Zeitschrift for Analysis
und ihre Anwendungen

. Bd.8(1) 1989, 8.13-23
'

" Finite-Element Methods for Singularly Perturbed Elliptic Boundary Value
Problems and its Application to the Stationary Navier-Stokes Equations?)

H. GoeErmvG and L. ToBISka

Wir betrachben cinige Varianten der Methode der finiten Elemcntc zur Loésung singulir ge-
storter elliptischer Randwertaufgaben 2. Ordnung, wobei das reduzierte Problem von erster
Ordnung ist. Stabilitits- und Konvergenzeigenschaften dieser Methoden und ihre Anwendung

auf die stationdren x'awer-St,okes Glelchungen fur groBe Reynolds-Zahlen werden unter-
sucht.’ oo

Mbl paccMaTpHBaeM HEKOTOpbIE BAPHAHTH METOJA KOHEeUHHX a7IeMenTOB nana pememm

' CHHTYJIADHO Boamymeunux BITUNITUYECKUX TPAHMYHBIX 3a[a¥ BTOPOTO MOPAAKA, MPH KOTO-
PHIX penynuupoBaHHas damaia — npoGiema mepBoro mnopaaxa. MccienyoTca ¢xoguMocTh u
YCTOHYMBOCTL TAKMX METOROB I HX NpHMeHeNe Ha CTAIMOHAPHOe ypasue}me Hapbe— Crokca
npu Goabunx uncesn Pefinonnca. :

We consider some modifications of finite-element methods for solving singularly perturbed
- elliptic beoundary value problems of second order where the reduced problem is of first order,
‘Stability and convergence properties of such methods and the application to the stationary
. Navier-Stokes problem for high Reynolds numbers are studied.

1. Introduction

. For solving singularly perturbed elliptic boundary value problems, the common
- finite-element methods using, for instance, piecewise linear functlons, are unstable
and exhibit spurious oscillations unless the discretization’ parameter is not suffi-
ciently small. Moreover, the occurrence of boundary layers influences the approxi-
mation properties in-a niegative sense — the usual error estimates become meaning-
less. For this. reason, in the last years many modifications of the standard finite- .
. element method have been developed to overcome these difficulties, i.e. to guarantee:
stability and to obtain a good. approximation of the exact solution. Such proposals
are Petrov-Galerkin methods with piecewise polynomial bases [9], speccial integra-
tion rules for the convective terms [5], the utilization of special directional deriva-
tives [3, 25], some mixed finite-element. methods [13], the symmetrization of the
bilinear form [2], the use of artificial diffusion [15, 16], asymptotically fitted methods
[8, 22], hybrid upwind finite-element methods [12, 21, 26] and the streamline dif-
- fusion method [10, 11, 19].

Nowadays, from a mathematical point of view the Jast three methods are the
best ones for solving singularly perturbed problems becauSe of its mathematical
foundations and its favourable properties. In the following we will give an overview
on the main ideas and results of these three classes of methods in the case of the
two- (hmensxonal stationary convection- dnffusnon problem (2 — R?, I' = 2Q)

—eA\u + b(x) Ve + é(x)u = f(x) in 2, wu=0onTl, - T (1.1)
1) Voftrag auf der gemeinsiamen Tagung-vom 9.—13. 11. 1987 in Berga (DDR) der HFR Ana-
lysis und HFR Numerische Mathematik.
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14 4 . H. Golanma and L. ToBisra

and discuss'its application to the statlonary \Iawer Stokes equations
—eAu+uVu+Vp—fanddlvu—Om.Q u—OonP

We w1ll assume tha,t; Qisa polygon the functions b, ¢ and f are sufficiently regular
and ¢ isa ‘small posmve parameter. Furthermore, we denote, by |le.p> lI'lle.» the usual
seminorm and norm in the Sobolev space W+?(Q), by (-, -) the scalar product in the
space L) and by C a generic constant independent of ¢ and h.

N . . 7

2. Asymptotlcally fitted fmlte element methods .

The \\eak formulatlon of problem (1.1) reads as follows

Find u € H(£2) such that for all v € Hy! (.Q)
Bu, v) = ¢«(Vu, Vo) + (bYu + cu, v) = (f, v). ' : (2.1)

" Under the assumption (¢ — 271 div b) (z) = « > 0 for all = the bilinear form B is
H,l-elliptic and by means of Lax-Milgram’s theorem we obtain the existence of a
unique solution % of the problem (2.1). Choosing a conforming finite-element space
Vi = Ho'(2) which we will specify later we get the following discrete problem:

3

- Find w, € Vi such that for allv € V,
‘ B(u,,,v)—(/,v) . L . c (22) )

Under the above:- assumptlon also problem (2.2) has a umque solution u,. In order
to obtain - error estimates with s-independent error constants, we will use the
e-weighted H'-norm and the fitted norm defined by

\
s

.
wm=wmmm+mmm& and - {loll = ol + sup 222

ovoer ol

respectlvely "which are equivalent to the H-nérm for fixed & > 0. Moreover, it
holds lufly.e = llull. = lull] = fhell;..- From the Hy-ellipticity of B in the e-norm
w1th the constant ¢, = min (1, ¢x) we havé for each w, € V)

1 B(w,, — Up, Wy — u,,) . B(w,, — U, Wy — u,,) .

. 1
wy, — uplle. = — = —
o o G lleon — alle 51

. oy — wll.
and conclude ' .
) _ fo , |
e — wplle < llw — walle + llwp — ualle = e — wylle + — sup -
: S, €y eV Il

M

B(w, — u,v)

‘Thus, the estimation of the error is- reduced to the estimation of the approximation
error in the fitted norm | — w,ll. < Cinf {}llx — wyl||: wy € V). Usually, the approxn-
mation error-is replaced by the interpolation error such that for instance for spaces
of bilinear elements the estimate inf {|[lu — wy||: wy € V3} < Ch |uly, holds. Now,
. the occurence of boundary layers in the solution affects the boundedness of |ul, , for
£ — 0, i.e. only /2 |ulp,2 is uniformly e-bounded and the resultmg estimate reads

e — ol S Chesie. B (2.3).

It is clear that this becomes meaningless provided that ¢ < k: -

e

o)



Finite-Element Methods ... - 15

Tﬁe i)rinciple of agymptoticallj; fitted finite-element m_ethodé consiﬁts of splifting
up the approximation error in two parts -
) inf [l — wylll < llle — uglll + inf [llugy — willl,

wWphEVy wprtVy
’

namely in the asymptotlc error ||lu — ugljl and the approximation -error for the

asymptotic solution a,,. Thus, the investigation consists of two steps:

(1) Sbudymg the structure of the asymptotic solution u,; and’estimating bhe differ-

© . ence t0 the exact solution in the fitted norm.
(it) Fitting the finite-element space V, according to the structure of u,,,, and estl-
" mating the apprommamon error. . . .

"+ A detailed treatment of the asymptotic behaviour and of the. constructlon of asymp~

totic solutions u,, in the maximum norm can be found in [7] Lct us consuler the

special case

(A1) Q= (0, 1)’\<(0 1’);b= (b, bo) \‘vithb-(r) >0, i=1,2

.in which the asymptotic approximation ua, consists of the solutlon Uy of the reduced :

prob]em (I_={zel: b(x) n(x) < 0, n outer normal)
b(x )Vuo + c(x) up = f( nQ, u = OonTI

o »t,wo ordinary boundary la,yer terms

&

n(z) = —ul, xz) [e‘fP( g) (1 = 2) — (1 —z,) exp (-—b——'(l’ xZ))],

(2.4)

. €

(2.5)

o) = —lsi 1) [oxp (280 (1 5) — (1 — ) exp (222

- and a corner layer term

4(a) = a1, 1)17[ ( i1y 1’)<1f z) — (1 — z,) exp (—M)J

. €

. , . o (2.6)
In [22] the estimate ' ) " . _
' e — gl < Gl N ¢ )

was proven where u,, = 4 + v, + vz + v3. It should be mentioned t,hat, the proof
of (2.7) is nonstandard because the solution %, of the reduced problem belongs only
to the space C(£22) n Wie(Q).

Now we have to choose the finite-element space V, in such a way that the inter-
polation error becomes small. On a square mesh of fmeness h=1/N we ad(l the
common b)lmear functions defined by - : :

3 .
t

e . T i LtelE —1)h k),

~

-@ii(z) = ?f.’(%)%(%), i(t) = i+ 1 _%’ L € [ih, (6 -+ 1) A],

0, otherwise.

\

Q.'
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. \ .

The following functions fitting the boundary .layet" te':rms-(2.4)—(2.6):

M) — ‘
i) 2 € [1—h, 1],
0, - Lo . , otherwise,
by(jh, 1 ) T bk 1A
et [exp( M (1 = ) gty oxp (- 2DE) — g,
;' (®) | o 2y € [ — h, 1],
- Lo, ) - . o ‘ ot,herwise,

€

wiz) =

Now the asymptotncally fitted finite- element method is characten?ed by (2 2) \
with V, = span (g;;, w;!, w?, w3 5, =1, — 1). In [22) the interpolation error

was estimated by

inf [fhres — wyll < e + hl/?) Yo ehe

s wpe V,.

, [ b1, jh C by(1,5h) B\
@j(ez) [exp (—% (1 - xl)) —_Q’N-;l(xl) exp (—(1+Nb) - ?’N(xx)]:_

2
1_7[ p(- ISR —a\co)—w_,(x)exp( "il—)—) —mx)]
o T Zel —h X1 <k, 1)

0, _ otherw1se

(2.8)

. with m > 0, arbitrary. The valve 1/2 of the &- exponent, lS due 'to the fact that U

is not sufficiently regular \

i Theorexp 1: Let @, be the solutwn o/ the dzscrete problem (2.2) wuhout jattmg if
& = ch'/2 and withithe above mentioned /utmg if ¢ < chll. Then under the assumption

(A 1) we have the error estzmate :
flu — @y|| = ChY4

- uniformly with respect to e. N

"Proof: Combining the estimates (2:3), (2.7), and (2.8) we obtain-(2.9) B

(2.9)

In [22] asymptotically fitted finite-element methods for some othér cases have
been derived and error estimates have been given. The main advantage of asymptotic-
ally fitted finite-element methods consists of the favourable approximation-prop-
ertics within the layers which is based on the relatively large amount of analytical

- a-priori knowledge. Thus, this method can’be used if some information on the posi-
tion and the structure of boundary layers are known. In numerical experiments it
was demonstrated that the method is stable and ‘does not produce any oscillations

- .in the solution. -

e

3. Hybrid upwind finite-element methods

. o L. . »
-"The main objective of hybrid upwind finite- élement methods is to conserve the

inverse monotonicity of the continuous problem whlch can be established if

(A2) c(x)ZCOEOm.Q ;

!

is fulfilled. As a consequence stablllty of the dlscrete problem in L®-norms can be

shown.

-~
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Let Z; be an admissible, regular tnal’ngulatnon of weakly acute type, i.e. all interior.
angles are smaller or equal to 7/2, and.let {B;} be the set of nodal points. On each

" triangle K we use linear functions, i.e. we set ¥V, = {v, € C(2): vp|x € Py(K), valr

= 0}. Let {®;} be a basis of V, with @,(B;) = §;;. Then, the discretization of ¢(Vu, Vv)

. corresponds to an M-matrix but in gcneral we have positive outer diagdnal elements

" Strang, the estimate .

e — unllc =Cinf (Illu - vnll' + sup

from (bVu + cu,v). In order to modify .the standard finite-element method we

consider a secondary decomposition of Q into dual domains {D;} where D; denotes
that polygon whose vertices are circumcentres of trlangles surrounding B;. Furthe
more, let A; be the set of indices j such that B, and B; are neighbour nodes, B;; the

"midpoint . of the side B;B; and I; the side of aD passing B;;. We also need the char-
| acteristic' function @; of the domam D, and mtroduce the lumping operator from

C(Q) mt,o L"’(Q) defmed Dy vV = 2 v(B;) @;. We denote by =;; the unit outer

normal vector on:the part I';; of the boundary aD; and by ﬁ,, an approximation of
fb n;; ds. Now, the thI‘l(l upmnd flmte element method is given as follows:

“ Find u,.<€ V, such that for all v, € V,

Bln(un, l)@) = &(Vay, V) + ba(us, vp) + (Wl;, Ty) :'lf: W), (3.1)
where - o o .
S . , . ~ L1, Bz,
ba(un, vp) 2‘2 Y P') Z ﬂii (Aij — 1) [un(B;) — uh(B')]’ i 0, B, < 0.
ij

Using the above mentloned basis {®;} it is easy to sec that the matrices correspondmg
to ba(uy, v4) and (€, ¥,) have nonpositive outer diagonal elements and, by means
of a chain property, we can establish that the system matrix of (3.1) isan M- ma.trlx

.Consequently, the discrete problem is inverse monotone.

In order to formulate the convergence properties of the method we use lohe same

norms.as in Section 2. Let §;; be calculated by the mldpomt rule applied to f b-ny; ds.
. ry

Then we obtain the V,-ellipticity of B,, and, by a modification of the first lemma of

/

B(vy, wy) — Bn(”l, wy) + sup (f, wn — ‘wn),) ’

pEVy o e waevn ol

oA€YV \
. - (3.2)
On the basis of-this the estimates , '

7

o Che-1i2 |ulp.o  * for an arbitrary mesh, ‘ !
[l — uhllz = . (3.3)
Chlulpo . for a'regular mesh

were proven in [‘)1] ‘Here a mesh is called regular if it is built from three famllles of

_ parallels. Using & lemma from St,ampacma, 1b is also possible to obtain the L®-exti-

mates .
VN C(o) h"e“*‘2 lulsoo  fOr an arbitrary mesh,
\ e unllm { : : . (3.4)
Clo) k° |ul2.00 for a regular mesh i
with o € (0, 1), arbitrary. Because the seminorms jul, , and |ul, « are not umformly
bounded with respect to &, the estimates (3.3) and (3.4) become meanmgless if e

tends to zero. However, Riscr [21] was sucessful in proving local estimates in sub- .

domains where no boundary layers occur (called global domain in the notation of
[7]). For the special case -

(A3), = (0, 1) X, (O 1), b= (b,, 0) with b, >0,%, a regular mesh,

2 Analysls Bd. 8, Heft, 1 (1989) -
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we have boundary layers of ordinary and parabolic type nearz; = 1,3, = 0,2, = 1
and corner layers of different type in the verte‘{es of Q. '

Theorem 2: Let the assumptions (A2), ( (A3) be /ul/tlled and the distants d, dl and
d, be defmed by d = max (¢, ), d, = O(dl/- |ln d)), dy = O(d |Ind|). Then, in the
global domain 2* = (0,1 — d,] X [d,;1 — d,) we have the local estimates .

e — wlleos < Ch, ~ Jlu — wllo.ae < Clo) ko, o€ (0, 1) arbitrary.
-For the proof see the more comple\: cases considered in [21] 1

 The main advantages of the hybrld upwmd finite-element methods consist in the
good stability properties (inverse monotonicity of the discrete problem) combined
with localization properties which do not require any a-priori knowledge on the
position of boundary layers. We mention that in [21] also the case of a- system of %
equations of the form (1.1) was studied. -

4. Streamline diffusion method ‘
The mathematical foundation of the streamline diffusion method was given by
NAVERT [19]" The method combines high order of convergence with good stability -
properties. In order to sketch the procedure we start with the variational form of -
(1.1):

Find u € Hy*(Q2) such'that for all v € Hs\(2)

B(u v) = &(Vu, Vo) + (bVu + cu, v) = (f, v).

Provided that the exact solution belongs to H*(£), for all » E Hy\(2) the relation

(—e/\u + bVu + cu, bVv) = (f, va) is satlsfled such that each solution u € Hyl(Q)
n H%(£2) of (2 1) fulfils .

By(u,v) = (—edA\u, b - Vv) + &(Vu, Vo) + (bVu+ cu, v + 6va) = (f, v+ 6bVv)
- (4.1)

for all v € HOI(Q) We use piecewise polynomials of degree k, that means we set

= {v, € C(2): vy|x € Pu(K), v,,lr = 0}. Then, the following discrete problem is
derlved from (4.1): L

Find ), € V, such that forallv, € V, ,

O Blmw =(hutoive), (4.2)
where the bilinear form By, is defined by
' B,,(y,,, V) = —&d %’ (A\up, b - Vo) + e(Vuy, Vo)

+ (6Vuy + cup, vy + 0b - Vo). 2 R

We rcmark that :for 6 =0 (4 2) is equal to the standard Galerkm finite- elemcnt
method. -

We introduce a fitted norm in Hy(Q) defined by {llulll = (¢ lul?, + 6 fib - Vauli?,
+ o |lull32)2 where « fulfils' (¢ — 21 divd) (x) = « > 0 for all z € Q. By means of
inverse inequalities for.estimating. of ): (Aup, b - V), we can show the Hol -elhptl-

city of By in the fitted norm provided 6 is sufficiently sma]l To be more specific, we
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have for 0 <6 < min (8o, csh%e 1) the estixﬁa-t-e o _ ',. ,

" Biumw) =, llwllz foralluy € H{@),C, > 0. (43)
Takmg into conSIderatxon that
o {(fyon+ 60 Vo) < lifllo.e (loalloe + 0 Ilb Voullo.2) = Cy lfllo. Hl”al“

we obtain.from (4.3) a stability result in the form |||lu,ll| < C |Ifllo..- ) -
The good stability results observed in numerical test problems are due to the
term 6 ||b - V|2, contained in the fitted norm defined above. As for as the inverse
- monotonicity of the discrete problem is concerned it’is easy to see that the system
matrix corresponding to (4.2) in general is not'an M-matrix. For example, in the
particular. case that b = const, ¢ = 0, 2 = (0, 1) X (0, 1), piecewise linear elements
are used and the triangulation is of Friedrichs-Keller type, the nonnegativity of the
outer diagonal elements can not.be fulfilled for sufficiently small ¢ compared with A.
Moreover, numerical test examples permit the conclusmn that the discrete problem is -
in fact not inverse monoton for ¢ teudmg to zero.
By carefully handlmg in maJorlzmg the bilinear form B, Na.vert was ab]e to prove
error estimates.

¥

Theorem 3: Let ¢ < h and 6 = c¢,h. Then we have the error esttmate - ' L
e — wlll = Ck"““ [ulerr,2 - : (4.4)

for piecewise polynomzals of degree k.

However, the seminorm |u|;4,.. on the right-hand side of (4.4) is not-uniformly
bounded with respect to . Therefore, local estimates in domams without boundary
" layers are more important.

For the case (A3) already studied in Theorem 2in framc of hybrid upwmd finite-
element methods, the results of [19] yield the ‘estimate e, — wpllloe < CRE+12,
e <'h.

Comparing the streamline diffusion method th.h the asymptotlcallv fitted method
and with the hybrid upwmd method we observe that it represents an intermediate
. position in'some sense. The a.symptotlcally fittedi methods guarantee e-uniform con-
vergence but stability is only obtained in a rather weak sense. The streamline diffusion
method on the one hand yields better stability properties but on the other hand it
does not guardantee e-uniform convergence. However, the local estimates of high
order of convergence show the capablllty of the method. Finally, the hybnd upwind -~
finite-element method gives stability in L®-norms and preserves the inverse mono- -
tonicity of the problem to be solved. But, in'contrary to the streamline diffusion.

: method it'only works for linear elements.
‘ i .

5. Application to the station:i.ry.Naviér-_Stokes equations

The stationary Navier-Stokes problem .consi’sts_ in detér"mi'ning the velocity » and th(;

.pressure p of a fluid which are solutions of the system of equations (2 R, I'= 09)
AU+ @V)u+Vp={ and diva=0in®Q, w=0onT. '

Multiplying these equations by functions belongmg to V= Ho (.Q)2 and Q = Ly (Q)

= {q € L¥RQ): f gdz =, 0} respectively, ‘and mtegratmg by parts we obtain bhe N

' Vari.ational for!inulation in the primitive variables: -y P ‘

2% _ -
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B Eind (u, p) € ¥V X@Q such that . .
. fa(ua v)"}' b(u: u, ’U) - (7’: le ’l)) = (f’ ’I)) ’ \/v € V’
o (@dive) =0 o VaeQ,

where we used the notations

(5.1)

. . - . , )
a(u, v) = f,Vqu dz, bu,v, w)v= Ef(uqu — uVuww) dx. B '

It is well Known that the problem (5.1) admits at least one solution and tlnt this solu-

tion is unique provided that & > £([|fllo.2,» £2) [6]. It stiould be mentioned that stabi-
lity problems which are similar to the case of convection-diffusion equations arise.
for small ¢ (large Reynold numbers) already before the bound ¢, is attained.

" Because of the lack of sufflmenb a-priori knowledge concerning the asymptotic
behaviour of the solutions of (5.1) ior small values of £ we shall’ not, dlscuss a.svmpto-
. tically fitted methods in this section.

At first we consider a finite-element method of hybrid upwind type. To this end
we start with a pair of finite-element spaces V,, Q, satisfying the discrete version of
the Ladyzhenskaya-Babuska-Brezzi condition

sup (gn, div 23)/[2als.e = Bligallo.,  forallgy €@, 8 >0
Oak¥a .
w hx(,h is very important for deriving convergence results Let Q bea polygon divided

mbo tnanglcs K. We denote by B; the midpoints of edges and define the flmbe‘element
spaces by

V= {vp: valk € PUK), vy cont. in B,,v,,(B,) = 0if B € F}, ' (5.2)
@ = anQ Gk € PolK)}. R N (5.3)

Be(,ause the discrete veloutv space V', consists of piecewise linear functions which on
the edges are continuous only in the midpoints, V4 is not contained i in K (nonconform-
ing finite-element methods) and we have to.extend the bi- and trilinear form in (5.1).
“This can be done'in a natural way by an elementwise calculation of the correspondmg
- integrals. Let us introduce the meshdependcnt, norm -

Mully = (2[ (Vu)? dx) " forueV 4V -

The stindard finite- elcment method studied | in [4 27] veads as follows

Find (up,pp) € V,, X @y such that 4
. o

ea(tty, vp) + b(wn, wup, 03) — (Pas Flif_vn, =(Lw) V bn‘e Vi, ‘
Cgmdivun) =0V ga€Q L

It converges of order one. Applying a hybrid upwind method to (5 1) we have only’
to change the discrefization of the convective term with the aim of a better reflection
of the dominate influence of the convective term for small values of e. For this, follow-
ing the idea of OHMORI and UsH1IIMA [20] we define a secondary decomposition of
Q into domains D;. Each inner node B;, 7 = 1, ..., N, corresponds to a dual domain
.D; which is (lefmed by the batycenters S, S, of the neighbouring triangles K,, K,
of ‘B;. Furthermore, let 4; be the set of indices j such that B; and B; are neighbour
nodes and n;; be the unit outer normal vector with respect to D; along the part I';

[N

N\

(5.4) |

:

-

7



. Finite-Element Methods ... 21

of aD; between B; and B;. No“ we can derive the following upwm(l discretization
by of t,he trilinear form b: .

b v, w) = X 5 J iy ds' (1 — 2y(a) [v(B;)—v(B;)]w'(B;), - (85)

i=1jen, Iy - ' S
where 7;;(u) (lepends on the flux through I';; according to -

. 1 lffun”dSZO
2ij(w) = ,

Ty
0 obherwise

“Our hybrid up\nnd finite-element method for solving Lhe statlonary Navier- Stokes
problem (5.1) is characterized as follows:

Find (u,,, Pr) € VX @y such that

>

. o e N
Ea(uh, vn) + bu(up, up, v4) — (Prn le o) = (f, vp) , VY vy € Vs,
(q,,,dlvu,,)_O . : ’ VQnEQn‘ '

‘ Theorem 4: The discrete problem (5. 6) admits at least one solution (u,,, Pr) € VX @y
“which is unique, provided £ > £o(h) uhere eo(k) = &9 as h — 0. Moreover, for £ > eo(h)
the error estzmate .

(5.6)

~

lle — wyfip + ]|p = Dallo.e = O(a) h'=e, c > 0 arbitrary,
is satzsfzed if ( u p) € H¥(22 X H\(Q2). ~

The- crucial pomt in p10v1ng Theorem 4 is that the function « in (o 5) Tontrary to
the function b in (1.1) is-not sufficiently regular since it only belongs to the space V..
- For details we refer to [23], numerical test examples can be found in {24). A further
- . advantage of the proposed methods consists in-a favourable property of the linear
systems of equations if they are gencmtc(l by a fn\ccl point. procedure. Ndmely let
{(D;, 0)}, {(0, D,)} be a basis of V, defined by ®; i(B;) ==0;;. Then, for fixed z € V, the
matrix correspondmg to ea(uy, vy) + balz, u,,, 3) Is an M-matrix, provided-the mesh

- is of weakly acute type [23].

Finally, we discuss a nonconforming streamline diffusion mebhod for the stationary
Navier-Stokes problem We will use the same finite-element spaces Vi, @, defined by
(5.2),+5.3) "and start with the standard finite-element method.(5.4). Provided that
the exact solution (u, p) belongs to the space H2(Q)? X H(£2) we obtain by testing the
relation —eAw + (uV) u -+ Vp = f on each element with 6u,,Vv C

—&d 2 (Du, uhvle + 0 Z (uVu, unV”)K +'6 Z (VP, U V)i =9 2 (fs u,,Vv)K

Smce wé have plece\wse linear elements for the velocity and piecewise constant ele-
ments for the pressure, the discrete problem reduces to the follo“mg form:

Fm(l (un, Pp) € Vi X Qs such that .
(um vp) “l‘ b(un, un, va) + 5 Z UpVn, upVop)x — (py, div v,)

o= 2 (/5 Uy + 6u,,Vv,,)K ' fOl’ all (2 € Vha ' . ” " ) (5‘7)

\
'

(q,,, divuy) =0  forall g, € Q. : .
The additional term 8 3 (upVauy, upVup)i on the left hand side of (5. 7) as a stabilizing
efx'ecb on the (hscrete problem for small . '

lb[.

P
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Theorem 5: Let é satzsfy 0 <6< Ch+e, 0> O arbztmry, and let the exact solution

" (u, p) belong to (W1 ®(02) X Hz(Q)) X Hl(Q) Then there are constants g, and hy such that

forie > &y and b < kg the problems (5.1) and (5.7) have unique solutions wkzch satisfy
the error estzmate ;

el — walh? + X - Y — uhms“ <SCW, . lp—plba<Ch.

For the proof and further results concerning the case ¢ > ¢, we refer to (18] 8

' Comparing the streamline diffusion method with the hybrid upwind finite-element
met}iod we observe that, contrary to the linear case, the strong smoothness assump-
‘tion u € Wto(Q)2 becomes necessary. First order of convergence can be establlshed
whereas- the hybrid upwind method converges almost of first order. As far as the -
stability is-concerncd both methods achieve a stabilizing effect by the additional
terms by(u, uy, up) and 62 ]|u,,\'u,,[|0 2,k Which are not identically zero on'V, as in the

-
;

. standard fmlte-element, mcthod L _ ’

'
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