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Finite-Element Methods for Singularly Perturbed Elliptic Boundary Value 
Problems and its Application to the Stationary Navier-Stokes Equations') 

H. GOERILNO and L. TOBISKA 

Wir betrachten cinige Varianten der Methode der finiten Elemente zur Läsung singular gc-
störter elliptischer Randwertaufgaben 2. Ordnung, wobei das reduzierto Problem von erster 
Ordnung ist. Stabilitäts- und Konvergenzeigensciaften dieser Methoden und ihre Anwendung 
auf die stationären Navier-Stokes-Gleichungen für gróBe Reynolds-Zahien werdon unter-
sucht. 

MM paccMaTp[iBaeM HeH0TOpE.le sapuaui meToAa IcOHe qHbrX 3JleMeHToB JJur peuJeHils 
CMHI'yJUIpHO B03MyuëHHMX 3JLrIrinTn qecHHx rpaHMHbrx 3iOi BTODOrO nopnHa, ilpil KOTO-
phix peIyIupoBaHHaa iaAa ,ia - npo611eMa nepooro nopai.ia. 14ccJIeayioTcn CXOHMOCTb It 
ycT01l4HB0cTb TaHux MeTooH It ux nprseiieiirie ira caiuoirapoe ypaene Haube—CToHea 
npis 60JmmHx qHceJI Pellriojica. 
We consider some modifications of finite-element methods for solving singularly perturbed 
elliptic beoundary value problems of second order where the reduced problem is of first order. 
Stability and convergence properties of such methods and the application to the stationary 
Navier-Stokes problem for high Reynolds numbers are studied. 

1. Introduction 

For solving singularly perturbed elliptic boundary value problems, the common 
finite-element methods using, for instance, piecewise linear functions, are unstable 
and exhibit spurious oscillations unless the discretization parameter is not suffi-
ciently small. Moreover, the occurrence of boundary layers influences the approxi-
mátion properties in a negative sense - the usual error- estimates become meaning-
less. For this. reason, in the last years man y modifications of the standard finite- 
element method have been developed to overcome these difficulties, i.e. to guarantee 
stability and to obtain a good approximation of the exact solution. Such proposals 
are Petrov-Galerkin methods with piecewise polynomial bases [9], special integra-
tion rulei for the convective terms [5], the utilization of special directional deriva-
tives [3, 251, some mixed finite-element, methods [13], the symmetrization of the 
bilinear form [2], the use of artificial diffusion [15, 16], asymptotically fitted methods 
[8, 22], hybrid upwind finite-element methods [12, 21, 261 and the streamline dif-
fusion method [10, 11, 191. 

Nowadays, from a mathematical point of view the last three methods are the 
best ones for solving singularly prturbed problems becaue of its mathematical 
foundations and its favourable properties. In the following 'we will give an overview 
on the main ideas and results of these three classes of methods in the case of the 
two-dimensional s' ationary convection-diffusion problem (Q	1t2, f' _• 

—u + b(x) Vu, + ó(x)u =/(x)inQ,	u= OonI',	 (1.1) 

') Vortrag auf der gemeinsamen Tagung'vom 9.-13. 11. 1987 in Berga (DDR) Oer HFR Ana-
lysis und HFR Numerische Mathematik.
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and discuss t its application to the stationary Navier-Stokes equations 

— eAu +uVu + Vp == / anddivu=OinQ ,	u=O'onP. 

We will assume that Q is a polygon, the functions b, c and / are sufficiently regular 
and e is a small positive parameter. Furthermore, we denoteby llk.p ]l]Ik.p the usual 
seminorm and norm in the Sobolev space W P(Q), by (., .) the scalar product in the 
space L2(Q) and by C a generic constant independent of c and h. 

2. Asymptotically fitted finite-element methods 

The weak formulation of problem (1.1) reads as follows: 

Find u € H0 (Q) such that for all v E 1101(Q) 

B(u, v) =_ -c(Vu, Vv) 4- (bVu + cu, v) = (/, v).	 (2.1) 

Under the assumption (c — 21 cliv b) (x) ^ x > 0 for all x the bilinear form B is 
Ho'-elliptic and by means of Lax-Milgram's theorem we obtain the existence of a 
unique solution u of the problem (2.1). Choosing a conforming finite-element space 
V h	H0 1 (Q) which we will spedify later we get the following discrete problem: 

Finduh E Vh such that for all v € V 

B(uh ,.v) = (/,v).	 .'	 (2.2) 

Under the above assumption also problem (2.2) has a unique solution Uh . In order 
to obtain error estimates with — independent error constants, we will use the 
c-weighted H'norm and the fitted norm defined by

. 
itv lL = (e	

2 
+ 11v11 202)h12	and	lilvill = tiV iiE 4- sup B(v,v)

 

	

O+v€V	V 

respectively, which are equivalent to the H I -nrm for fixed c > 0. Moreover, it 
•	holds I l u llo.2 Hull,	Illuili	111111.2 . From the H01-ellipticity of B in the cnorm

with the constant c 1 = mm (1,) we have' for each wt, € Vh 

1 B(wh — Uh, WA - uh) • 1 B(wh - u, Wh - Uh) 
liwhul,lL

C1	IlW — Uhllt	Cl	llzv - Uhlle 
•	and conclude	 -

1	B(wh —uv) 
Ilu ---	lu - whit. + llwh — uhil.	Ix - whit, +	sup 

	

/	 c1 VEVh 

Thus, the estimation of the error is reduced to the estimation of the approximation 
error in the fitted norm I lu - Uhll, C inf {iftu - whlll : Wh E VA). Usually, the approxi-
mation error is replaced by the interpolation error such that for instance for space 
of bilinear elements the estimate inf (lliu -. whlll : wA € VA )	ChJul,., holds. Now,
the occurenee of boundary layers in the solution affects the boundeclness of Jul, ,, for 

0, i.e. only c 1' I U 1 2 . 2 is uniformly c-bounded and the resulting estimate reads 

llu - UhIle	Chc 12 .	 (2.3). 

It is clear that this becomes meaningless provided that e	h.	- 

0
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The principle of aymptoticàily fitted finite-element methods consists of splitting 
up the approximation error in two parts 

inf Illu - WAIl	Ilk - uIII + inf llIUas - WftlII 
w,,EV, 

namely in the asymptotic error 11ju - uI and the approximation -error for the 
asymptotic soIutioh 0.,. Thus, the investigation consists of two steps: 
(i) Studying the structure of the asymptotic solution'u03 andestimating the differ-

ence to the exact solution in the fitted norm. 
(ii) F,itting the finite-element space VA according to the structure of u 8 and esti-

	

mating the approximation error.	 S	 S - * 

A detailed treatment of the asymptotic behaviour and oftheconstruction of asymp-
totic solutions u0, in the maximum norm can be found in [7]. Let us consider the - 

- special case	 - 

(Al)	Q, = (0, 1)x(0, 1), b = (b 1 , b2 ) with h 1 (x)> 0,' , . i = 1,2 

in which the asymptotic approximation u consists of the solution u0 of the reduced 
problem (f'_ = {x € .1': b(x) n(x) <0, n outer normal) 

•	 b(x) V-u0 + c(x) u0 =/(x) in-Q, u0 = 0. on r 

two ordinary boundary layer terms - 

VI(X ) = — u(1, x2) [exp (i1; X2)) (1 -	- (1 - x) exp (_b i 1 x2))] 

(2.4) 

V2( X ) = — U(Xj 1) [exp (_b2 (xi 1)) (1	x2) - ( 1 - x2) exp (_b2 (x i 1))] 

•	 (2.5) 
and a corner layer term	 0 

	

= uo(1, i)U 
[exp (_	fl) (1	x) —(1	x) exp (_' 1))]. 

-	 (2.6)

In [22] the estimate 

lIlu - ulII	CehJ2	 *	( 2.7) 

was proven where u = u0 + v 1 + v2 + v3 . It should be mentioned that the proof 
of (2.7) is nonstandard because the solution u0 of the reduced problem ,belongs only 
to thespace C(Q) n W'(Q).	

S 

Now we have to choose the finite-element space VA in such a xvay. that -the inter-
polation error becomes small. On a square mesh of fineness h = 11N we add the 
common bilinear functions defined by	-•	-.	- -	- .•	- 

-	 .	
i+1,tE[(i-1)h,ih], - -	- 

- 1 (x) =	(x 1 ) 1(x2),	
=i + 1	1€ [ih, (i + 1) h],	- 

-	-	-	0, otherwise.	-	 - -	- -

0.
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The following functions fitting the boundary layer terms (2.4)—(2.6): 

l
exp	b(1,jh)	 I b1(1,jh)h\ 1(x2) 	

k	
(1 - - 9N_1( X1) exp	 - 9N(x1) 

S	x1E[1—h,1], 
•	

0

 

1 0,	 ''	 otherwise, 

'Pi (X I) [exp (_b2(11) (1 , — X2 	
(_b2(ih1) h) - 

w1 (x) =	 -	 xE [F - h, 1]; 

1 0,	 ,	.	 ,	otherwise, 

- -	 {exp (_bi (1 1) (1 -	- 9N1(xI) 
exii(_ bi(11)l) 

W3(x) =	
.:	xi —h,1]x[1 -i-h, 11,

otherwise. 

Now, the , asymptotically fitted finite-element method is characterized by (2.2) 
with Vh = span (q, w, 1 , w, 2 , w3 : i,j = N - 1). In [22] the interpolation error 
was estimated by 

inf, II u ' - WhIII	C(e +-h') + C(m) (e/h)m	 -	(2.8) 
W,CVj 

with m > 0, arbitrary. The valve 1/2 of the h-exponent is clue to the fact that u0 

is not sufficiently regular. 
5	

5

 

Theorem-1: Let iih be the solution, of the discrete problem (2.2) without f itting if 
^ ch' 12 and withthe above mentioned fitting if s	ch' 12 . Then,' under the .assum ption 

(A 1) we have the error estimate 
• flu -	= Ch114	 '	 (2.9) 

•	uniformly with respect to E.	 \.	. 

S	
PrOof: Combining the estimates (23), (2.7), and (2.8) we obtain - (2.9) I 
In [22] asymptotically fitted finite-element methods for some other cases have 

been derived and error estimates have been given. The main advantage of asymptotic-
ally fitted finite-element methods consists of the favourable approximation-prop- 

•	erties within the layers which is based on the relatively large amount of analytical 
•

	

	
' a-priori knowledge. Thus, this method can' be used if some information on the posi-



tion and the structure of boundary layers are known. In numerical experiments it 
•

	

	was demonstratedthat the method is stable and does not produce any oscillations 
in the solution.  

3. Hybrid upwind finite-element methods	0	 ••	/ 

The main objective of hybrid upwind finite-Mement methods is to conserve the 
inverse monotonicity 'of the continuous problem which can be established if 

(A2) , c(x) ^c0 ^OinQ	 S	 •	 • 

is fulfilled. As a consequence stability of the discrete problem in L°°-nornis can be 
shown.	

0	 •	 -	 0	 -
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Let	be an admissible, regular triangulation of weakly acute type, i.e. all interior. 
angles are smaller or equal to /2, and, let {B1 } be the set of nodal points. On each •	triangle K we use linear functions, i.e. we set VA = (VA E CA : VAIK € P1 (K), vAir 
= O). Let {} be a basis of VA with 1(B,) 

= 
ô. Then, the discretization of e(Vu, Vv) 

• corresponds to an M-'matrix but in general we lave positive outer diagnal elements 
from (bvu' + cu, v). In order to modify. the standard finite-element method we 
consider a secondary decomposition of . into dual domains {D1 } where D1 denote 
that polygon whose vertices are circumcentres of triangles surrounding B. Furthe"	.' 
more, let A 1 be the set of indices j such that B, and B1 are neighbour nodes, B1 , the 

• midpoint of the side B1 B, and I' the side of aDi passing B1 . We also need the char-
icteristic' function O i of the domain Di and introduce the lumping operator from 
C(Q) into L2(Q) defined by V ' -± VA = 'v(B1) . We denote by n 1 .the unit outer 
normal vector on' the part P1 of the boundary D1 and by	an approximation of 
fb . ni j ds. Now, the hybrid 'upwind finite-element method is given as follows: 

Find UA'E VA such, that for all ?h E VA 

Bh(uA , vA )	e(VuA , Vvh) ± bA(uA , VA) '± (h, ) ='(t, V,), ,	 ,	(3.1) 

where

	

11	j9.:>O 
bh(uh , VA) 

= E 3(Pj,L'	().,, - 1) [uA(B1 ) - UA(B,)],	.,, 
=

f•0'  t	JEA'	 L ' 

Using the above mentioned basis 10j) ' it is easy to see that the matrices corresponding 
to b8 (u1 , VA) and (u8 , V A) have nonpositive outer diagonal elements and, by irieans 
of a chain property, we can establish that the system matrix of (3.1) is an M-matrix. 
.Conequently, the discrete probleni is inverse monotone. 

In order to formulate the convergence properties of the method we use the same 
norms as in Section 2. Let j be calculated by the midpoint rule applied to f b . n-i j ds. 

Then we 'obtaib the V 8-ellipticity of 11A and, by a modification of the first lemma of 
Strang, the estimate  

I	.	 B(vh, WA) - BA(v, W8)	 (/ 'WA - w8) jju - UAii,	C inf i IN - VAIII + sup'	 + sup	 '  
•	

.	 VAEVFI \	 w,,EV,.	,	 W,EVA	IWAIIL
(3.2) 

On the basis of-this the estimates  

•	 .	 S	 , ,
	 I Chc/. u I2 2	for an arbitrary mesh, 

lu - UhIIt .	 .	 (3.3) 
Ch 1 U12.2	•	 for a regular mesh 

were proven in [21], Here a mesh is called regular if it is built from three families of 
parallels. Using a lemma from Stampaccia, it is also pdssible to obtain the L-euti-
mates	 • 

S	•	 - •	 I C(a) ho e -1 12 iuI2.0	for an abitrary mesh,	 * 

lu - UAII000^ <	 .	 S	 (..4) 

	

•	 •	 - 1, C(a) h0 u i2.00	for a regular mesh	- 

with cr E (0, 1), arbitrary. Because the seminornis u12.2 and k12,.are no't uniformly 
bounded with respect to Ei , the estimates (3.3) and (3.4) become meaningless if € 

tends to zero. However, RIscH [21] was sucessful in proving local estimates in sub-
domains where no boundary layers occur (called global domain in the notation of 
[7]). For-the special case • 

(A3),	 Q = (0, 1) , X,(O, 1), b = (b 1 ,0) with b 1 > 0, Zh a regular mesh,	'	• 

2 Analysis Bd. 8, lIeu 1 (1089)	.	
- -.	 •5	 -	 •
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we have boundary layers of ordinary and parabolic type near xi= I, x 2 = 0, x2 = 1 
and corner layelu of different type, in the vertexes of Q.	 - 

The,orem 2: Let the assumptions (A2),(A3) be /ulfilled and the distants d, d, and 
d2 be de/ined by d = max (e, h), d = 0(d t/2  1 1n. dD, d2 = O((1 j ln dI) Then, in the 
global ,domain Q* = [0,1 — 2] X[d , . l — d] we have the kcal estimates 

lu — u lJz.Q.s	Ch,	]Iu - UhJlO.,Q.Q s	C(a) ha,	a E(0, 1) arbitrary. 

For the proof see the more complex cases considered in [21] U 

The main advantages of the hybrid upwind finite-element methods consist in the 
good stability properties (inverse monotonicity of the discrete problem) combined 
with localization pioperties which do not require any a-priori knowledge on the 
position of boundary layers. We mention that in [21] also the case of a system of', 
equations of the form (1.1) was studied. - 

4. Streamline diffusion method 

The mathematical foundation of the streamline diffusion method was given by 
NAVERT [19]: The method combines high order of convergence with good stability 
properties. In order to sketch the procedure we start with the variational form of 

•	Find u E 1101 (Q) suchthat for . all v E H01(Q) 

•	 B(u, v)	(Vu, Vv) + (bVu + cu, v) = (/, v). 
Provided that the exact' solution belongs to 112(Q), for all v E H01 (Q) the relation 
( — EAU + bVu + cu, bVv) = (f, bVv) is satisfied such that each solution u E H01(Q) 
n H2(Q) of (2.1) fulfils	. .-

B(u, v)	(—eôu, b . Vv) + e(Vu, V) ± (bVu:± cu., v + ôbVv) = (/, v + ôbVv) 
(4.1) 

for all v E H0 1 (Q): We use piecewise polynomials of degree k, that means we set 
Vh = vh € C(Q): vhlK € Pk(K), vjr = 0}. Then, the following discrete problem is 
derived from (4.1):	 - 

Find uh € Vh such that for all vh E V,  

Bh(uh , vh) = (/, V + bb . Vvh ),	.	.	 ( 4.2) 

where the bilinear form Bh is defined by 

Bh (uh , vh )	-_-6 ,' (Au , b . VVA)K + -- ( Vu, Vvh) 
-	 K 

-	'	+ (bVu +cuh ,vh + 6b .VvA). 

We remark that for ö = 0 (4.2) is equal to the standard Galerkin finite-element' 
method.	-	 - 

We introduce a fitted norm in 110 1 (Q) defined by lllulll = (r Iul.2 + ô Ilb VuII2 
+ a llull2)"2 where a fulfils (c - 2 div b) (x) a> 0 for all x E Q. By'means of 
inverse inequalities for.estimating.of f (/u, b . Vuh )K , we can show the 1101-eliipti-

K 
city of Bh in the fitted norm provided 6 is sufficiently small. To be more specific, we
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-	I 

have for 0 ^ô ^ mm (o0 ,ch2e' 1 ) the estimate . 

Bh(uh, UA) Z^ C2 IIIUhIII 2	for all u, E H0 1(Q), C2 > 0.	 -(4.3)

Taking into consideration that 

•	(/, V + bb Vvh )l	11/1I.2 (IIvhlIo.2+ 6 Jib VvhlIo2)	C3 11/110.2 lIlt'hllI 

we obtain-from (4.3) a stability result in the form 11j u l,111 ;5 0 11/1102. 
The good stability results observed in numerical test problems are due to the 

term 6 j ib . Vu11 2 contained in the fitted norm defined above. As for as the invere 
• monotonicity of the discrete problem is concerned it'is easy to see that the system 
• matrix corresponding to (4.2) in general is not 'an M-matrix. For example, in the 
particular case that b . — const, c = 0, Q = (0, 1) X (0, 1), piecewise linear elements 
are used and the triangulation is of Friedrichs-Keller type, the nonnegativity of the 
outer diagonal elements can not .be fulfilled for sufficiently small e compared with h. 
Moreover, numerical test examples permit the conclusion that the discrete problem is 
in fact not inverse monoton for c tending to zeo.'	I	- 

By carefully handling in majorizing the bilinear form Bt, Nävert was . able to prove, 
error estimates. 

Theorem 3: Let c <hand 6 c1 h. Then we have the error estimate 

Illu - ulll = Ch1+112 l U lk+12	 (4.4) 

for piecewise polynomials 0/ degree Ic.  

However, the seminorm' IUlk+I.2 on the right-,hand side of (4.4) is not -uniformly 
bounded with respect to E. Therefore, local estimates in domains without boundary 
layers are more important. 

For the case (A3) already studied in Theorem 2 in frame of hybrid upwind finite-
element methods, the results of [19] yield the 'estimate Illu, — UhIllos ^S Ch k+112, 

e<'h. 
Comparing the streamline diffusion method with the asymptotically fitted method 

and with the hybrid upwind method we observe that it represents an intermediate 
position insome sense; The asymptotically fitted, methods guarantee e-uniforn con-
vergence but stability is only obtained in a rather weak sense. The streamline diffusion 
method on' the one hand yields bettertability properties but on the other hand it 
does not guarantee c-uniform convergence. However, the local estimates of high 
order of convergence show the capability of the method. Finally, the hybrid upwind' 

• finite-element method gives stability in L0onorms and preserves the inverse mono- 

	

tonicity of the problem to be solved. But, in contrary to the streamline diffusion,	•' 

method, it'Only works for linear elements.  

5. Applicationto the stationary-Navier-Stokes equations 

The stationary Navier-Stokes problem consists in determining the velocity u and the 
.pressure p of a fluid which are solutions of the system of equations (Q	It2, f = 8Q) 

— Au + (uV) u + Vp = / and div.0 = 0 in Q, u = 0 on 1'. 

Multiplying these equations by functions belonging to V = 1101 (Q)2 and Q = L02 (Q) - 

{q E L2 (Q) :f qdx =.	respectively, 'and integrating by parts we obtain the

variational formulation in the primitive variables:  
;	2*
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Find (u, p) € V X  such that  
ea(u,v)±b(u,u,v) —(p,divv)=(f,v)	VVE V,	

(5.1) 
-	 (q, div u) = 0	 Vq € Q,	 - 

where we used the notations	 - 

a(u, v) =f VuVv x, b(u, v, w) = -- f 
(uVvw —uVwv) dx	.. 

It is well known that the probIen (5.1) admits at least one solution and that this solu-
tion is unique provided that t.> eo(II/IIo.2, Q) [6]. It should be mentioned that stabi- 
lity problems which are similar to the case of coiivection-diffusion'equation's arise 

•	for small E (large Reynold numbers) already before the bound e0 is attained. 
Because of the lack of sufficient a-priori knowledge concerning the asymptotic 

behaviour of the solutions of (5.1) Mr small values of e, we shall-not discuss asynipto-
• . tically fitted methods in this section:	 '	0 

At first we consider a finite-element method of hybrid upwiiid tyke. To this end 
we start with 'a pair of finite-element spaces Vh, Qh satisfying , the discrete version of 
the 'Ladyzhenskaya BabusFaJRrezzi condition 

•	.	sup (q, div vh )/v,, l l2 i_> fl11 qh110,2	for all qh € Q,fl > 0 
V?EVh 

which is very important for deriving convergence results. Let Q be a polygon divided 
- into triangles K. We denote by B the midpoints of edges and define the finite,element.	0 

spaces by	0	 0	
0	

5	 5	

'5 

•	

0 Yh = {vh : VhIK € P 1 (K)2 , Vh cont. in B1 , vh(BI ) = 0 if B1 E I'},	'	(5.2) 
•	 = (qh € Q: qh IK '€ P0(K)}.	

0	
0	 (5.3) 

Because the discrete velocity space TTh consists of piecewise linear functions which on 
• the edges are continuous only in the midpoints, Vh is not contained in V (nonconform-

ing finite-element methods) and we hav'e toextend the bi- and trilinear form in (5.1). 
This can be donein a natural way by an elementwise calculation of the corresponding 

O	
integrals. Let us introduce the mesh(lependent norm 

0	 '	

0	

0 

,lIuIIh = ( f(vu) 2 dx)
1/2
	for u€ V± V h . -	. S 

The st.ndard finite-clement method studied in [4, 27]'reads as follows': 

Find (uh, s ph) € Vh XQh such that	'	
0 

ea(uh , vh) + b(uh , u h , Vh) - (pa, diVVh) = (/, )	V	€ V, 

0	

0 (q, div Uh) = 0	V q h € 
 

•	-It. converges of order ohc. Applying a hybrid upwind method to (5.1), we have only' 
0	

to change the discreizati6n of the convective term with the aim of a better reflection •' 

	

•	of the dominate influence of the convective term-for small values of E. For: this, follow-
ing the idea of 01:1M0RI and IJSrnJIMA [20] we define a secondary decomposition of 

- ,	Q into domains D1 . Each inner node B1 , i	1, ..., N, corresponds to a dual domain 
,D1 which is defined by the brycenters 8 1 , S of the neighbouring triangles K 1 , K2 

	

•	of 'B1 . Furthermore, let A i be the set of indices j suh that B i and B1 are neighbour 
nodes and n15 be the unit outer normal vector with 'respect to Di along the part Fij 

S	 •	•	 0
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of aD i , between B1 and B1 ..Now, we can derive the following upwind diçretization 
bA of the trilinear form b: 

bh(u, v, w) =	E f Un 11 ds'(1 — ). 11 (u)) [v(B1 ) — v(B 1 )] wB 1 ),	(5.5) 
i=IjEA r,,	 S 

where	u) depends on the flux through I' s , according to 

1 iffun11ds>O 
2 11 (u) =	f .	 — 

	

10 otherwise.	 . 

Our hybrid upwind finite-element method 101: solving the stationary Navier-Stokes 
problem (5.1) is characterized as follows: 

Find (Uh, ph) € VA xQ,, such that	 0 

Ea(uA, VA) + bh(uh, Uh, vA) — (Ph, div VA) = (/, t')	V VA € ,Vh ,	- 
(v.6) (q,divu)=O	 .	 VqAEQA.' 

Theorem 4: The discrete problem (5.6) admits at least one solution (Uh, Ph) € V, XQA 
which is unique, provided e > e(h) where e0(h) — o as h — 0. Moreover, for e > i0(h) 
the error estimate	 .	-. 

•	Bu — U ,jJ j A + un — Phfi0,2	C(a) h'°,	a > 0 arbitrary,	 . 

is satisfied if (u, p) € H2 (Q) 2 X Hl(-Q). 

The crucial point in proving Theorem 4 is that the function 'it in (5.5) ontrary to 
the function bin (1.1) isnot sufficientl y regular since it only belongs to the space VA. 

• . For details we refer to [23], iumerical test examples can be found in [24]. A further 
• . advantage of the proposed methods consists in a favourable property of the linear 

systems of equations if they are generated by a fixed point procedure. Namely, let 
{(, 0)}, {(0, )} be a basis of VA defined by (B1 ) =ô, j . Then, for fixed z € VA the 
matrix corresponding to ea(uh, vh) + b h(z, u b , VA) is an ill-matrix, provided . the mesh 

•	is of we 	acute type [23]. 
Finally, we discuss a nonconforni ing streamline diffusion method for the stationary 

• Navier-Stokes problem. We will use the same finite-element spaces V A , QA defined by 
(5.2), '(5.3) and start with the standard finite-element method (5.4). Provided that 
the exact solution (u, p) belongs to the, space I°1 2 (Q)2 X HI (Q) we obtain by testing tile 
relation —,-Au +(uV) u + Vp = f on each element with 6uhVv . 

— 27 (Au, uh Vv)K + 6 27 (uVu, UAVV)J( +627 (VP, UAVV)K = 6 27(1, UAVV)K. 
•	. K	'	 K	 K	 K	 o 

Since vdhave piecewise linear elerients for the velocity and piecewise constant dc- 
ments for the pressii°re, the discrete problem reduces -to the following form: 

Find (Uh, p ) E VA XQA such that	 S 

ea(uA, VA) ± b(uA , UA, VA) + 6 27 (uhVuh , UAVVA)K — (Ph, div VA) -	 K 
= 27 (f, 'v, + 6U f VV)J(	for all VA € VA ,	S	 ( 5.7) 

• S	(cia, div UA) = 0	for all gh € QA-
 

The, additional term 627 (uAVuA , UAVVA)K on the left-hand side of (57) has a stabilizing 
effect on the discrete problem for small e.	•	 S 

t o	 -.	S	 •'	-
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Theorem 5: Let 6 satisfy 0 :!^- 6 :E^: C1 h1+6 , a >0 arbitrary, and let the exact solution 
(u,p) belong to (W10(Q) x 

J12(Q))2 x Ii'(Q). Then there are constanisEo and h0 such that 
fore > e0 and h :!^ h0 the problems (5.1) and (5.7) have unique solutions which satisfy 
the error estimate 

C Ilu - UhJIh2 + .E Ih V(u - uh)I10.2.x	Ch2 ,	11P	P5110,2 :fi^- Ch. 
K 

For the proof and further results concerning the case a > co we refeito [18] I 

Comparing the streamline diffusion method with the hybrid upwind finite-element 
method we observe that, contrary to the linear case, the strong smoothness assump-
tion u E W(Q)2 becomes necessary. First order of convergence can be established 
whereas the hybrid upwind method 6bnverges almost of first order. As fr as the 
stability is concerned both methods achieve a stabilizing effect by the additional 
terms b(u5 , u5 , 'u5 ) and	]IuSVuS!Io,2,K which are not identically 'zero on V5 as in the 

K	 .	 1 
standard finite-element method.-  
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