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On the Number of Stable Local Minima of Some Functionals 

F. BENKERT 

Unter' Verwendung der Theorien lokal monotoner Operatoreri und eigentlieher F'rèdholm: 
Operatoren werden Aussagen über die Anzahl der stabilen lokalen Minima einer. Kiasse von 
Funktionalen getroffen und entsprechende Beispiele betrachtet.	 - 
rlpuMeHeHMeM Teopilu ioajmiio MO}IOTOHHbIx onepaopon it co6cTaemlux onepaopoa 
I) peronbMa flO1y .4a1OTCfl pe3yJTF.T1Tb1 0 'lMcJle yCT0t4HBUX JloFcailbHMx Mh1UHMM0B iie-
iooporo xiacca (YHIUU10HJ10B II paccapuaiocn C00TBTCTB1OIIII npIIMepLh. 
Using the theories of locally monotone operators and of proper Fredholm operators, results 
on the number of stable local minima of some functionals are obtained and related examples - 
are considered. 

1. Introduction	 S 

Let X be a real Hubert space, X' its dual space, (/, u) the value of / E X' at u E X. 
Furthermore, let a functional 0 E C2(X , B.) 

be 
given. For g E X' we consider the 

functional 0 on X, 

= 0(w) — ' (q, u),	u E X,	 (1.1) 

and call a local minimum u of cP,, stable if the second variation of 0 at u is positive, 
i.e. 620(u; h) > 0 for all h E X, h 0'. It is our aim to get propositions on the num- 

• • ber of stable local minima of the functionals 0 and to study the dependence of this 
number.on g E X'. 

Because we are seeking stable local minima, it is not necessary to study the general-' 
ized Euler equation for 0, 

•
	

0, (U) = g,.	 -	•	 (1.2) 

on the whole domain of definition of the operator 0'. We investigate the restriction 
of this opeitor to the so-called stability region ST of the functional 0, which 6ontains 
all points u E X for which the second variation of 0 is positive. Theoperator 0' is 

• said to be locally strictly monotone (cf. definition in Seátion 2). Under some assump-
tions on 0 (cf. Section 3) the determination of the stable local minima of 0, S equi-
valent to the solution of the equation 

cIY(u)=q,	uE ST. .	 (1.3) 
For the investigation of the solution set of this equation we assume that 0' isa pro-
per Fredholm operat9r of index zero (cf. definitions in Section 2). In the literature 
one can find propositions on the structure of the solution set of (1.2) for such opera- 
tors (of. [1, 4, 5, 8]). These propositions were applied to the investigation of some 
séniilinear boundary . value problems in [1, 7]. We will prove a proposition of this type 
for locally strictly monotone operators.

Lei



90	F. BENKERT 

In Section 2 we present propositions on locally strictly monotone proper Fredholm 
operators of index zero, which we apply to the investigation of the functionals (1.1) 
in Section 3. In Section 4 we consider some examples. In Example 1, we are able to 
completely describe the global structure of the region of stability. 

2. Locally strictly monotone operators 

In this section we consider an operator L E C 1 (X, X'). 

Definitioii: The operator L E C'(X, X') is called locally strictly monotone at the 
point u E X if (L'(u) h, h) > 0 for all h E X, h 0. The monotonicity region M L of L 
is the -set of. all points of X in which it is locally strictly monotone. L is said to, be 
locally strictly monotone if ML z= 0. L is called a (nonlinear) Fredhoim operator of 
index zero if its Fréchet derivative L'(u) is a linear Fredholrn operator of index zero 
for each u E X. The operator L is called proper if /-'(K), for any compact set K X', 
is compact. The point u E X is called regular for L if L'(u) is a linear homeomorphism 

•	of X onto X'. (Cf. e.g. [4].)  

Proposition: Let L be a locally strictly monotone Fredhoim operator of index zero. 
Then every point of its monotonicity region M L isa regular point for L. 

Proof: Frrn the Fredhoim property of Land from Banàch's theorem it follows 
that u is a regular point for L if and only if dim (Ker L'(u)) = 0. Let u E X be no 
regular point for L. Then there, exists an h € X, h 0, so that (L'(u) h, k) = 0 for 
all k E X. For k = h it follows (L'(u) h, h = 0, i.e. u ill I 

Remark: Let L be the operator of the Proposition and let u E ML . According to 
the Inverse Function Theorem there exist neighbourhoods U of u'and V of L(u) such 
that L is a homeomorphism of U onto V. 

We denote by Jt? c ML a subset for the locally strictly monotone operator L. Let L 
be the restriction of L to M. Then L: i? - L(M) is a continuous surjective mapping. 
For gEL(M) we denote by c(g) -the cardinal number of the-set L.(g). Using these 
notations we have  

The ore ml: Let L be a • locally strictly monotone proper Fredholm operator of index 
zero and let M c: ML . Then 

(i) c(g) is finite for each g € L(M)\L(a1ø), 
(ii) c( . ) is constant on every connected component of L(M)\L(a2''f). 

Prof: (i)We show that for.g € L(1I) with c(g) infinite there holds g E L(aiTf). 
Let  E.L(M). If c(g) is' infinite, then.there exists a sequence {v1 .1t with L(v1 ) = g 
(1 = 1, 2, .. .). Because {g} is compact and L is proper, there exist a subsequence 
{v1 . } of {v,} and v E M u ag with V1 . - v in X for 1' - oo. L is continuous, conse-
quently L(v) = g. If v E M, then there exists a neighbourhood U of v with U n L'(g) 
= {v}, by our Remark. But this is a contradiction to v1 - v for 1' -> oo. Conse-
quently, v E 09, and g € -L(aM).	 • 

(ii) Let g E L(M) \ L(M). Because, of L(M)\ L(M) = L(int .l?) \ L(&?), there 
holds g € L(int M). According to (i), we have L-1 (g) = {u1 ..., Uk} .' We choose for 
each ui E .t_ 1(g) a nej ghbourhood U j c M in such a way that L. is a homeomorphism 
of U, onto L(UJ. According to the Remark, this is always possible, because g 
E L(int.M) yields u, E mt .i?. We can suppose U j n U, = 0 for i == j; if necessary, 

C.
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we can také smaller neighbourhoóds Uj so that this holds. Now, let W = L(U1 ) . n 
n L(Ufr). We show that there is a neighbourhood V of g in W so that c(•) is con-

stant on V. If there were no such V, then there would exist a sequence .{v1 } M 
with L(v1 ) -± gin X' for 1 - 00 and v1 4 L'(W), 1 E N. Because L is a proper operator 
and {L(v1 )} u {g} is a compact set, the sequence {v,} contains a subsequence (v 1 4 with 
v1 —*v in X for I' -- co. L is continuous, consequently L(v) = g. According to. 
{v 1 } ., v is in the closure of M. By L(v) g and g we have v E mt M• 
Consequently, v E L- 1 (g), which is a contradiction to the fct that from v1 --> v for 
1' - 00, V1 . j L(W), and L_ 1 (W) being an open set it follows that v qL-,(W). 

Thus, we have shown that c( . ) is constant on a neighbourhood V of an arbitrary. 
point g E L(M)\L(aM), which yields that c( . ) is constant on every connected com-
ponent ofL(M)\L() I 

In the following theorems we make additional assumptions on the monotonicity 
region of the operator L. 

Theo rem 2: Let L be a locally strictly monotone prope Fredholm operator of index 
zero with monotonicity region I11 = X. Then L is a dif/eomorphism of X onto X', in 
particular, c(g) = 1 for every g E X'. 

•

	

	Proof: ML = X yields that every point of X is regular for L, by. the Proposition. 
Because L E C I (X, .X') is a proper operator, the theorem follows from the theorem of 

•	Banach and Mazur [4: p: 221; 6]1 

Theorem 3: Let L be a loctlly strictly monotone proper Fredholm operator of index 
zero and let iT? CML be a convex subset. Then L: L(M) is a homeomorphism, in 
particular, c(g) = 1 for every g E L(M). 

Proof: L is surjective by construction. We show that L is injective. Let u1 , u2 E 
==	

M,
u 1 u2 , with L(u 1 ) = L(u2 ). Then L(u 1 ) = L(u2 ). On the other hand, according to 

Taylor's theorem L(u2 ) - L(u1) = f L'(u1 +sh) h ds, where h = u2 - u, h 0. 
This implies	-	•	0 

(L(u2) - L(u1), h) =1 (L'(u 1 ± sh) h, h) ds.	.	 ( 2.1) 
0  

Because of the convexity of i, we have u1 + sh E M for all s E [0, 11. Consequently, 
(L'(u1 + sh) h, h) > 0 for all s E [0, 1] so that, by (2.1), it follows L(u2) - L(u1 ), h) 
> 0, which contradicts L(u1 ) = L(u2).° 

L is continuous because of the continuity of L. The continuity of L follows from 
the fact that L is a local homneornorphismn on ML I 

3. Application to the calculus of variations 

• We want to apply the theory of Section 2 to investigate the functionals (1.1). To this 
end, let the Hilbërt space X be compactly imbedded in a real Hilbert space Y. We 
denote the norms in X, Y by II Ilk-,	, respectively. Let 'b 'E C2(X, R). The operator 

• 0': X -* X' is called the Lagrange operator of the functional 0; 0 E C2(X,R) yields 
0' E C'(X, X'). We assume that 0 satisfies the following additional assuiiptions: 

•	(A) For each u E X and for each e > 0 there exists an (e) > 0 such that 

I(0"(u + k) h, h) - (0"(u) h, h)I	IIhIIx2 for all h, ic E X, IIMIx <
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(B) Gârding inequality: For each u € X there exist constants a > 0, o > 0 such that  
("(u) h, h > a Ijhj I X1 - , jjhy	for-all h E X. 

(C) JY is a•pioper Fredhoim operator of -index zero. 
We define 'a functional y: X-± R by

S	 - y(u)	 min (W'(u) h, h),	B = {h € XI I IhIjy'= 1).	 (3.l) 
hEB 

According to (A), (B),'.'(u) is well-defined for every u-E X, cf. [10':p. 200-203]. The 
set	 0• 

•	

. ST{uEXly(u)>0}	
0 

•	is called the stability region of the functional 0 (cf. [2]). HST	0, then' is a locally
strictly monotone proper Fredhoim operator of index zero with the monotoñicity 
region ST.	

0	

0	
0 

's

	

	An element u° € X is a stable local minimum of the functional 0, if and only if it is a
solution 

of 
the equation (1.3).. 

Indeed, at first let u0 be a stable local minimum of 0,. Then u0 is a solution of the 
Euler equation g'(u0) =. 0, therefore, ø'(u°) = g. Furthermore, we have 

ó2 g(u0 ; h)	(0'(0) h, h)	for all h €X.	
0	

0 (3:02) 

This implies u° € ST. Therefore, u0 is a solution of (1.3).	 •'	
0 

0 Conversely, let u0 be a solution of (1.3). Then the functional 0, has a local mini-
mum at u°. This follow from the facts that, because of 0'(u°) = g, u0 satisfies the 
Euler equation 0,'(u°) = 0 and that the sufficient Jacobi criterion is fulfilled, be-
cause of '/(u°) > 0 (cf. [10: p. 200-203]). From u0 € STit f011owsjthat u0 is a stable 

0	 local minimum of 0,, by (3.2) I	
0	 0 

o 
0 

4 Examples.  
0 Let G be a bounded domath in R with sufficient regular boundary. We denote by 

.LP(G) the space. of p-integrable functions with the usual norm II - I j i; by 11 . I ld we denote 
0	 the norm in V(G). Furthermore, let 11 1 (0) be thQ Sobolev space with the norm	0 

0	 ., u J1 2 = lu 1102 + (lI&u/ax 1 11 02 + ... + 1I u1 ax ll0 2), and H I (G) the closure of the 
space C0 (G) in H'(G). The dual space of 11'(G) we denote by 11- 1 (0), its norm by 0 

1 .. Using the notation of the preceding sections, we set 'X = H0 1 (G), X' = H-1 '(0), \ 0 

Y = D(G). Looking at an element g E H-'(G) as a regular distribution we can write 
0	 0 (cf. [8: p. 262]) (g,u)=fgudx, u € H(G) We set	

0	

0 .000 

0	
0	

0 A 1
 = rnin =min f 1Vh1 2 dx,	B = {h E H(G) I jhJJ = 1}.	 0 

0	
hEBG	0	

•	 0 

The minimum ).,.exists  (cf. [10: p. 200-203]), furthermore,,	00 .	

0	 0 

O •	 0	 f jVhI 2 dx	1 f h2 dx	for all h E 11o'( G) . •	

0 

O	

' Example 1: Let 1	n 6, letE € C3(R, R)be a function such that, withsomè 
0	

constants K >00 and L> 0,	•.	

.	 0 

P'(t) > 0,	F"(t)I ^5 K, _ • JF ... (t)J -^S L	for all t € fl,	(4.1) 

0	
•	 0	 .	 S	 /



	

Stable Local Minima of Some Functionals	93 

and let the functional 0 be defined by  

(u)	f [ IYU I 2 +. F(u)] dx	(u E H01(0)).	. 

Then the function&s (1.1) are of the form 

(u) =f[-ivuI2+F(U)_gu]dx	(gEH'(G)).	S 

Our goal is to obtain a global description of the region of stability.	.	
0 

Because of the assumptions n :!^: 6 and (4.1), there holds 1 E 02 (H0 1 (G) , 11.): The 
Fréchet .derivatives of b are given by 

('(u), h)	[Vu Vh + P(u) h]dx 

("(u) h, k) 
=f

	

[Vh Vk + F"(u) hk]dx' ''	"• 

The functional 1i satisfies (A) (this can be proved using the Sobolev imbedding theo-
rems and the continuity of the Nemyckii operator; one can find a detailed proof in 
[3]). The validity of the Gárding inequality (B) follws immediately. if one takes into 
account the condition F"(t)j K. In 13] one can find the' proof that the Lagrange 
operator W satisfies the assumption (C). Here we give only the ideas of the proof. 
First one uses that	 0	

0 

(i) W is weakly coercive, i.e. t0 '(u)II_1 - co a 1 uh1 - cc;	i	 0 

•	(ii)	= ' D + P, where	 . 

O	
•.	 D: H0'(0) - H- 1 (G)	(Du, h) 

= f Vu Vhdx	(hE II'(G)), 

is a homeomorphism of H0 1 (G) onto H- 1 (G) and, therefore, a proper operator, and 

• -	

0	 F: H0 1 (G)	B-'(G),	(P(u.h) =fF'(u)hdx	(hE H0'(G)),	. 

is a compact operator., Then, according to [4: p. 103], V is proper. The assertion that 
W is a Fredholm operator of index zero follows from the fact that )"(u) : H01(G). 
--H-'(G) for each u E H0 1 (G) is a compact perturbation of aliner home6mórphism of 
I1 1 (G) onto H-1(G).	

0 - •	

.	 S 

Under additional assumptions on the nonlinearityF we can get more information 
on the stability region ST of the functional P. We consider two special cøss.for F. 

a) Let F satisfy (4.1) and F"(t) > —2 for all t E H. Then	. 

("(u) h, h)	[IVhJ2 + F"(u) h2] dx> f [l Vh b 2	?. 1 11 2] dx	0 
0	 •	 C 

for all h E H0 1 (0), h == 0. According to (3.2), from this follows y(u) > 0, therefore, 
ST = H, 1 (0). Because of Theorem 2 and the investigations of Section 3 the function- 
al P.j has for each g E H'(G) one and only one stable local minimum in H01(G). 

1	 •	 -	 .	

0	
00
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b) We assume 1 :!^-, n^4. Let)' E C4 (It, R) satisfy (4.1) and 

urn F"(t) = 1 < —A ,	urn F"(t) = 0, 

P111(t) > 0,	F(4)(t)j	N	const.	for all t E R. 

A subset A of a Banach space Z is called a 01 -manifold of codimension 1 if for every 
point u° E A there exist a neighbourhood U of uO in Z and a functional PE C1(U, R) 
such that 1"(u°) 0 and A n U ={u € UI F(u) = 0}. Now under our assumptions 
the following holds (the proofs are carried out in [3], using methods of-AMBROsErrI 
andPRoDI[1]): 

(i) aST is a closed connected C I -manifold of codimension 1, H0 1 (G) \ aST has exactly 
two connected components and ST is one of the 

(ii) cl)'(eST) is a closed connected C I-manifold of codimension 1, H-(G) \ IY(ST) has 
exactly .two connected components and IY(ST) is one of them; P'(ST) n 0'(3ST) = 0. 

(iii) c(g) = 1 for each g € cIY(ST). 

Example 2: Let F E C3(R, It) be a functionwith Y(t) £ Ofor all t € R. For 
U E L1 (G) set Z= 0i'f udx with I GI =f dx. Then	 . 

II	011 ku0	for each u E H0 1 (G).	 (4.2)

This follows immediately üsing the Schwarz inequality: 

IJ = 01 - ' f udxj	0' 01 112 kilo	Gj!2 luJl. 

Now let usset	- 

(u) =f	ivui + F(Z)] dx	(u € H01(0)). 

Then the functionals (1.!) are of the form 

	

(u) =f[IVuu2i+Fuy_gu]dx	(gEH(G)). - 

Under our assumptions it holds that E * C2(H,'(G), R). The Fréchet derivatives of
are given by	 -	- 

(W(u), h) 
= f [Vu Vh + F'(z) i] dx

(h, k € H0'(G)). 
('I/'(u) h, k) = f [VA V/C + F"(i) h/C] dx	 S 

The functional 0 satisfies (A) (this can be proved using the Sobolev imbedding theo-
rems and the continuity of the Nemyckii oerator, if one takes into account (4:2); 
for a detailed proof cf. [3]). The Gárding inequality (B) follows immediately with the 
help of (4.2). The proof that .0' satisfies the assumption (C) is analogous to Example 1. 

We will now investigate the stability region ST of the functional 0. We definee-a 
function f:R-.*Rby. 

F(s) = min f [ I Vh I 2 + F"(s) h 2] dx,	B = {h E H01 (G) I J jhjjO = 1). 
hEBG
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Lemma: (i) T(s) > 0 if F"(.$) > —2 k . (ii) F(s) ;j; 0 if F"(s) ^5 —Ai. 

Proof: (i) Let h E B. If F"(s) > 0, then 

f [ I Vh I 2. + F"(s) j2] dx J !' dx> 0 - 

if 0	F"(s) > 1—A, then by (4.2)	.	 .	. 

.1 [ I Vh I 2 + F"(s)i 2] dx >f 1Vh1 2 dx + I GI F"(s) 101 — ' 117& 1102 . 

A +F'(s) > 0. 

- Because the minimum F(s) is attained, the assertionis proved. 
(ii) Let F"(s) < —2, h E.B with A1 =f 1Vh1 2 dx. Then 

r(s)	f [J Vh I' + F':(s,)2idx	J [1Vh12_21h2]dx 

Vhj 2 dx - A1 ljhlj0' = 0.1 

This lemma yields the characterization 

U E ST if and only if F"(ii)> —A 1 . .	.'	 (4.3)

We-define sets S It and E. H0 1 (G) for each s E It by 

S = Is E B I F"(s) > —A} and E3 = (u E H0 1 (G) ITZ = s). 

According to (4.3), ST .— u {E3 I sE 5). Because of the continuity . of F", S is the 
union of countably many open interval. Let S be a connected component of S- i.e. 

v a maximal open interal which is contained in S. We define 

ST=U E5 .	 I.	.	 S , -. 

'SES 

This set possesses the following properties:	 - 
(i) ST is convex.	 -	 S. 

To prove this, let u1 , % 'E ST. Then U, T4, E S. For each or E [0, 1] there holds ai1 

+ (1 - a) i12 E S. Therefore, we have au1 + (1 - a) 'a2 E ST.	.	.	 .5 

(ii) ST is a connected component of ST, i.e. there exists no connected set A ST with 
STc:A,ST+A.  
If such a set A existed, then we could choose 'a E A withu q S.'Because of the con-
neetedhess of A follows U E 9, which contradicts 'u 4 ST, by (4.4). 

We now apply the theory Of Sections 2 and 3. Because every connected compo-
nent ST of the stability region ST is convex, by Theorem 2.5 the restriction of 0' to 
§'T- .is a horneomorphism of ST onto 0'(ST). mother words, for arbitrary g E H'(G) - 
the functional 0, has at most one local minimum in ST. Let c E N u {oo} be the num-
ber of connected components of the stability region ST. Then the functional 0, for 
arbitrary g E Th 1 (0) has at most c local minima in ST. According to' (4.4), we can 

• easily determine c by determining the number 6 of the connected components'of 5, 
because we have c = .	 S
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