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Es wird die Lösbarkeit der'Gleichung Ax' + Bx = q mit regulrem modifizierten lokalen 
MatrixbUschel von höherem Index untersucht. Dabei wird gezeigt, vie Anfangsbedingungen 
geeignet formuliért werden kOnnen und daB die Anlângswertprobleme zu Operatoren mit un-

• beschränkten lnvcrsen fuhren. Eine enge Verwandtschaft der Mr die .Untersuchungaufge 
bautefi MatrixKetten mit den entsprechenden Ketten bei den Reduktionsmethoden wird 
herausgestellt.	 .	 S 

PaccMaTpliBaeTcn BO[10C pacpeEuuMocTu ypaaiieiiiin Ax' + Bx = q C HeocoGeHHbIM M01u1 4)I11II-
• 0BIIHMM J1oI-aJ1bHa1M M5TIt1IIbIM rly'IxoM Bblcwero Hwexca. 11oIa3MBaeTcH, KaH HaJ1e-

Hau.utM o6pa3oM MoryT öbIT copymponaai iia'iamiii.ie yCJ10B11fl u 4T0 3aaq u C U'IJ1b-
1I1AMI! aHa q enunMu BLT ic oneparopaM C HeorpaiumeinibiNni o6paTIIhIM11. 13s ReTcH TC-
IIoe'po&cTno nocpoeniiux Jrn ,,cc3eJ0BaH11n MTH4HUX [eno'leH. C cooTBeTCTnylounMIr 
teno'u{aMn MeroJo n peyxLutH.	S. 

The solvability of the equation Ax' + Bx = q with a regular modified local matrix pencil 
of higher in1ex is considered.' It is .shown how to formulate initial conditions properly and, 
that the initial valu problems lead to operators with unbounded inverses. The close felation-
ship of the matrix pencils needed in the investigation and of the related chaihs of the reduô-

- tion methods is pointed out. 

•	Introduction	.	 .,.	. 

Differential-algebraic equations are certain uniformly singular ordinary differential 
equations	 .	. . 

/W(t), x(t), t) = 0,  

where the partial Jacobian /,'(y, x, t) is everywhere singular but has constant rank; 
Those equations originate from different applications (descriptor systerps for electric 
networks, Euler-Lagrange equations for systems of rigid bodies etc.). Further, e.g. 
reduced systems in singular perturbation theory, certain seIpi-(liscretizd Navier-
Stokes systems, also control problems represent differential-algebraic equations. 
Often differential-algebraic .equations are given. in semi-explicit form 

u'(t)— ,(L(t),v(t),t) = 0;	 .	
.	(0.2) 

tp(u(t), v(t), t)	0 j 
(e.g. clynañuical systems subjected to constraints, reduced equations of singularly 
perturbed systems with separated fast and slow components) which may be considered 
to be differential equations on manifold (cf. [2, 17]), supposed a,, 7P are smooth enough. 

' Vortrag auf der gemeinsamenTagiing vom 9-13. 11. 1987 in Berga (DDR) der HFR Ana-
lysis und. HFR Numerisché Mathematik.
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Notice that, in view of the application, we should accept u € C', v € C satisfying the 
above , semi-explicit system to be solutions but we should not demand v E C'. Clearly, 
if ip(u, v, t) = 0 may be solved unque1y with respect tot;, v = h(u, t), the system (0.2) 
is well-understood. It is not surprising that numerical methods aproved for regular 
ordinary differential equations can be modified to work well alsh for (0.2). The class 
of transferable differential-algebraic equations (0.1) considered in [8] is' the related 
generalization of this case.	 - 

However, what happens when '(u, v, t) becomes singular? EL should be mentioned 
that, for instance, '(u, v, t)	0 holds when only holonomic constraints are given - 

- for a system of rigid bodies. Integration method working well when applied to trans- -. 
ferable differential-algebraic equations fail or work unreliably in case of nontrans-
ferable equations (cf. [8, 14]). Only for very restricted classes of nontransferable-
differential-algebraic equations the usual integration methods can be managed to 
work well by special error controls (e.g. [11, 14]).	- 

The behaviour of discretizations as 5 integration methods is' closely related to the 
underlying functional-analytic characterization of the original problem. In particular 
unbounded inverses give rise to the instability of the related discretizations. 

Inthe present paper, we consider linear nontransferable differential-algebraic 
equations

A(t) x'(t) +'B(t) x(t) = q(t)	 (0.3) 
with continuous coefficients A, B. Note that in view' of possible linearizations of (.J. 1) 
we are interested even in continuous coefficients (but not in nalytic ones). The-first 
questions we should deal with is whether the solutions of the homogeneous equation 
form a finite-dimensional function space, and how .to formulate initial conditions 
appropriately. It is also important to have solvability assertions. in particular, for 
the numerical treatment we should know whether the related maps are Fredholm, 
have bounded inverses etc.	 S 

• To answer these questions requires a lot of matrix analysis. In § 1, basic properties 
of certain matrix chains ,are proved. By this, some open questions of [15] are' also 
answered. In particular, Theorem 4.7 formulated in [15] for z ;5 3 becomes true also 
for u > 3. In , § 2, 'initial conditions are formulated appropriately,-and solvability 
statements are given'for a new class of equations (0.3). This class is characterized by 
an everywhere regular modified local matrix pencil (cf. [8]). Via the modified local 
matrix pencil, or, equivalently, via the matrix chaines proposed, an index k of (0.3) 
is defined. So-called higher index equation (k> 1) lead to ill-posed initial value 
problems (unbounded inverses) even in the case the initial conditions are stated prop- 
erly (injective maps). In § 3, so-called reductionet mhods are considered. They allow 
to reduc'e the index k of (0.3) supposed some differentiations may be carried out exact-
ly, and supposed the solution of (0.3) is x € C': It is also the purpose of the present 
paper to pointy out the close relations of the inner decoupling of the differential-alge-
braic equation in § 2 and the reduction method in § 3 by means of the common matrix 

•	chain approach. Notice that the matrix chain results proposed in' § 1,'generalize resp. 
simplify both [7] and [15].	. 

§ 1.' Matrix-theoretical relations 

We consi'dr sequences of it X n-matrices {J}. 0 and	defined by a given matrix 
:= Jo	J and the relations J1 := f1 := Jo + Qo,	 - 

Jz := J1 _ + P0P1 ... P1 _2Q1 _ 1 , J1 =1,_i +	• , ( 1 = 2,3,.., k),
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where the Q . -. I -Pi and O,'= I - Pi are arbitrary projeãtors onto ker (J) and 
ker (ft ), respectively. Furthermore, we define index sets 

and for 1 = 1, ..., k the matrices 

0, =	' QQ1 ...	-	= 
7,0.k-1)  

Then the following theo'rrn.ho1ds.	
I. 

Theorem 1: Fdr 1 = 0, 1, ...,k —1 the relations J1Jk =.J'' +L' (-1) 
•	1 

X. Gi and jçj; = j+i + (-1)' G1+1 hold. 

Proof: Obviously, both the assertions are true for 1 = 0, because of Jk =J + Qo. 
•	 k 

+ (I — Q0) Q1 +	± (i:— Q0) (I—Q 1 ) ... (i— Qk-2)Qk-1 =-J+E(—l)1T'G1 
k—I 

and ik = J + O i = J + 6 1 Now we verify the assertion concerning JJk with 

1	1. The assumption' J1: hfi = J1 + (-1)1 -' O, = J' + (-1)'-'	. . oil 

implies	 Po. k-1 .) 1. 

J'fk = J'' ±(- 1)' E JAA, •.. Oil 

•	= jI+i L(_)1— E (i1_.	 ioi. . . oil 

ojs-1 
•_ 

J1±1 + (---1)' . _J1±1 + ' (1) l O,^1. 

The proof of the assertion for JJk is a little more complicated. Defining 

•	=	 (1 m s —r + 1), Go' = I, 
•	 k—m+1	 k+t—i 

we obtain immediately Gm = Gm'°' =	' QG- 1 = E G2'Qr_iG' 
•	 1=1	-	r=m+1—i


k 
m). Now from the assumption J1Jk = J' + E (_i)i_1 

f	) G°' 
k	 i- 1k—i+1	 - lj 

= J + ,' (1)iTl (,	) ,' Qr_ iG	follows the equation	,	0 

i=l	 - 11 r—i 

	

k	 - \ k+1 — i (	r—I	 - 
iti, = j+ ,+ E (1)' (	) L' '1r—i - ' (-1) i-' G,(0r_2 ) Q1GcT._l) 

	

1=i	 \l -. 1 / ri (	 •	 ) 

	

k	 - \ k±I-1 
= J1+1 + L' (-1)' (	1	' (—'1)1 0(O.r2) Qr_iG.'', 

-	 •\l - 1/ r=l j=1 '	,	 - 

and by convenient exchanges of the summing-up processes (s := i +  

	

Ic k—i	•	- 1 k-i-i—i 
JIJk 

= Jt+1-f 
Z E (_l)i+i_1(	)	G(0t_2)QiG 

	

1=l j1	 \l —1! rj+1	 -	S 

•	 k	 81 /j - 1\ k+1—i 
=	± E (1)81 E (	} E G2'Qr_iG" 

	

8i+1	1=1 \l - if r =s+I—i 

	

Ic	 81/j_1\ 
= J` + ' - ( - 1)	,' (	) Q(0.k-1) 

• 1=1 \1 —.lj
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Finally, the well-known identity ±' (
	) =	

(1	" H 	1) yields 

- the assertion J1Jk = JI±I + LI (-1)8_1 s	
) 

°8 • 
s=1+1 

For nilpotent matrices J Theorem 1 has far-reaching consequences. 
Theorem 2: If the matrix J is nilpotent of the order k, i.e. J" = 0 and jkl + 0 

holds, then all J, and i with .1 < k are singular matrices, 'wlereas JL- and ik are non-
singular. 

Proof: From Theorem I andJk = Othere immediately follows Jk_lJk = ( 1)' 
X QOQ1 ... Q - and J"Jk = 1)'' ... Ir' order to prove the non-singular- 
ity of Jk and jk we have to confirm ker Wk) .kèr ( Il

k) = 0}.'The assumption ikV = 0 
i mplies 6 = oi ... Ok_lV = (J 1 - J0 )	... _ jv = —4 1 . . .	that means 

•	...	€ ker (J) and hence 0 1 ... k4V =	... k-I V	0. Now (J2 - f1 ) 0, 
= -f12 ... Ø_,V yields	2	k_,v € ker (f1 ),i.e. 2 :.. k_lV	I2


6k*—IV = 0 and so on. Finally, ,we obtain. 0 =' Ok_lV = (fk-i - ik) V = —Jk_ I V and 
therefore v E ker (J.,), i.e. v =	= O'verifying ker(Jk ) = {0}.	- 

•	Analogously the assumption JkV = 0 leads to QOQI ... Qklv = 0 and Q1 ... Q,_,v = 0, 
that is P0Q.....Qk_ I v = 0. Hence, we obtain 0 =	... Q,. j v = P0P,Q2 ...

using (J2 - J,) Q2 . . Qk-IV =0, i.e. Q2 ... Q_ 1 v E ker (J 1 ). Continueing this process 
at last we receive 0 = Qk _ lv	P0P 1 ... Pk_2Qk_ lv, that means 'O = (Jk.—'Jk_l)v 
= 'Jk_ l V, and hen'ce v =	= 0 proving ker (Jk) = {0}.	 - 

•	To complete the proof we have to verify the singularity of the matrices J,, f, with 
1 < k. Jk_hfk= Jk+ (-1)'	 implies Jk_,1 = (_'l)kl 000 ,.. 
Since J' 0 we may choose' a vector w vit.hJ'w 0; then we obtain 4, 

k_IJk'W +0 and thereforew, := 01 •... 2L_1Jk W =r 0. Oiithe other hand, .I,, = 0 
impliesf,w, = 0 demonstrating the singularity of i,. The proof concerning J, is 
completely analogous .1	•. 

Now we try t'o generalize our results to pairs of matrices. A pair (A, B) of in X m-
matrices is calleda regular pencil, if p(z) = (let (zA + B) does not vanish identically. 
For each regular pencil a decomposition	. 

	

= ding (13 , J), E- 1 BF_1 = (hag (W, Im)	 (1.1) 
with det (E) 0, det (F) 0 exists, where J is nilpotent (cf. [3, 8]). The order k of 
nilpotency is called index of the pencil: k = mci (A,B). If A is regular, then per defi-
nition md (A, B) = 0. The integers kand s do not depend on the speial choice of 
E and F. -	 - 

•	Starting with A 0 := A,:= A, B0 := B0 :=B we construct sequences {(A,, B,)},0, 
((A,, E))L of matrix pairs by the following rules (1 =0,..., k- -  1):	 U 

A 1 . 1 = A, + B,Q,, B,+ 1 = B,P,, A,, = A, + E,,, E,, = B,. (1.2) 
Here the mtrices Q, = I - P, and	= I - P, are projectors onto ker (A,) 'and 

ker (A,), respectively.  

Theorem 3: If (A, B) is a regular pencil with the index k, then the matrices A,, A, 
with l <k are singular, whereas A k and 'Al, are non-singular. Conversely, if Ak or Ak' 
is non-singular, then (A , B) is a regular pencil. 

Proof: First we prove the second assertion. For this purpose we simply demon- 
strate,' that det (;A t + B,) = 0. implies det (zA, 1 + B, 1 ) = 0 and det (zA, + B0
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0 implies det (zA, + , + E, 1) 0; then obviously A t oA1 cannot be non-singular, 
if det (zA ± B) 0. The equations deL (zA,4 + B,.. 1 ) = det (zA,+ zB,Q, ± RIP,) 
= det (z2A,Q, + z(A,P, + B,Q,) + B,PI) = det (zA, + B1 ) det (zQ, + F,) and 
det (zA, 1 +, Bi+ ,) =det (zA, + zB,Q, + B,)= det (zA, .+ B1 ) det (zQ, + I) prove 
the conclusion stated above.  

For the proof of the first-assertion we use the decomposition (1.1) and clef me 

-	U= diag(I,J), V= diag(W,I rn _ r ),- .U0 = U0	U, V0 l'o= V,

U . = !1-i + V ._1S_ 1 , V1 = V_ 1 R1:1 , S = I — R•_ 1 = FQ1_1F, 
U . = U,_, +	 =	 = I --_= F1_1F', 

= 1,:.., k. Then obvious1yS 1_and are projectors onto ker (U1_1 ) and ker (U1_1), 
respectie1y, and we obtain A 1 = EU1F, A1 = EU1 F, B1 EV1F and E1 EIF. 
Therefore, we only have to prove that the U, U, with 1 < k are singular, whereas 
11k and U1 are non-singular. The qalculation of U1 and 01 yields in each case 

Ui	
I1,. 0

U	
/I 0 

	

\GI J+HJ'	O1	 1^) 
0	0 . 10	0 •\	/ \ 

=:: 'M1	Q.*)'	
= k.1	i *)' 

where	 . 

G1.Z po *pi * P1M, 

H1 =2.'Po*Pi* p,* _1Q,*,	H, =E,*	
0 

ani the Q1* = — P1*, o f are projectors onto ker (J + H1 ) -and ker. (J + Hi),- 
respectively. M1 and . 1 are arbitrary (m — s) Xs-matrices with Q,*M1 = ' Mi ='M and 

=	, i.e. (J + H) M1 (J + H1 ) d = 0. Theorem'  2 then immediately 
-delivers the assertion 1	- 

- Now as a direct corollary we obtain the following theorem, which generalizes-a 
result proved in [7] in a more complicated way. 

- Theorem 4: 1/ (A, B) is a regular pencil with the index k, then (A,, B,) and (A,, E,) 
are regular with the index k — 1. That means	 . 

md (A,, B,) = md (A, 1 , B,_ 1 ) --- 1, md (A,, E,) = md (A, 1 , E,_ 1 )	1 

•	(1= 1,...,k).  

• Proof: The sequences beginning with (A,,B,) or (A,,E1) lead to non-singular ' 
matrices Ak and Ak, respectively, in exactly k * — 1 steps I 

In the next chapter we need a further corollary of Theorem 3. 

Theorem 5: 11 (A, B) is a regular pencil, then the relations - 

- ker (A,) n ker (B,) '= ker (A) n ker (B,) = 

•	span (im (A,)u im (B,)) = span (im (Ak) u im (Es))	..	- 

- arevalid/orl=0,l,2....  

I -
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-,	-	 -c 
Proof: If we assume x 0, x E ker (A,) n ker (B,) or x E ker'(A,) n ker (B,), we 

obtain A, jx = A ix + B,Q,x = A ix + B,x = 0, B,+ ix = B,P,x = 0 (using Q,x = x) 
or A,+ ix = Aix + E,&x = Aix + E, = 0, A+ Ix = Aix = 0, respectively. Hence, 
no A k or Ak is non-singular, and (A, B) cannot be a regular pencil. Further, x = A,u 
+ B,v = A,-,u + B1_ 1 (Q1_1u.+ P1 _ 1 v) or x = A,u + E,v = A, -1u + E,_4 1: 1 ± v) 
yields span (im (A, - ,).0 irn (B,_ 1 ))	span (im.(A,) u im (B,)) and span (im(A,_,) 

- u irn (E,))	span (im (A,) u im (B,)). Since for regular pencils im (Ak) = im (Ak) 
= 1R for some Ic, the theorem is proved I	- - - Remark Neither the two conditions for the (A,, B,) nor the two conditions for the (A,, E,) 
are sufficient for the regularity of the pencil, as the following examples demonst'rate. 

/1100\	 /0100\	 - 
1. A=l0001,	B(000O	H 

0000I	10010 
•	\ooioj	\0000	 -- 

lead toA 2,=A,B2 =B,A 21^ 1 =A,B2 , 1 =B(iO,i,2,..) using - 

	

1000\	 /1000 

	

•	 1—i000l	 jQ000 
0000j'	Q21+i(0000 

\0000J'	 •\0000 
•	/0100\	 /1100	 - 

	

•	A_(0001_	E_(0000	 -- 

	

o	 0000	10010	- 
 -

 

\ooio/	. 
/flOO\ .	 /1000 

2. - A= I 0001 ,	•B==10001	 - 
O000	0010 

\ooio/	\0000 
lead to 

	

•	 /1+1 1 0 0\	/1	0 0 0	- 

	

•	 1'0.	-0 0 1	 I —i—I 0 0 0 A, = I	I	using	, = I	.	(1 = 0,1,2,...). 
10	000k	10	000 

\o- •oio/	 \o	000	•	 - 

Supposed the pencil (A, B) is regular, we are allowed (by Theorem 5 and [15 
Theorem 2.3]) to choose the projectors Q, within the chain (1.2) in such a way that 

QQ =0	(i=0,...,j— 1) for all j.	 (1.3) 

This implies, in particular, all- products. of projectors P, . .. P, , , i 1 < ... < in, to 
become projectors again. Namely, we have  

•	(P1k ... p.)2 =pi  ... P,,(I - Q,) P,, ...	 . 
S	

= (P, . . P,_)2 P -	.. . P1 _Q,P1, = (P 1 , . . . P1,_)2 P, 

i.e. the. assertion is shown inductively. Introducing the subspaces S i = fz E lRm: 
B iz E im (A 1)), i 0 , we are able to charactrize the dimensions of the nullspaces 

- ker (A 11 ) (cf.. [4: Lemma 2.1]) as follows:'  

	

dim (ker (A 1+1 )) = dim (ker (A 1 ) n Si ).	-.	 •	 -	 (1.4)
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Finally, the special choice of the projectors described by (1.3) leads to 

kr (A 0) +	+ ker (Ak1 ) = ker (A 0 )	...	ker(Akl), 

(urn (Mk_I ) = dim (ker (A0)) +Edim (ker (A 1 ) n 

-	§ 2. Analyzing linear differential-algebraic equations 

Consider the singular linear ordinary . differential equation	 - 

Ax' + Bx = q,	 (2.1) 
where A, B E C(7, L(lRm)) , q € C(7, IR") =: C, 7 is a compact interval, and A(t) is 
singular on 7 but has constant rank r. Those equations are called normal linear 
di/f erential-algebraic equations. Suppcse the nullspace N(t)-= ker (A (t)) to depend 
smoothly on t, that is, there is a projector function Q € C(7, L(lRm)) so that Q(t)' 
= Q(t), irn (Q(t)) = N(t) hold (or equivalentl y , N(t) is spanned by a base n1 , ..., m-r 
E C'(7, IR") =: C'). Introduce also P € C1 (7 , L(IRm )) , P(t) = I - 

Notice that the smoothness of V( . ) is equivalent to the existence of. linear independent 
functions n,,.., € C' spanning N(.), i.e. N(t) = span {n1(t)..... flm_y(t)) for all t € 7 [1] - 
Namely, for fixed t0 €7 we-choose n 10 . ... . n,_, € IR"' to be a base of N(t). Then, determine 
n1 E C' to be the solution of the initial value problem n' = Q'n; n(t0 ) = n1 , j = I.... . in - r. 
Further, we have Pn' = PQ'n1 , therefore (Pn,)' = P'n1 + PQ'n = P'n - P'Qn5 = P'Pn1. 
Because of P( 0 ) n(t0) = 0, the function Pn vanish identically, i.e. n1 (t) € N(t) for all t € .7, 
j = I.... . ni - r. Since the n1,..., m-r are linearly independent, they span N( . ). On the 
other hand, if N( . ) is known to be spanned by given n,, ... , am-, E C', the matrix function 
Q = F(F TF) 1 .F T, F(t)	[n,(t)..... nm_r(t)] € L(lRm- , lRm), has all properties required above. 

Since A AP, Px' = (Px)' - P'x for x E Cl , we may reformulate (2.1) to 
A(Px)' ± (B— A'P') x = q	 (2.2) 

what shows that all functions x belonging to C'N' = {y E C: Py € C') andsatisfying 
-(2.2) should be accepted to be a solution of (2.1) but not only x € Cl . Define the linear 
map	 .	 . 

t:C'N ' -^C,	Ix.=A(Px)'+(B—AP')x. 
Clearly, CR 1 equipped with the norm = ] j ]J ± J(P )'I!, becomes a Banach space, 
and 2f is bounded. Both, the set G' and its topology, and also the map W are inde-
pendent of the choice of the projector functions Q, P (cf. [8]). 

Now, denote by iY the set of all ordered matrix pairs (A, B) having the propèrtis 
described above. In the following, we are interested only iii.differential-algebraic 
equations (2.1) the coefficients of which form a pair belonging to X'

It should be mentioned that constant coefficient equations (2.1) are well-under- 
stood viii the Kroneckei 'Canonical normal form [3], and also by means of the matrix 
chains constructed in § 1 (cf. [7, 15]). In particular,'if (A, B) forms a singu.latmatrix 
pencil, then the related nulispace ker (f) has an infinite diniensiOn (cf. [8]). Supposed	-: 
the pencil (A, B) is regular, the normal form (1.1) may be used to obtain dim (ker (vi)) 
= grad ((let (zA + B)) as well as to characterize im (t). The index of the pencil (A B) 
is said to be the index of (2.1) in this constant coefficient case. If in0d (A, B) = :k > 1, 
then im (21) consists of functions q E C certain components of which are up to k - 1 
times continuously differentiable. However; even in this constant coefficient case, 
the formulation of appropriate initial conditions requires informations about the
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canonical normal form (1.1) included the transformations E, F (what cannot be 
realized practically) or the coputation of some projectors defined in § 1 (cf. [8 1 15]). 

But what about general equations (2.1) with {A, B} E JVl The first problems we 
should deal with -are thg questions whether the solutions of the homogeneous equa-
tion Ax' + Bx = 0 form a finite-dimensional subspace of UN', and how to formulate 
initial conditionsto fix a unique solution.	/	 - 

Supposed {A, B} € iV, the map I and also equation (2.1) are called tractable if 
,.,dim (ker (vi)) < 00. The global index concept of GEAR and PETZOLD [5] generalizes 

(1.1) for {A, B} € .'V (resp. (2.1)) to 

E(t) A(t) ,F(t) = diag . (I,, J), 	 23 E(t) B(t) F(t) + E(t) A(t) F(t) = (hag (W(t),  

The global index (if it exists) is defined to be the nilpotency ind'ex (Riesz index) Of J. 
Clearly, equations (2.1) having a global index are tractable. However', there is no 
chance to realize (2.3) practically, .e.g. for the stateient of initial conditions. The 
matrix chain calculus proposed in [7, 151 for constant coefficient equations and in [12, 
13] for index 2 and index 3 equations with A, B} € íV seems to be a better tool to 
handle (2.1) practically, e.g. to formulate initial conditions, to investigate the béha-, 
viour of numerical methods, to check the index etc. In the following we try to-charac-
terize a new class of tractable differential-algebraic equations in terms of their coeffi-
cients by means of the matrix chain approach.	 . 

Trivially, instead of (2.2) we may write also 

A + (B -. AP') Q) {P(Px)' + Qx} ± (B - AP') Px = q.	 (2.4) 

Now, if A 1 := A + (B - AP) Q is non-singular for all t € 7, multiplying by PA,-1 
and QA,-', respectively, splits up equation (2.4) into the system. 

- P'Px + PA,-'(B — , AP')Px= PA1"q, 
Qx + QA,-'(B AP') Px = QA 1 'q.	 . 

This system is decoupled into a regular explicit ordinary differential equationfo .r the 
component Px (the state variable) and an explicit assessment determining Qx. We 
obtain solvability for all cohtinuous right-hand sides, that is im (2t) = C. The initial 
condition P(t0) (x(to) - a) = 0 fixes a unique solution of (2.1) (cf. [8]). 

Equation (2.1) is called transferable (into state variable form) if A, (t) . remains non 
singular for all t € 7 . By Theorem 3, the matrix A 1 (t) is non-singular if and only if 
.the so-called modified local pencil (A(t), B(t) A(t) P(t)) is regular and has index 1 
- or, equihlently, if and only if the so-called local pencil (A(t), B(t)) is regular with 
index 1 (ef.. [8: Theorem A. 13]). This is why transferable differential-algebraic equa-
tions are called uniformly index 1 equations (e.g. [4, 5]). Linear and also nonlinear 
transferable differential-algebraic equations are well-understood (e.g. [8]). They form 
the simplest class of tractable equations, and they are amenable to numerical methods 
in a similar way as regular ordinary differential equations are (e.g. [5, 8]). Let us 
point out that A 1 (t) is exactly the first iiatrix clefind within the chain (1.2) when 
starting with A 0(t) : = A(t), B0(t) := B(t)	A(t) P'(t),Q0(t) := Q(t). 

Now, we are going to use the whole chain for each t € 7 . . Additionally, we are inter-
ested in the subspaces 

N,(t)	•ker (A,(t)),  
Si ( t)	{z E IRm: B, (t) z € irn (A,(t))}'
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which we call canonical subspaces of (2.1). By the use of our matrix chain, equation 
(2.1) can be rewritten in the form (cf. [15])	- 

Ak{Pk 1 ... P1 P(Px)' + P - •.- R1 Qx + Pk-1 ... P2Q 1 x + 
+.Pk_ lQk 2x + Qklx} + BOPP1 ... P 1x =q.	 -	( 2.5) 

Supposed the modified local pencil (A 0 (t), B0 (t)) becomes regular for all t E ' 7, and 
md (A 0(t), B0(t)) :!-- k, k > 1, we are able to choose the projector functions in our 
chain so that the identity  

Q1(t) Q 1 (t) = 0,.	O . i <j	k, I E 7	 - /	( 2.6) 

is satisfied (cf. § 1). The matrix A(t) is everywhere non-singular then. It should be 
mentioned that (cf. (1.4)) dim (N g+1 (t)) = dim (N1 (t) n S i (t)). Using the identity 

= POP, Pk-1 + Q0P 1	k-1 + + Qk 3Pk 2Pk l + Qk-2Pk-1 + Qk-1 

as well as certain properties following from (2.6), we split up equation (2.5) into the 
system	 S 

P0 ... P_ i (Px)' + o	Pk_ l A k 'BOPo .. P_ 1x = p0 ... P1_1Aq	1 
- (Q0Q1 + QoP 1 Q2 ± ... -1 Q0 P ... Pk-M-1) (Px)' 

+ Q0x + Q 0P0 ... Pk-IX = Q0 P1 ... P1A1q 

- (Qk-3Q1-2 + Qk-3Pk-2Qk-1) (Px)'	 .	(2.7)


+ Qklax + _3 P0 ... P_ ix = Qk_3Pk_2Pk_IAk1q 

— (Qk-2Qk-1) (Px)' +Qk_2X + Qk-2 PO ... Pk-IX = Qk2OPk_ l A k.'q 
-	Qk_lx + Qk-1 PO ... Pk-IX	Q_1A'q	 J 

Thereby,
Qk-J :=	. . P_1A'BQPO • 'k-j-i ,	j = 1,.;., k, 

may he shown to be also projector functions, i.e. k_,(t) projects iln onto Nk_,(t). In 
particular, Qk.1(I) projects onto Nk_j(t) along S., 1 (t). Further, it should be ntices 
that i <j implies	 S 

QjQi 
S-	

=	 ... P_ iA'B0P0 ... P_1Q 1'1 ... Pk_ l Ak'BoPO ... P_ 1 = 0, 

thus the projector functions Q j satisfy the condition (2.6)' also. Taking	Q1 in 
advance would lead to Q5P0	= 0, j = 0, ..., k - 1, hence to an easier form

of (2.7). This is why we call Q 1 canonical projector functions. Note that Q0 is not 
necessarily continuously d iferentiable.	 - 

Denote 'Tk = Po .... P1_ i , Mk = im (ITk(to)), where to € 7 is fixed. Further, intro-
duce the linear bounded maps 

3: GN'-+Mk,	58X = 114(t0 ) x(to),	2 = (cit , 5): GN'-*'CXMk.


The initial value problem for (2.1) with the initial condition 

llk (to) (x(Io) - a) = 0	 .•	(2.8)


is represented now by the equation 2x = ( q, 1'14(t0 ) a) - - 

Theorem 6: Assume (A, B)	Let (A(I), B(t) - A(t) P(t)) be regular 'and have 
the index k	1 for all t € 7.'J/ k > 1 let (2.6) be satisfied, Q, € C'(7, L(lRm)), i= 1, 

3 Analysis lid. 8, Heft 1 (1989)	
5
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k - 1,and, moreover,	
0	 - 

(POP1 ... Pk1 )'PO(J - Pi ... Pk- 1) = 0,	 1 (2.9) 
(Qj_ l (1Pj ;.Pk_ I ))'Po(IPI ... Pk-i) O ,	j= 1,...,k	iJ 

Then2 is injective, thus W is tractable, dim (ker (vt)) rank (17k(to)) =: s.  Provided 
certain further. smoothness felated to the projector functions and coefficients is given, it 
holds that dim (ker (vt)) = s, and 1 (0, ffk(to) a) depends continuously on a. 

Proof: Condition (2.9) leads to	 - 
P0 ... Pk_j(Px)' = (Hk X)' Hk'Px = (Hkx)' 

(Q1-1Q1 +	± Q_P ... Pk-A-1) (Px)' _. Q_ 1 (I - P1 ... Pk—i) (Px)' 

= Q, 1 [(Q11 (I	P1 ... Pk-1) P)' - (Q1-1 (I - P ... Pk_l ))' Pxj 

= Q(Q1;	+	± Q1- P1 ... PklQk_ I x)'	Q1_ 1 (Q1_ 1 (I -	1k-I)) IkX 

for j = 1, ., k - 1. Inserting this expressions in (2.7), and taking into account that 
QP0 ...P1 =0, i=0,...,k —1, thus Pj_l(Q1(I—P...Pk_1))'Hk=0, 

k , — 1, we obtain 

(flkz)' - -'Tk JTL-X + [IkA k 'BoITkx = I7kAk'q, I 

- - Q(Q0Qx + ... + QP ... PksQklx)' 
{(Q(I - P1 ... Pk_l))' + o}17kx + Q0 --	 x = Q0 P1 ... P_1A'q, 

- Qk3(Qk_3Qk_2x - Qk3Pk2Qklx)' 
+ {(Qk_3(I - Pk_2 Pk_ 1 ))' + Qk_3} HkX + Qkax =,Q_3P_2P_1A'1q,' 

Qk_2(Qk_2Qk_lX )	 S	 S 

+ {(Qk-3Qk-1)' ± k-21 'TkX + Qk_2x = Qk_2Pk_IAk'q., 
Qklx ± Qk_lITkX = Qk_1Ak'q. 

Now, the first assertion becomes evident, since the first equatiOn in (2.10) is decoupled 
from the other pnes, and the initial condition (2:8) fixes exactly one of its solutions. 
q = 0, Tfk (to) a = 0 implies TIkx = 0. Now, the last equation of (2.16) leads to Qk_lx 

0, the next to the last one gives Qk i2x = 0 and so on. Hence x [IkX + Po 
Pk_2Qk_IX + ... + PQ1x + Q0x = 0. In a similar way we construct a solution for 
each nontrivial 17'k (to) a € Mk. But ndw TJkx becomes also nontrivial, and we have to 
assume the existence of all derivatives we need for (2.10) successively U 

Notice that the assumption of Theorem 6 related to the unifqrrn index k on 7 
cannot be weakened to md (A (t), B(t) -- A(t) P'(t)) :!E^ k. 

Example 1 (cf. [8: § 1.3, Example 1]): Let A(t) = (1	t), B= 21, 7 = [0, 2]. 
Compute 9(t)	

(	
1)Ai(t) 

= (1 3	
). The modified local pencil is regular for 

all t € 7.Ithas index 1 for t = 1, but index 2 at t = 1. In [8] it is shown that the solution of 
the homogeneous initial value problem bifurcates at the point of index change. 

- In Example 1, thechange of the index is accompanied by a discontinuity of Q. By the next 
0 example we point out that even if there is no index change of the modified local pencil, the 

demanded smoothness of the projectorfunctions is also essential to Theorem 6. 
0	

_5_ 

-	 0

(2.10)
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-	 1—'t1 00 
o0 .Exarnple2: For A(t) =	 0	B(t) = 1,7 = [0, 2],wehave 

/1	0 0 0\	 /3 - t I 0 0 

Q(t)	(t	1 0. 0 0	A1(t)	
- 1 0 0 0 

0.1 0	 0	0 1 1	 - 
\o. 0 0 0/	 \o	0 0 0 

',	Ilfort41, dim ker (A 1 (t))) =
L 2 fort= 1.	 - 

Q 1 (t) is not continuous at = 1. Choose.	 ..	 . 

' 0 1/	 0 0 ,0 

.Q(i) =

	

(t) 

(	

0 0	 0 

-	),	

Q= (

	.	

1, 

hence Q1Q = 0 is true. Further, compute	 -	S 

/2 1 00\	 /3—ti 0 0\ 

A(1)=(	1 0	
A2(t)=	

I	0 0)	
'for t#l. 

\000 1	-	0	001/ 

A 2(0 is non-singular, but A 1 (t) singular for all t E 7, thus the modified local pencil is every-
where on 7 regular and has the (constant) index 2. Note that we have also(PP 1 )' (t) P(t) Q(t) 

(QQ1)' (t) = Q'(t) Q 1 (t) = 0 for - 1. The detailed homogeneous differential algebraic 
system (2.2) under consideration is 

((IL_ t) x1 + x2 )'+ 2x1 =0,	x2 = 0,	x4' + x3 = 0 1	x4. 0.-' 

•	The discontinuity of Q 1 at t = 1 indicates a singular point of the inherent ordinary diffrential 
equation related to 172x. For arbitrary y E IR, the function x defined by 

(0 ,. 0 , 0 , Q)T	 if I E [0, 11 
X(t)=	 S 

- E('( —1), 
0, 0,0)T	if I E [1,2] 

belongs to CN 1 1nd solves our homogeneois initial value problem as well. Therefore, 2 is not 
•	-injective.  

•	. Next we turn to the question	 is whether (2.1) solvable at all in the case of k > 1. 
Again, system (2.10) suggets how to proceed. Additionally to the assumptions of 
Theorem 6 we suppose that	 - 

Q JITk E	(7,L(&m)),	'j =' i, ...,k—i,	 1	(211) 
Pj ... Pki )EC2 (7,L(il t7i)),	j=2,...,k'—1, J 

- jfk> 1. Take x E CN1 to consider q := 91x. We have 

y:=[IkX=J7kPXEC',	Qx=QPxEC' for j=1,...,k-1 

3*

..	-.
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/ Denote	 . 
Pk-1 =  

Pk-l.= Pk-i - qk_jTIky,	 3' 

Pk-i= QP_,+j ... P_1A.'q	 (2.12) 
+ Qk-J(Qk-JPk-J+1 +	+ Q - P,+1 ... 

Pk-j = Pk-j - Qk_jTIkY — (Qk- I - Pk ill ... Pk_ I ))' fIy, 

• Now, successivly using (2.10), (2.11) as well as Pk-j = Qk_,x E CL, we derive' that 
Pk-, E Cl,j= 1, ...,k	 1. Therefore, we obtain 

-	im(9i)c:={qEC:EC',jl,...,k—l},	(2.13) 

that means, some components of q have to be continuously differentiable up to 
k	1 times. Notice that y is the solution of the initial value problem 

- TIk Y + TIkAk 'BOY =-TTA'q,	 2 14 
Y( to) = 17k(to)	).	 -	

(.	)

(t  

Defining 1I,,. by (2.13) we understand y to be the solution of (2.14) where 1Tj(t0) ( t0) 
is replaced by .[4(to) a, a E lR tm . This makes clear that 31k possibly concerns further 
smoothness conditions related to y also. 

To prove the solvability of (2:1) for each given q € 81k first of all we define y € Ct 

as described above. It may be checked easily that y = TIkY holds. Next we dete'rmine 
according to (2.12), but now q € 'k implies	E C',j	1, ..., k —4.


Moreover, we use the inclusion 

:= Q0P1 ... P 1A'q -	+ (Q0(I	P1 . .. 1'k1))'}ITky 

± Q0(Q0p1 +	+ QoPi .. Pk_2 1ik1 )"E C. 

Since p= Q,p, j =0; ..., k —'i, the function x = Po + y + Pop 1 + ..: + P0 

Pk.2Pk-j belongs to CN '. Finally, xcan be proved to satisfy (2.1)immediately. Conse-
quently, im(91)= Jik. 

Theorem 7: Let the assunlpt ion$ of Theorem 6 (inclusive that of the second ;art) be 
valid, k > 1. Moreover, let (2.11) be given. Then the inclusions 

-	k-1	im (91) =	{ q € C: Q 1 Aq € Cl)	C 

are true. The maps 91: CN L C, 2: 0N" C X Mk are not Fredhoim. 2 is injective but 
has no bounded inverse. 

Proof: The assertion is a direct consequence of our considerations above since 
k is a proper noncloseci subset within C ! 

Corollary 8: 2: CN' -+. C X Mk becomes a horneornorphism if and only k = 1. 
Theorem 7 suggests to call the differential-algebraic equation under consideration also 

index* k-tractable' Note that index-k5tractability, k	3, is defined , in [12, 13, 16] without

qsing the assumption (2.9) by means of certainly modified matrix chains. This definition does 
not include the smoothness of Q1 and Q2, respectively. But we know from Example 2 that we - 
should include it. For a conjecture to define index -k- tractability also for k > 3 unless (2.9) is 
given, and wi thout using a matrix pencil we refer to [16].	 - 
/ It should be mentioned that Theorems 6, 7 cover the linear prototypes of interesting appli 

cations (cf. [10, 15]). On the other hand, the modified local pencil used in the present paper 
remains regular only for a restricted class of equations..-	 -
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Example 3: Let 

/0	1	0\,	
(01
	0	0\	 S 

A(t)	(o — t	1),	B(t) = 	0	0 
\o	0	o/	o—t	'I 

The related equatin (2.1) has the global index 3, and 1I is index-3-tractable in the sense of - 
[13]. However, the modified local pencil is singular. 

By Crollary 8, the only initial value problems in differential-algebraic equations,w hich are 
well-posed, are those where (2.1) is transferable. All higher index (i.e. k > 1) equations lead 
to ill-posed problems in this framework, that is j' is unbounded, and small perturbations 

, of.the right-hand sides in (2.1) does not imply necessarily small errors in the solution. Surely, 
we could look foran appropriate -stronger norm on im (21) to obtain a-bounded inverse of 2 
in this new setting. But the description of im (21) is technically rather complicated. When 
assuming Q, = Q1 , Q,' = 0, j = 1, ..., k - 1, the expressions for im (21) becomes more trans. 
parent, in particular we have then	 -	N 

= lq E C: Q,A,-'q E C'),  

7l 3 = {q E C: Q2A3 'q E C', (Q,Q,Aq)' ± Q,P2A 3 1q E 

•	 fl4 = (q € C: Q4A 3- lq	p3 € C', (Q2 p3)' ± Q2P3A 4-'q :P2  C', 

•	(Q,pz + Q,P2p 3 )' + Q 1I 2P3A 'q E C').	 - 

But even in this case '7k is quite complicated for k > 3. Besides, up to now, there are no 
•	proposals to design numerical methods going well with the modified setting where 2' becomes 

bounded. On the other hand, first proposals to regularize the ill-posed problems as they are 
given in our original setting are made (e.g. [9, 10]). 

- Further, the CN', C x Mk-setting and also the C, C x M-setting are convenient to study 
the behaviour of integration methods applied to differential algebraic equations (cf. [14]). Note 
that both 2 and 2 - ' are unbounded when the max-norm II•jJ is used in all spaces. The ref lee. 
tion of the unboundedness of 2- ' by the integration methods is their instability (cf. [8, 14]). 
For index 2 equations having a constant projector furction P, the instability is weak and 
only related to certain components. In the consequence, e.g. backward differentiation methods 
may be managed to work well for those equations.. But, unfortunately, it seems to remain the 
only class where this is possibl.	 S5 

Since, up to now, no numerical methods are really practicable for highe
.
r , index problems 

with k ^E! 3 (also the effort for the use of special methods designed to solve ill-posed problems 
js only in its beginning) one should try to apply reduction steps (cf. § 3) to decrease the index 
k to 2 or 1. 

We close this section forulating some simple inequalities which result from(2.10) 
immediately. Namely, we have	 -	S 

lix lI	K,( I b l + lill	+ llq 'll	±	+ ilIl)	.	S 

for q € Ck_1 , b = lTk(to) a, x = 2 1 (q, b).- If k = 2, we obtain more precisely 

•	 •	 • • llx II	K,(l b l + Ji]I	+ J(0QjA20]) )	S	 • • 

-	

lxii	^ -K3 (Ib[ -I- ]Ill	-+- ]I(Q,A2_ 1q)1 )	 -. 

for all q € im (2i).
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§ 3. Reduction methods 

Together with the'pair (A, B) now we consider (AT,BT where AT and BT denotethe 
transposed matrices. Clearly, (A T , BT ) is a regular pencil with the index k iff'(A, B) 
is so. Starting with (A T , BT) we form the sequences (1.2)by 

A,T +B,TQ1 , B 1 ' := B,Tp,' AT := ALT + EI T , , E1 	PIT, (3.1) 

where Q, = I - P, and , = I.— P, nw are projectors onto ker (A,T) and ker(A,T), 
respectively. Ofcoursé for the sequences {( A 1 T , B,T )}r_ 0 and {(A IT, E,T )}r_ 0 produced 
by (3:1) the Theorems 3 and 4 are valid. Q, = I - F, and 0 1 = I - P, are projectors 
onto ker (A IT), and ker'(A, T ), respect.ively,iff R, = I - S1 := QT and I?, = I -  

IT are projectors along im (A,) afl(l im (A1 ), respectively: By transposition we 
obtainfrorn (3.1)' the sequences 

A0 =A0 =A, E0 =BO =B,	 '	 H 

-	A,+1	A, ± R,B, , T B, 1 = SIB,,	 '	(3.2) 
A,+'1=A,±,E,, E,+1 ='E,,	1=,...,k-1,. 

Where- R,'= I —8 1 and E, J ,- ^I are arbitrary , projectors along im(A,) and 
im (A,), respectively- Applying the Theorems 3 and 4 to (31)'e obtain the following 
statement.  

'Theorem  9: If (A, B) is a regular pencil with theinclex kandihe sequences ((A,, B, 
((A,, E,)) are produced by (3.2), then the matrices A,, A, with 1 < k are singular, 
whereas Ai and Ak are 'non-singular. The (A 1 , B1 ) and (A,, E,) are regular pencils with 
the index  —1, that means for I =1,..., k 

-	md (A,, B,) = md (A,_ 1 , B, 1 ) - 1, ' ' md (A,, E,) = md (A,_ 1 , E,_ 1 ) - 1. 

Conversely, if Ak or Ak are non-singular, then (A, B) is a regular pencil.' 

This theorem suggests a method for the index reduction in differential-algebraic' 
equations with constant coefficientsAx'(t) + Bx(t) q(t) considered on, the interval 7 
If we define A0 = A, E0 =B, q0 = q and omit the- argument t, we obtain from 
A0x' + E0 = go, by multiplication with Po and differentiation, E0E0x = 0q0 and 
(k,E0) x' = (I 0q0)': Adding this equation' to the original one, we receve (A0 i : E0E0) 
X x" + Ex = q0 + ( 0q0)'. The definition q, q + (E0q0)' yields A1 ' + E1 = q1 

with the constraint .k0(E0'x -' q0) = 0. For the new differential- . algebraic equation 
we have got an index reduction by virtue of md (A,, E) =ind (A0 , E0) - 1. Con-
tinuing this process we obtain after k steps at last the explicit differential equation 

= Ak (qk - Ekx) with the constraints k,(E,x - q1 ) = 0, 1= 0, 1, ..., k - 1. 
Each step, of the procedure reduces the index of the pair (A,, E,) by 1'; but we have to 
assume, that all derivatives (.q,)' exist. This is a strong restriction for the feasibility 
of the - method. As-we will see later, the constraints are fulfilléil bX x(t) for all t E 7 
automatically, if for the initial vector , x(t0) the equations ,(E,x(t)'_ q,(to)) = 0 
(1=0, 1,...,k-1) hold(cf. Lemma 10).	 -	'	- 

Th reduction procedure suggested here permits the following generalization to 
linea'r time-variable differential-algebraic equations	- 

A(t),x'(t) ± B(t) x(t) = q(t),	, ,	 ' (3.3)
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where rank (A(t)) = const, A, B and q are continuous on 7 . Different . ation of R.hx 
= Rq yields RBx' ' -i- (RB)' x = (Rq)', and adding the equations we obtain 

Ax' + B 1 x = q 1	 (3.4) 

with A:= A + RB, B 1 := B + (RB)', q 1 :=q + (Rq)', provided that all occuring 
derivatives exist. 

Lemma 10: Let R( . ) be an arbitrary differentiable projektor /u'nction and R(.)y(.) 
be differentiable. Then y(t) = 0 if/ y(t) + R(t) y(t)' = 0 and R(t0 ) y(t0) = 0. - 

Proof: Due to R(Ry)' + R'(Ry) = (Ry)' = (Ry)' we have 0 =R(y +[Ry]') 
= Ry - R'Ry + (Ry)' = [Ry]' + (I - R') Ry. This is a homogeneous linear differ-
ential equation for Ry, and the initial condition R(t0 ) y(t0) = 0 yields (Ry) (t) - 0. 
Consequently, 0 = —(Ry)' = yl 

Applying our lemma to y(t) = A(t) x'(t) + B(t) x(t) - q(t), we secure that (3.3) is 
•	on U' equivalent to (3.4) constrained by the condition R(10 ) {B(t0 ) x(t0) - q(t0 )} = 0. 

If rank (A,(t)). = const and R 1 B 1 , R 1q 1 are differentiable, we can repeat the explained 
procedure for (3.4) and obtain in the same way A 2x' + B2x = q2 with the additional 
• restrictions R 1 (t0) {B,(t0 ) x(t 0) - q 1 (t0)) = 0 for x(t0). We call (3.3) reducible, if the 

process can be continued until a matrix A k appears wh ich is continuous and non- - - 
singular on 7 . (3.3) is called k-reducible if k is the smallest integer for. which in k steps 
a non-singular A k is attainable.	 S. 

Theorem 11: If (3.3) is k-reducible, then there is a sequence


A 0(t) : = A (t)	B0(t) : 'B(t), q0(t) : = q(t), 

A 1+ ,(t) := A i(t) + R 1 (t) B 1(t), B11 (t) :=B 1 (t) + [R(t) B1(t)J',, 
•	q,+i(t):= q 1(t) + [R1(t)q(t)]',	1 = 0, 1, . . . ; k - I 

lea]ding to the ordinary differential equation 

x'(t) = [A k(t)]' {q(t) - Bk(t)x(t)}  
which is under the restrictions R 1(t) {B 1 (t0 ) x(t0) - q 1 ( t0 )} = 0, 1 = 0, 1, ..., k - 1, 

iequivalent to (3.3).	 . 

• Assuming (A(t), B(t-)) to he a regular pencil. for each t € 7, we get an index depend-
ing on t: k(t) = md (A(t), B(t)). If k(t) = k it seems tobe reasonable to define k as 
the global index of (3.3) But simple examples show that the pencil. (A(t),.B(t))-only 
in the case k(t) = 1 characterizes the solution behaviour (cf. [8: § 1.3]). Therefore, 
GEAR and PETZOLD [4] called (3.3) to have the global index k, if a continuous non-
singular matrix function E( . ) and a continuously differentiable non-singular matrix 
function F( . ) exist, so that scaling of (3.3) by E(t) and the transformation x(t) = F(t) 
x y(t) lead to the differential-algebraic equation 

Ay'(t) + E(t) y(t = q0(0,	 •'	
5	

(3.10) ' 

where A 0 = diag (Is , J) = E(t) A(t)F(t), E0(t) = diag (W(t), I.-s) = E(t)A(t) F'(t) 
+ . E(t) B(t) F(t), q0(t) := E(t) q(t) and Jis a constant nilpotent matrix with Jk	0, 
jk1	0. For all constant projectors .o along im (A0) we obtain .k0 diag (W(t), 1m0 

•	 /
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= P o diag (0, In-8); therefore, the matrix A1 = A0 + k0E0 (t) is constant again. This 
procedure can be continued; then the global 'index k means that the sequences 
A 1+1 := A 1 ± k 1E1(t), E1+1 (t) := A I (t) with arbitrary constant projectors E1 along 
im (A 1 ) are ending with non-singular matrices Ak. 

Theorem 12: 1/(3.3) has the global index k in'the sense of Gear and Petzold,then the 
transformed equb1iom (3.5) is k-reducible. Moreover, (3.3) itself is k-reducible in the case 
of a differentiable E(.). 

• The second statement of the theorem is proved in [7]. Since the class of problems 
covered by the definition 'Of Gear and Petzold is rather restricted, the k-reducibility 
seems to be a convenient generalization of the property expressed by the global 
index k:' In [7] a generalization of the k-reducibility to quasi-linear problems is 
suggested too. CHISTYAKOV [18] and GEAR and PETZOLD [5] considered reduction 
methods, too. There each step consists in a certain transformation separating the 
differential part of the system from the algebraical one, followed by , the differentia-
tion of the latter part.	 - 
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JM1JSIELAK (ed.): Function Spaces. Proä. mt. Cônf. Poznañ, August 25-30, 1986 
(Teubner-Texte zur Mathematik; Bd. 103). Leipzig:' B. G. Teubner Veragsges 1988, 
196"S.'  

- These proceedings contain 27 lectures presented at the International Conference on "Function 
Spaccs' held on August 25-30, 1986 in Poznañ, Poland. The total number of participants 
was 82, from the following countries: Belgium, Bulgaria, China, Czechoslovakia, FRG, France, 
GDR, Holland, 'Hungary, Poland, Rumania, Spain, Sweden, USA and USSR. The proceedings 
are divided in 4 parts.' 

Part I, "Orlicz Spaces", contains 9 contributions dealing with geometric properties in Orlicz 
spaces, minimal Orlicz function spaces, galb conditions, measure of non-compactness and some 

rbbability and control system aspects of Orliez spaces. 
Part II, "Other Function Spaces", contains 5 notes on modular function spaces, Riesz spaces, 

spaces of differentiable functions and'Riernann integrable functions. 
Part III, "Approximation and Interpolation in Function Spaces", consists of 6 papers devot-

ed to various problems in approximation 'theory. 
Finally, Part IV, "Other Topics in Function Spaces-and Banach Spaces", contains 7 contri-

butions on positive contractions in Banach spaces, pBanach spaces, F- and D ".-spaces and 
multivalued maximal accretive mappings. 

It is evident from this list that many aspects of the theory of function spaces got attention 
during , this conference; apart from the 27 contributions abo'e, there were 30 lectures which 
are not included in this volume. 

The contents are as follows: 

Part I. Orliez Spaces  

J. Appell	 Measures of non-compactness in ideal spaces 
Chen Shutao	Convexity and smoothness of Orlicz spaces. Geometry of Orlicz space I 
I. Fazekas	On Banach spaces of type


