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Es werden Funktionenrdume mit variabler Glattheit betrachtet, die auf dem n-dimensionalen® .

euklidischen Raum definiert sind. Die Definition dieser Raume erfolgt mit Hilfe einer ge-
eigneten Klasse von Pseudodifferentialoperatorén.
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This paper is concerned with function spaces of variable order of differentiation defined on the

* n-dimensional Euclidean space. The definition of thesc spaces is closely connected with an

appropriate class of pseudodifferential operators.

Euclidean- n-space R*”. In the classical function spaces of Besov type B}, ,(R") norms

- can be defined via a resolution of uﬁlty in the Fourier image of the: funcmon u, which

is connected with the symbol |£|2 of the Laplacian — 4. We consider now in this paper
decompositions of R.® X R;® which are induced by symbols a(z, &) of appropriate
pseudodifferential operators. This means that we may have different resvlutions
{pi(x, £)}52 of Re® for different x € R,* So we can get locally in different points
dlffercnt smoothness demands 6n the function u(x). The function spaces Byo(R")
defined in this way seem to be useful in the study of degenerate elliptic partlal dif-
ferential equations. In Section 1 we recall some facts about pseudodifferential opera-
tors and collect those results which will be needed in the sequel. Section 2 contains
the definition of 'an appropriate sublcass S(m, m’; 8) of hypoelliptic symbols, some
examples and the definition of the resolution of unity of R,"* X R;® connected with
these symbols. In Section 3 we define the function spaces By%(R") of variable order

.~of differentiation and describe properties of these spaces. -

1. Basic properties of pseudodifferential operators

Let p(z, £) be a polynomially bounded complex-valued function defined on R,* X R".
The pseudodifferential operator P(z, D,.) with symbol p(z, &) is defined by

Pla, D:) wlz) = fe“’P(x, &) (Fu) (£)dé  foru € S(R"),

\

(27)"

where S(R") denotes the Schwartz class and (Fu) (& fe“”‘u(J) dy denotes the

Fourier transform of'u. A function p(z, &) belongs to the class S7y (—o0 < m < o0;
060=1,0< 1) if for any multi-indices «, # there exist a constant Cap such
that

lp:;;(x’ = caﬂ<£>m_ﬂul+6m . for (x, §) e R X R‘E”:

-
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where  pigl(z, &) ='0eD.fp(a, ), O = OU[ay ... 0% DS = (—i)M 5.8 ‘and (§)
= (1 4 [E]2)V2, We set S = ﬂ Sms Tt is easy to see that ﬂSM = ﬂS;’:o for

any ¢ and.d. The- pseudodlfferenmal operator P(z, D;) with a symbol p € S”‘,,/ maps
S(R") continuously into itself and can be extended to a continuous operator from
S’(R*) into S’(R"), the space of all tempered distributions on R®. The mapping be-
tween p(z, &) and P(z, D ) is,a leectlon For p € S s we define the semi- norms

Ipl(l % by !

o Ipl&"i,-— max_ sup {[pig)(, &) (€)= m+elel oAl - .- (1
O larsugisk (& ‘ . o ,

Theorem 1: Assunie that0 < 6 < o = 1. Let 'Py(x, D;) €.573 and Pz(x, D,)e

Then P(z, D) = Py(z, D;) Pa(x, D) belongs to Szy*™. Forthesymbolp(x ) of P(x D,) o

and for any natural N we have the expansion /ormula

3 . - . -
N

\

(1 — gy
plx, §) = Z — p.‘“’(-’c &) pzm(x £+ N Z —_|—"77.0(x: £)dd, )
|a|< 2 - Izl= N e : . -
iwhere (Os 'oscillatory integral) - o ‘ o
1 ) . . . . . ST
’y.o(x, §) = (21 D f e‘”’%"’(x, & + 9n) pan(z + ¥, 5) dydn: . (3)

{r,.6}101<1 15 @ bounded set o/ S'"‘“"""“"“"’ Furthermore, for any pair of mtegers (€ k)
there exist constants ¢, ¢’ and mtegers U, k' independent 0/ 4 such that

) . ) '
- Ipl ’pg(a,l(,'f',;f’"‘ lalte=0) < ¢ |P1[(1+|a|.k) |T’z|u.k+|a|)- ) . @)
and ’

' +—ly|(e—8 ' N ! s . . - .

v _Iry.olfz’f'i,_*'_" Irite=4) =c¢ |y :[mk)') |P2|mk?)- v P ] (5)
- The theorem gives an estimate of each term of the sum (2) which is obtained by the com-
position of two pseudodifferential operators, Especially the estimate of the remainder term
will be often useful. The proof is a direct consequence of the definition of semi- -norms and of
[4; Section 2], sce also there for details. : :

' c

Theorem 2: Let P(x, D)) € 8%, and 0 < 1. Then for all p with 1 < 7) < o0 tkere

exist integers 1, k and a constant c, all. mdependent of, P(x, D,), such that .

1P, D;) u.ILpJI <o Il | Lyl _forall'w € Ly(R"). . (®

" Thig was proved first by JLLN®R [3] in 1975. Later for example BourDAUD [2] and NAGASE
[7). considered non-regular symbols and got weaker conditions on p(z, £). But the result is,
sharp with respect to the parameter p. There exist'smooth functions m(§) € 89 w hich are not -
Fourier muiltipliers in, L ((R%) and L, (R") [14; p.21]. Consequently for the .correspondmg
pseudodxffercntml operators (6) is not truc in the case p = 1 and'p = oo.

Corollnryl Let Pz, D,.) € Sy, 6<1 1<p< oo and —oo<tm<oo
Then there exist integers l, k and a constant ¢ such that \

~
'

:IIP(x, )ul HA < ¢ lplih The| B ™) foru e Hp”"'(R"‘)~ ' M

Again the constants are mdependent of P(z, Jr) ‘and u. Hy'(R") denotes the Bessel-
potential spaces. . ' ., . '
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2 Covermgs of R:" X R mduced by symbols of pseudodlffercntlal operators

In t,he follo“ mg we consider a subclass of the hypoelliptic symbols of slowly varymg
strength. - .

Definition 1: et 0 < i) < land 0 <m' < m. A symbol alz, &) € S belongs_

" to the class S(m, m’; §) if there exists a constant R, =,0 such that holds:’

(i) for any multi-indices «, 8, allz € R, and' all ¢ € Re With™ |£| >R, there holds
|“l§l(f€ ) = cap la(x, &) (£)IoIHIBI, t ()

(ii) ‘there exist constants ¢, > 0 and ¢, > 0 such that for all x € R," and all
¢ E R” with |£] = R, there holds IR :

o)™ < la(z, &)l S cal)™. B )

" The symbols of the class S(m, m’; ) will be a substitute for the symbol |£}? of the.

Laplacian w\lnch is used in the (leflmtlon of the usual Besov spaces. Therefore the -

restrictions m’ > 0'and ¢ = 1 turn out to be natural in view of the following defml-

tions and Theorem 2.
Two symbols a(z, 5) and b(z, &) belonging to S(m, ni'; 8) are called equwalent if

’ there exist constants ¢’, ¢ an(l R with

0 < ¢ < lafz, &) b I(x,§)lSc<oo : : - -t10)
for all:z: €R,; % and all e R wnbh ]§| = R. ‘ ‘

Let us give now some snmple c\amples

1., The trivial example is the symbol: a(z, §),= (&) of the Bessel potentlal operator
(I — 4)!2 This symbol belongs to S(1,1;0). '

2. Let o(x) = s + w(x) be a real-valued function, s-be a constant and p be an ele-
ment of S(R"). Let m’ = inf o(z), m = sup o(z) and 0 < m'. Then a(z, &) = (&)@
belongs to-S(m, m’; 8) for any.é with 0. < é < 1. Such symbols and relat,ed function
spaces were consndere(l by’ UVTEBBERGER and Boxrosza [14], VISIK and Esgmy

“[16, 17] and BEAUZAMY [1]. o

3. Let o(z) = s + y(x) be a functlon as in the previous example and ¢ be an arbi-
trary- real ‘number. Then a(z, &) = (£)°®@(1 + log (£)2)"2 belongs to S(m, m’; )
with 0 < & <1, 0 <m' < info(z) and m > sup o(z). Symbols of: this type were
considered by U\TERBERGER and Bokosza [15] and UNTERBERGER [13].

-4. Let g(x) be a _real-valued weight function with sup |D7o(z)| =< ¢, for all y.

.0 may be zero on a domain' 2 < R," Let 0 < m’ < mand k be a natural number with

(m — m’) < 2k. Then the symbol a(z, &) = ()™ + *(z) (O™ belongs to ' S(m, m’; 6)

" where 6 = (m — m'){2k. If m’ and m are even numbers, Lhen a(z, &) is the symbol of

a degenerate partial (llfferentlal equation.

For each symbol a(z, §) € S(m, m’; 8) we can define var lable coverings of R,® X R:".
Variable covermg means that .in (llfferent points x € R " we may have dlfferent:
coverings of R o §

Defmltuon 2:Let N be an mteger and a(x &) a symbol belongmg to S(m m'; §).

The symbol a(z, ) induces a variable covering {QN "},_0 of R," X R¢" by
. . ] -

Q= ((, &): la(z, &) < 27+ +i) . ifj=0,1,...,N,

. . ) , 11
G = (2, 8): 27V < lalz, )] < 2N} ifj =N+ 1L,N+2, ... (1)

J is a constant which is fixed insucha way that || < R, alwaysimplies (z, &) € 2,'°.

:
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In the case a(z, &) = (&) we get the usual classncal dyudlc coverings of R;*%, mdependent ofz,

- which are the basic for the definition of the spa,ccs B} o(R"®) and F% (R*). In the case a(z, §)

(E)"“’ or a(z, &) = (£)™ + p2¥(z) (£)™ the coverings {.Q N.0} %20 are variable. For each fixed

*z € R;® we have a dyadic covering of RE , but in geneml thcse covermgs are different from

each other The .Q N.8 are open sets and bounded in &. For any number j, at most 4N — 1 sets
Q; ¥.0 have a non- empty integsection with QN 8, . ‘

Deflnltlon 3: Let {2,792, be a variable covermg induced. by the symbol a(x, 5)
A functlon system {g;};2 be]ongs to &¥ if for all j=0,1,2,... holds: ‘
() gyl &) € C°°(R " X R¢") and %(x, £ = 0;

(ii) supp'p; = 2, :

(iih)- |5k, £)] S c ,3(5) ""l+15"’ for any multi-indices « and 8, where the constants
cnﬂ are independent of i

(iv) Z%(x, £ =¢>0. ' ' | -

By assumptions (ii) and (m) we get @;€ S—°. The followmg estimates for the
semi-norms of q>, are a simple consequence of (ii), (iii), (9) and (11):
) 2—jxim if % = 0, o ’

ol = clk" {2—jx/m’ if x < 0 (12)

for all real numbers » and with constants ¢y, mdependent of j. Also by (iii), respec-
tively (12), it follows that the semi-ngrms of the ¢; are uniformly bounded in Sy s
J

Together with (11) and (iv) we get in this'way that Z @iz, &) = ¢® in 87, weakly if -

J — co. The weak convergence in S} ‘,‘and Corollary 1 1mply that for every v € H, s(R™)

j=0

holds — see also,[4; Chapter 3, § 7] where this fact was prove(l for Ly(R"). But in
view of Corollary 1 there are no difficulties to carry over the proof to the case 1 < p
< oo and the Bessel-potential spaces for arbitrary real s

1t is easy to describe examples of function systems of the abovc type. Let {.Q]A "} o bea
variable covering induced by a(z, &) € S(m, m’; §) and J be the fixed number from Defmmon
2. Furthermore let @ ¢ C®(R,) be a real- va]ued function with 0 < q)(l) <1, gty =1 if
o=t 2J land supp ¢ = {t: 0 < ¢ < 27}, Setting

@i 9) = @(271¥ Ja(, §)]) — p(2 T a(z, HI)  ifj=1,2,%.

2N —1
Pol@, §) = X p(27K*¥-1a(z, §)]),

and

°

‘thén we have {(pi}’f'?:o ¢ ON.0 with ¢» = 2N — 1.

3. The spaces Byq of variahle order of differentiation

We are now ready to define Besov spaces of variable order of differentiation. In-
_stead of the classical resolution of- R;® which is connected with the symbols |&|2
respectively (£) we use now function systems {@;(z, £)}32 € P connected with the
symbol a(z, &), which may lead to different reso]utlons of R for different f1‘<ed
z € R,". Throughout this section a(z, £) is a fixed element of S(m, m’; ).

J
Y ojx, D)v—>cov ¢ in HAR") if J-—> o0 (13).

-
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Definition 4: Let 1 <p < 00,0 < ¢ S 00, —00 < § < 00 and {@i(z, 5)},_0 be -
a system belonging to @#¥-3. Then

p_'f;(R") — (wwe SR and fu|Bygl® < oo}, |
. ' - . g . ' .
flw | B;-f; o) = (;§o2m llpi(z, D;) | Lp”!) ifg<oo, | (1 4)
Jle |- Bya|(te = sup 21 |lp;i(x, D) u | Lyl . . '

Of course the norms Jlu | Bya)l*+ depend on the chosen system {pili20 € @¥a. But
this is not the case for the spaces Bj3(R") itself. Thns will be proved in Theorem 4.
But a first we prove the embeddmg of the spaces By4(R") in the scale of the usual
Bessel-potential spaces. In this theorem B§4%9)(R") denotes the function spaces which
are defined by (14) and an arbltrary flxed system e
Theorem 3: Let {9;)2, be a fized system belongmg to dVaand 1 < p < 0,0 <gq
cE 00, —00.< 8 < o0.

(1) For s = 0 we have .
© HAR®) & BYS(RR) & Hy(RP) I ©(15)
if x < sm'.and o > sm. ' - ’
(i1) For s < 0 we have ) ‘
| H(R7) & BYS@(R") < Hy* R") o (16)
. i/‘71<smamlo>sm ' ) T e

Proof: Step 1. We get by the monotommty of the I -Spaces and by a snmple caleu--
lation the first e]ementary embedding

Bys® 9 & Bya® & By o Byeew NUR
if 1 <p <oo, —0 < § < oo, 0<q<oo 0<q,‘Sq2£ooands>O
Step 2. Without loss of generallty we may assume that {qa,},_o is a system with »

" ¢® = 1. We introduce a second system of smooth functions {@;*}72,, where the @;*
. are mdcpendent, of x an(l therefore we will write @;*(£), with the fo]lowmg properties:

@*(§) = 1 on supp @;, supp g;* = ¥,
;" NE) = cu(€)71e for all x and ¢, and independent of j.
wherg, ' )
c QN =((x, £): (&) < max (14 Ry, c,}/™ 2V Hi+N+0imT))
' : ifj=0,1,..., N;

QiM'a;.~ — {(x, 5): ;m—l/m2(1+j—N—1)/m < <§> < c;;lm'2(.l+i+/v+l)/m"}
ifj=N+1,N+2,..

The existence of such systems {p;*}32, can be shown in analogy to the example at the
end of the previous section. We put . .

<P,*(§) = (2N =i "le,(E)™) — (2% e (E)™)

forj=N4+1,N+2,.. Nowitis easy to ver ify that the semi-norms of @;* can
be estlmat,ed as the seml norms of @; in (12) Also in view of (9) and (11) it holds
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QN .Q N.as for all 7. Hence by Theorem 1 we obtain

and : : S
Il S 2 4 \ ! " (19)
" for arbitrary real numbers “ and y, where. the constants Cliuy are mrlependcnt of 7

" This yields for J =1,2,.

= .Z ?i(z, D) w + .Z'Jw;*(Dz) @i(z, D) — Rz, D;)u  — - (20)
. o j=0 . ji=dJ - . . Lo !
with Y . L
Rz, Dy ~ S Rz, o i . 1)
i=J .

By (19) we get the convergence, of the infinite series. (21) in’89 ,. The semi-norms of

. RI(x, D;) can be estimated by

Pl Sicu2, ' S S ’ (22)

where the constants i are mdependent of J. : CT

" Step 3. Let s < 0 and % < sm fixed. Then by Corollary 1 and (22) we have

\RI(z, D,) | L(H P < ¢p27. This implies that the inverse operator of -
I 4 RJ(z, D,) exists an(l belongs also'to L(Hy, Hy*) if J = Jo(x, p). I-stands for the
identity. . : ' - ' ) t ’
Step 4. Let s’ = xim, u € By (R and .
,_{¢,(x,D,)u 5 L =01, J— 1,
= Lo*(D) gy, Dy) if § = Jo, Iy + 1,

' As a consequence of the propertles of the syste‘:m {p;* })_0 and of (7 ) in Corollary 1, we
see that

) ”(p;*(Dz) ‘Pj(x’ Dz) u | Hp“” = 92’.‘,' ll‘P;'(x» Dy)u l Lp“ o
if j = J,, Jo + 1, .... Since » < 0, a trivial e_stiméfte gives |
llpy(e, D) w | Hyll < ¢'2792g;(z, D) w | Ly
' ‘1f7 =0,1,2,...,J, — L. ¢ and ¢"-are-independent of j. We obtain

L Ilv; | H »*ll < max (c 29 [lu | B p|#d.

\

Together with (20) this 1mplles that 2, v;=u+ R(z,D;)u belongs to H,*(R").
j=
Because of the result of the third step t,he same must be true for » and we get
oo | B < ¢ (I + RIYE| A(HR*, Hp)ll [lw | B2l

Cif s £ 0, < sm and s' = = x/m. Now the ught hand srde of (16 follows in view of
) (17) . . c.-

Step 5. In the case s > 0 the proof i i s1mpler Let 0 < <sm and &' = x/m’. I .
u € B "‘“”(R") thenltlsst,ralghtfom ard to see that,z, ]|<p,(x, D) u| Lyl < clju ["BSflies '
/ '

\

.
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18 absolutely convergent in L,(R"). We.get on this way u € L,(R®) and [l | L,||
<cu) B3:f||®s. On the other hancl it follows by (18), (19) and Corollary 1 . .

Z;llw(% D)uHy| < cup 2; I¢;*|§Ik")”l[¢i(9¢, 2) | Lyl + cop 2 |T,|f: i |u | Lp” g
i=0 - : i=

< ¢ )2 |lpi(a, ,>u|Lpu+c [l | Lyll < ¢” nulB 2l
. 1=0

) . So we get u € H, (R” with ju | H Sl < c” || By IIWI’ and agam t,he rlght -hand 51de

'of (15) follows i in view of (17).
Step . 6. The proof will be completed by showmg that the left hand 81des of (15)

“and (16) hold. But thls is a simple consequence of the semi- norm estimates (12) and. .

Corollary 1 I _ A - S -

We will prove now that cqunvalent symbols define the same spaces and that the

- definition of these spaces is independent of the choosen system {(p,( . 5)}- . Let.

a(z, &y and b(z, &) be two eqpivalent symbols of the class S(m m'; §), that means we

. have0 < ¢; < la(z, &) b 1(z; &) < ¢, < oifz e R, &€ R and |§| = R. Without loss

of generahtv we may assume that R = max (RB;, Ry). {g;}52 € @¥.s and {pil 2, € DU

. denote two function systems belonging to a(z, &) and b(z, £), respectively. Then there

exist numbers j,(R) -and ¢y(R) such that all (z, &) with || < R do not belong to the-
sets Q"¢ and Q" if j > jo andi > i, respectively. Hence we get

supp @; 0 supp i = @ if j ¢ 76,
whele, o . ’ : .

y(z)—{jOSjSma\(yo,z—}—I—J—{—M—{—N—{—H)} 0= 4,

7(7,)—{7 ma\:(J t+I—(M+N+H))Sz+J£z+I+ﬂI+N+H} (23‘
: : 1fz>zo

as

‘and H fulfnls2 H < ¢ < ¢y < 2¥. Therefore \\eobtamm the case j ef 7 (¢) by Theorem 1

) 1/},(35 D ?’7(x D ) - Rl](x Dz): : X . | ) (24’) )
where for each natural number L the semi-norms of Rij(x, D,)_ea-n be estimated by
- rallfst ™R S el T (25)

The constants c,,,k may increase in dependence on L and (I, k) but they are always
independent of 7 and j. In the classical casg,.that means %;(£) and g;(£) are mdepen-
dent of z, the terms R;;(x, D,) do not emst because supp <p, N 'supp ‘(p, = {J always -

.yiclds WK(DZ) (?i(Dz) '=0. - ‘

Theorem 4: Let a(z, &) and b(x 3] be equwalent Smeols and {qa,},_o € PNa (2,
€ ®MP be two systems belonging to a(z, &) and b(z, &), respectwely If 1.< p < oo,
0<g=o00 and —o0 <5< oo, then -Ju | Byolli#! and [l | Bblitvd . are equwalent
quasi-norms in By (R"). ' ' '

Proof: It i is easy to see that both |ju | BL ]“’!* and [l | B3® |fW’ are-quasi-norms. In
order to prove thelr equivalence we use the preceding con31delatlons Also we may
assume c? = 1.

Step 1. Let u € B3*'9. Then by Theorem 3 u belongs also to H,*(R") if x is suitably

chosen. Now: we obtam from (13) (12) and Corollary 1 fJor s = O,/l, 2,... and arbi- |
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'the sets { Q)2

‘norms. In this sense we shall write |[u | ByS|| instead of |ju | B34/,
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trary fixed ¢ > 0 the estimates
. iz, Do) w | Lyl ' ~ ;o

Sgllw‘(x, D) pi(z, D) u| Ly|| 4- 2-#e+o Ilu | Hp|l. o (28)

Step 2. Let s >0 and < sm' be flxed From (26) and (24) we get

Ms

2% Ilw (x D,-.) u I L)

. 1=0 - X . R . . o .

éf?‘w (2 i@, D) gy(e, D u | Ll + 5 IR, Do) | Lpn)"#c:nual*nv.-
i=0 l;'e7(i) jeJw .

The terms of the first sum will be estimated by Theorem 2 and (12). The estimate of-
the remainder teris in the second sum will be taken by (25) if we choose there for a

. fixed &’ > 0, m; = ms + &'m, m, = ¢'mand L so large such that m;i -{- my — L(1 — )

< x holds. Then the semi-norms of y; and @; in (25) can be estlmated aga.m by (12)

and we obtain P .

| Bbjivi < o 55 g ( s i o Do | Ly
i=0 jeJu) R

e o .
+ X e 270270 lu | Hp"H) +celju | Hy|e

=0

ll/\

’ gjzm llpy(z, Da) | L oIl (e €0) e | HyJe

é Cy [l | Byglltee:

The last estimate follows in view of the embeddmg (15). Also-we have used the shape .
of the set J(i). Because of our assumptions, the same must be true if we change the
role of {y;}{2o and {@;}j2¢1and so we get the converse inequality.

Step 3. Let s < 0 and »x < sm be fixed. The proof of the- equivalence will be’the
same as in the second step, if we choose m; = m's + ¢'m’', m, = ¢'m’ and take a
correspondmg modlﬁcatlon in the semi-norm esbxmates of the ;i 1

Corollary 2: The defzmtzon of the space B""(R") 8 mdependent of the chosen
system {pi}320 € PV and also of the.choice of the constants J and N in the definition of
i3
- Convention: In the sequel we shall not distinguish between: equivalent quasi-

. [ . ‘ . 1

Cozollary 3: Symbols a(z, &) and b(z, £) which are.equivalent in the sense of (10)

define the same functzon spaces. For all admisstble pammeters D, q and s there exist

“positive constants ¢’ and ¢ such that ¢ ||lu | Bysll < e | Bybl < cflu | Bygll holds. |

If b(z, £) is especially anelliptic pseudodzf/erennal operator oj the order m, then the space -
B2 (R®) coincides with the classical Besov space By (R" /or 1<p<o0,0<qg= oo

and —o0 < § < oo. N

Theorem 5: For —oco <s< oo, 1 <p< o0 and 0<q£oo B3 (R"). isa

. quasz-Banach space (Banach space if 1 < q < o0), which s mdependent o/ the choice
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o of the system {qo,},_0 € Vo, and we have S(R") o B“(R") < S'(R"). Furthermore, .
Cifo<s<oo, 1l <p < ooandO < g < oo, thenS(R") is dense in B3%(R").

Proof: The equlvalence of quasi-norms ||-| B"“]]‘“’:’ defined by different systems
{pi}f20 € DY, was proved in Theorem 4. Also in view of Theorem 3. we get from the
well-known embeddings of the classical Bessel-potential spaces in'S’(R®) and of
S(R") in' H,*(R"), respectively, the assertion about the embeddings. Thus we need
only to sho“ the completness in order to prove the first part of the theorem.

Step 1. Let {u,}32, be a fundamental sequence in B (R") whmh we consnder with
respect to,a fixed quaSI-norm Il-{ Balled. Then the embeddmg shows that {u,}2, is
also afundamental sequence in S’ (R") w1t,h the limit element % € S’(R®). On the other
hand, for each fixed j =0, 1,2, ..5, {#;(z, D;) w}, is a fundamental sequence th’

p(R") with the limit element uf € L,(R") Then by u; —u in'S’(R") we get @;(z, D) %
— @;i(z, D) w in L,(R") if | - co. Now it follows by standard arguments that u -
belongs to By;%(R") and that u, converges in B3 (R®) to u. Hence B’ ”(R”) is com-
pletely \

Step 2: We prove now the second part of the theorem Tet {@iliZ0 € <DV ¢ be flxed
and ¢® = 1. For any natural M we write q)‘"(x D,) = Z oi(z, D ¢). Then in analogy
with (18) and (19) we get by Theorem 1 . ' .

¢i(z, D) 9”',’(27, D.)
9i(z, D) + Ry (z, D) L ifj <M — 2N,
Ry i@, D;) ' . gz M4eN,

@iz, D;) Z q:,xD)—f—RM,,-(:t,D,) 1fM—2N<7<M+2N

i=M—-4N42

"The remainder terms -Rn,"i(x, D,) always belong to §—> and the semi-norms of them
can beestimated for cach fixed ¢ > 0 and each real », independently of j and 3,
by [7aril85% = €2~ "*"72 M, The constant ¢ depends on I, k, s, x and € but not’ on
jand M. :

Step 3. Letu € B,, % @ < coand x < min (sm sm) fl\ed Setting uy = (p"’(x D,)u, -
we have in view of the prenous step .

) “u — Upm I B-;)t:’“q 4\‘(; 2’“ ”(p,(x D )u - ‘P}(x D ( z) u I Lp“q
_ i=

< o270 Ju | e+ C,_MZ L2 I Doy Ll

\ ‘L . )
= c27M lu | Bol? + ¢ 2 2"’" llpi(z, D) w | Lyl|9. : ’
: j=M—4N
The last estimate follows in view of Theorem 3. !
It is now obvious that us — % in B}S if M — oo.

Step 4. Let x < min (sm’, sm) and p > max (sm, sm ) Then it is clear that € B35S
implies u € H,*. The pseudodifferential operator M (x, D) belongs to S~ and there-
fore, by Corollary 1, uy becomes an element of Hye. S(R®) is dense in H,¢(R"). Hence -
there exists a sequence u, ;, € S(R") such that uM_J — uy in H2 if J — co. Because
we had fixed ¢ > max (sm, sm'), now: Theorem 3 ensures that the sequence wuy,,

.

¢
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N

converges in B3% tou if M, J — oo. ThlS proves the den51ty of S(R™) in B“‘(R") if

g<ool

.- The equivalent quasi-norms in the following theorem contam ‘also an a priori
estimate for pseudodifferential operators B(z, D,) whose symbols are equivalent
to an arbitrary fixed symbol a(z, &) of the class S(m, m'; §). This shows that the
spaces B39 (R") will be useful in-the study of degenerate partié-l différential equdtions
or other suitable pseudodifferential operators belonging to the class S(m, m’; 8).

We recall that the elements of S(m, m’; 8) are hypoelliptic. Hence we can always -

construct for B(z, D,) € S(m m’; 6) parametrices Q(z, D,) € 877 such that’

B(z, D;) Q(z, D )—I-LR(xD) Uz, D;) 4 (xD)—1+R'(x,D)
_and R, R € S~ holds — sce [4; Section 2 § 5] 01 [8 Chapter 111, § 3], [9 Chapter
Iv,§ 1] .

°
~

Theorem 6: Let a(z, &).and bz, &) be two equivalent syfmbols belonging fo S(m, m';9), '

and. Q(x, D,) denotes a 'pammetnx for Bz, D). If —oc0o < s < 00,1 < p< o0 and
0 < q < oo, then A ' : ' ’

1Bz D,) w | Byl + Jhe | By o and |IQ(x, Ds) u | Byl + llu | By
are equwalent quasz norms in B 2 (R7).

Proof. Let {p;}52, € PVa and without loss of generality we fllay assume that J
in Definition 2 is fixed with respect to R; and R. The constant R occurs by the
definition of equivalence — see (10). Also we choosea second system {pi}52, € PV +1a

. where additionally holds i@, §) = 1 on supp ¢; ifj=1,2,.... By the constructlon
at the end of Sectlon 21t is easdy scen that such a sysbem al“ ays exists.

Step 1. Let = < min (O sm) and & > 0 be fixed. We note some estimates which
.will be useful in the next step. If j = N + 1, N + 2, ..., we have

‘.

(pi(x’-Dz) B(IC, Dz‘) = ( IZ‘L “_ ‘P;( )b(a)) (.’II Dz) W;(x D + Rli(x: Dz) + R2j(x’ D:)a
a < N
' ' o (27)
where i .
Ryy(z, D.) = ¢,(z, D) B, D ( L =7 7ih) @ D
N : 4 lafj<L «!
and . '

. 1 L N : ' .
Rz:(‘” D ( 2= ‘P;( )b(a)) (z, D,) (1 — yjl, Di‘))'

fa]<L !

Consequently R,;(z, D,) denotes the remainder term in Theorem -1 which is obtained .

by the composition of ¢;(z, D;) and B(z, D,). Hence, if we choose L sufficiently

large (in dependence on x, ¢ and §), we get by (5) and (12) il < c2-i+9 Also

the semi-norms of Ry;(z, D;) can be estimated in this way. We use additionally the-
- assumption yp;(z, £) = 1 on'supp ¢; and get [72;1{0% < ¢'2-7¢+9), Finally (8) and the

properties of the systém {@;(z, £)}j2, guarantee that the semi-norms of the first
. pseudodifferential operator on the right-hand side of (27) can be estimated by ~

lp ”b(a)luk)scl,a sup “b(x: )| (§)y~lelt =4y
(:E)EO

R
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and, in view of (10) and (11), by o
© . e
T ’b(,, =2 o . (28)
’ fal<L &: (.k) ) -
In all three cases t,he constants ¢, ¢’ a.ncl c'’ are mdependent of 5.
% and x < min (O sm) Because ¢; € S‘ , 1t 18 str'ught,forward ,

Step 2. Let u € B3,
to see that we have by Corollary 1 and Theorem 3

lips(x, D:) B(z, Dz) u | Ly|| S cy |k | By
N Toget,hér with the results of the first step this yields

ifj=0,1,...,
o Z 26014 (=, Dz) B(x Dz)uan”"

<oy’ Jlu] Bygle

’ A .

- _*: 2.21.(;,_”0 ( ( 2 1 '(a)b-(ﬂ)) (x: Dz) V’iix’ Dz) u I Lp
J=N+1 lal< L _ :

+ [IRy(z, D.r) U + Ryi(z, D) u | Lp”)

8
,

‘<

/.l

= 'nu|B’-°nfw*v+-¢.§ 2080 |lyy(, D) w| LoJld + ¢ [lu | Hy¥lo
j=N+1 o : . .

. g ¢ Jlu | Bsa”fw,lq :
J
We used again Theorem 2, and Corollary 1 and Theorem 3, respectnvely Moreover

by Theorem 4 the quasn norms of u defined by {g;}72, and {1;)5}?_0 are equwalent
Hence. we have proved in this step _ _
IIB(% | Byl + Jlu | Byl < el | By II (29)

Step 3. To prove the converse inequality, we use that the symbol of a parametrlx

D,) can be estimated for any multi-indices « and B, all « € R," and all ¢ € R,"
- \

-

Q(z;
with ¢ = R, by

’

lq((i;;(x; ) = cgop |b(z, 5 )7L (£l i8IS |
We choose N*'>= N such that (x 5) e on. always lmplles €] = R, Ify N1

©

" N* 2, ..., we have
1 : .
(P-((IJ, D)= (IIZ‘L a_ ‘P/(“)Q(a)) (.’l:, =) iz, D «) Bz, D;) + Rsi(x, D;), (30)

" . where. . , .
: s 1
Ry, D) = (9 D @, D — (£ Loy )‘I(a)) (@ D )) B, D)

(l f<iL ol ?° )Q(a)) (2, De) (l - '/’; z, z)) B(x Dz)

4
D,)) >

Voo
’ +¢) x, z) (I—Q(Z, Dz:) B(x’
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Let % < min (0, sm) and ¢ > 0 be fixed. Then in complete analogy to the estimates

of the fxrst step we can choose L in such'a way that |ry;|(}) < c277¢+9.and

N

1 ‘Pt‘ )Q(a)
laj<L ol

© * .
<2 i : (31).
) .

holds. The constants ¢ and ¢'‘are again independent of j. Now stralghtforward com-
putations as in the second step establish the 1nequallt1es

e | BE3ll®) = ¢ B(z, Dy) w | Byg- “Jl“’” + e lhe | B3 “II‘W’

" and in view of Theorem 4 ToTe

,

| B%le = 1Bz, D) w | Byl + i | B"‘ °I -
with a constant ¢’ > 0. Together with'(29) this proves the first part of the theorem.

v Step 4. The ‘other-case may.be derived similarly. We change in (27) ‘and (30) the
roles of B(z, D.) and Q(z, D,). Thus we get

1
L ’ ( ’ x) Q(x: ) (]‘%Z 0" q’)(a)q(a)) (x’ z) V);(x: + Rq,(’b’, )
i an('l. ) ) - ' _
(x»Dx) = (I%‘ - ‘P,( )b(u)) (.’E, )Wj(x) Dz) Q(CI,‘, D:c) + ij(x) D.r)>
a|l<L

where the semi-norms of the remainder terms.may be cstxmated as in the foregomg
step. Using (28) and (31) we get now the pxoof of the second part of the theorem in'
complete analogy to the second and thlrd steps 1 -

At the end of this section we will 1l]ustmt:e what variable smootliness or varlable
order of differentiation means. Let X be an open subset of R;*. We weaken the

* condition of equivalence and call. two. symbols of the class S(m m’; ) equwalent

with. respect to X of - .
0<e = !a(x,&)b 1(75 &) Scz< 0o

holds forall z € X and & € R with [¢] = R For e > 0and u € §'(R") we set
(supp u), ={z:z=y+h \nth Yy 6 suppu and || S g} .

Theorem 7 Let X be a fixed open subset of R," and a(z, &), b(z, &) be two symbols
of S(m, m’; 8) which are equivalent with respect to X. If —oo <\s < 00,1 < p < oo,
0 < g < oo dnd ¢ > 0, then there exists positive constants ¢’ and ¢ such- thal

¢ Il | B, Wl < e | BRRll < ellw | B3Rl

p.a!
- holds for all u € S'(R*) with (supp u). = X. The conslants ¢’ and ¢ are mde;pendenl
of u.

Proof: In view of Theorem 4 we can fix two arbitrary systems {@;}%2, € ®¥*¢ and
{pi)2 € DM belonging to a(z, €)-and b(z, £), respectively. Let also ¢ > 0 be flxed
Then we can choose a smooth function Ae such that

_ “ifzx g X, ) CoL
247) = 1, if z € X and dist (z, 9X) = ¢,

IDVx,(éz)I g ce~ for all multi-indices yand r € R;? :
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/
* holds. B:y Theorem-1 we have \
. P ’ 1 ‘ .
(}),'(ZL‘, Dz) 76x) = ( Z 1 Q’;( ]/e(Al) (2: Dz) + R z(xa z)) y -
A laj<z & ! :

with
\

~L _'
[rE|(me - 2a=0) < Cuae ;1) |2l

B Now, in analogy to (23)— (25) and with the same meamng of the constants zo and g,
.we get for all multi-indices « ..

supp (%“”/zm) " SUpP yi = 9 if?' d 7 (),
where again -’
76) = 1{j:0 < Snlax(yo,z+I—J+M+N+H)} 0 <i<iy;
7(z {7 ma\(J z+1—(M+N+H)) Sy—f—J<z+I+M+N+H)}
- A - ife >
‘ z;nd H fulfilé 2‘f’I Sasas 2” Then we. obtam in the case j e} ,7 (2)

. - N 1 .
wi(x: Dz) q);(q:, D:r) Z,(:l?) = y’i(x: Dz) ((]IZ‘ | (pl /l(a)) (z, Dz) + R (23, I))
al< L
' ' .= Rii(z, D;), o
where for each natuml number L* t,he semi-norms of R,J,(x D;)can  be estimated by L

_[Ol 6
il ™ 20 < e il 11 7 D -

Suppose that (supp u). — X. Then we have always y,u = u. Now it is not hard to
see that the rest of the proof is a sunple modification of the proof of Theorem 4 and
. we omit it B. -

. ‘Remark: Let a(z, &) = (E)™ - 02*(x) (£)™ be a symbol of S(m m’; 8) as descnbcd in the
' fourth example in Section 2. Furthermore let 2o be a interior point of t,he set Q = {z:p(z) = 0} .

,and K,(z) = {2: |z — 24| < 6} < 2 denotes a neighbourhood of Zo: Then a(z, £) isequivalent
to (&)™ with respect to 'K ,(z,). Hence an clement u of B3 belongs locally in z, to the classical

Besov'spaces BY™. On the other hand, if p(z;) = 0 holds, then the symbol a(, §) is equivalent -
to (&)™ with respect to a suitable ncighbourhood of -z;. Thus « ¢ B4 belongs locally in z, to

the classical Besov space B, Conscquently for an element u of the spacc B2 we may have:
m dxfferent points of R, " locally different smoothness properties.

N
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