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Compa.rlson Theorems for Nonself-Adjdint Di_fferentia] Equations of Second
~ Ordér ; ' ' ' :

. E. MULLER-PFEIFFER

Bezughch der \'u]lstellen der Ableitungen von Losungen nicht selbstad]ungxerter Differential- .
gleichungen .zw citer Ordnung wcrden Verglelchssa.tze vom Sturm- Plcone -Typ bewiesen.

_O'rnocn're:lbyo HyJelt NpOM3BOAHBIX pellucHUIl He camoconpﬁﬂ\euuux anddepenunanbHHX
YPABHEHHil BTOPOro NOPAAKA OKA3LIBAIOTCA TEOPEMbI CPABHEHMSA THIIA Ill'ryp“a Muxone.

Concerning the zeros of the derivatives of solutions for nonsclf- adjoint second order dlfferentml

equatlons Sturm Picone type comparlson theorems are proved.
~

By the well- known Sturm Picone theorem solutlons u and v of the self-adjoint
differential equations

—@mu)+m@u—0 (P,QeC,P>0)), (1)
K (z € [a,b])-. . '
—( (x)v)+qx yv=0 (p,g€C,p>0) ’ . (2)
el
are compared concemmg the mutual posmon of their zeros (cf. [6] or [7]) It is
natural to ask if there arc similar results for the zeros of the derivatives »’ and v’ of

solutions % and . An answer for this question is due to LEIGHTON [‘3 4).

I,

‘Theorem’ 1 (LEIGHTON [3]): Let Q and q be negative on [a, b] and .
po) SP@,  o@)SQw, asss=s. @)

If the derivative u' of a solution u of the equation (1) has consecutive zeros at x-= a and
z = b, then the derivative v’ of a nonnull solution v of the equation (2) satisfying v'(a) = 0
will }uwe a zero on the interval (a, b). . ) )

In the followmg this theorem will be extended to the nonself adjomt equatlons

—(Px)u) + R(z)u’ -}—Q(x)u—O ~ " . (4)
: (% € [a, b]), '
—(ple) o) + (=) v g v =0 L SO
where R, Q,r,q€C, P, pE CY, and p(x), P(x) > 0on [a b]. For this end the equa-
‘tions (4) and (5) will be tra.nsformecl into Riccati differential equations. It is easily
seen that the function

y = Put | : . - o (6)
R .

1) All equatlons and inequalities for funcuons on intervals are to be understood pointwisg, e.g.
they are valid for every point of these intervals. In the following, in case of strong inequali-
ties, the, functlons are, for the sa.ke of clenrness, written w1th their arguments
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is a solution of the Riccati.equation ) .
y'(x) = —P"Ma) ¥ + PYz) R(z) y + Q(x) o (M

if « is a solution to (4). Analogously, equaﬁion (8) can be transformed into

Z@) = —p @)+ p ) @) 2 + ), . e

where S : » ‘ . .
Dl ampew o o

Lemma 1: Assume

1'pgp, p"lrSPlR ¢<Qonfabl. - - Cqo)

Let [, f] = [a\ bl be a subinterval where the solutions y and z of eq'uations (7) and (8),
respectively, exist and assume that y(x) > 0 on [a B). Then y(a) z(x) tmplies y =z
and y(B). < 2(B) implies y < z.on [, B]. ' .

Proof: By (10) it follows that

-

\

PR e O AR R ORC )y +qle) < —P- M) y? -+ P ‘(x)R(w)?/nLQx)(ll)

for all pomts of the semistripe Hy'={(z,y)]a 2 < ,0 Zy < oo}. Consider

“the case y(«) = 2z(x) and let z(x) > 0. Then by a wi ell-known theorem on first order
" differential equations (cf. [2: p. 91] or [1: p. 27]) it follaws that ¥ = 2z in a neigh-,
. bourhood on the right-hand side of «. Lét & € (&, B) be a point where y(£) = z(&).

Then by the same argument we ‘have Y(z) = z(:z.) if . = & and z near to &. Hence, the
~graph of z cannot cross the graph of y on {«, §]. The assertion in the case y(ﬁ ) = z(ﬁ)
1s likewise a consequence of the named theorem 1

Theorem 2: Assume (10) and let w and v be solutions of equations (4) mzd (o), re-
.spectwely, such tkat

\ \

wa) = 0= w(®), @@+0 onfabd) a (12)
and ) : . ' o } . o
JU@ =0, W@ (13). .
*Then v' has a zero on (a, b) or v is a constant multzple of u. In lhe latter case the equations
(4) and (5) are identical.. - o .
Proof: Ib follows from (12) t,hat -y ' <. °
(7:) +0, 0<ul(z) (@) <o onfab). : C(14)

Let us assume that v'(z) == Oon (a, b). Thcn by (1‘%) we have v(z) & Oon (@, b] and
O<vi@v@ <oo | on(@by. {(15)

Tt follows from (14) and (15) that y(z), z(z) > 0 on (a, b). We prove that § = z on
(a, b). Assuming the contrary let z, be a pomt on (a, b) where y(z,) = 2(x,). First we
discuss the case z(z,) > y(2,). et 7, be thé solution of equation (7) uniquely defined
by the initial value yo(xy) = 2(7,). Consider y, on the left-hand side of z,. We prove
“that g, does not exist on. the entire interval (@, z,]. The function’

A= 1o —y), ¢ dlm) = 1/6 >0, Lo .. (18)
is a solution of the dlfferentlal equatlon '

© w4+ [Pz) R(z) — 2P-\(=) 1 y@)w — _p- 1(gc) =0,

/
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“ina neighbourhoéd of zy (cf. [2: p. 42]). ,Hence;, we have

\

~

!

e Zy \

0

el Do) e 2)

_ q;(xojuz(;z:) l u(z) [ @dt) . | (17) -
T u¥(m) (x) \' 0 plze) J wPP ) S

V z, ' N
, Where ¢(z) = cxp ( f P-1R dt),’ ¢ € (a,b). In view of u(z) = [u’(a) + o(1)] (.'1: —a)

z .
near to allt follows tha.t, u'QP lg dt — — oo when z | a. Hence, thele emsts a omt
4 p

-

x € (4, xo) such that d(z ) — 0 when 2 J, Zs. Consequently, we have’

Jo(x) — 400 when z | z,. E - \ ' - . (18)
v

© It follo“s from d(z) > 0.0on (x5, 2] ‘that Yol2)y> y(z) on (xé, Zo]- Hence, Yolx) is p031-b
. tive on (5, 2,). Consider now the solution z, 2(x,) = yo(2,), of equation (8). By Lemma 1

it follows that z = y, on [«, z,], where « € (xé, Z,) is any point. Hence, in view of

(18) z cannot be bounded on (z,, xo] This, however, contradicts the fact that 2

" exists on the entire interval (a, b). Hence, 2(x,) > y(x,) is impossible.

Assume now that z(z,) < y(x,). Let 7, be again the solution of the Riccati equablon :

(7) defined by yo(z,) = 2(z,).- We 'show that g, has a zero on the interval (x,, b). For

this end we use formula (17). Consider the behaviour of d(z) when z is increasing. The -
factor @(z,) u?(x)/u?(x,) p(x) is posmve and tends_to @(x,) uz(b)/uz(z,,) (p(b) when
LT > b l‘or the second factor we hdve '

,
N
’ 3

1 i u%(z,) (pdt 1 xo) qodt )
0 @lxy) wp. uzl’

\ z

when z —'b. T{ this limit is non- negative, then there exists a point £ € (2o, b] such-

that d(z) — 0 when z 1 £, and it follows that #,(z) - —co when z 1 £. Note that this
is also true in the case & = b because of y(x) = 0 when z 1 b. In the case of negative
limit above we obtain d(x) - ¢ < 0 when 21 b and, consequently, 7(z) — o6~1 < 0
when x4 b. Since y4(z,) > 0, in each case the function 7, has a.zero & € (x,, b).

. Lemma 1 applied to the functions y, and z yields the estimate z < y, on [z, &). This

estimate, however, contradicts the fact that z is a positive function on (a, b). Hence, _

2(zo) < y(z,) is also impossible and the assertion ¥ = z on (a, b) is proved. In this
case y is a solution of ‘equation (7) as well as of equation (8). This leads to — P12

4+ PRy 4+ Q@ = —p'y® + p~lry 4+ q on (a,b). Finally, it follows from (10) and |,
~y >0 that P =p, R=r,and Q = ¢. w and v are solutions of .equation (4) with

u(a) = v(a) = 0. Thus, we obtain v = cu on (a, b) ¥

I the special case R = r =0 Theorem 2 was proved by LErcETON {3 :‘Corollary]..

’

<:’:z2 2
d(z) = exp fyp ‘” +f—ekpf o de|dr)
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" Lemma 2: Assume. _— . ,
‘pgp, wthm g=Qonlfa,b). ‘ T (19)

Let [«, f] = [a, b] be a. subinterval where the solutions y and z of equations (7) and (8),_
respectively, exist and assume that y(z) < 0 on [a Bl Then y(«) = z( X) in’mlics Y=z
‘and y(B) < 2(B) implies y < z on [«, ﬁ] h

Proof Compare the proof of Lemma 11

_ Thebrem 3: Assume (19) and let u. and v be solunons o/ eqwuwns (4) and (5),.‘ ‘
“respectively, such that - . . .

w(a) =0 = ud), w(x)==0on  (a, b] ) . (20
and . . . ' o
va) £0, ovla)v'(@=0. L _ , 21) -

Then v has a zero on (a, b) or visa constant multzple of w. In the latter case the equations
(4) and (5) are identical.

Proof: It follows from (20) thaf ‘
- u(x) :}90 —o0 < ui(x) u’(x) <Oon(a,b).” . i o (22)

Let us assume that v(z) + 0 on (a, b) Then the functions.y = Pu ' and z = pv~ 1’
exist on [a, b) and (20) and (21) give z(a) = y(a) = 0. By (22) 1t follows that y(x) < 0
on (a, b). Since "

—p 7 xPy* + P“(x) rx)y + 11(56)' é —P Yz) y* + P~z) R(z) y + Q)

for all points (z,y) of the semistripe H. = {(x,y) |a <z < b, —oco <y < 0}, by
the above mentioned theorem on first order differential equatlons it follows ‘that -
z <y on [a, b). We prove that z =-y on [a, b). Let z, € (a, b) be a point where z(z,) -
< y(xo). Consider.the solution g, to (7) defined by yo(xo) = z(xo) and apply formula
(17). Since 671 is negablve and '

ui(zy) [ it

p(x) J uP.
. -

— }o0 whenz 1 b

there exists a point x4 € (xo,b) such that d(x) — 0 when z 1 z;. This leads to yo(x)
— —oo when 271 z;. By Lemma 2 it follows that z < y, on [z,, 8], where the point g
can be chosen arbitrarily on (z,, ). Hence,”z cannot be bounded on [z, z;). This,
- however, contradicts the fact that z is continuous on (a, b). This proves that z = y
on [a, b) and, consequently, the differential equations (4) and (5) are identical 1 '

Lemma 3: Assume . ' -
, PEP, qSQ,(P‘R—plr)?S‘i( —P‘)(Q—q)on[ab] (23)

Let [e, ﬂ]  [a, b] be a subinterval where the solutzons y and z of equations (7) and (8),
respectively, exist. Then y(oc) =. z(o.) zmplzes y =z and y(B) < 2(B) zmplzes Y S z on

[, B} .

" Proof: By (23) it follows that . _ A
—p @) ¢+ pTHE) 7)Y + g(z) < —P- 1(96)3/ + Pz) R@)y + Q) '
' «(24)
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for all points (z, y) of the stripe S '= {(z,y) |a =z £ b, —o0.< :l/."< w}.'Thén,.as in . -
the proof of Lemma 1, the assertion follows from (24) |

Theéorem 4: Assume (23) and let u be a solution of equation (4) with (a) =0
= u'(b) and w'(z) F 0 on (a, b). Further assume that v has a zero ¢ on (a b). Then the
derwatwe v’ of a solution v of equatzon (5) has a zero on (a, b) or

Pu“u = pv v’ on [a,c) v (c, b]. ' ' B . (25)

Proof: Smce w'(x) :‘-r- 0 on (a, b), thele is only one zero of # on (a, b). It fo]lo“s
from ' .
. ' (x) i w'(z)

lim y(z) = lnm P(x) — = —o00, lim y(z) = lim, P(x)
“ztc zte . ( x) _ ] zle zlc . ()

= 400

. that y(z) is negative on(a, ¢) and positive on (c, b). Assun']e that v'(z) + Ovon (a, b).

We then show that y = z on [a, ¢) u (¢, b]. Assume the contrary and let z, € (4, c)
u (¢, b) be a point where y(z,) =% 2(z,). First we.discuss the case z, € (a,¢), y(,) .

< 2(z,) < 0 and consider the function z on the left of z,. Let 3, be the solution of

equatlon (7) defined by y,(:zcl = z(x,) The function d = 1/(yl — y),d(z,) = 1/6 > 0,

is glven by

pl@) wix) (1 w@). i

W) e \ 0 #@) ) Pa)

zy

) = - (26)

where ¢(x) = c.\'p( fP‘lR dt), a <y < ¢ (compare the proof of Theorem 2). The

first factor'(p(x,),uz(:vy)[uz(xl) @(x) is positive on [a, ¢). If ‘the second factor

» e
b u¥x,) [ @dt ‘ °
6i+ W) )P = -

then thore exists a point ¢ € [a, x,) such that d(z) — 0 when z | & and, consequently, .
Y(z) — oo when z | ¢&. Hence, by Lemma 3, it follows that the graph of z crosses
the z-axis on (a, ). This, however, is 1mp0881ble because we have supposed that
v'(z) 4 0 on (a, b). In the case z(z,) > 0 the function z will be described on the right
of z, as follows. Because ' is bounded on [a, b] and v'(x) %= 0 on [z,, b), it is easily
seen that z = 7)2)'11; is bounded from above and z(z) > 0 on [x,; b). Since y(z) - +oo
when z } ¢, there exists a point x, € (c, b) such that z(z,) < y(z2). Then, by Lemma 3,
we have z < y on [x,, b). Consider the solution y, of equation (7) defined by ()
= z(x,) and use the functlon (26) ‘where z, has to be replaced by z,. Then,-as above
ohe can see that z must have a zero on (z,; b). This contradicts the hypothesis v'(z) #= 0
on (a, b). Assume now z(z,) < y(z,). The function z will be described on the right of
x, as follows. By using Lemma 3 it is easily seen that there exists a point L€ (2, €)
such that z(x) - —oco when z 1 ¢. This implies z(z}) - 400 when z | {. Hence, in'a
neighbourhood on. the right of { we have z(z) > 0. This case was already hdndled

- above (the case z(z,) > 0) and. leads to a contradiction. We state that y = z on [a c).
‘Analogously, one can prove that y = z on (¢, b] 1

\

Corollaly Assume Q(a), Q(b) < 0 and (23) Let u be a solution to (4) with w (a)
= 0 = %'(b) and «'(x) & 0 on (a, b). Then the derivative v’ of dny solutwn v to (B) has a
zero on (a b) or Pu=lWw' = pv~lv'.

’ . - .
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Proof: Without loss of g/enerajiby we can supposé that u(a) > 0 (u(a) = 0.would
imply » =0). Then ‘it follows from P(a)«"(a) = Q(a) u(a) that u'’(a) < 0.. By
u'(a) = 0, w'(x) % 0 on (a, b), and from u''(2) < O it easily follows that u'(z) < 0 on
(@, b). Thus, in view of u'(b) = 0 we obtain (w'(b + h) — u "(8)) [k - u"’(b) = 0 when .

" h10. By Q(b) < 0 and «"’(b) = 0 it then follows from P(b) u'(b) = Q(b) u(b) that

‘an

' REFERENCES S

u(b) < 0. In view of '(b) = 0 the boundary value u(b) = O would imply that « = 0.

Hence, we haveT u(b) < 0. Consequently;« has a zero on (a, b), and Theorem 4 can be’

apphed | . ~

]

The corollary of Thédrem 4 generalizes Theorem 1 of LEIGHTON 3]

"Remark: Condition (23) IS satisfied if p < P,q < Q, and p~}r = P71R on [a, b].
Theorem 4 and its corollary are then valid. Concermng the so]utlon v the assertion
can be strengthened as follo“s The derivative v" has a zero on (a, b) or v is a constant
multiple of «. :

¢

Finally, we consider the case that the function u does not vanish in (a, b).-

Theorem 5: Let the kypothesis (10) be fulfilled and let w and v be solutions of equa-
tions (4) and (5), respectiveh , such that w(z), u'(z) + 0 on [a,b), u (b) =0, and
0 < p(a) v™i{a) v'(a). = Pla) wa) w'(a). Then v' has a zero on (a, b) or v is aconstant
multvple of w. In the latter case the dzf/erentzal equatwns (4) and (5) are ‘tdentical.

The proof can be omltted ] : ~

In [5], by the help of the transformations (6) and (9) the~well-known Sturm=-Picone
comparlson theorem is extended to the nonself- -adjoint’ dlffelentlal cqua’mons (4) and
(5) considered on possibly non-compact intervals.
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