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Regularized Parameter Identification in Elliptic Boundary Value Problems') 

V. FrUDRICH and U. TAUTENRAHN 

In' der Arbeit wird die Meth'odc der Regularisierung zur nunierischen Identifikation des Dif-
fusionskoeffizienten in elliptischen Gleichungen zweiter Ordnung untersucht. Zur Losung der 
entsprechenden regularisierten diskreten und stetigen Mini niierungsaufgaben wird das GauB-
Newton-Verfahren analysiert. Es wird em effektiver Weg beschrieben, der proEterationsschritt 
das Lösen einerGleichLing zweiter Ordnung uñd einerGleichung viertür Ordnung erfordert. 
B pa6oTe Hcc!eIy10TcH MTOLUI peryanptiziaLtHil lHCJIeIIIlOt 1lgeHTH(HHa ,UHH Hoa44u4uHelITa 
1H4XIy3HM ar1JIHnTH qecHoro ypaulleilull BTOOFO nopslua. 06cyaaeTcR npHMeHeHue MeToa 
Faycca-HhloToIla girn peweuus cooTBeTcTsylo[ullx pery.nslpH3OBanubIX aucxpeTIiIrx If 
npepiiazx axc'rpeMailbHblx 3aa4. OnuBbIBaeTcH 344eKT11BHbI11 ajiropilTS1, Tpe6yIO[1Hf 
peuieiia ouroro ypaseuwi BTop.oro nopsaica ii oHoro ypaBl1el(nn.eTnepT0r0 nopRAiia Ha 
HaRotl uTepaEHH. 
In this paper the regularization method applied to the numerical identification of the diffusion 
coefficient in second order elliptic equations is investigated. For solving the corresponding 
regularized discrete and continuous nonlinear minimization problems the Gauss-Newton 
method is analyzed. We describe aneffective way for performing one iteration step which 
requires to solve one problem of 2nd 

.
order and one problem of 4th order. 

1. Introduction.-' 

In this paper we investigate parameter identification problems and their approxi-
mations for a special class of elliptic boundary value problems.. Although our ideas 
are applicable to a wide class of identifiCation problems, our work here is devoted to 
a special inverse' problem of aquif ,er transmiinivity identification (cf: [1, 27]). As our 
fundamental state equation we consider the elliptic equation 

(liv (a grad u) = I,	x €Q.	 (1.1) 

This equation, for example, describes the steady flow in a' confined nonuniform 
aquifer Q, where a = a(x) denotes the spatially varying transrnissivity coefficient of 
the aquifer, u = u(x) the (observed) piezometric head and / '/(x) the source term. 
In the direct problem for given a, / and appropriate boundary conditions the unique 
solution u is to be determined. This direct problem, in general, is a well-posed one. 

In the parameter identification problem a is to be found for given u and /. In this 
problem we are facel with the identifiability problem and with a noncontinuous 
dependence of a on the observation data z = 'a +.17 ( denotes the observation error) 
with respect to any meaningful observation topology. We say a is identifiable if, for 
given u and / and given boundary cópditions, a is unique. Several authors (cf. [4, 6, 
22]) study the identifiability of a in one- and higher-dimensional problems (1.1) and 

')Vortrag auf der gemeinsamen Tagung vom 9.-13. 11: 1987 in Berga (DDR) der HFR Ana-
lysis und HFR Numerische Mathematik.  
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4	V. FRIEDRICn und U. TAUTENIIAHN 

the paper . [18] investigates the identifiability of a in different discretized versions of 
(1.1) for one space dimension. The noncontinuous dependence of a from z is caused, 
by the differentiation of z in order to determine grad u and can lead to serious diffi-
culties if the-infinite-dimensional identification problem is approximated by finite-
dimensional problems. The numerical solution may 'show undesirable oscillations 
or may not converge at all. Therefore, special identification techniques are needed 
to overcome such difficulties. The accompanying is a partial list of numerical methods 
for parameter identification: 

. ..
 

J. Least . Squares Methods[3, 5, 6,. 18],	..	.	. .	...'....-..	...... -...-: 
S	 ' • Tichonov's Regularization Methods [9, 16, 21, 24], 

3 Adaptive(or Asymptotic) Regularization Methods [2, 121. 
All these methods use further a priori information about the parameter to be deter-
mined in order'to overcome the ill-posedness of the identification problem. 

The present paper is organized-as follows, in Section 2 we describe the Tichonov's 
regularization me in thod for parameter identification problems and its.Galerk approxi-
mations. Section 3 contains results to the effective numerical solution of the corres-
ponding discrete nonlinear minimization problems by the Gauss-Newton method. In 
Section 4 we gneralize the results of Section 3 to the continuous case and show that 

- '

	

	one iteration step of the.Gauss-Newton method iequires only to solve one pr9blem
of 20 order arid one problem of 4th order. 

2. Parameter' identification by Tichonov's regularization 

As our fundamental state equation which is used in the sequel we consider the follow-
ing prototype of a two point boundary value problem  

/ . —(au	f,	x  (0, 1),	 ,	 -. (2.1) 
•	with any of the,hree bound'ary conditions:	S 

-u(0)	 g, u(1) = g1 ,	'	 .	.	 . (2.2) 

a(0) u(0)' = g0 , a(1) u(1) = g1 ,.	 .	
.	- -	

( 2.3) 

a(0) u(0) + sou(0)	go, a(1) u(1) ± 8 1 u(1) = g.	 (2.4) 

The function a is sujposed.to b'unknovn so we shall consider the problem of identify-
ing the function from observations of the state variable u. This problemis ill-posed. 
Let us consider a specific case in which continuity of a with respect to u is violated. 
Consider (2.1), (2.2) with / != 0, g = 1, g 1 = 2' and a(0) = 4. Given the data u(x) 
= 1 + x, then (2.4) has the unique solution a(x) =1. Given the (lata'uk(x) = u(x) 
+ sin 2kn./(2br), then (2.1) has the unique solution a k(x) _' 3/(2 + cos 2bnx). Then 
obvioiisly'uk converges to u uniformly with increasing k, whereas for all k, 

2	1' (1 - cos 2/cnx)	' 
ha - ak1IL(O1) : J (2 + os 2brx)2 dx  

0	 . 

3	sin 2ktx__1' - 

	

— — 2kn 2 + cos 2k2rx ] -	. 
In summary, Uk 	, yet ak -+* a and a is therefore not a continuous function of the 
data.

	

(	.	 *



Regularized Parameter Identification	5 

The state equations (2.1) with any of the three boundary,çonditions (2.2)—(2.4) 
(in case (2.2) for simplicity we suppose homogeneous boundary conditions) can, be 
written in weak formulation:	 - 

(aug, v) = (/, v)	 Vv E U,	'(2.5) 

au,v)=(/,v)±g1v(l)--g0v(0)	VvE U,	(2.6) 

(au., v) + s 1u(1) v('l) - sou (0) v(0) = (/, v) ± g 1v(1) - g0v(0) 
VvEU	(2.7) 

((., .) denotes the scalar product of L2(O, 1)). Choosing ,A = H'(O, 1), / E L2(O, 1), 
A = {a E A: a(x) ^ a a.e. x E ' (0, 1), for some a> 0}, then the following results 
with respect to solvability of the variational equations (2.5)—(2.7) are valid (cf. 
[28]).	 - 

Lemma 1: Fo any a € A, the following is true: 
'(i) . there exists a.unique solution u E U = H0 1 (0, 1) to (2.5); 

(ii) under the condition f / dx + g1 - g0 = 0 there exists a unique solution U..€ U 

= u E 	= H1 (0, 1):f(u - z)dx -0 to (2.6); 

(iii) under the conditions s0 < 0 < s there exists a unique solution.0 E U = H'(O, 1) 
to(2.7).  

Remark: In fact, a str6'nger result is possible, i.e. Lemma 1 remains true for any a € A, 
= (a € L(O, 1): a(x) 2^ a a.e. x E (0, 1); for some a> 0).  

Let us introduce the.set Aad A of physically admissible parameters a and let' 
.b € Aad a suitable estimate of the unknown parameter a. Furthermore, for a brief 
notation let us rewrite theproblerns (2.5) —(2.7) in form of an operator equation

(2.8) 

where the, bilinear operator : A X U - U induced by the left-hand-sides of 
(2.5)—(2.7) is bounded. Applying Tichonov's regularization method (of. [25]) to 
the identification problem we are led to the nonlinear programming problem 

1	
Z112 (P)	ihfJ(a); J(a) = --' flu -	i +	ha	bJji.(ol),  

	

V	 V	 - 

where u(x; a) satisfies (2.8).  

Here a > O ilenotes the régularizaton parameter to be chosen appropriately (áf: 
[13]). Roughl5 speaking, the term ha - b I . (oI) in the functional J. prevents.the 
solution a froii the divergence. We now consider the approximation of problem 
(P). In the f011owing we describe a Galeikin-based parameter/state approxithation 
scheme in the same spirit of'the ideas found in [18] and divide our consideration 
into two stages. In.the first stage we carry ott the.parameter approximation. That 
is, we seek the p'aiãmeters a in the form atm =	... + mc°,ii, where Am = (Pi 

	

denotes an mdimenional subspace Of A :=3(',	 m+1' 
and describe this ãpproximatiqri by the bounded linear, projection operator $am: A 
-^ Rm , rna:_,àjf à,= am, W"' := 0 if i > mwithã = (a1 , a2 , ..., am )T € it". Intro- 
ducing the finite-dimensional set A = $"'A ad, we are led to the parameter approxi-

-V.,
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niation problem	S	 - 

(Pm )	mm J(ã); J(ã) = -- lu - z ll%	i + 
A	 112 

where u(x; am) . satisties (2.8). 

In the second stage we consider the approximation of the state equations (2.5)—(2.7). 
That is; we seek approximate solutions to (2.5)—(2.7) in the form u = u1 ± 
+. u,,ip,,, where U, = 2(, P2 ' .••, vp,,) denotes an n-dimensional subspace of U = 

• . ip, ,, ...) and describe this approximatibn by the bounded linear 
projection operator £,': U - R?, £i'u := if a = U5 , C p1: = 0 if i > n witFi fL = (u1, 
U21 ..., u,,)'r € R". Introducing the differentiation operator D = d/ dx the correspond-
ing state equations (2.5) —(2.7) can be approximated by (i =j, 2, ..., n) 

(atmDu5,Dv1) =	 (2.9) 
• (a-Dun , Dv) =	vj) + g iV)i( I ) —gov'(0),	 (2.10) 

•	(amDu$,	+ s 1 (1) vi (l) - s0u°(0) '(0) = (I, ) + g(l) — 901(0). 
(2.11) 

Note that these approximated state equations can be written in the compact form 

F(ã, ft) =7,	F:(á,ü)ERmX1t5-±R5.	 -	(2:12) 

Let us regard a special example. Let (0,1) be partitiOned into N subihtervals of length 
h = 1/N. For i = 1..... N we define the 0th order spline basis functions 

110,

1, (i-1)h	xih,	0	 - 
otherwise 

and for j = 1.....N — 1 the linear spline basis functions 

-	
Nx-}-1--j,	(j-1)h<xjh, 

1(x)=—Nx+1-f-j. .jh	(j+1)h,
0'. otherwise. 

Thus we have chosen m = N and n = N — 1..Lct us regard the approximate state equation 
(2.9). Then it is straightforward to compute analytically the integrals of the system (2.9) and 
hence to obtain the corresponding parametric finite-dimensional operator equation (2.12) in 
the form	 S 

- u 1 ) + a(u — u_ 1 ) = h2 (/, ),	i = I.....N — I,	(2.13) 

where u0 = UN = 0.
 

Now we are able to formulate the parameter/state approximation problem: 

(P. , ,.)	mm J(à); J(ã),= -- lift—	-- -- ha —"bjj- 
aEA	 S 

where ft satisfies (2J2).	-• - 

-	3. Solution of the dierete minimization problems 

- In this chapter we examine the numerical solution of problem (Pm . n), which is a finite- 
dimensional nonlinear programming problem to obtain the cofficientsa 1 , a2 , ..., am 
of-: the unknown function am(x) = a 1q(x) + ... + amm(x). One possibility for
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solving this nonlinear programming problem is to use a gradient projection method. 
The main'work required at each iteration is to evaluate the gradient (eJa(ã)/aai, 
aJ(a)/aaJ	 n . This can be done after introducing of a appropriate a(Ijornt variable 
byt the solution of only two linear systems' of equations with a sparse matrix (cf. 
[3, 24]). Since problems (Pmn ) in general have a flat global minimum in deep banana 
shaped valleys, they should better be treated by (projecied) Gauss-Newton methods. 
which make it possible to proceed in great steps along the deep valleys and assures 
fast convergence. Let AuE/a] be the solution of the linearized finite-dimensional state 
equation	 - 

Fr,',na 	 (3.1) 

where-Fá' = F'(a, fi) and Fr,' Fa'(a, ñ)-denote the Freéhet derivatives of the 
flapping F with respect to ü and a. Then in the (projected) Gauss-Newton method 
A given approximation a € Rm is improved-by S 

a:=°P[a + yAa],	 (3.2) 

wheie Aa is the solution of the linearized problem 

(P 8 )	inf J 1(a) J'(/a)= -- lIü + L ,u[/a] - Q' zlI, ,.	•, 

•	 + -- ha + La 

where Au[Aa] satisfies (3.1), 

P is the projection onto A and y is the st.eplength parèmeter. to be chosen appr9- 
priately (cf..[23]). At first glance, method (32) seems tobe rather expensive corn-
pared with gradient projection methods. Fortunately we have found a route how 
the amount f computational: work in solving (P1 .,,) can be reduced substantially 
compared with traditional strategies.	 - 

Theorem '1: Let F' be a regular matrix. Then problem (P) is' uniquely solvable. 
The unique solution .Aa E Rm is given by - 

Aa = 31b — a +	 (3.3) - 

where ft E R' is the unique solution o/(2.12) and 4 E R' is the unique solution of 

(Fa'Fa' + aF'F;') = F'(a - "b) + F;'(ñ -.	 (3.4) 

	

Proof: The existence and uniqueness of Aa follows from the fact that	•	 S 

= Fa'*(Fii 	Fa' + a1	 S 

is positive definite. Now let us regard	 S •	 S 

•	,J'(a + ti3) =	 + 1i5] +ii - QzjI.. 

+ -- ha + /a •+ t5 - 

Differentiation with respect to t yields for all 'E Rm	 • 

' J(Aa + t)l1=o = (Aui a1 + i, - z, Au[]) + a(d +a - mb, ) = 0 
(3.5)
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as necessary and sufficient condition for La being the un ique solution of 
Substitution of (3.3) into (3.5) yields .	- 

(Au[ $mb - a + F"] + it — 'Iz, /u[i3]) +(4, F'i) = 0	Vv € Rm.

Using (3.1) we find  

(_Fu11Fa(3mb - a + Fa') + ñ - £z, u[J),— x(Fjj', LEVI)	0 

or what is the same, ..	. 

(—(Fa'Fa' + F'F') + F'(a - 3mb) + F'(ü— D'1z), (F;'*)_l Au[13]) = 0 

for - all i5 € Rm, which yields the expected result (3.4) I' 
The advantage .of our approach from the computational standpoint is that the 

two systems to be solved in each iteration step are independent of the size m; the 
number of unknown to be determined. This enables us to increase the size of the 
parameter space and therefore to handle a larger number of parameter degrees of 
freedom without increasing the computational work. A related theory for two-
dimensional problems can be developed in a similar way. 

Let us discuss example (2113) in more detail. Here we hav e 

• ..	 /e —e	 \ 	d 1	—a 

F'= (_ai
 I	 .	. 

I,	 .—aN_l \	.	e_1	 \ 
where e1	- u_ 1 and d	a + a i+ j. In this case the computation of the Gauss-Newton 
coricction L\a requires only 
(1) the solution of the 3-diagonal system (2.13) in order to find u, 
(2) the solution of the 5-diagonal system (3.4) in order to find q and 
(3) the computation of _Ea'  according to (3.3). 

.4. The continuous analogue of the problem (3.4) 

To discuss the problems which may arise in (3.4) for decreaing stepsizes we consider 
the continuous problem (P) in more detail for the spatially one-dimensional case. 

.The linearization of u in (P) at the function a € L(0, 1) with a(x) ^E! a> 0 leads to 
the minimization problem	- 

-	(P')	.,inf, J(Aa); J'(Aa) = -- flu + Au[La] - zJI0 i 
-	 zoEL°°(O; 1)	 2 

+ -- I1 ' +	a'—jb]Ji(Q1) , .	 (4.1)
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where Au[ w], w € L(O,1), solves one of the linear variational problems 

(aAu , v) = —(wu, v)	 Vv € U = .I1l(O, 1), 
(aAu , v) = —(wu,v)	 Vv € U = H'(O, 1),	(4.2) 
(aAu , v') + s1Au( 1 ) v(1) - s0A i(0) v(0) = —wu, v) 
-	 V'v € U,= H'(O, 1) 
according to the corresponding boundary conditions (2.2)—(?.4). These second 
order equations we consider in an H'-weak formulation. That means the set of 
test functions v will be reduced to allow afurther partial integration on the left-
hand side. After defining the space of test functions 

-•	 v(0)=O,v(1)=Oor 
V = v: av € H1 , v(0) = 0, v(1) = 0 or	 ' (4.3)

a(0) v(0) + s0v(0) = 0, a(1) v(1) + s1v(1) = 0 

we get the H- 1-weak formulation for the problem (4.2) 

(Au, (av)) = (wu, v) = (w, i,iv)	Vv E V ,	 (4.4) 

'for all the three cases 'of boundary conditions: Note that in this formulation the 
supposition w €.L°°(0, 1) can be weakened to w € L2 (0, 1). Analogously to Theorem 1 
we have. 

Theorem 2: Let be a € L(0, 1) witha(x) '> 0. There exists one and only one 
element Aa* € L 2 (0, 1), which minimizes the linearized /unctional (4.1). This element 
Aa* can be characterized by the weak solution q € V o'/ the 4th order equation 

(yzqx - (a - b), uv) + (u -i- z + a(aq), (ay.).) = 0	Vv €'V	'(4.5)
by  

Aa* = uq - (a - b).	'	' .	 '(4.6)

Note that the equation (4.5) is the continuous analogue to the discrete problem (3.4). 

Proof: The niinimiiirig element Aa* has to filfil the necessary and sufficient 
minimum condition for the quadratic functional (P')  

(Au[Aa*] + u - z, Au[r]) + cx(Aa* + a -. b, r) = 0 . Vr E L2(0, 1). 
(4.7) 

Let q be a solution of the equation (4.5). The equation (4.5), (4.6) together with 
(4.4) gives us an H'-weak' soluion 

Au[Aa*] = —{u, - z + a(aq)x}.	,	'. .	 (4.8) 
Rewriting the H- 1-weak formulation (4.4) for Au[r] with q € V instead of, an arbi-
trary v € V, we get (Au[r, (aq)) = (r, uq). This relation together with (4.8) and 
(4.6) shows, that the minimum condition (4.7) holds for all r. € L2(0, 1) I 

l)üe to the well-posedn'ess of (4.5) for fixed a > 0 there is no fear of ill-condition-
ing in the discrete problem (3.4) for decreasing s'tepsizes. 

Remarks: I. Theorem 2 deals only with the case a* € L2 (0, 1). The representation (4.6) 
shows that u, is the decisive quantity for a* being an element of L- (0, 1). In order to -get 
u, EL(O, 1) we need some not too hard' additional assumptions on / € H(O, 1) for the 

- problem (2.1) (for instance, f E L2(0, 1) gives u E L(O, 1)). 2. If we formally perform (4.5)
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by partial integration we get the 4th order equation 

- (u 2q) = (a.(z -	- ((a - b) u) 

:	with the boundary conditions at x 0 and x = 1	
5	 -. 

-	

q = 0, .—a(aq)=u —z	 . 

for the problem (2.1-2.2) and  

aq±sq=0,	 S	
. 

- - —u 2q ± c[a(aqZ ) XX \± s(aq)] = —(a - b) Ux + a(z— u) + s(z - u) 
for the problems,(2.1,2.3/4).	 . 
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