.

\ - - +  Zeitschrift fir Analysis
: . und ihre Anwendungen °
! Bd.8 (1) 1989 S.25—40 .

, 3 . )

Basie Properties of Some Differential- Algebraic Equations?)

E. GRIEPENTROG and R. MARz N

o . . S
Es wird dic Losbarkeit der’Gleichung ‘Az’ + Bz = ¢ mit regularem modxfnznerten lokalen’
\Tatnxbuschel von héherem Index untersucht. Dabei wird gezeigt, wie Anfangsbedingungen
goelgnet formuliért werden kénnen und daB die Anfangswertprobleme zu Operatoren mit un-
beschriankten Inversen fithren. Eine enge Verwandtschaft der fiir die .Untersuchung- aufge-
bauten Matrix:Ketten mit den entsprechenden }\ettcn bei den Rcduktlonsmethoden wird -
hera.uvgest,ellt ‘

Paccmarplmaemn BOMPOC PACPEIUMMOCTH ypaeuemm Az: + Bz =gq C HEOCOGEHHBIM Monuqmuu-
POBAHHBIM JOKAJNLHRIM MATPHYHBIM MYUYKOM Bbicwero nuijexkca. ITokaswiBaeTcA, KaKk HadJue-
dauyM 06pasom MoryT G6erTh_CHOPMYIMPOBAHBI HAYANILHKE YCIOBHA H YTO 3aa4i C HAYAL-
HEIMH 3HAQUEHUAMI BEIYT K ONEPATOpaM ¢ HEOrpaHHUCHHLIMH obpatubiMi. Buassiserca rec-
"' HOE*PONCTBO TOCTPOEHHBIX JIA neenenosanna \m'rpuqnux uenoyex. ¢ coome'rc'mylomnmu
LEMO'KAMI METOIOB PCAYKLIH. '

The solvablhty of the equation- Az’ + Bx = ¢ with a regular modified local matrix pencil
of higher index is considered.’ It is shown how to,formulate initial conditions properly and,
that the initial value problems lead to operators with unbounded inverses. The close relation-
_ ship of the matrix pencils needed in the mvestlgatlon and of the related chains of the reduc-
- tion mcthods is pointed out.’ ) ' "

/ X

" Introduction .

]
J)lfferent,ml-a]gebralc equatlons are certain uniformly smgular or(lmary dlfferent,ml
equatxons . : R v .

fl@' @), = z),z)'_o L ' o o

where the pa.rtlal Jacobian f,/(y, z, t) is everywhere smgular but has constant rank:
Those equations originate from different applications (descriptor systems for electric
networks, Euler-Lagrange equations for systems of rigid bodies etc.). "Further, e. g.
reduced systems in singular perturbation theory, certain semi- -discretized Navier-
Stokes systems, also control problems represent ‘differential-algebraic equatlons :
Often differential-algebraic equations are glven -in semi-explicit, form .

(0.2)

1

z)—q»(uc),v(t),)—o,} . -
plu(t), v(t), 1) = 0
(e.g. dynér’nical systems subjected to constraints, reduced equations of 'singularly

perturbed systems with separated fast and slow components) which may be considered
to be differential equations on manifold (cf [2, 17]), supposed ¢, p are smooth enough

1) Vortrag auf dor gemeinsamen Tagung vom 9 ~13. 11. 1987 in Berga (DDR) der HFR Ana-
lysis und. HFR Numerische \{nthematlk
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Notice that in view of the application, we should accept u € 01 velC satlsfymg the
above semi-explicit system to be solutions but we should not demand » € C*. Clearly,
if y(u, v, t) = 0 may be solved uniquely with respect to.v, v = h(«, t), the system (0.2)
is well-understood. It is not surprising that numerical methods aproved for regular '
~ ordinary differential equations can be modified to work well also for (0. 2) The class
of transferable dlfferentlal-algebralc equations (0. 1) COHSldered in [8] is the related
" generalization of this case. :
. However, what happens when y, (u, v, t) becomes smgular? I't should be mentloned
. that, for instance, v, (%, v, t) = 0 holds when only holonomic constraints are given
- for a system of rigid bodies. Integration methods working well when applied to trans- --
ferable differential-algebraic equations fail or work unreliably in case of nontrans-
ferable equations (cf. {8, 14]). Only for very Testricted classes of nontransferable-
differential-algebraic equations the usual integration methods. can be managed to
‘work ‘well by special error controls (e.g. [11, 14]). -
The behaviour of discretizations as integration methods is’closely related to the

*. underlying functlonal-ana.lytlc characterization of the original problem. In particular

unbounded inverses give rise to the instability of the related discretizations. :
In"the present paper, we conSIder lmeal nontransferable differential-algebraic
equamons

ADZO+BO O =q) e 0y

with continuous coefficients 4, B. Note that in view of possnble linearizations of (0.1)
* we are interested even in contmuous coefficients (but not in analytic ones). The first
questions we should deal with is whether the solutions of the homogeneous equation
form a_finite-dimensional function space, and how .to formulate initial conditions
appropriately. It is also important to have solvability assertions. In particular, for -
the numerical treatment we should know whether the related maps are erdholm
have bounded inverses etc.-

. T6 answer these questions requlres a lot of matrix analysis. In § 1, basic propermes

T of certain matrix chains are proved. By this, some open questions of [15] are also

.answered. In particular, Theorem 4.7 formulated in [15] for 4 < 3 becomes true also
for u > 3. In, §2 initial conditions are formulated appropriately,-and solvability
statements are givenfor a new class of equations (0.3). This class is characterized by
‘an everywhere regular modified local matrix pencil (cf. [8]). Via the modified local
matrix pencﬂ or, equivalently, via-the matrix chaines proposed, an indez k of (0. 3)
is defined. So-called- higher index equatlons (k > 1) lead to ill-posed initial value
problems (unbounded inverses) even in the case the initial conditions are stated prop-
. erly (injective maps). In § 3, so-called réeduction methods are considered. They allow
to reduce the index k& of (0.3) supposed some differentiations may be carried out exact-
ly, and supposed the solution of (0. 3) is x € C: It is also the purpose of the present
paper to point out the close relations of thé inner decoupling of the differential- -alge-
braic equation in § 2 and the reduction method in § 3 by means of the common matrix
~ chain approach. Notice that the matrix chain results propose(l in' § 1°generalize resp.
simplify both [7] and [15]. :

§ 1. Matrlx theoretlcal relatlons

We consxder sequences of 7 X n-matrices {J;}f_o and {J;}f;o defined by a given matrix
Jo:= Jo:=J and the relations J, := J, :=Jo +Q, . -

Jii=Ji; + PoPy ProQuy, Jii=J1, + Q. - (1=23..,k),

4



Some Differential-Algebraic Equations 27
*where the @; = I —'P; and Q =1 — P; are arbltrary prolectors onto ker (J5) and
Ler (f;), respectively. Furthermore, we define index sets

T = {6, ooy im) it E NU{OL 7 S0y < -o- < S8} -
and for =1, ..., k the matrices '

G = )} Q;,Q-‘.n-Q’i,','s G =X Q.‘.Q.‘.---Qﬂ-

¢ J10k=1) 7401

Then the followmg bheorem holds
Theoreml For 1=0,1, k — 1 the relations J‘J —J‘+l ): (—1 )' 1

i=141 .

X (Z ) )G’ and JiJ, = Ji+1 & (—1)' G,H hold. .

7

N

Proof: Obvxously, both the assertions are true for I = 0, because of J; =J +Q

I =Q) @ + -+ (L= Q) —@) - (I—ka)Q“—J-i-Z(—l"G
and Jk =J + Z Q =J + @ Now we \enfy the assertion concermng J‘j,, wlth
1 2 1. The assumptlon Ji- ‘j =J + (— l)‘ 'G’ =J'+ -—1)’ 1 Z Q,,Q,, Qs
1mp]1es 708 o

Jl'jk = J‘+l T (—l)l ! OQ“Q:, e Qi‘

) . 74 ox— ..

= JE (=1 Y (J’;,,— Q ) Q.‘Q., e Qi

. 7:0F-1 \ - 057 Si—1

',___ JUEp (=) X QQ.‘Q = Ji*! + (—1) G

0Sj<i< - <) Sk—1
The proof of the assertion for J'J, is a little more complicated. Deflmng

) Gt = 57 Qi - Qi (13m<s-—r+) Cor =1,

7""‘1
k—m+1 k41— o .k
we obtam 1mmed1ately Gp = G0k = 37 Qr 10" KD = ¥ Gﬁ,(.)_'_ (e L
r=1 N o r=m+1—i

(1 < ¢ = m). Now from the assumption J!~ ‘Jk = J! + 2 (—1 ""(Z o 1) G{o-k-1
_ k ) — T\k=i+1 i= -
=J' + ;’I (—1)—! (; - ) Z Qr_,Gik—D follo“s the equatnon ‘

k i — 1\ k=i ‘ :
Jle=J1+1_+.§(_1).—1 (l ) 5 { - ‘_Z(_ll 10— 2’}Q,_1G§’_"{‘” ‘

\1 r=1 71'

’ ok i__l_k«rl ir—1
— Ji+1 +Z(_1)((l 1)' b Z(_l); ‘G‘“"”Q G(rk n,
t={ . - r=1 j=1 " .

‘and by convenient exchanges of the summing-up processes (s := 4 + 7)

' — 1\ k+1-i
J'Jk = Ji+ 4+ Z‘ Z‘ (—1)i+i-1 ( 1) Y Gor-vQ,_ G(rk—l)

i= 1; Il —1/,:5n
1\ k+1-i bty
—gng £ =iz (1) U5 ovrne e

g§=I+1 i=l 1 r=8+%+1-%

s={+1

— JH—l + Z’ (_1)a IZ’ ( .1) Ga(o.;r-l).
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/

. Vo] ~1=t f] 1 _ »
~ Finally, the well-known ldentxt,y SZ (; _ i) =SZ (l , 1+ 7) = (s ) 1) yields

k —-
" the assertlon JJ, = J‘T‘ + 3 (—1)p? (8 ! 1) e

s=1+1

F or nilpotent matrices J Theorem 1 has fa-r-reaching consequences.

. Theorem 2: If the matriz J is nilpotent of the order k,ie J*=0 and J"'l +=0
kolds, then all J, and J, with I < k.are smgular matrices, whereas J,. and J, are non-
ézngular .
Proof From Theorem -1 and J¢ = 0 there immediately follows J*~1J, = (— Y1
" X Q@ -- and J¥1f, = (—1)%- 1Q0Q, ... Q.. 1~ Inorder to pro¥ve the non-singular-
ity of J, and },‘ we have to confirm ker (Ji) = ker .fk {0}.! The assumption Jov=0
implies 0= QOQ,. Qk_lv = J —j Q,. Qi = = —JQ, ... Qk 10, that means
Qk W E l\er( ) and hence Q, Qk 10 = QOQ, . Qk W= 0 Now .f — j,) Q2

Qk_,v = —J.Q;... Qv yields @; Q- v € ker (f,), Le. Q. w=0,Q, ...
w1v = 0 and so on. Fmally, we. obtam 0=0Q, v= (fk_ jk) v = —jk w0 and
therefore v € ker (J,_;), i.e. v = Qk_l'v = 0 'verifying ker’ (Jr) = {0}. :

. Ana.logously the assumption Jyv = Oleads to @@, ... @,_,v = 0and @, ... Q4_,v =0
. that is PyQ, ....Q«_,v = 0. ‘Hence, we obtain 0 =Q,...Q,_,v = P,P,Q, ... Qv
using (J, — J. )Q2 4 =‘O, Le. @ ... Qv € ker (J)). Continueing this process
at last we receive 0 = @,_,v = PyP, ... P ,Q, v, that means 0 = (J, — J,,_ yv
= —J,_,v, and hence v = Q,_,» = 0 pwvmg ker (J;) = {0}.
To complete the proof we have to Verlf_) the singularity of the matrices J,, J, with

D k. Je—\Jy = JF 4 (—1)F-1Qy0, .. Qk y implies J¥~1 = (—1)k- 1000, ... QS t
Since J*-1 0 we may choose a vector w with J*lw = 0 then we obtain Q,Q, ...
Qi 1y + 0 and therefore w; := @, ... Q;_,J,'w =+ 0. Oi the other hand, j,Q, =0"
implies f,w, = 0 demonstrating the smgulanty of J,. The proof concerning J, is

- completely qnalogous ]
: /

‘Now we try to generah?e our results to pairs of matrices. A pair (4, B) of m X m--
matrices is called a regular pencil, if p(z) = det (24 + B) does not vanish identically,
Fox each regular pencnl a decomposition -

s

“E1AF-1 = diag (I, J), B-1BF- 1= diag (W, In_,) . (1.1)

with det (E) == 0, det (F) &= 0 exnsts, where J is nilpotent (cf. [3, 8]). The order k of
nilpotency is called index of the pencil: k = ind (4, B). If 4 is regular, then per defi-
nition ind (4, B) = 0 The mtcgers k-and s do not depend on the specnal (,holce of -
EandF. -

Startmg with dg:= Ag:= 4, Bo = B,: _\B we construct sequences {(A,, B,)}, 0
{(A,, Bk .o of matrix pairs by the following rules (I =0, ok — 1):

O Auw=A + BQi, Bui=BP, dios = di + B0, B~ B, (1.2)

Here the matrices @, = I — P, and Q, =1—P, are projectors onto ker (4,) and
ker (4,), respectively. .

Theorem 3: If (A,B) isa regular pencil with the indezx k, tken the matrices A,, 4,
- with | < k are singular, whereas A, and A, are non-smgular Conversely, if Ay or Ay
is non- smgular, then (A, B)isa regular pencil.

Proof: First we prove the second assértion. For thls purpose we simply demon-
strate, that det (zAi + B)) = 0 implies det (24141 + Biy1) = 0 and det (zA, + By

L
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- ‘l
=0 implies -det ('zzi,_,_l + B,y = 0; then obviously 4, of Ay cannot be non- -singular,
if det (z4 + B) = 0. The equations det (zA.,+l + By,,) = det (z4, + 2B,@, + B/P))
= det (ZzAlQ[ + Z(A Pl + B[Q[) —+ BIP‘) = .det (ZAI + B‘) det" (ZQ‘ + Pl) and
det, (24441 + Byyy) = det (24, + ZBKQI + By) = det (24, + B) deb (2@ + I) prove
the conclusions stated above. .
For the proof of the first- -assertion we use the decomposntnon (1.1) and define

U =diag(l,,J), V=diag(W,In,), Uy=0,=0U, Vo=V,=
Ui=Uii+ ViaSia, Vi=Vi Ry, Sia=1-— B, = FQi,F !,
-Ui=Url+Vt—S:l’ V_Vl 1> SIX—I_Ru-l_FQ;—lFl

i=1,..., k Then obviously S;_; and 8;_, are projectors onto ker (U', ) and ker (U_,),
'respectlvely, and we obtain 4; = EU,F, A; = EU,F, B, = EV,F and B; = EV,F. -
Therefore, we only have to prove that; the U,, 0, with l < k are smgular whereas

U and. 0, are non-singular. The calculatlon of U; and U; yields in each case - '

U_(é 3+H) " -0“:'A~(fi"3+é.-).’

. {0 0 W [0 0
. S N (ﬂli Qi*)’ S : (Mi Qi*)f
where ) L v '
. FERY . . .Y l
Z *Pl*"'Pl.—lﬂlft '.Gi,':ZMl:
_ = > "::_01" , - o
}{ ZPO*PI . P:‘le, . H"—‘ZQI*, A N .

and the Q, =1 — P* Q * are prOJectors onto ker (J + H) and ker (J + H) o .

respect,lvely M; and M, are arbltrary (m — s) X s-matrices with @;*M; = M; and .
Q*M;, = M, ie. (J+ H)M (J + H)) M, = 0. Theorem 2 then lmmedlately
dehvers the assertion R

" Now as a direct corollary we obtain the follo“ ing theonem which generah?es a
result proved in [7] in a more complicated way.

Theorem 4: If (A, B) is a regular pencil with the index k, then (A,, B,) and (A,, B )
are-reqular with the index k — 1 That means :

ind (4y, B)) = ind (44, Bioy) — 1, incl (4, B,) = ind (Aier, Bioy) — 1.
(z =1,..,k.

Proof The sequences begmnmg with (A,, By or (A,, By lead to non- smgu]ar'
matrices 4, and Ak, respectively, in exactly k — lsteps 1 -

\

In the next chapter we need a further corollary of Theorem 3.
~Theo rem5: / f(4,B)isa regular f)encil, then the relations '’
Y ker (4y) n ker (By) \=' ker (ﬁ,) n ker (B)) = {0 } ’

-ép_an (im (4y) v im (By)) = span (im (4;) u im (B,)) -
are valid forl =0,1, 2; ) ‘
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N
‘

. v : L . .

Proof: If we assume z 20, z € ker (4,;) n ker (By) or = € ker (4;) n ker (B,),'_‘we
obtain 4,412 = 4z + B,Q,x = A + B = 0, Bj;,x = B)Pix = 0 (using Qz = z)
or Ajx= A + BQux = A + B,:vf— 0, B4z = Bz = 0, respectively. Hence, -
no 4, or 4, is non-singular, and (4, B) ’cmmot be a regular pencil Further, x = A,
+ By = A yu 4+ B14(Qi- 1%+ P 1'”) or xr = Alu + Blv = ‘Al %+ Bl—l(Ql %+ v)
yields .span (1m (4;;)vim (B l)) = span (ml (4;)vim B,)) and span (1m (A, )
uim (B, 1)) 2 span (im (4;) vim (B,)) Since for. regular pencils im (4,) = im (4y)
= IR™ for some £, the theorem is proved 1 :

" Remark’ Nonther the two conditions for the (4, B,) nor the two conditions for the (4, B))
'are sufﬁclent for the regularlty of the pencil, as the following examples demonstrate.

S /1100 ‘ 0100 i
Lo 4= (0001} o000} . \
0000 0010}
A 0010/ . ~-\0o0oo
lead to Ay; = A, By, = B, Ayiyy = 4, Byyuy = B (i = 0,1, 2, ..) using '
1000 1000 ‘
~[—-1000) 0000} . =
%=1 5000 @Lin=1o000)" . ,
0000/ \Noooo/ -~ . .
0100 1100 :
i_[ooov} g_[0000
o 0000 0010 .
; 0010 0000
a4
. 100\ /1000
o, 4o [0o0o0r) o fooor) )
0000 o 0010
0010 \oooo
lead to
: 141100 ; : /1 000
» 0.. 001\ —1—-1000 : :
4, = sing - 0, = |' : 1=0,1,2,..).
A o o000 "M Z o 000 ( )
o. o110/ » 0 000

Supp.(;sed the pencil (4, B) is regular, we are allowed (by Theorem 5 and [15:
Theorem 2.3]) to choose the projectors @; within the chain (1.2) in such a way that
Q=0  (¢=0,...,,5—1)yforallj. ' ' - (L3)
‘This implies, ‘in partlcular all- products of prOJectors P,, P << i, to
become projectors again. Namely, we have :

(P, ... P )2 = P,-, e (I —@Q:i)P;, .. P,"_ r;,

= (P, ... P, 2 Pi, — P;, ... P-'n-.Qi,. i = (Pi, ... P, ) Py,
. :

i.e. the. assertion is shown inductively. Introducing the subspaces S; =tz € R™: V
Bz € im (4,)}, © =0 , we are able to characterize the dimensionsof the nullspaces
" Ker (Ais) (cf. [4: Lemma 2. 1]) as'follows:’ » -

dim (ker (4i)) = dim (ker (4;) n ;). o v -'(1.:1)

x,._
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r

Fmally, the special choxce of the projectors descrlbe(l by (1.3) leads to
My, i= Ker (o) + -+ + Ker (Aer) = ker (40) @ - @ e (s s

dim (Mk_,) = dml (ker (Ao)) Z dim (ker (4;) n ; )

§.2. Analyzing linear différential-algei)raic equations

Consnder the\smgular linear ordmary (llfferenblal equation .
A:z: + Bz =g¢q, : = ’ : , (2.1)

where 4, B E C(] L(]R"')) q¢€ 0(7 ]R"' = C Jisa compact mterval and A(¢) is

singular on J but has constant 'rank . Those equations are called normal linear

differential-algebraic equatzons Suppose the nullspace’ N(t)-= ker (A(t)) to depend

smoothly on ¢, that is, there is a projector function @ € 01(7 L( IR"')) so that Q(t) .
= Q(t), im (Q(t)) N(¢) hold (or equivalently, N(t) is spanned by a base Ry - eos Nmr
01(,7 Rm) =: C"). Introduce also P € C'(7, L(R™) ), Pt) = I — Q).

\otlce that the smoothness of N(-) is equlvalent to t,he existence of linear mdependent

functlons Ny, «voy Ny € C! spanning N( ), i.e. N(t) = span {n,(t), ..., n,_,(¢)} for all t € 7 [1]> -~

Namely, for flxed ty €-J we _choose n,% ..., nd_; € R™ to be a blse of N(ty). Then, determine
n; € C to be the solution of the initial value problem n’ = @'n; n(ty) = n;, 7 =1,...,m —r.
Further, we have Pn; = PQ n,, therefore (Pn;)’ = P'n; + PQ'nj = P'nj — P’ Qn = P’Pn,;.
Because of P(ty) n4(ty) = 0, the function Pn; vanish 1dentlcally, ie. n; (l) € N(t) for allte.7,
i=1...,m—r Smcc the ny, ..., np, urc lmearly independent, they span N(-). On the
other hand if N(-) is known to be spanned by given n,, ..., n,_, € C!, the matrix function
Q= F(FTF)“ FT, F(t) = [ny(¢), ..., nm_r(t)] € L(R™=", R™), hasall properties required above.

Since 4 = AP, Pz’ = (P:z:) — Pz for z € C', we may reformulate (2.1) to
A(Pz) + (B — APz =q , (22)
what shows that all functions x belongmg to Oyt = {y € C: Py € C'} and.satisfying
-(2.2) should be accepted to be a solution of (2. 1) but not only z € C*. Defme the linear
~ ap : - .
A: Cyt >.C, Az = A(Pz) + (B — AP')

Clearly, Cy! equipped with the norm |-} = ||}l + JI(P-)’ leo, becomes a Banach space,
and % is bounded. Both, the set Cy! and its topology, and also the map A are inde-
pendent of the choice of the projector functions @, P (cf. [8]).

« Now, denote by + the set of all ordered matrix pairs {4, B} having the properties
described above. In_the following, we are interested only in. dlffenentlal-algebralc
equations (2.1) the coefficients of which form a pair belonging to

. It should be mentioned that constant coefficient equations (2.1) are well- under-
stood vid the Kronecker canonical normal form [3], and also by means of the matrix
chains constructed in § 1 (cf. [7, 15)). In particular, if (4, B) forms a smgqlan matrix
pencil, then the related nullspace ker (%) has an infinite dimension (cf. [8]). Supposed
the pencil (4, B) is regular, the normal form (1.1) may be used to obtain dim (ker (91))
= grad (det (z4 + B)) as well as to characterize im (). The index of the pencil (4, B)
is said to be the index of (2.1) in this constant coefficient case..If ind (4, B) =:k > 1,
then im (9() consists of functions g € C certain components of which are uptok — 1
times continuously differentiable. However .even in this constant coefficient -case,
the. formulation of appropriate initial condltlons requires mformatlons about the

(S
‘
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canonical normal form. (1. 1) included the transformations E F (what cannot be

 realized practically) or the computation of some projectors defmed in § 1 (cf. [8; 15]).

'But what about general equations (2.1) with {4, B} € % The first problems we °

should deal with are thé questions whether the solutions of the homogeneous equa-
tion A2" + Bz = 0 form a finite-dimensional subspace of Cy!, and how: to formulate
initial conditions to fix a unique solution.
Supposed {4, B} € A, the map U and also equatlon (2.1) are called tractable if
~dim (ker (2[)) < oo. The global index concept of GEAR and PeTzoLD [5] generalizes
(1 1) for {4, B} ¢ N (resp (2.1)) to o : \

B 40) F(t) = diag (1,, 7, S ‘
- E(t) B(t) Fit)+ Et) A F'( ) = (llag (W(t), m— a) }

The global index (if it exists)is defmed to be bhe mlpotency index (Riesz mde\:) of J.
Clearly, equations (2.1) having a global index are tractable. However, there is no
- chance to realize (2.3) practically, e.g. for.the statement of initial conditions. The
matrix chain calculus proposed in [7, 15] for constant coefficient equations and in [12,
13] for index 2,and index 3 equations with {4, B} € A4 seems to be a better tool to

handle (2.1) practically, e.g. to formulate initial conditions, to investigate the beha-,
viour of numerical methods, to check the index ete. In the following we try to-charac- - -
terize a new class of tractable differential-algcbraic equatlons in terms of their coeffi-

cients by means of the matrix chain approach.
Ny Tr 1v1ally, 1nstead of (2.2) we may write also  ~

(4 4 (B — 4P)Q) (PP2y + Qe + (B — AP) Pa =g BRI

~ Now,if 4, :=4 + (B — AP’ )@ is non- singular for all ¢ € 7, mulbnplymg by PA,!
and QAl'l, respectively, splits up equation (2.4) into the system .

(Pz) — P'Px 4+ PA,~\(B —AP") Px‘z PA,"q,
Qz + QA4,"%(B — AP") Px = QA,7Yg.

’

This systém is decoupled into a rcgular explicit ordinary differential equatlon for the
component Pz (the state variable) and an explicit assessment deter ‘mining Qz. We

obtain solvability for all cohtinuous right-hand sides, that is'im (A) = C. The initial

‘condition P(t,) (x(to) — a) = 0 fixes a unique solution of (2.1) (cf. {8]). ‘
Equation (2.1) is ‘called transferable (into state variable form) if 4,(¢) remains non-
singular for all ¢ € 7 By Theorem 3, the matrix 4,(f) is non-singular if and only if
" .the-so-called modified local pencil (A(t) B(t) — A(t) P'(¢ )) is regular and has index 1
— or, eqmvalenbly, if and only if the so-called local pencil ( ), B(t)) is regular with
index 1 (cf. [8: Theorer A. 13]). This is why transferable differential-algebraic equa-
tions are called uniformly index 1 equations (e. g. [4, 5]). Linear and also nonlinear
transferable differential- algcbra.lc equations are well-understood (e.g. [8]). They form
the simplest class of tractable equations, and they are amenable to numerical methods
in a similar way as regular or(lmary differential equations are (e.g. [5, 8]). Let us
* point out that A 1(t) is exactly the first matrv( defined within the chain (1.2) when
starting with Aq(t) := A(t), Bo(t) := B(t) — A(t) P'(t), Qolt) := Q(t).

Now, we are going to use the whole chain for eacht e 7. Addltlonally, we are inter-, ’

ested in the subspaces

,(t) = ker (A ) ry '
8ty ={z € R™: Bj(t) z € im (A t))}

(19

K

(23) -



’

Some Differential-Algebraic Equations 33

/

which we call canonical subspaces of (2.1). By the use of our matrix chain, equation

(2.1) can be rewritten in the form (cf. [15]) . N .
APy ... P.P(P) + Piy ... PQz + Piy ... PQiz + -
+Pk-le—2x+Qk 12} + BoPPE, ... Pk r=9q. . L (2.5)

Supposed the modlfled local pencil (Ao(t) Bo(t)) becomes regular for all ¢ € 7, and
ind (Ao(t), Bo(t)) < k,k> 1, we are able to choose the pro_pector functlons in our

- chain so that the identity
4

Qi) Qi(t) = 0,. 'OSi<7’Skt€7 i ' (2.6)

is satisfied (cf. § 1). The matrix Aj(t) is everywhere non- singular then. It should be
mentioned that (cf. (1.4)) dim (NV;i1(®) = dim (Ny(t) 0 Si(t)). Using the identity

I=PyP,... P + QP ... Pty + -+ +Qk—3Pk—2Pk—1+Qk—2Pkl'l‘Qk-

Casw ell as certain properties following from (2.6), we split up equatlon (2. :)) into the
system . .

N

Pk I(P:Z:) '-+-‘ P0 Pk—lAk_l'BOPO ces Pk—lxb = PO e P‘._lAk_lq
(Qle + QoPiQ; + ... + QoPy ... PiyQi) (P?)' '
+ Qo + Q0P - Pk.—lx =QoP, ... P, 47q

— (@52 + Q- 31’,,_2Qk ) (Pey ’ ' - @7

’ + Qloz + GusPo - . Py oz = Qe aPro Py Ai g
—(Qk 2Qk 1) (Pr) + Qoo + QuoPo ... Py = Qk—aapk—nA.leq
) Qr1x + Qk-lPO Pt = Qa4
Thereby, . . ’ . ' ) :
- Qi = Qi Fy- e Py A BoPy . Pyyy, jil,'...,"k, .
may be shown to be also prOJector functions, i.e. Qk_ (¢) pro_lects IR"' onto Nk_,(t) In

partlcular Qi-1(t) projects onto N,_(t) along Sialt)- Further it should be notices
that 2 < g 1mplles

. Q Q. = Q; FIS IR Pk-lAk_lBo‘Po ;—nQ. Py - Pk—xAk_lBOPO Pa—l(‘— O

thus the plOJectm functions Ql satisfy the condition (2.6) also. Taking Q, = Q, in
advance would lead to Q iPo...Pry=0,7=0,...,k — 1, hence to an easier form
of (2.7). This is why we call Q, canonical pro;ecbor functions. Nol:e that Qo is not
necessarily contlnuously cllg.t'erentlable

Denote [T, = Py ... Py, M;, = im (17,r (ts)), where ¢, € ,? is fned Fu:ther, intro-
duce the linear bounded maps - A

B Ot > My, Bz = Tto) 2(te), £ = (U, B): Oyt »C X My
The initial value problem for (2.1) with the initial condition .
T(ty) (%(to) —a) =0 ' ‘ (28
is represented now by the equation Qx = (q, IT,(t) a): '

Theorem 6: Assume {4, B} €N Let (A(t) B(t) — ) e reqular and have
the index k = 1 for all t € 7. If k > 1 let (2.6) be satzs/zed et (7 I lR"')) j=1,

3 Analysis Bd. 8, Heft 1 (1889)
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N
ok — 1, and, moreovér, -
V(Popl'- P,) Po(I — P Pk_,)—O 4 - }(29)
(@ — P;... Py)Y PO(I—P Pk_,)_O,: j=1..,k—1 "7

Then S is injective, thus A is tractable, dim (ker (A)) < rank (I7,(ty)) =:s. Provided
. certain further. smoothness 7elated to the projector functions and coefficients is given, it
holds that dim (ker ) =s,and & l(0 1T, (t) a) depends continuously on a. '

Proof Condltlon (2.9) leads to
Py ... Pk_,(Px) (IT‘.Pa:) — II,'Px = (Hkx) — ITk ITx, '
(@@ + o+ QaPy - Proales) (Pa) = @all — Py ... P,,) (Pay
= Qi|(@ — Py ... Pey) Pr) — (Quuld — P ... Py))’ Px] )
= Q@@ + - + @uaP; - Prsur®) — Qral@all — Py P T
forj=1,..,k — 1. Insertmg this expressions in (2.7), and takmg into account that
Q.Py... P20, i=0,. k—1, thus P;, (Q,_l( — P Piy)) =0, j=1,
...k — 1, we obtain ' )
‘ . ey — /M + A BT — HkAk g, |
= Qo(Qanx + o QP ... Pk—?Qk—lx) . o
+ {Qo(l — Py ... Py )' + Qo}lﬂkx + Qox = QPy ... P A7,

I3

— Qi3 Q;—st 2 + Qi-alt-2Qp12)" ' . (2-10)
+{Qk-3(l_Pk—2Pkl) +Qk3}nkx+Qk3z—Qk3Pk-PklAk g, )
= Qr2( Qo Qi 13?) S ! .
+ {(Qi-sQer)" + Qi Iy + Qk—zil? = Q2P A,
Qe + Qk—lITkx = Q1 4, q J

Now, thc first assertion bccomes evident, since the first equation in (2.10) is decoupled

from the other pnes, and the initial condition (2:8) fixes exactly one of its solutions.

q¢ =0, ITi(ty) @ = O implies IT,x = 0. Now, the last equation of (2.10) leads to Q,_,x

= 0, the next to the last one gives @, o = 0 and so on. Hence x = Mz + P, ..

P Qo + - + Po@ix + Qox = 0. In a similar way we construct a solution for
- each nontrivial ITi(ty) @ € M,. But now IT,x becomes also nontrivial, and we have to

assume the existence of all derivatives we need for (2.10). successxve]y ]

Notice that the a.ssumptlon of Theorem 6 related to the uniform index Ic on J

cannot be weakened to ind ( (¢), B(t)-— A(@t) P’ (t)) <k :
_Example 1 (cf. [8: § 1.3, Example 1]): Let - A = 1\_‘ , B=2I, 7 =[0,2]
Computc Q(t) = (g i),»,A,(t) = (i ;+i).‘ The modified local pencil is regular for

allee 70Tt ‘has index 1 fort & 1, but index 2 at ¢ = 1. In [8] it is shown that the solution of
the homogencous initial vnlue problem bifurcates at the point of index change.

~° In Example 1, the'change of the index is accompanied by a discontinnity of @,. By the next
- example we point out that even if there is no index change of the modified local pencil, the
demanded smoothness of the projector'functions is also essential to Theorem 6. ~

\

: ~
~
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1=t 1 0 0
Example2: Ford®) = [ % % % %) Buy =17 =10,2), wehave .
, 0 00 1 . o
0 00 0 s
1 00 0 3—t1.00
-~ ft—10 0.0 . t—10 0 0
t) = - N t) = N
w=15""6.1 0 W=1" o1 4
0. 00 0 : 0 000
. ’ 1 for ¢ %‘1 '
dim (k t
1m(elr( 1(>)) {m”_l ‘ ,
@,(t) is not continuous at ¢ = 1. Choose ‘ !
. /0 120 0 00,0 O
o1 o0 o - 000 0 :
Q1) = : , ) = - fort,+ 1,
=156 o _1 AO=14 o o —1 or =+ \
00 o 1 000 1 '
hence @,@ = 0 is-true, Further, compute ! . .
/2100 3—¢t1 00 .
: 0100 - - ft—10 0 0 '
CA,(1) = : L Ay =1 - “fort = 1.
A=y 61 ). 2O= o o4 1) fortF
\0 0 0 1 - 0 001 )

A,(t) is non-singular, but 4,(¢) singular for all ¢t € 7, thus the modified local pencil is every-
where on J regular and has the (constant) index 2. Note that we havealso (PP,)’ (t) P(¢) @;(t)
=0, (@@, (t) = Q'(t) @,(t) = O for:t = 1. The detailed homogeneous differential algebraic

system (2.2) under consideration is
N .

(1= t) & + ) + 22, =0, T, =0, -_ z +23,=0, ) =0 a0

The discontinuity of @, att =1 indicates a singular point of the inherent ordiha.ry diff\erential

- equation related to IT,z. For arbitrary y € R, the function z defined by

2(t) = maamfA"ﬂutemq; o L
Sl —1),0,0,0T i teft,2) S

A ‘ : o o - ) o
belongs to Cy'/and solves our homogeneous initial value problem as well. Therefore, € is not

" -injective.

. Next we turn to, the question whether (2.1) is solvable at all in the case of k > 1
Agam system ‘(2.10) suggests how to proceed Addmonally to the assumptions of
Theorem 6 we suppose that :

L

Qmeol(y L(]R'")) Sk, }
i g ' L (21
Qi — P;... Py e C3(F, L(IR'")) j=2..,k=1, RS

. «

.

if k> 1. Take z € Cy! to consider q := Az. We have

v

y:= H,x=ITkP?: € Ct, Qjx = Q;Px € Ctforj = l.,...,k'—_l..
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i

Denote . . . .
Peor = Quadi'q, , . . . -
Pi-1 = Din _.Qk—lnky’ ‘ ' . A
. Preoj = Qu-jPi-jrr - PacyAi™q -
+ Qu-i(Qu-jPu- -+ + o+ QeeiProjor -+ PecaPrr)'s »
L Pe-i = Pr-j — Qk—]rlky - (Qk U — Pk—;+1 s Pk-x))' ITk::’/, ' A ‘.
j=2, .. k-1 J :

" Now, successwely using (2.10), (2. 11) as well as p,_; = Q,_;z € C*, we_derive that
Pe-j € CYj="1,...,k — 1. Therefore, we obtain ‘ . o

(2.12)

im () S Ry := {qeo preChi=1...k—1, (2.13)

that means, some components of g have to be contmuously differentiable up to
-k — 1 times. Notice that y is the solution of the initial value problem

‘y — Iy + LA By = TIA'g, } @ 14)

C ylte) = ITilto) (ko). ‘ ' B

. Defining R; by (2.13) we understand y to be the solution of (2.14) wheére ITi(t,) x(to)

" is replaced by I, (t) a, a € R™. This makes clear that &, possibly concerns further
_ smoothness conditions related to y also.

To prove the solvability of (2.1) for each given g € &, first of all we defme yeCt

as described above. It may be checked easily that y = IT,y holds. Next we determine

Prors -» - Py according to (2.12), but. now q € R nnphes Di—j 6 cLj=1,..,k —1L

c .

Moreover, ‘we use thc inclusion .

Do = ‘QoPy ... Py 1A (I—{Qo+ QI — P kl)}Hk./

v Qo(QoPn + o+ QoPy o Proaprea)€ C '
Slnce pi=Qpj, 1= ,k —"1, the function = = py + ¥ + Popy + 4B,y

Py_,pi-, belongs to C’Nl Fmall) z.can be proved to sat,lsfy (2.1). 1mmedlately Conse-

- quently, im (A) = Ry

T valzd k> 1. Moreover, let (2.11) be gwen Then the inclusions

A Theorem 7: Let the assumptions o/ Theorem 6 (tnclusive that of the second part) be ,V

_ ACA”‘lglm(‘)I) c72;.——{QECQI:1AI: qECI}CC

are true. The maps A: Cyt > C, : CN —C X M, are not Fredholm. € i\s injective but
has no bounded inverse. ) '

Proof: The assertion is a dircct consequence of our considerations above smce
R, is a proper nonclosed subset within C 1

Cor ollary 8 L Ot > C XM, becomes a homeomorphzsm if and only k = 1.

Theorem 7 suggests to call the differential- algebraic equation under consideration also
‘index k-tractablé. Note that index- k tractability, k& =< 3, is defined  in -[12, 13, 16] without
using the assumption (2.9) by means “of certainly modified matrix chains. This definition does
not include the smoothness of @, and Q,, respectively. But we know from }an,mple 2 that we -
should include it. For a conjecture to define index-k-tractability also for k > 3 unless (2. 9) is
given, and without using a matrix pencil we refer to [16].

1t should be mentioned that Theorems 6,7 cover the linear prototy pes of lnterestmg appli-
cations (cf: [10, 15]). On the other hand, the modified local peucnl used in the present paper
remains regular only for a restricted class of equations. -

‘
\
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Example 3: Let A

0 1 0\ . 10 0 : S
Aty = |0 —t 1, Be)=[(0 0 0 ’ .
0 o o/ - 0 —t 1

The related equation (2 1) has the global index 3, and it is index-3-tractable in the sense of .
[13]. However, the modified local pencil is singular.

By Corollary 8, the only initial value problems in differential-algebraic equatlons w hich are
well-posed, are those where (2.1) is transferable. All hxghcr index (i.e. k > 1) equations lead
to ill-posed problems in this framework, that is ! is unbounded, and small perturbations

o of.the right-hand sides in (2.1) does not imply necessarily small errors in the solution. Surely, -
we could look for'an appropriate stronger norm on im (%) to obtain a.bounded inverse of £
in this new setting. But the descnptlon of im (%) is tcchmcally rather complicated. When
assummg Q’ = QI, Q =0,j=1,..,k—1, the"exprcssnons for im (A) becomes more trans-
parent, _m partlcular we have then ‘ o : ) ‘

C o Aa=lgeC:QuaIge O, .
My = g € C: Qud g € O, Q04,79 + QP4 €0,
‘ Ry =1g € C: QA = : py € CL, (Qupa) + QuPad g = i py € O,
N (@b + @uPe) + QuP:PaA g € O, |

But even in this case R is qmte comphcatcd for & > 3. Besides, up to now, there aré no
proposals to design numerical methods going well with the modified setting where £~ becomes
bounded. On the other hand, first proposals to regularize the ill-posed problems as they are
given in our original set,tmg are made (e.g. {9, 10]).

, Further, the Cy!, C X M;-setting and also the C, C X M- settmg are convenient to study
the behaviour of integration methods applied to differential algebraic equatlons (cf. [14]). Note -
that both € and £-1 are'unbounded when the max-norm ||-||, is used in all spaces. The reflec- )
tion of the unboundedness of -1 by the mtegratlon methods is their instability (cf. [8, 14]). ’
For index “2 equations having a constant projector function P, the instability is weak and
only related to certain components. In the consequence, e.g. backward differentiation methods .,
may be managed to work well for those equat,lons But, unfort,unat(,ly, it seems to remmn the
only class where this is possible. o

) Since, up to now, no numerical methods are really pmctlcable for hlé,her index prob]ems

. with & = 3 (also the effort for the use of special methods designed to solve ill-posed problems

«is only in its beginning) one should try to apply reduction stcps (cf. §3) to decrease the index’
kto2orl.

We close this section formula.tmg some 51mp]e mequahtles which resulb from’'(2.10)
lmmedlately Namely, we have .

il < Ka(lo + lgllo + llg'lls + -2+ + g~ lls )
for g € C*=1, b = ITy(ty) @, x = L Yg, b). If Ic = 2, we obtain more precisely
lizlloo = Ko{1b] + liglloo -+ Q@1 4279) llo) »
el = Ka(lbl + gl + (@1 4279) llo)
for all ¢ € im (). |

\
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§ 3. Reduction methods ’ - o ' L
. . . . ' )

Together with the pair (4, B) now we consider (AT B7), where AT and BT denote-the .

transposed matrices. Clearly, (AT, BT) is a regular pencil with the index k iff-(4, B)

- is so. Starting w 1th (AT BTy we form the sequences (1.2) by .

) _A[ﬂ_:: Al ‘*‘,_BITQU B(-u = Bl PI” .A1+1 = Al + Bl Ql; B;ru = Bllr: 31

where @, = I — P;and Q,=1-—P, now are projectors onto ker (4,%) and l\er(/i, )s
respectively. Of course for the sequences {(A,T, BT)}*_, and { A, R B, )if.o produced
by (3:1) the Theorems 3 and 4 dre valid. @ = I — P;and @, =1 — P, are projéctors -
onto ker (4,T)-and ker (4,7), respectxvely,zlff R, =1 — S, =@QTand B, =1 — 3§,
:=Q," are projectors. along im (4;) and;im (A)), respectively. By transposition we
obtain. from (3.1) the sequences ‘

~

A0=Ao A B_BozB, _
- Am = 4 + RtBl" By, :"SIBly. S . . (3-2)
Al+l_Al+RBl) BI-H_BI: . l—O k_l

w hcre Ry=1I—8 and R = I — S, are arbltrary prOJectors along im (A ) and
im (4,), respectlvelv Applwng the Theorems 3 and 4 fo (3:1)"Wwe obtain the followmg :
' statement.

“Theorem 9:If (4, B) zsaregularpenczlwzthtkemdexkandthesequences{(A,,B,)}, -0,
((4,, Bk, are 'produced by (3.2), then the matrices A,, A with 1 < k are singular,
~whereas A, and A, are non-smgular The (A,, B,) and (A,, B,) are regular pencils with
. the index k— l, that means /or =1, : ’ : -

ind (‘Al’ B‘) = md (Al—l’ BlLi) —_ , : -ind (z‘i,, Bl) = ind (“il—l’ Bl—-l) — 1

C’onversely, if Ay or A, areinon-singdlar, then (A, B) is a regular pencil.

Thls theorem suggests a method for the index reduction in. differential-algebraic-
.equations with constant coefficients Az'(t) + Bxz(¢) = q(¢) considered on the interval 7.
If we define Ay = 4, By ="B, qo = ¢ and omit the. argument ¢, we obtain from
A’ + Byx = g, by multiplication with R, and differentiation, RoBox = Roqo and
(R Bo) = Roqo) Adding this equation to the original one; we receive (A0 + RyB,)
X '+ Box = g4 + (Roqo) The definition ¢, = go + (Rogo)’ yields Az’ + Bz = q,
~with the constraint Ro(Box —-¢¢) = 0. For the new dxfferentla.l-algebralc equation
we have got an index reduction by virtue of ind (4,, B ,) =iind (4,, By) — 1. Con-
" tinuing this process we obtain after k steps at last the explicit differential equatlon
= A, Ngx — B,x) with the constraints R,(B,x ——q,) =0,1=0,1,..,k — 1.
Each step of the procedure reduces the index of the pair (4,, B,) by t; but we have to
" assume, that all derivatives (R;q;)’ exist. This is a strong restriction for the feasibility
-of the’method. As-we will see later, the constraints are fulfilléd by z(¢) for all t € 7 .
. automatlcally, if for the initial vector z(f,) the equations R,(B,x(to) — q,(to)) =0
(1=0,1,...,k — 1) hold (cf. Lemma 10)
', The reductlon procedure suggested here permits the following generah/atlon to
lmear time-variable differential- algebralc equdtxons . -

o, ABS® + B =0 = g0, | ©L33)
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where rank (4(¢)) = const, 4, B and g are contmuous on 7. leferentlablon of RBz
= Rq yields RBx’ + (RB) = = (Rq)’, and addmg the equations we obtam

~

Az -{—B,x_ql, A : ‘ T34

\uth A,:=A 4+ RB, B,:=B + (RB) q, = q + (Rq) prov;ded that all occurmg
derivatives exist.

Lemma 10: Let R(-) be.an arbitrary. dszerentzable projektor functwn and R(-)y(-)
be differentiable. Tken y(t) =0 3ff y(t) + R(t) y(t)’ = 0 and R(t,) y(lo) =0.-

. Proof: Due to R(Ry) + R'(Ry) = (R? ) (Rv/) we have 0 = R(_/ + [Ry] )
= Ry — R Ry + (Ry)’ = [Ry] + (I — R’) Ry. This is a homogeneous linear differ-
ential equation for Ry, and the 1n1t1al condition R(ty) y(t,)- = 0 yields (Ry) (t) = 0.
Consequenbly, 0= —(Ry) = y°8

Applymg our lemma to y(¢) = A(t )z (t) + B(¢t) 2(t) — q(t), we secure that (3.3) is

on C? equivalent to (3.4) constrained by the condition R(to) {B(t,) Z(to) — q(to)} = 0.

If rank (Al(t)) = const and R, B;, R,\q, are differentiable, we can repeat the expl'uncd :

procedure for (3.4) and obtain in the same way 4,x’ + B,z = g, with the additional
restrictions R, (ty) {B,(t) 2(to) — q1(te)} = O for z(ty). We call (3.3) reducible, if the

process can be continued until a matrix A, appears which is continuous and non- --

.. singularon 7. (3. ‘3) is called k-reducible if k is the smallest integer for \vhlch in k steps
a non- smgular A, is attainable. :

. Theorem 11: If (3.3) is k-reductble, then there is a sequense
A0):= A1), Bolt):="B@), qolt):= qlt), ‘
Ap1(8) := Ay(t) + Ri(t) Bilt), Bz+1( )= Bl(t) + [Rdt) By)Y
Qrea(t) = _91(‘) + [Rt)yq®)), 1=0, .1, vk —1 .ot
’-leaiii%g to the ordina?-y differential equation = '
2(t) = [4uO] (@) — Buley=(e)},

which ‘is under the restrictions Ry(tg) (Bilto) x(to) — q,(lo)} =0, ! - 0,1, ok —1,
1 equivalent to (3.3). , : : : .

-Assuming (A(t), ) to be a regular pencil. for eacht € 7 we get an index depend-
ing on ¢: k(t) = ind ( @, B(t)) HEty=rFkit seems to be reasonable to define k as

the global index of (3.3). But snmple examples show that the pencil (A(t), f t)) ‘only

in the case k(t) = 1 characterizes the solution behaviour (cf. [8: § 1.3]). Therefore,
GEAr and PetzoLD [4] called (3.3) to have the global index k, if a continuous non-
singular matrix function E(-) and a continuously differentiable non-singular matrix

' ~ function F(-) exist, so that scaling of (3.3) by E(t) and the transformatlon a(t ) F(t)

X J(t) lead to the dlfferentlal algeblalc equ'mon : o

Ay’ (t)+Bo(t) J(t) %(t), o ' A (3.10)

- where 4, = diag (I, J) = E(t) A(t) F(t) By(t) = diag (W(t), In—s) = E(t)AQ) F'(t)
4 E(t) B(t) F(t), qo(t) :== E(t) q(t) and J\is a constant nilpotent matrix with J¥ = 0
J¥1 = 0. For all constant prOJectors R, along im (4,) we obtain R, dlag (W(t), ._,)

- . : . ) .
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= R, diag (0, I._ 5); therefore, the matrix A, = Ay + R,B,(t) is constant Again This

procedure can be continued; then the global ‘index k¥ means that the sequences
: A,H = A, + R,B,(t), B,+,(t) =B i(¢) with arbntrary constant pro;ectors R, along

im (4)) are ending with non-singular matrices Ay

Theorem 12: If (3.3) has the global index k in'the sense of Gear and Petzold, then the
transformed equation (3. 5) is k-reducible. Moreover, (3.3) itself is k-reducible in the case
of a differentiable E(-). '

. The second statemént of the theorem is proved in [7]. Since the class of problems

- covered by the definition 6f ‘Gear and Petzold is rather restricted, the k-reducibility

seems to be a convenient generalization of the property e‘zpressed by the global
index k! In [7] a generalization of the k- reducibility to quasi-linear problems is
suggested, too. CHISTYAKOV [18] and GEAR and PETZOLD [5] considered reduction
methods, too. There each step consists in & certain transformation separating the
differential part of the system from the algebralcal one, followed by, the differentia-
tion of the latter part.
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These proceedings contain 27 lectures presented at the International Conference on ‘‘Function
Spaces” held on August 25—30, 1986 in Poznan, Poland. The total number of participants
was 82, from the following countries: Belgium, Bulgaria, China, Czechoslovakia, FRG, France,
GDR, Holland, ‘Hungary, Poland, Rumania, Spain, Sweden, USA and USSR. The proceedings
are divided in 4 parts. ’

. Part I, “Orlicz Spaces”, contains 9 contributions dealing with geometric properties in Orlicz
spaces, minimal Orlicz function spaces, galb conditions, measure of non-compactness and some

«  probability and control system aspects of Orlicz spaces. ' :
* Part IT, ““Other Function Spaces”, contains 5 notes on modular function spaces, Riesz spaces,
spaces of differentiable functions and ‘Riemann integrable functions. '
. Part IIT, “Approxnmatnon and Interpolation in Function Spaces’, consists of 6 pupers devot-
"ed to various problems in approximation theory.

Finally, Part IV, “Other Topxcs in Function Spacesand Banach Spaces”, contams 7 contri-
butions on positive contractions in Banach spaces, p-Banach spaces, F- and Dq-spaces and
multivalued maximal accretive mappings.

It is evident from this list that many aspects of the theory, of function spaces got attention
during this conference; apart from the 27 contributions above, there were 30 lectures which

. are not included in this volume. - .

The contents are as follows:

Part I. Orlicz Spaces -
‘J. Appell Measures of noh-compactness in .i'deal spaces N
/Chen Shutao Convexity and smoothness of Orlicz spaces. Geometry of Orlicz space I
" 1. Fazekas On Banach spaces of type ¢



