nur geringe Informationen iiber diese Prozesse vor, empfiehlt es sich, die Lésung der
_Euler-Liouville-Gleichungen als inverses Problem zu behandeln. Auf diese Weise konnte
erstmnllg eine globale Meeresspiegelschwankung zwischen der Nord- und der Siidhalbkugel
der Erde, mit 4- bis 5jahriger Periode, nachgewxesen werden. :

I‘noGaanue reodu3iyecKne MPOLECCH BHI3BIBAIOT BApHUALMKM BEKTOpA ChOpOCTH BpalleHUA
3emmit. PemaloTca ypaBHeHus Sftiepa-JInyBuiia kak o6paTHbie '3ajauyM OTHOCHTEJIBHO
NapaMeTpPoB ONMCLIBAIILMX 3TH mpouecch. Takofl MOAXox: 0cOOeHHO PeKOoMeHIYeTcsa npi

© He3HAYHTENbHOI crenenv nudopmanuu. 06 atuxX mapamerpob. Tawknm- o6pasom ynasoch
BrepBLIe A0KA3ATH J100ajbHbie KO0J1e6aHHA yPOBHA OKEAHOB MEMKAY CeBEpHLIM I IOMHBIM
nojyuapamMu 3emin ¢ nepitofoM B 4—5 Jer.

Global geophysical processes cause variations of the Earth’s vector of rotation. If only. llttle

+ information on these processes is available, it is suitable to consider the solution of the Euler-
_Liouville equations as an inverse-problem. A global oscillation of the sea level (with a 4—5
_years period) between the north and the south hemisphere of the Earth could be proved in
this way for the first time. . .

1. Fundamental relations

i

As is known from theoretlca.l mechanics, the rotation of a rigid body is descrlbed by
Euler’s equatlon

Trexw=L

in an. earth-fixed coordinate system, where H_is the angular momentum w is the :
vector of rotation and L is an external torque. Since the Earth cannot assumed to be
a rigid body in a rigorous physical sense, equation (1) must be slightly modified
considering a small deviation from the rlgxd body rotation. This is obtamed by intro-
ducmg the expressmn :

H=lw +h ' . (2)
for the angular momenbum in equation (1), where the inertia tensor | and the relative
ahgular momentum h are variable with time. The temporal variations of theése quan--

‘tities are caused by mass motions on Earth Substituting (2) into (1) we obtam the
Euler-Liouville equation

’

Lo+ oxi+m=t | 3)

)

" 1) This paper is also registered as 'Mitt.'Zenlralinst. Phys. Erde (Potsdam, GDR) Nr. 1646.
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/- . N
which governs the rotation of a deformable body. For the description of the variation
of the vector of rotation, an earth-fixed coordinate system is chosen with axes oriented
along the principal axes of inertia. The z;-axis of this coordinate system is oriented
along the mean position of that axis of inertia which coincides nearly with the vector |
of rotation. The z,- and x,-axes are oriented perpendicular to the x3-axis and to each
other. The x,- and z,-axes are situated in the equator plane. In this coordinate system
the inertia tensor is given by the matrix

. S A+ Ci © Cia g A T e ‘A L e
SRR E A I P N ’ @) -
C13 " Co3 . C 4 cg ’ o

where 4 and C are the principal moments of inertia, ¢ii (1 = 1,2, 3) denote the tem-
porally variable parts of the moments of inertia and ¢;; (4,7 = 1,2, 3; ¢ < ) are the
temporally variable products of inertia. The temporal variability of these quantities
depends on variations of thc mass geometry caused by geophysical processes or
. variations of the centrifugal force owing to relative changes of the vector of rotation _
in the earth-fixed coordinate system. The components of the inertia tensor are calcu-
lated according to

Cii= f@(xkxl;‘sii —z;) dV, . . ‘ . (5)
v : .

where ¢ is the density of a volume element &V of the Earth and d;; the well-known .
Kronecker symbol. For the diagonal components the time-dependent parts are -
obtained by subtracting the principal moments of inertia 4 or C, respectively, from |
equation (5). The relative angular momentum is obtained according to '

h=[o(rxv)dv, S , (6)
|4 ’ ' ; :

where v is the velocity of mass motion. Subsequently the quantities ¢y, ¢;; and h
can be considered as small values, because the rotation of the Earth deviates only
little from the rotation of a rigid body. Therefore the products and square of these .
quantities will be omitted in the following considerations. In the subsequent discus-
sions we will notice that the excursions from a uniform rotation of the Earth are small.
- Therefore we can write for the vector of rotation ' /

W = wo(my, myy 1 +.mg)T, S IR

where wy, is the mean value of the rotational velocity, m, and m, are the temporally
variable pole coordinates and m; = —(4 l.o.d.)/Lo.d. (lLo.d. = length of day) is the
negative value of the relative length of day (m,, m,, and m; are obtained from astro- .
nomical observations and are published by the. International Polar Motion Service
(Mizusawa, Japan) and the Bureau International de I’Heure (Paris)). To get a more
compact form of the differential equations, usually the complex quantities

Cm=my fimy, ¢ =y F iy, - b= hy + ik, L=L1+¥‘z

are introduced in the evaluation of the differential equations. Here k,, k, and.L,; L,
are the components of the relative angular momentum and the external torques.
along the coordinate axes x, and z,. Substituting (4), (6), and (7) into (3), we obtain
two differential equations representing the relations between the quantities c,;, Caa,

{
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- by, hy and polar motion and between cg3, k3 and the relative length of day:

d .
% + am = iocu(m — v), my = y3 + Co- : )

" The complex differential e(iuablon in (8) describes polar motion and the second equa-
tion, which follows from the solution of a differential equation in a stranghtfor“ ard
way, describes the variation of the Iength of day In (8) y and ys,

_., _ 1 dx __°c __h -1
Y=rT d PT 0404w
17 A
and %:_%2—%;0" (9

are the excnta.tnon functxons of the variations of polar motion and the length of day.
-In (9) the extemal torques were deleted; because they are out of the scope of the fol-
lowing discussions. Equations (8) describe polar motion and the variation of the length
of day in linear approximation. The deformation caused by back reactions to polar .
motion is contained in the values of the parameters of the differential equation in (8)

ocy = 2nfy := 2n/1.19, « = 0.05.

_ ocy is the circular frequency (given in cycles per year) of the free polar motion, the
so-called Chandler wobble, and « is the damping parameter (given in units per year).
They are obtained. from the homogeneous solution of the first equation in (8),
. considering an excitation function depending linearly on the polar motion m. In this
excitation function the influence of the visco-elasticity of the Earth’s mantle, the’
influence of the fluid core, and the pole tides of the ocean must be taken into account.
We shall not discuss these problems in detail and refer to the monographs of Mo~k
and MACDONALD [8] and LAMBECK [6]

2, Solutions of the eqﬁations df rotational motion

" The equations (8) are the basic relatlons for the mvest,lga.tlon of geophysical processes
which' influence the Earth’s rotation by mass motion. It is obvious that there exist a
. large number of geophysical processes which excite variations of polar motion and
the length of day. Mass motions in the atmosphere, the hydrosphere, the Earth’s
crust and mantle, and the fluid core should be mentioned. A first hint on the source
of a certain component of the excitation function is its time scale. Processes containing
short-period, (periods essentially shorter than 10 years) mass motions are located in
the atmosphere or hydrosphere, while longperiod motions (up to thousands of
years) must be attributed to processes in the more solid layers of the Earth. This
situation induces us to investigate our problem in the frequency domain.
. Applying the Fourier transformation on equations (8) we obtain

m) = E 10wh0, m) = T w0,

==

where w(/, -) and y4(f; -) are the perlodJc constituents of the excitation functions and

I{f) = ((1 — flfo)® + 1/4Q2) 11 — f//o — i/2Q) is the frequency dependent transfer = -

function. Here f, = ocy/2n = 0.84 is the Chandler frequency, @ = nfy/a = 50 is the
quality factor and f the frequency of a periodic constituent of the excitation function.
The frequencies in previous formulae and in the subsequent discussions are given in
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cycles per year. In case of geophysical interpretation of the Earth’s rotation generally
certain periodic.constituents of the excmation function are investigated, thus in the
following the reduced formulae

mif, t) = N plf, ) and  mgf, ) = polf, 1) *

are applied. These equat;ions govern the direct solution. The inverse solution is given

by ’ .
p(fst) = I mif,8),  wolf, t) = my(f, 8). : (10)

.Further we mention input- output analysis, which can be considered as a particular”

inverse solution. This is governed by the equation

I =m(f, ) pift) - or () = y(f, 1) mNf, 0).

The direct solution has been successfully applied to the investigation of atmospheric
excitations (see e.g. [1, 3, 4]). The possibility of the nearly exact calculation of an
annual-periodic excitation function, using meteorological data, allows the determina-
tion of the transfer function by input-output analysis. The i inverse solution seems to
be a useful tool for the investigation of global geophysical processes on which little
information is available. From equations (10) it follows that it is easy to derive the
periodic constituents of the;excitation function from the corresponding constituents
of the variations of polar motion and the length of day, provided that the transfer
. function is known. But, we must consider that the excitation function consists of
integrals to be taken through the whole Earth, which contain unknown solution func-
tions depending on the geophysical process to be investigated.

2.1 The excitation function. The excitation function consists of integrals which rep-
resent the geometric and dynamic effects of mass motions. In all that follows, long-
period variations will'be discussed. Hence. it is allowed to neglect the dynamical
effect of mass motion. Therefore the relative angular momentum and the temporal
derivatives of the products of inertia in equations (9) can be deleted and the excita-
tion functions reduce to p = ¢/(C — 4) and 3 = —cg3/C. Introducing spherical
coordinates (¢, 4, 7) in (5), we obtain these equations in the following notation:

nf2 25
.4 .
W = —5 a - D(@, 7, t) sin ¢ cos? g exp (i2) dp d2 (11)
g=—af2 1=0 . ' ’
-and : X
xf2 an . .
. a4 . . .
. '/’3(‘) = —E D(‘P: )) t) cos? (pd(p’d)" : (12)
p=—nf2 A=0 . ’
where
: R+h . .
_ 1 ) . , : :
Dip, 2,t) = F'f ™ol@, 4,7, 1) — ool@, 4, 7)) dr. (13) -
r=R .

Here the parameter a is the mean radius of the Eart,h and R is the radius of a layer’
of the Earth in which the supposed geophysical process takes place; in (13) mass
motion is described by temporal density variations with respect to a mean.density .
o- In equations (11), (12) and (13) f was not introduced, because in these formulae
and all that follows we discuss excitation functions consmbmg of one constituent only
with a constant frequency. The calculation of (13) requires that the mass conserva-

tion law is satisfied. Hence we must add a correction dg(t) to the density variations in -

i
i
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(13) which must fulfil the condition

a2 2z R+h ) )
J T | (el ‘) - 0olps A, 7)) P cospdp didr -
p=—nl2 =0 r=R . .
nf2 2n R+h .

.—{—Ao(t) f f fr2cos<pd<pd/dr—0

n=—x/2 150 r=R

If we substltute the equations (10) into the left hand stdes of (11) and (12), we obtain
the integral equations governing the inverse solution; D(g, 4, t) is the solution func-
tion to be determined.
2.2 A geometrical property of the excitation function of polar motion. In this sub:
section we shall consider a property of (f, ) which can be used to find a.suitable
ansatz for the solution function D(g, 4, t). Tf the axes of the earth-fixed coordinate
system are oriented along the axes of the principal moments’ of inertia, the mertla/
tensor becomes .

AOO - | o
r={o A4 o}. . o L (14

o o0 ¢C

If the -axes of plincipal inertia deviate-from the axes of the earth-fixed coordinate
system, we obtain the correspondmg inertia tensor by appplying the tensor trans-
formation . ,

—RIRL . T (15)

The structure of the inertia tensor will be, after the transformation, the same as the

structure of the inertia tensor accordmg to (4). Because the deviation between the

_ principal axes of inertia and the axes of the coordinate system will be small, we can
use a snmphfxed version of the transformatlon matrix '

. 1 ’ 0o - m .
R = 0 1 my' |, S R (16)
’ —m,’ —my’ 1 o 2

“where the components m,’ and m,’ can be considered as motions of the pole of inertia.
Substituting (14), (16) and (4) into (15), the following relations between the compo-
nents of the excitation funct;on and the components of the transformation matrix

C13 Coz -
Cc -4 C —4
the excitation furiction of polar motion can be-inter pleted as a motion of the pole
of inertia (figure axis) of the Earth. '

A periodic constituent of the excntatlon functmn of polar motion can be written in
the form -

= m,’. From this it follows that

" are obtained: Y, = "= m,’ and y, =

(). = 4,, cos 2nft + A,, sin'2n/t + (A, cos 2nft + A,y sin 2nft)
= wiosin (2nft + 31) + iyno sin (22t + a), |

which’ corresponds to an elliptical motnon of the pole of inertia. The semi-axes of thls
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ellipsé are obtained according to

a 1 . ‘
b} = 2 ( nt A12 + A n + A 22 + 2(A11A22 - 4211112))1/.2

1 , .
{:{:— (Afl + b+ Agi + 4% — 24,4, —~A21A12))1/2- - (17)

For many types of excitation functions the elllptlcal motlon reduces to a lmear___
-motion.” From (17) it follows that thls requires the condition

Aydy — A21A12 = 0, : - ' (18)
“ which is equivalent to :

1 =72 or . Vi = ye + 7. . i . (19)

From (11) it follows that the solution function D(gp, 4, t) must have invariable phase
angles v to fulfil the conditions (18) and (19) for an excitation function. The quantities
4;; in the above-mentioned. formulae are constant coefficients that are obtained
by harmonic analyses of the time series of pole coordinates-and length of day, respec-
" tively.

. 3. The inverse solution

Accordmg to (10) we obta.m from the periodic constltuents of polar motion and the
length of day the corresponding excitation functions in the notation

y(t) = 4,, cos 2nﬂ + A, sin 2nft + (A, cos 2nft + Ay, sin 2n/t),
t,ua(t) = Aj, cos 2njt + Aj, sin 2n/t

If these expressions are substituted into (11) and (12), a system of six mt,egral equa-
tions is got from which the solution functlon D(p, 2, t) must be derived. Generally,
‘the solution function becomes

Dip. 2, 1) = Dolg, 2) sin (27t + y(p, 2)).

From the system of integral equations we obtain a number of equivalent solutions
and it is impossible to find a correct solution without additional physical information.
The solution of the system of integral equations can be simplified for excitation func-
tions represented by a linear motion of the pole of inertia. This restriction is justified,
because by numerical investigations it is found that a large number of periodic con-
stituents of polar'motion are caused by linear motions of the pole of inertia. It can be -
supposed that only this type of excitation is caused by merely one global geophysical -
process. Excitation functions corresponding to an elliptical motion of: the pole of
inertia are caused by a combination of several global geophysical processes. The
linear motion of the pole of inertia corresponds to the excitation function

p(t) = (10 + iyzo) Sin (27‘ﬂ +7) w3(t) = yyo sin 2”/‘ + ¥).
The solutlon function becomes D(g, 2, t) = Dy(g, /) sin (27z/t + 9) and the system of
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integral equations reduces to

;

»f2 2n -
4
Yr0 + 1y = _Ca Y f 'fDo(qa, 2) sin @ cos? p exp (i) de d2,
’ p=-—naf2 1=0 . ' )
\ =[2 2% , ’ (20)

a4
Y0 = -z f f Dy, 2) cos3 (pd(p di.

¢=—nf2 1=0 :

This is a system of three integral equations determining the spatially variable ampli- -
‘tude of the solution function. The phase angle of the solution functlon is the same as
the phase angle of the excitation function. . ~

An ansatz for Dy(p, 2). Since Dy(p, 4) describes the distribution of 'variable amplitu-
des of time-dependent densities on a spherical surface, it is obvious to approximate

it by a series of spherxca.l harmonics .
F((p, 2) = Z‘ Z (@nm COS MA + bppy sin mAY Ppa(sin @). - (21)

n=0 -m=0

The coefficients of this series should be estimated according to presumed distributions.
of spatially variable -amplitudes. For instance, the surface of the Earth could be
divided into areas where the density varies (F(g, 2) = 1 or F(p, 2) = —1) and others
without density variations (F(q),)) = O) Using (21), we introduce in (20) the ansatz
Dy(p, 2) = =F(p,2), where x is a constant. By solving the integrals (20), three values.
%,, %y, and x; are obtained which must be equal if the coefficients of the function
F(g, %) are correctly determined. From x, == x, it follows that the tesseral spherical

harmonics are mcorrectly estimated. If the condition %, = », = », is not fulfilled, the
distribution of values at the surface of the Earth must be _changed until equality be-
tween the three values = is obtained.

" 4. The determination of global sea level chahges by inverse solution

From pole coordinates published in [9] an amplitude spectrum of polar motion was
calculated. The corresponding spectrum of the excitation function was calculated

_harmonics are incorrect, x; = x; 3= %3 means that coefficients of the zonal spherical. . .

from the spectrum of polar motion according to (10). This was transformed into -

spectra of both semi-axes of the elliptical path of the moving pole of inertia (Fig. 1).
From these spectra it was found that there exists a constituent of the excitation
function with a four years perlod which is represented by a linear motion of the pole «
of inertia. We supposed that this excitation function could be caused by global sea
level changes and calculated the solution function Do, /1) accoulmg to the supp051-
tions
7 . . at the continents,
(p,.4) = {sign (p).1 . at the oceans.

By. this supposmon the mass conservation law is sufficiently satisfied. From the
complex integral equation of (20) we obtained two values ». In case of equality of
. these values we confirmed the result by calculating the integral equation for varia-
tions of the length of day. This result must be in accordance with the corresponding”

3
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Fig. 1 Amphtude spectra of the semi-axes (a and’ b) of the excitation functlons
derived from polar motion. The dashed line denotes the standard deviation of the
amphtudes ) . N

perlodlc constituent of the amplitude spectrum of the variations of the length of
day. A relation between sea level changes and the solution function is obtamed from
(13).

a+ dh(@.A,0) . ) .
D(qa, At =%% f A dr ~ p,dh(p, 2, t), - - (22)
r=a

w._here ow is the density of sea water.

4.1 Numerical -results. From the calculation of‘theva,m'phtude spectrum of the semi-major
‘axes of the excitation function of polar motion (Fig. 1) the followmg quantities for a four-
years pcnod were obtained:

Yo = —3.020- 108 rad and wy, = —3.040-10-8rad.

The, correspondmg quantities in KFig. 1—3 are denot,ed by -arrow heads Introducing these
quantltnes into the first equation of (20); we got by numerical integration for the real and the
imaginary part

B0 — _0.181-10%rad and 20— _0.154.10-%rad. ’

B Xy ) )
These quantities were compared and the values x, — 16.68 and %, = 19.74 obtained. They
.agree sufficiently and we introduced into the following calculations the mean value x = 18.2.
Insgerting this value together with F(p, 4) into the integral equation for the excitation func-
“tion of the length of day, we got ;0 = 3.5 - 10-'°. From the amplitude spectrum of the length
of day results gy, = 7.0 - 1071 for the amplitude of the four-years term. These quantities
agree sufficiently if we take into account that. the value derived from astronomical observa-
tions has a standard deviation 0,3, = 4.5 10-1°, These results show that the model of a north
to south oscillating mass motion on ocean areas works well. Inserting the density of sea water
ow = 1025 kg/m3, we find the amplitude 4k = 1.8 cm .of sea level variations according to
(22). Considering the different surfaces covered by oceans on the north and the south hemi-
sphere of the Earth, we obtain

Ah,’= 2.0 cm on the north hemisphere, g
Akg = 1.6 cm on the south hemisphere.
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Fig.’2 Amplitude spectrum of the relative length of day. The dashed line denotes
the standard deviation of the amplitudes.
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’Fig. 3 Amplitude spectra of sea level changes. The dashed lines denote the standard -
deviations of the amplitudes. :

/l

Another suggéstion is that only the ocean areas bounded by the Asian east coast and the Ameri-
can west coast and by the American east coast and the west coasts of Europe and Africa take
part in sea level oscillations. From this follows an equal amplitude 42 = 1.8 ¢cm on both hemi-
spheres. : .
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4.2 Comparison with sea level observations. To confirm the hypothesis of & north to south
sea level oscillation, we must compare the results obtained from variations of the vector of
rotation with direct sea level observations. In [2] time series of sea level changes dt different
coast lines were published. The amplitude spectra of these time series are exhibited in Figure 3.

The observations at the west coast of North America can be considered as the most accurate .

_ ones, because these stations lic at the boundary of the largest free ocean area. But, most of the
observations at other coast lines also confirm the hypothesis of 4 —5 years sea level oscillations
between the north and the south hemisphere of the Earth. Considering the amplitudes and

" periods in Table 1, no objections to the investigated hypothesis can be found.
v i v

. Table 1: Sca levcl ciu-mges ‘with ad—5 years period -

-

Results obtained from . dhem - ‘period a ~
" variations of the Ahy = 2.0 4+ 0.5 4.0 + 0.2

vector of rotation . Adhg =164 0.5 )

west coast of ‘ © 1.6 4+ 0.6 . 52405

North America“

west coast of Central 1.1 4+ 0.8 5.0 ;t 0.8
and South America : -

ez\lst coast of America 0.7 :t 0.6 . 4.8 + 09

N 7

The obtained results show that the variations of polar motion and the length of day could
(serve as a means to detect global properties of geophysical processcs. Polar motion can be
applied to detect meridional mass motions, while the variations of the length of day correspond
“mainly to zonal mass motions. The demonstrated example shows that the variations of polar.

motion and the length of day allow to decide whether a locally observed property is a global
one, provided that the property influences the variations of the vector of rotation in an earth-
' flxed coordinate system

'

' Acknowledgement 1 thank Professor Anger for many useful discussions on inverse .
solution which helped me to apply thls method to problems of the rotation of the
. Earth. . .
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Das Buch ist einem sich intensiv entwickelnden Gebiet der Analysis, und zwar der Theorie
der Raume differenzierbarer Funktionen, gewidmet. In ihm werden von einem einheitlichen
Gesichtspunkt aus, dessen Mitbegrinder H. Triebel ist, Funktionenrdume betrachtet, die die '
Sobolev-, Besov- und Bessel-Potential- Klassen, Riaume mit dommlerender gemlschter Ab-
leitung und andere umfassen.

Das Buch enthilt sechs Kapitel. Im ersten Kapitel werden die Ra.ume L «(R%) der in R"®
ganzen analyhschen Funktionen vom Exponentialtyp untersucht, deren Fourler Transfor-
mierte einen Triger im Kompakt £ C R*® besitzen. Der Raum LO W(R™) wird mit der Norm
II- ||L LR ausgestattet, wobei p ein Borelsches Mall in IR? ist. Es werden sowohl der quasi-
normlerte Fall fir 0 < p < 1 als auch. der Fall gemischter Quasinormen mit p = (p,, ..., P,),
0 < py; ..., py S 00, untersucht. Die Klassen Lg «(R") und einige ihrer Vemllgememerungen
. spielen im Buch eine besondere Rolle. Mit |hrer l{llfe werden die in den folgenden Kapiteln
betrachteten Funktionenriume definiert und untersucht. Dadurch erkliart sich wahrschein-
lich die recht ausfithrliche Analyse der Klassen L,‘,J,“(]R"). Das Hauptinstrument ist die Fourier-
Transformierte langsam wachsender Distributionen und der Distributionen, die im Schwarz-
Raum mit exponentiellem Gewicht definiert sind. Fir die Elemente der Rdaume L,‘,"“(IR")
werden insbesondere Ungleichungen fiir die Hardy-Littlewood-Maximalfunktion und Sitze
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