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On the Identification of the Adiabatic Equation -
of State in Compressible Gas Flow

E. KLEINE . " . e ' .

Es wird das i inverse Problem der Bestimmung des Koeffmenten in der leferentmlglelchung
V(e V@) = 0, ¢ = o(|Vg|) betrachtet. Die zugrunde liegende Idee wird am Beispiel der Gas-
dynamik erldutert. Bei geeigneter Formulierung des Problems findet sich cine explizite Losung.

PaccmatpuBaerca ofpaTHaa 3amaya onpefesteHus -koapduumenta B nuddepenunanbHoM

ypastenun V(oVp) = 0, o = o(|Ve|). OctoBHaA unes 06BACHACTCA HA NPUKIAAHOM npuMepe

n3 razosoft nunamuku. Ilokasauo, KaK npu noaxonauei GopMyInpoBKe NPoGIeMBH MOMHO
. uam'u meoe peiuenue. ) ) . . N

)

The inverse problem of determining the coefficient in the differential equation V(g Vg) = 0,
0 = p(|Ve]) is considered. The underlying idea is demonstrated by a consideration of gas dy-
namics. An appropriate formulation of the problem yields an explicit solution.

1. Introduction. Con51der a compressnble gas in steady (i.e. tlme-mdependent) two-

dimensional irrotational homentropic flow. See e.g. [1, 3]. Let u, v be the z, y velocity

components. Set, as usual, ¢ = (u? 4 v2)1/2 and- denote pressure and densntv by p

and g, respectlvely The equatlons govermng the above flow are
A(ov) : ‘_aﬁ S

dlow)
—_— —_— P 0
ox + dy 0, oy ox g

-

the equatlon of continuity and that f6r the absence of vortlclty, respectlvely For
homentropic flows the equation of state, see [3], reads :

'p—F(e) : ~ T @,

The functlon F (mcreasmg) ¢haracterizes the behaviour of compressxblllty of the
considered gas. Next, for homentropic steady 1rrotatlonal flow the Bernoulli equatlon

2q2+f——const ’ N ' : ’ (3)’

" holds throughout the region of flow (3], provided the gas is subject to no extraneous
force, e.g. gravity. By (2), (3) a relation bebween' speed and density

=6 - : (4)
is established, where G is decreasing. ‘

Frequently the equation of state is assumed to be t.hat of -an 1deal .gas, namely
(wnth a proper choice of units) .

\

p =0 , | S : ()
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where y is a constant larger than umty, usually y = 1.4 for air. Then (4) becomes,
. see[3], .
Y -

0= (qgnax - qz)'l/(y—l)' 4 ’ L ) . (6)

where ¢pax is the maximum pdssible speed, the so-called escape velocity, which is

attained when the gas flows into vacuum. In this paper (5), (6) are dropped. Instead,
‘the consideration aims at the identification of (4) by the use of appropriate observa-
tion, i.e. measurement of the gas flow on hand.

The.forthcoming -consideration-deals with- subsonic gas flows only. The gas’equa-
_ tion (4), although yet unknown in detail, is mildly decreasing. The mass flux pq as

function of. the speed ¢ is increasing for small ¢, and decreasmg for large ¢. (Even-
tually it approaches zero at the escape velocity guay.) There is a critical speed for
which the mass flux attains a maximum value. The flow is said to be subsonic if the
gas speed is below this critical value everywhere in the flow region.

Consider again, for exnmple state equation (6). If ¢ = 1 for ¢ = 0, then ¢2,, = 2y/(y — 1)
and. (6) becomes o = (1 — (y — 1)/2y q’)‘”’—” As may .be easily checked,. for the critical
speed we have g, = 2y/ l + 9). ) i

2 Statement of the problem. Equatlons (1) give rise to the stream function ¥ and.

the potential ¢, respecblvely

ow Cew . e g
=gy =Ty A uw=gn s v=g
. . )
Thus (1) give the system :
/ : . ,
' Y’y, . epy =.—¥,. : . Co (7

Now conmder a particular flow, i.e. boundary value problem for (6) We investigate

the efflux of a plane jet from an aperture in a vessel bounded by semi-infinite straight
vertical walls, as in,Fig. 1, assummg the flow to- be symmetnc with respect to the
Z-axis. :

- yh

XY

Fig. 1 Fig. 2.

_ To characterize the unknoWn'shape of the free ﬂow'boimdary we need additional
information. Following Helmholtz and Kirchhoff, the gas speed has constant value
along the free boundary. Assume the flux of matter (per unit of time) t.o be 7. Thus
the boundary values are, see e.g. [2], »

on the upper line segment and

y_
T 2 - on the upper free stream line,
o on the lower line segment and ' : ' o Y(8)
=9 on the lower free stream line, - '

= const =:¢, on the free stream lines. . J

-)‘_," ' L
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_ This free boundary value problem is a problem of mapping the region of flow (bound-
ed by the impermeable walls and the free stream boundaries) onto the parallel strip
—00 < ¢ < +o00, —7/2 < ¥ < /2. The determination of the free flow boundary
is, of course, part of the problem. For existence and uniqueness see [3]. We want to
use this particular solution to determine (4). To this end additional data, e.g. from -
measurement, are needed. In particular it is sensible to observe the gas speed on the
vertical walls inside the vessel. This will become obvious in the'next section.
~ Apart from the boundary value Problem 1 made up by Fig. 1 and (8),. different
flow problems may be useful as well. Consider the infinite cavity occuring when a
steady plane infinite stream in the horizontal direction impinges on a fixed vertical
line segment. We again imagine the flow to be symmetric with respect to the z-axis.

: See Figure 2. o ) . : '

At the obstacle the stream line on the negative z-axis, say ¥ = 0, is split into an
upper and lower branch. Hence the boundary values are, see [2], .

¥Y=0 everywhere on the boundary of the flow
region enclosing the -cavity behind the ‘ .
obstacle, i.e. on the vertical wall and on _ : 9)
the free stream boundaries;

.q = const =:qq on the free stream boundaries.

v

v

At the origih of coordinates g vanishes. Let there ¢ = 0. For the corresponding mapp-
ing problem the image of the domain of flux is the entire potential plane cut along
the non-negative p-axis —oo < @, ¥ < +o00, |%] + lg! — @ > 0. For the treatment

I3

of the free boundary value Problem 2, which consists of Fig. 2 and (9), see [2]. To
identify the relation (4) we agdin may observe the gas speed on the surface of the
vertical obstacle. ‘ ' .
As pointed out in [2], the presented model performs-quite well as a description of
cavity phenomena, whereas it is a poor account of wakes. Hence the observations

needed should be done for cavities rather than wakes.

3. 'I‘reétment.df the free boundary value problems.’ The appropriate method to treat
Problems 1 and 2 is. hodograph transformation, since for both 1 and 2 the hodograph,
i.e. the domain covered by u, —v in the velocity plane, is a semidisk, see [1—3].

Fig. 3

. :
The vertical segment of the hodograph-semidisk corresponds to the rigid wall, and
‘the circular arc corresponds to the free boundaries in the plane of flow. The radius of -
the semicircle is the maximum gas speed attained at the free stream boundaries.
- Assume that these values g, for Experiment 1 and 2 coincide. The density is constant
" on cireular arcs around the origin. Its maximum value occurs at the origin ¢ = 0, its
minimum value for ¢ = go. It.is useful to introduce polar coordinates in the velocity
_plane: ¢ = (u® + v?)U2 and & = arctan (v/u). Transforming (7) to hodograph coor-
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A dinates g, & gives [1,3]
: p (1) ) - , L
= qg—=—\{—]¥s, == Y. 10
0= g \) T e ” (10)

For subsonic gas flows this syster is elliptic. To get a syst,em more suntable for
mvesmgatnon we substitute ¢ by » accordmg to ‘

.r o .dq_ .q

1 d(go) d
That is » = expf l (qo) q 7(go) = 1. So we arrive at

m=——m,rw—wg o I (12)

where

* Now the hodograph in the plane with polar coordinates r, 9 is a unit-semidisk, The

transformation ¢ to r is a distortion of the semidisk on polar rays only, whereas the.

polar angles remain the same. The boundary conditions for the system (12) are for

Problem 1: . Y= E on the upper boundary —8 > 0,
Y= —% on t-he lower boundary —& < 0,.
l’yo'blem 2: ¥ = 0 on all the boundary.

.The point is that the system (12) is invariant with respect to conformal transforma-
tions of the independent coordinates, as may easily be checked. Introduce the com-
plex notation w = r ¢7!? and use in particular the conformal transformation z = 2/

(1/w — w). By this the hodograph unit-semidisk is mapped onto the right half-plane
Rez > 0. Let z = Re~*. The upper half of the semidisk 0 <7 < 1,0 < —8 < 7/2
is mappedonto the quadrant O<R<o0,0< —a< 7/2. By z = 2/(1/w — w) the
sysbem (12) is transformed to .

r = —% ¥, o ' o - (14
ry. = R¥,. ' : (15) "

Now it is a simple matter to construct the solutions to Problems 1 and 2. For an idea
consider the case of incompressibility. That is ¢ = const, v = const. Then

@, + 1Y, = log 2,

TP, + iV, = —22.
-Accordmgly, in the case of a compre331ble fluid
’ ‘I’l—argz——a, p , ' : : i A(16)

¥, = —im 22 = R?sin 2x. o L _ (17)

£’£=Vid‘4_€’)‘i_9,‘__ ) i _‘ | : N .(“11)__;

Tdee) - | | |
‘ 1
7(r) = /V@ g | (13)

\
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4. Treatment of the inverse prohlem. For Expenment 1 the upper impermeable wall
- ismapped onto 0 < R < 1, « = —n/2, as is true for the lower half of the obstacle for
Experiment 2. Each value of gas speed inside the flow region is also attained on the
wall. Hence it should be possible to reconstruct (4) from O to g, by measurements on
the rigid wall. In both cases we observe y =y(9) on just these segments. Since at -

these boundaries u = 0, ¢ = —v > 0. we have ¢ = —dg/dy, whence
dp dp'dy  dy- L L
d  dydg q dq' o ' ‘ S -(18)

We now consider the inverse problem of determmmg (4) on- the line .segment
O<RBR<la= —n/2 From (14) we get d(p/dR = —(l/tR) ¥,. Together with (18)
we have ) o . .

dR Rq dy K
&=, dq (19)
.l‘urther 2z = 2/(1/w — w) glves on the interval of observat,xon .
R = 2r/(1 + 72). IR ' (20

' Thus, to identify (4), the system (11), (13), (19), (20) must be so_ived._But this ‘turns '
out to be fairly involved, no matter whether it is based.on (16) or (17). Instead, we
use both Expex:iment 1 and 2 tb derive .

._;=__. ' o ' ' 21
=70 @

wherej is known from y, = y,(g) and y2 = y,(q). On the other hand (14), (16) (17) .
yield dq:l[a'zp2 = 1/2R2 Thus, with (20), (21) we get. ,

‘ 1\ ‘ S ‘ S
f(q) = %(r + 7) y o - (22)
e =1y, A - e

o .Necessa.nly f > 1. In (23) the sign of the second square root has to be minus because
~ 0 < r <1 From (23) 1t follows that drjr = —df/(2f*2(f — 1)1/2) By (11) one con-
cludes that )

4 _j/Ldad
oot — 1 Y o dg g
('d/) i 1dlgo) ., , dlng)
dg) 4 — 1) " ¢ dg d(Ing)’

"=_expf( )4/(/—1) _' H

Thus the material relation (4) can be explncntly determined if both experiments are
carried out, instead of one of them alone. The consideration above is based on the
fact that the material property (4) is one and the same, and therefore involved in
both ¢, and ¢,. Although ‘the system (11), (13), (19), (20) is much more difficult to

solve for (4) than (22) is, the inverse problem might be completely solvable by one a

experlment only.
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The material property (4), even if unknown yet, controls both ¢, and ¢,. Hence' the
data ¢,, p, depend on each other. They fulfil some relation of compatibility which is
derived as follows. Assume we know f = f(q). From (11) we get

.1 dp (dr)2q 1 ' ' . ' -

Saliond -GN foudf JES: SOl , - : : 24

cd —\@) ¥ g 9(9) | | ’( ) |
which can be evaluated by (23).'Furf,her,/(14), (16) give (2—"; = ?1 Iil i—f% . Together . i

with (11), (13) we obtain

cedgy g dR[d\ S R
®dg " 7R3 \dq =:hlg), . . (25)4

/

where b —= h{g) can be determined by (20), (23). Now, with (24), logarithmic differen- -

tiation of (25) yields )

1 d dyp\ _ d . . : . . .

This is the relation of compatibility between ¢,(g) and g,(q). Note that by (20), (21),
(23) the quantities g and A involve the observed relation f = f(q). ,
:To reconstruct (4) from the first observation y, = y,(g) only means to solve the

system (11), (20), (24)—(26), where in this case g, h, 7, o are unknown functions of q.
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