On the Number of Stable Local Minima of Some Functional

F. BENKERT

Unter Verwendung der Theorien lokal monotoner Operatoren und eigentlicher Fredholm-Operatoren werden Aussagen über die Anzahl der stabilen lokalen Minima einer Klasse von Funktionalen getroffen und entsprechende Beispiele betrachtet.

Применением теории локально монотонных операторов и собственных операторов Фредгольма получаются результаты о числе устойчивых локальных минимумов некоторого класса функционалов и рассматриваются соответствующие примеры.

Using the theories of locally monotone operators and of proper Fredholm operators, results on the number of stable local minima of some functionals are obtained and related examples are considered.

1. Introduction

Let X be a real Hilbert space, X' its dual space, $\langle f, u \rangle$ the value of $f \in X'$ at $u \in X$. Furthermore, let a functional $\Phi \in C^2(X, R)$ be given. For $g \in X'$ we consider the functional Φ_q on X,

$$
\Phi_o(u) = \Phi(u) - \langle q, u \rangle, \qquad u \in X, \tag{1.1}
$$

and call a local minimum u of Φ_{g} stable if the second variation of Φ_{g} at u is positive, i.e. $\delta^{2}\Phi_{g}(u; h) > 0$ for all $h \in X, h \neq 0$. It is our aim to get propositions on the number of stable local minima of the functionals Φ_{ρ} and to study the dependence of this number.on $q \in X'$.

Because we are seeking stable local minima, it is not necessary to study the generalized Euler equation for Φ_{q} ,

$$
\Phi'(u)=g\,,
$$

 $1.2)$

on the whole domain of definition of the operator Φ' . We investigate the restriction of this operator to the so-called *stability region ST* of the functional ϕ , which contains all points $u \in X$ for which the second variation of Φ is positive. The operator Φ' is said to be locally strictly monotone (cf. definition in Section 2). Under some assumptions on Φ (cf. Section 3) the determination of the stable local minima of Φ_{q} is equivalent to the solution of the equation

$$
\Phi'(u) = q, \qquad u \in ST. \tag{1.3}
$$

For the investigation of the solution set of this equation we assume that Φ' is a proper Fredholm operator of index zero (cf. definitions in Section 2). In the literature one can find propositions on the structure of the solution set of (1.2) for such operators (cf. $[1, 4, 5, 8]$). These propositions were applied to the investigation of some semilinear boundary value problems in [1, 7]. We will prove a proposition of this type for locally strictly monotone operators.

In Section 2 we present propositions on locally strictly monotone proper Fredholm operators of index zero, which we apply to the investigation of the functionals (1.1) in Section 3. In Section 4 we consider some examples. In Example 1, we are able to completely describe the global structure of the region of stability.

2. Locally strictly monotone operators

In this section we consider an operator $L \in C^1(X, X')$.

Definition: The operator $L \in C^1(X, X')$ is called *locally strictly monotone at the point* $u \in X$ if $\langle L'(u) \, h, h \rangle > 0$ for all $h \in X$, $h \neq 0$. The *monotonicity region* M_L of L is the set of all points of X in which it is locally strictly monotone. L is said to be *locally strictly monotone* if $M_L + \emptyset$. *L* is called a *(nonlinear) Fredholm operator of index zero* if its Fréchet derivative $L'(u)$ is a linear Fredholm operator of index zero *for each* $u \in X$ *. The operator L* is called *proper* if $L^{-1}(K)$, for any compact set $K \subset X'$, \mathcal{F} is compact. The point $u \in X$ is called *regular for* L if $L'(u)$ is a linear homeomorphism locally strictly monotone if

index zero if its Fréchet des

for each $u \in X$. The operator

is compact. The point $u \in X$

of X onto X'. (Cf. e.g. [4].)

Proposition: *Let* L *be a locally strictly monotone Fredhoim operator of index zero.* Then every point of its monotonicity region M_L is a regular point for L .

Proof: From the Fredholm property of L and from Banach's theorem it follows that *u* is a regular point for *L* if and only if dim (Ker $L'(u)$) = 0. Let $u \in X$ be no regular point for L. Then there exists an $h \in X$, $h \neq 0$, so that $\langle L'(u) h, k \rangle = 0$ for *all* $k \in X$. For $k = h$ it follows $\langle L'(u) h, h \rangle = 0$, i.e. $u \notin M$

Remark: Let L be the operator of the Proposition and let $u \in M_L$. According to the Inverse Function Theorem there exist neighbourhoods *U* of u'and *V* of *L(u)* such that L is a homeomorphism of U onto V .

We denote by $\textit{M} \subset \textit{M}_\textit{L}$ a subset for the locally strictly monotone operator $L.$ Let L be the restriction of L to \tilde{M} . Then $\tilde{L}: \tilde{M} \to L(\tilde{M})$ is a continuous surjective mapping. For $g \in L(\tilde{M})$ we denote by $c(g)$ _{-the} cardinal number of the set $L^{-1}(g)$. Using these notations we have

The ore ml: *Let L be a • locally strictly monotone proper Fredholm operator of index zero and let* $\tilde{M} \subset M_L$. *Then*

(i) $c(g)$ *is finite for each g* $\in L(\tilde{M}) \setminus L(\partial \tilde{M})$ *,*

C.

(ii) $c(\cdot)$ is constant on every connected component of $L(\tilde{M})\setminus L(\partial \tilde{M})$.

Proof: (i) We show that for $g \in L(M)$ with $c(g)$ infinite there holds $g \in L(\partial M)$. Let $g \in L(\tilde{M})$. If $c(g)$ is infinite, then there exists a sequence $\{v_i\} \subset \tilde{M}$ with $L(v_i) = g$ $(l = 1, 2, ...)$. Because $\{g\}$ is compact and *L* is proper, there exist a subsequence $\{v_i\}$ of $\{v_i\}$ and $v \in \tilde{M} \cup \partial \tilde{M}$ with $v_i \rightarrow v$ in X for $l' \rightarrow \infty$. *L* is continuous, consequently $L(v) = q$. If $v \in \tilde{M}$, then there exists a neighbourhood U of v with $U \cap L^{-1}(q)$ $= \{v\}$, by our Remark. But this is a contradiction to $v_{i'} \to v$ for $l' \to \infty$. Consequently, $v \in \partial \tilde{M}$, and $g \in L(\partial \tilde{M})$. be the restriction of *L* to *M*. Then *L*: $M \rightarrow L(M)$ is a cont

For $g \in L(\tilde{M})$ we denote by $c(g)$ the cardinal number of

notations we have

Theorem 1: Let *L* be a locally strictly monotone proper

zero and let \tilde{M}

(ii) Let $g \in L(\tilde{M}) \setminus L(\partial \tilde{M})$. Because of $L(\tilde{M}) \setminus L(\partial \tilde{M}) = L(\text{int } \tilde{M}) \setminus L(\partial \tilde{M})$, there holds $g \in L(\text{int } \overline{M})$. According to (i), we have $\overline{L}^{-1}(g) = \{u_1, \ldots, u_k\}$. We choose for each $u_i \in \tilde{L}^{-1}(g)$ a nej ghbourhood $U_i \subset \tilde{M}$ in such a way that *L* is a homeomorphism of U_i onto $L(U_i)$. According to the Remark, this is always possible, because $g \setminus$ $\in L(\text{int } \tilde{M})$ yields $u_i \in \text{int } \tilde{M}$. We can suppose $U_i \cap U_j = \emptyset$ for $i \neq j$; if necessary,

we can take smaller neighbourhoods U_i so that this holds. Now, let $W = L(U_1)$ \cap ... $n L(U_k)$. We show that there is a neighbourhood *V* of *g* in *W* so that *c*(\cdot) is constant on *V*. If there were no such *V*, then there would exist a sequence $\{v_i\} \subset M$ with $L(v_i) \to g$ in X' for $l \to \infty$ and $v_i \notin \tilde{L}^{-1}(\tilde{W}), l \in \mathbb{N}$. Because L is a proper operator and $\{L(v_i)\}\cup\{g\}$ is a compact set, the sequence $\{v_i\}$ contains a subsequence $\{v_i\}$ with $v_{1'} \rightarrow v$ in X for $l' \rightarrow \infty$. *L* is continuous, consequently $L(v) = g$. According to. ${v_{l'}} \subset \tilde{M}$, *v* is in the closure of \tilde{M} . By $L(v) = g$ and $g \notin L(\partial \tilde{M})$ we have $v \in \text{int } \tilde{M}$ Consequently, $v \in \tilde{L}^{-1}(g)$, which is a contradiction to the fact that from $v_i \rightarrow v$ for $l' \rightarrow \infty$, $v_{l'} \notin \tilde{L}^{-1}(W)$, and $\tilde{L}^{-1}(W)$ being an open set it follows that $v \notin \tilde{L}^{-1}(W)$.

Thus, we have shown that $c(\cdot)$ is constant on a neighbourhood V of an arbitrary. point $g \in L(\tilde{M}) \setminus L(\partial \tilde{M})$, which yields that $c(\cdot)$ is constant on every connected component of $L(\tilde{M})\setminus L(\partial \tilde{M})$ **I** $l' \rightarrow \infty$, $v_{l'} \notin \tilde{L}^{-1}(W)$, and $\tilde{L}^{-1}(W)$ being an open set it follows that $v \notin \tilde{L}^{-1}(W)$.

Thus, we have shown that $g(\cdot)$ is constant on a neighbourhood V of an arbitrary

point $g \in L(\tilde{M}) \setminus L(\partial \tilde{M})$, wh

In the following theorems we make additional assumptions on the monotonicity region of the operator *L.*

Theorem 2: Let L be a locally strictly monotone proper Fredholm operator of index zero with monotonicity region $M_L = X$. Then L is a diffeomorphism of X onto X', in *particular, c(g) = 1 for every* $g \in X'$ *.* In the following theorems we m
region of the operator L.
Theorem 2: Let L be a locally s
zero with monotonicity region $M_L =$
particular, $c(g) = 1$ for every $g \in X$
Proof: $M_L = X$ yields that eve
Because $L \in C^1(X, X')$ is a pr

Proof: $M_L = X$ yields that every point of X is regular for L, by the Proposition.
Because $L \in C^1(X, X')$ is a proper operator, the theorem follows from the theorem of

Theorem 3: *Let L be a loctlly strictly monotone proper Fredholm operator of index* zero and let $\tilde{M} \subset M_L$ be a convex subset. Then $\tilde{L}: \tilde{M} \to L(\tilde{M})$ is a homeomorphism, in *particular,* $c(g) = 1$ *for every* $g \in L(M)$ *.* In the followith

ion of the operation of the operation
 z with monoto
 icular, $c(g) =$

Proof: $M_L =$

cause $L \in C^1(L)$

mach and Maz
 n and let $\tilde{M} \subset$
 icular, $c(g) =$

Proof: \tilde{L} is su
 $\neq u_2$, with \til Theorem 2: Let L be a locally strate

zero with monotonicity region $M_L = \lambda$

particular, $c(g) = 1$ for every $g \in X'$.

Proof: $M_L = X$ yields that every

Because $L \in C^1(X, X')$ is a proper ope

Banach and Mazur [4: p. 221; 6]
 Let $\tilde{M} \subseteq M_L$ be a convex subset. Then $\tilde{L}: \tilde{M} \to$
 $\tilde{L}: \tilde{M} \subseteq M_L$ be a convex subset. Then $\tilde{L}: \tilde{M} \to$
 $\tilde{L}: \tilde{L}$ is surjective by construction. We show that

with $\tilde{L}(u_1) = \tilde{L}(u_2)$. Then $L(u_$ *A*
 Every point of *X* is regular for *L*, by the Proposition.
 Evaluaries operator, the theorem follows from the theorem of
 SI
 Evaluaries L'(MI) is a homeomorphism, in
 L'(MI).
 Exalused. Then \tilde{L}: \til

Proof: \tilde{L} is surjective by construction. We show that \tilde{L} is injective. Let $u_1, u_2 \in \tilde{M}$, $u_1 + u_2$, with $\tilde{L}(u_1) = \tilde{L}(u_2)$. Then $L(u_1) = L(u_2)$. On the other hand, according to

Taylor's theorem $L(u_2) - L(u_1) = \int_a^1 L'(u_1 + sh) h ds$ *, where* $h = u_2 - u_1$ *,* $h \neq 0$ *.*

$$
\langle L(u_2) - L(u_1), h \rangle = \int\limits_0^1 \langle L'(u_1 + sh), h \rangle ds. \tag{2.1}
$$

Because of the convexity of \tilde{M} , we have $u_1 + sh \in \tilde{M}$ for all $s \in [0, 1]$. Consequently, $\langle L'(u_1 + sh) h, h \rangle > 0$ for all $s \in [0, 1]$ so that, by (2.1), it follows $\langle L(u_2) - L(u_1), h \rangle$ > 0 , which contradicts $L(u_1) = L(u_2)$.

 \tilde{L} is continuous because of the continuity of L . The continuity of \tilde{L} ⁻¹ follows from the fact that L is a local homeomorphism on M_L

3. Application to the calculus of variations

We want to apply the theory of Section 2 to investigate the functionals (1.1) . To this end, let the Hilbert space X be compactly imbedded in a real Hilbert space Y. We 3. Application to the calculus of variation
We want to apply the theory of Section
end_s let the Hilbert space X be compadenote the norms in X, Y by $\|\cdot\|_X$, $\|\cdot\|_Y$
 $\Phi' : X \to X'$ is called the *Lagrange oper*
 $\Phi' \in Cl(X$, respectively. Let $\Phi \in C^2(X, R)$. The operator $\Phi' : X \to X'$ is called the *Lagrange operator* of the functional Φ ; $\Phi \in C^2(X, \mathbb{R})$ yields $\Phi' \in C^1(X, X')$. We assume that Φ satisfies the following additional assumptions: we want to depty the discription of \mathbb{R} compactly imbedded in a real Hilbert space

denote the norms in X, Y by $\|\cdot\|_X$, $\|\cdot\|_Y$, respectively. Let $\Phi \in C^2(X, R)$. The $\Phi' : X \to X'$ is called the *Lagrange operator*

$$
|\langle \Phi''(u+k) \, h, h \rangle - \langle \Phi''(u) \, h, h \rangle| \leq \varepsilon \, \|h\|_{X}^{2} \text{ for all } h, k \in X, \|k\|_{X} < \eta(\varepsilon).
$$

(B) Gårding inequality: For each $u \in X$ there exist constants $\sigma > 0$, $\rho > 0$ such that

$$
\langle \phi''(u) \, h, h \rangle \geqq \sigma \|h\|_{X}^{2} - \varrho_{\varepsilon} \|h\|_{Y}^{2} \quad \text{for all } h \in X.
$$

(C) Φ' is a proper Fredholm operator of index zero.

We define a functional $\gamma: X \to \mathbf{R}$ by

$$
\gamma(u) = \min_{h \in B} \langle \Phi^{\prime\prime}(u) \, h, h \rangle, \qquad B = \{h \in X \mid ||h||_Y = 1\}.
$$

According to (A), (B), $\gamma(u)$ is well-defined for every $u \in X$, cf. [10: p. 200 - 203]. The `set

$$
ST = \{u \in X \mid \gamma(u) > 0\}
$$

is called the *stability region* of the functional Φ (cf. [2]). If $ST = \emptyset$, then Φ' is a locally strictly monotone proper Fredholm operator of index zero with the monotonicity region ST .

An element $u^{\circ} \in X$ is a stable local minimum of the functional Φ_g if and only if it is a solution of the equation (1.3) .

Indeed, at first let u^0 be a stable local minimum of Φ_q . Then u^0 is a solution of the Euler equation $\Phi_{q}(u^0) = 0$, therefore, $\Phi'(u^0) = g$. Furthermore, we have

$$
\delta^2 \Phi_g(u^0; h) = \langle \Phi''(u^0) h, h \rangle \quad \text{for all } h \in X. \tag{3.2}
$$

This implies $u^0 \in ST$. Therefore, u^0 is a solution of (1.3).

Conversely, let u^0 be a solution of (1.3). Then the functional Φ_{g} has a local minimum at u^0 . This follows from the facts that, because of $\Phi'(u^0) = g$, u^0 satisfies the Euler equation $\Phi_{g}(u^0) = 0$ and that the sufficient Jacobi criterion is fulfilled, because of $\gamma(u^0) > 0$ (cf. [10: p. 200-203]). From $u^0 \in ST$ it follows, that u^0 is a stable local minimum of Φ_{q} , by (3.2) **I**

4. Examples

Let G be a bounded domain in \mathbb{R}^n with sufficient regular boundary. We denote by $L^p(G)$ the space of p-integrable functions with the usual norm $\|\cdot\|_{L^p}$; by $\|\cdot\|_0$ we denote the norm in $L^2(G)$. Furthermore, let $H^1(G)$ be the Sobolev space with the norm $\|\cdot\|_1$, $\|u\|_1^2 = \|u\|_0^2 + (\|\partial u/\partial x^1\|_0^2 + \ldots + \|\partial u/\partial x^n\|_0^2)$, and $H_0^1(\tilde{G})$ the closure of the space $C_0^{\infty}(G)$ in $H^1(G)$. The dual space of $H_0^1(G)$ we denote by $H^{-1}(G)$, its norm by $\|\cdot\|_{-1}$. Using the notation of the preceding sections, we set $X = H_0^{-1}(G), X' = H^{-1}(G)$, $Y = L^2(G)$. Looking at an element $g \in H^{-1}(G)$ as a regular distribution we can write (cf. [8: p. 262]) $\langle g, u \rangle = \int gu \, dx$, $u \in H_0^1(G)$. We set

$$
\lambda_1 = \min_{h \in B} \int_{G} |\nabla h|^2 dx, \qquad B = \{h \in H_0^1(G) | ||h||_0 = 1\}.
$$

The minimum λ_1 exists (cf. [10: p. 200 – 203]), furthermore,

$$
\int\limits_G |\nabla h|^2\,dx\,\geq\lambda_1\int\limits_G h^2\,dx\qquad\text{for all }h\in H_0^1(G)\,.
$$

Example 1: Let $1 \leq n \leq 6$, let $F \in C^{3}(\mathbf{R}, \mathbf{R})$ be a function such that, with some constants $K > 0$ and $L > 0$,

> $F'(t) \geq 0$, $|F''(t)| \leq K$, $|F'''(t)| \leq L$ for all $t \in \mathbb{R}$, (4.1)

T
Stable Local Minima of Some Functionals 93

.

and let the functional Φ be defined by

Stable Local Minima of Some
he functional
$$
\Phi
$$
 be defined by

$$
\Phi(u) = \int_{G} \left[\frac{1}{2} |\nabla u|^2 + F(u) \right] dx \qquad (u \in H_0^1(G)).
$$

Then the functionals (1.1) are of the form.

Stable Local Minima of Some Functionsals
and let the functional
$$
\Phi
$$
 be defined by

$$
\Phi(u) = \int_{G} \left[\frac{1}{2} |\nabla u|^2 + F(u) \right] dx \qquad (u \in H_0^{-1}(G)).
$$
Then the functionals (1.1) are of the form

$$
\Phi_g(u) = \int_{G} \left[\frac{1}{2} |\nabla u|^2 + F(u) - gu \right] dx \qquad (g \in H^{-1}(G)).
$$
Our goal is to obtain a global description of the region of stability.
Because of the assumptions $n \leq 6$ and (4.1), there holds $\Phi \in C^2(H_0^{-1}(G))$.
Fréchet derivatives of Φ are given by

Our goal is to obtain a global description of the region of stability.
Because of the assumptions $n \leq 6$ and (4.1), there holds $\Phi \in C^2(H_0^1(G), \mathbf{R})$. The Fréchet derivatives of Φ are given by

Stable Local Minima of Some Func
\nand let the functional
$$
\Phi
$$
 be defined by
\n
$$
\Phi(u) = \int_{c} \left[\frac{1}{2} |\nabla u|^{2} + F(u) \right] dx \qquad (u \in H_{0}^{1}(G)).
$$
\nThen the functionals (1.1) are of the form
\n
$$
\Phi_{\rho}(u) = \int_{c} \left[\frac{1}{2} |\nabla u|^{2} + F(u) - gu \right] dx \qquad (g \in H^{-1}(G)).
$$
\nOur goal is to obtain a global description of the region of stability.
\nBecause of the assumptions $n \leq 6$ and (4.1), there holds $\Phi \in C^{2}[I]$
\nFrichet derivatives of Φ are given by
\n
$$
\Phi(u) = \int_{c} [\nabla u \nabla h + F'(u) h] dx
$$
\n
$$
\Phi'(u) h, k \rangle = \int_{c} [\nabla h \nabla k + F''(u) hk] dx
$$
\n
$$
\Phi'(u) h, k \rangle = \int_{c} [\nabla h \nabla k + F''(u) h] dx
$$
\nThe functional Φ satisfies (A) (this can be proved using the Sobolev in
\nThis is an odd, we obtain the condition $|F''(t)| \leq K$. In [3] one can find a d
\naccount the condition $|F''(t)| \leq K$. In [3] one can find the proof that
\n
$$
\Phi(u) = 0 + P(u) \Rightarrow \Phi(u) = 0 + P
$$

The functional Φ satisfies (A) (this can be proved using the Sobolev imbedding theorems and the continuity of the Nemyckii operator; one can find a detailed proof in [3]). The validity of the Gárding inequality (B) follws immediately. if one takes into account the condition $|F''(t)| \leq K$. In [3] one can find the proof that the Lagrange operator Φ' satisfies the assumption (C). Here we give only the ideas of the proof. The functional Φ satisfierems and the continuit

[3]). The validity of the

account the condition |

operator Φ' satisfies the

First one uses that

(i) Φ' is weakly coer **1** account the condition $|F''(t)| \leq K$. In [3] one can find the proof that

operator Φ' satisfies the assumption (C). Here we give only the ideas

First one uses that

(i) Φ' is weakly coercive, i.e. $||\Phi'(u)||_{-1} \to \in$ ($\Phi''(u) h, k$) = $\int_{c}^{\cdot} [\nabla h \nabla k + F''(u) h k] dx$

e functional Φ satisfies (A) (this can be proved using the Sobolev imbedding t

ns and the continuity of the Garding inequality (B) follows immediately if one take

i. T (φ (*u*)

rems and the component rems and the component reduced in the conduction of φ' sat

First one uses t

(i) φ' is wea

(ii) $\varphi' = D$

(ii) $\varphi' = D$

(ii) $\varphi' = D$

• -

$$
D: H_0^1(G) \to H^{-1}(G), \qquad \langle Du, h \rangle = \int_G \nabla u \nabla h \, dx \qquad \left(h \in H_0^1(G) \right),
$$

$$
\begin{aligned}\n\mathcal{L}(\text{ii}) \quad & \Phi' = D + P, \text{ where} \\
& D: H_0^{-1}(G) \to H^{-1}(G), \qquad \langle Du, h \rangle = \int_G \nabla u \, \nabla h \, dx \qquad \left(h \in H_0^{-1}(G) \right), \\
\text{is a homeomorphism of } H_0^{-1}(G) \text{ onto } H^{-1}(G) \text{ and, therefore, a proper operator, and} \\
& P: H_0^{-1}(G) \to H^{-1}(G), \qquad \langle P(u), h \rangle = \int_G F'(u) \, h \, dx \qquad \left(h \in H_0^{-1}(G) \right), \\
& \downarrow G.\n\end{aligned}
$$

is a compact operator. Then, according to [4: p. 103], Φ' is proper. The assertion that Φ' is a Fredholm operator of index zero follows from the fact that $\Phi''(u)$: $H_0^{-1}(G) \rightarrow H^{-1}(G)$ for each $u \in H_0^{-1}(G)$ is a com Φ' is a Fredholm operator of index zero follows from the fact that $\Phi''(u)$: $H_0^1(G)$.
 $\to H^{-1}(G)$ for each $u \in H_0^1(G)$ is a compact perturbation of a linear homeomorphism of $H_0^1(G)$ onto $H^{-1}(G)$. \rightarrow *H*⁻¹(*G*) for each $u \in H_0^1(G)$ is a compact perturbation of a linear homeomorphism of First one uses that
 I (i) Φ' is weakly coercive, i.e
 I $\Phi' = D + P$, where
 $D: H_0^1(G) \to H^{-1}(G)$,

is a homeomorphism of $H_0^1(G)$ or
 $P: H_0^1(G) \to H^{-1}(G)$,

is a compact operator. Then, ac
 Φ' is a Fredholm operat zero foll
pact pert Then, according to [4: p. 103

ator of index zero follows f
 $J_0^{-1}(G)$ is a compact perturbat

sumptions on the nonlineari
 T of the functional Φ . We contain
 T of the functional Φ . We contain
 J_0 ($[\nabla h]^2 +$

Under additional assumptions on the nonlinearity F we can get more information on the stability region ST of the functional Φ . We consider two special cases for F . (f) for each $u \in H_0^1(G)$ is a compact perturbation of a linear homeomer

(additional assumptions on the nonlinearity *F* we can get more in

bility region *ST* of the functional Φ . We consider two special ca
 F sati

$$
\langle \Phi^{\prime\prime}(u) \ h, h \rangle \equiv \int\limits_G \left[|\nabla h|^2 + F^{\prime\prime}(u) \ h^2 \right] dx > \int\limits_G \left[|\nabla h|^2 - \lambda_1 h^2 \right] dx \geq 0
$$

for all $h \in H_0^1(G)$, $h \neq 0$. According to (3.2), from this follows $\gamma(u) > 0$, therefore, $ST = H_0^1(G)$. Because of Theorem 2 and the investigations of Section 3 the function al $\Phi_{\hat{g}}$ has for each $g \in H^{-1}(G)$ one and only one stable local minimum in $H_0^{-1}(G)$. or all $h \in H_0^1(G)$, $h \neq 0$. According to $T = H_0^1(G)$. Because of Theorem 2 and Φ_g has for each $g \in H^{-1}(G)$ one and on

 $\frac{1}{\sqrt{2}}$

00

b) We assume $1 \leq n \leq 4$. Let $F \in C^4(\mathbf{R}, \mathbf{R})$ satisfy (4.1) and

$$
\lim_{t \to -\infty} F''(t) = l < -\lambda_1, \qquad \lim_{t \to +\infty} F''(t) = 0, \qquad \dots
$$
\n
$$
F'''(t) > 0, \qquad |F^{(4)}(t)| \leq N = \text{const.} \qquad \text{for all } t \in \mathbb{R}.
$$

A subset A of a Banach space Z is called a C^1 -manifold of codimension 1 if for every point $u^0 \in A$ there exist a neighbourhood U of u^0 in Z and a functional $\Gamma \in C^1(U, \mathbb{R})$ such that $I''(u^0) = 0$ and $A \cap U = \{u \in U \mid \Gamma(u) = 0\}$. Now under our assumptions the following holds (the proofs are carried out in [3], using methods of-AMBROSETTI

and PRODI^[1]):

(i) ∂ST is a closed connected C¹-manifold of codimension 1, $H_0^1(G) \setminus \partial ST$ has exactly two connected components and ST is one of them.

(ii) $\Phi'(\partial ST)$ is a closed connected C¹-manifold of codimension 1, $H^{-1}(G) \setminus \Phi'(\partial ST)$ has exactly two connected components and $\Phi'(ST)$ is one of them; $\Phi'(ST) \cap \Phi'(\partial ST) = \emptyset$. (iii) $c(q) = 1$ for each $q \in \phi'(ST)$.

Example 2: Let $F \in C^3(\mathbf{R}, \mathbf{R})$ be a function with $F'(t)$ $t \ge 0$ for all $t \in \mathbf{R}$. For $u \in L^1(G)$ set $\overline{u} = |G|^{-1} \int_G u \, dx$ with $|G| = \int_G dx$. Then

 (4.2)

$$
|\overline{u}| \leq |G|^{-1/2} ||u||_0 \quad \text{for each } u \in H_0^1(G).
$$

This follows immediately using the Schwarz inequality:

$$
|\overline{u}| = |G|^{-1} \left| \int_G u \ dx \right| \leq |G|^{-1} |G|^{1/2} ||u||_0 = |G|^{-1/2} ||u||_0.
$$

Now let us set

$$
\Phi(u) = \int\limits_G \left[\frac{1}{2} \ |\nabla u|^2 + F(\overline{u}) \right] dx \qquad \left(u \in H_0^1(G) \right).
$$

Then the functionals (1.1) are of the form

$$
\varPhi_g(u) = \int\left[\frac{1}{2}|\nabla u|^2 + F(\overline{u}) - gu\right]dx \qquad (g \in H^{-1}(G)).
$$

Under our assumptions it holds that $\Phi \in C^2(H_0^1(G), R)$. The Fréchet derivatives of Φ are given by

$$
\langle \Phi'(u), h \rangle = \int\limits_G \left[\nabla u \, \nabla h + F'(\overline{u}) \, \overline{h} \right] dx
$$
\n
$$
\langle \Phi''(u) \, h, k \rangle = \int\limits_G \left[\nabla h \, \nabla k + F''(\overline{u}) \, \overline{h} \, \overline{k} \right] dx \qquad (h, k \in H_0^1(G)).
$$

The functional Φ satisfies (A) (this can be proved using the Sobolev imbedding theorems and the continuity of the Nemyckii operator, if one takes into account (4.2) ; for a detailed proof cf. $[3]$). The Gårding inequality (B) follows immediately with the help of (4.2). The proof that Φ' satisfies the assumption (C) is analogous to Example 1.

We will now investigate the stability region ST of the functional Φ . We define a function $\Gamma: \mathbf{R} \to \mathbf{R}$ by

$$
\Gamma(s) = \min_{h \in B} \int_{G} [|\nabla h|^2 + F''(s) \bar{h}^2] dx, \qquad B = \{h \in H_0^1(G) \mid ||h||_0 = 1\}.
$$

$$
94^{\degree}
$$

Stable Local Minima of Some Functionals 95

Stable Local Minima of Some Function
\n
$$
\text{Stable Local Minima of Some Function}
$$
\n
$$
\text{Lemma: (i) } \Gamma(s) > 0 \text{ if } F''(s) > -\lambda_1. \text{ (ii) } \Gamma(s) \le 0 \text{ if } F''(s) \le -\lambda_1.
$$
\n
$$
\text{Proof: (i) Let } h \in B. \text{ If } F''(s) > 0, \text{ then}
$$
\n
$$
\int_G [|\nabla h|^2 + F''(s) \bar{h}^2] \, dx \ge \int_G |\nabla h|^2 \, dx > 0
$$
\n
$$
\text{if } 0 \ge F''(s) > -\lambda_1, \text{ then by (4.2)}
$$
\n
$$
\int_G [|\nabla h|^2 + F''(s) \bar{h}^2] \, dx \ge \int_G |\nabla h|^2 \, dx + |G| \, F''(s) \, |G|^{-1} \, ||h||_0^2
$$

$$
\int\limits_{S} [|\nabla h|^2 + F^{\prime\prime}(s) \,\bar{h}^2] \,dx \geq \int\limits_{G} |\nabla h|^2 \,dx > 0
$$

$$
\int_{G} [|\nabla h|^{2} + F''(s) \bar{h}^{2}] dx \geq \int_{G} |\nabla h|^{2} dx + |G| F''(s) |G|^{-1} ||h||_{0}^{2}
$$

$$
\geq \lambda_{1} + F''(s) > 0.
$$

Because the minimum
$$
\Gamma(s)
$$
 is attained, the assertion is proved
\n(ii) Let $F''(s) < -\lambda_1$, $h \in B$ with $\lambda_1 = \int_{G} |\nabla h|^2 dx$. Then
\n
$$
\Gamma(s) = \int_{G} [|\nabla h|^2 + F''(s) \bar{h}^2] dx \leq \int_{G} [|\nabla h|^2 - \lambda_1 \bar{h}^2] dx
$$

$$
\iint_{G} |[\nabla h]^2 + F''(s) h^2] dx \geq \iint_{G} |\nabla h|^2 dx + |G| F'(s) |G|^{-1} ||h||_0^2
$$

\n
$$
\geq \lambda_1 + F''(s) > 0.
$$

\net the minimum $\Gamma(s)$ is attained, the assertion is proved.
\net $F''(s) < -\lambda_1, h \in B$ with $\lambda_1 = \int_{G} |\nabla h|^2 dx$. Then
\n
$$
\Gamma(s) = \int_{G} [|\nabla h|^2 + F''(s) \bar{h}^2] dx \leq \int_{G} [|\nabla h|^2 - \lambda_1 \bar{h}^2] dx
$$

\n
$$
\leq \int_{G} |\nabla h|^2 dx - \lambda_1 ||h||_0^2 = 0.
$$

\nlemma yields the characterization
\n $u \in ST$ if and only if $F''(\bar{u}) > -\lambda_1$.
\n
$$
S = \{s \in \mathbb{R} + F''(s) > -\lambda_s\}
$$
 and $E_s = \{u \in H_0^{-1}(G) | \bar{u} = s\}.$
\n(4.3)

This lemma yields the characterization

We define sets $S \subseteq \mathbb{R}$ and $E_s \subseteq H_0^1(G)$ for each $s \in \mathbb{R}$ by

$$
S = \{s \in \mathbf{R} \mid F''(s) > -\lambda_1\} \text{ and } E_s = \{u \in H_0^1(G) \mid \overline{u} = s\}.
$$

According to (4.3), $ST = \cup \{E_s \mid s \in S\}$. Because of the continuity of F'', S is the union of countably many open intervals. Let \tilde{S} be a connected component of S_7 i.e. a maximal open interval which is contained in S . We define $\leq \int_{G} |\nabla h|^2 dx - \lambda_1$

mma yields the characte
 $u \in ST$ if and only if F'
 e sets $S \subset \mathbf{R}$ and $E_s \subset$
 $S = \{s \in \mathbf{R} \mid F''(s) > -\}$
 g to (4.3), $ST = \cup \{E_s\}$

countably many open it

al open interval which is
 \wid Fization
 $(\overline{u}) > -\lambda_1$.
 $H_0^1(G)$ for each $s \in \mathbb{R}$ by
 λ_1 and $E_s = \{u \in H_0^1(G) \mid \overline{u} = s\}$.
 $s \in S$. Because of the continuity of F'

tervals. Let \tilde{S} be a connected componen

contained in S. We define

f This lemma yields the characterization
 $u \in ST$ if and only if $F''(\overline{u}) > -\lambda_1$.

We define sets $S \subseteq \mathbb{R}$ and $E_s \subseteq H_0^{-1}(G)$ for each $s \in \mathbb{R}$ by
 $S = \{s \in \mathbb{R} \mid F''(s) > -\lambda_1\}$ and $E_s = \{u \in H_0^{-1}(G) \mid \overline{u} = s\}$.

A This lemma yields the characterization
 $u \in ST$ if and only if $F''(\overline{u}) > -\lambda_1$.

e define sets $S \subseteq \mathbb{R}$ and $E_s \subseteq H_0^1(G)$ for each $s \in \mathbb{R}$ by
 $S = \{s \in \mathbb{R} \mid F''(s) > -\lambda_1\}$ and $E_s = \{u \in H_0^1(G) \mid \overline{u} =$

cording $S = \{s \in \mathbb{R} \mid F''(s) > -\lambda_1\} \text{ and } E_s = \{u \in H_0^1(G) \mid \overline{u} = s\}.$

According to (4.3), $ST = \cup \{E_s \mid s \in S\}$. Because of the continuity of F'' ,

union of countably many open intervals. Let \tilde{S} be a connected component α S is the
 S , i.e.
 (4.4)
 \ldots
 (4.4)
 \ldots
 \ldots
 \ldots
 \ldots
 $ST with$
 \ldots

$$
\widetilde{ST} = \bigcup_{s \in \widetilde{S}} E_s \,. \tag{4.4}
$$

(i) \widetilde{ST} *is convex.*
To prove this, let $u_1, u_2 \in \widetilde{ST}$. Then $\overline{u}_1, \overline{u}_2 \in \widetilde{S}$. For each $\sigma \in [0, 1]$ there holds $\sigma \overline{u}_1 + (1 - \sigma) \overline{u}_2 \in \widetilde{S}$. Therefore, we have $\sigma u_1 + (1 - \sigma) u_2 \in \widetilde{ST}$.

(ii) \widetilde{ST} is a connected component of ST, i.e. there exists no connected set $A \subset ST$ with $\widetilde{ST} \subset A$, $\widetilde{ST} + A$.

If such a set *A* existed, then we could choose $u \in A$ with $u \notin \widetilde{ST}$. Because of the connectedness of *A* follows $\overline{u} \in \overline{S}$, which contradicts $u \notin \overline{ST}$, by (4.4).

We now apply the theory of Sections 2 and 3. Because every connected component \widetilde{ST} of the stability region ST is convex, by Theorem 2.5 the restriction of Φ' to \widetilde{ST} is a homeomorphism of \widetilde{ST} onto $\Phi'(\widetilde{ST})$. In other words, for arbitrary $g \in H^{-1}(G)$. the functional Φ_g has at most one local minimum in \widetilde{ST} . Let $c \in N \cup \{\infty\}$ be the number of connected components of the stability region ST . Then the functional Φ_{q} for arbitrary $g \in H^{-1}(G)$ has at most *c* local minima in *ST*. According to (4.4), we can easily determine c by determining the number \hat{c} of the connected components of S , To prove this, let $u_1, u_2 \in S$. Then $u_1, u_2 \in S$, Footh $(1 - \sigma) \overline{u}_2 \in \tilde{S}$. Therefore, we have $\sigma u_1 + (1 - \sigma)$
(ii) \widetilde{ST} is a connected component of ST , i.e. there exercing $\widetilde{ST} \subset A$, $\widetilde{ST} \neq A$.
If such

$\begin{aligned} \frac{\partial}{\partial t} & \frac{\partial}{\partial t} \frac{\partial}{\partial t} \mathbf{F} \\ & \frac{\partial}{\partial t} \frac{\partial}{\partial t$

- 96 F. BENKERT
REFERENCES
[1] AMBROSETTI, A., and [1] AMBROSETTI, A., and G. PRODI: On the inversion of some differentiable mappings with. singularities between Banach spaces. Ann. Mat. Pura Appl. (4) 93 (1972), 231-246. F. BENEERT

F. BENEERT

AMBROSETTI, A., and G. PRODI: On the inversion of some differentiable

singularities between Banach spaces. Ann. Mat. Pura Appl. (4) 98 (1972)

BENEERT, F.: Uber den globalen Lösungszusammenhang ein
- [2] BECKERT, H.: Variationsrechnung und Stabilitätstheorie. Math. Nachr. 75 (1976), 47-59.
- [3] BENKERT, F.: Uber den globalen Lösungszusammenhang einiger Scharen von Variations-
- [4] BERGER, M. S.: Nonlinearity and functional analysis. New York-San Francisco-
- F. BENKERT

F. BENKERT

AMBROSETTI, A., and G. PRODI: On the

singularities between Banach spaces. An

BECKERT, H.: Variationsrechnung und St

BENKERT, F.: Über den globalen Lösung

problemen. Dissertation. Leipzig: Karl-M [5] GEBA, K.: The Leray Schauder degree and framed bordism. In: La théorie des points fixes et ses applications á l'analyse. Séminaire de Mathématiques Supérieures 1973.
Montreal: Presses de l'Université 1975. BENKERT, F.: Über den globalen Lösungszus
problemen. Dissertation. Leipzig: Karl-Marx
BERGER, M. S.: Nonlinearity and function
London: Academic Press 1977.
GEBA, K.: The Leray Schauder degree and
fixes et ses applications BEROER, M. S.: Nonlinearity and functional analysis. New London: Academic Press 1977.

GEBA, K.: The Leray Schauder degree and framed bordism. In

fixes et ses applications á l'analyse. Séminaire de Mathémat

Montreal: Pre
- [6] PLASTOCK, R. A.: Nonlinear Fredholm maps of index zero and their singularities. Proc. Amer. Math. Soc. 68 (1978), 317-322.
- [7] QUITTNER, P.: Singular sets and number of solutions of nonlinear boundary value problems. Comment. Math. Univ. Carolin. 24 (1983), 371-385.
- [8] SAUT, J. C., and R. TEMAN: Generic properties of nonlinear boundary value. problems. Comm. Part. Diff. Equ. 4 (1979), 293-319. TNER, P.: Singular sets and number of solutions of nonlinear bound

Comment. Math. Univ. Carolin. 24 (1983), 371 – 385.

J. C., and R. TEMAN: Generic properties of nonlinear boundary

n. Part. Diff. Equ. 4 (1979), 293–319.
- [9] WLOKA, J.: Partielle Differentialgleichungen. Sobolevräume und Randwertaufgaben.
'Leipzig: BSB B. G. Teubner Verlagsgesellschaft 1982.
- Leipzig: BSB B. G. Teubner Verlagsgesellschaft 1982.
[10] ZEIDLER, E.: Nonlinear functional analysis and its applications, Vol. III. New York— WEORA, J.: Fartiene Differentialgicienungen. Sobolevräume und Randwertaufgabe
Leipzig: BSB B. G. Teubner Verlagsgesellschaft 1982.
ZEIDLER, E.: Nonlinear functional analysis and its applications, Vol. III. New York.
Berlin

5'

Manuskripteingang: 29. 01. 1986, in revidierter Fassung 04. 06. 1987

Comment. Math. Univ. Carolin. 24 (1983), 371—385.

J. C., and R. TEMAX: Generic properties of nonlinear boundary value pr

n. Part. Diff. Equ. 4 (1979), 293—319.

KA, J.: Partielle Differentialgleichungen. Sobolevräume und Sec., and R. LEMAS: Generic properties of nonlinear boundary.

The Mathematic Differentialgleichingen. Sobolevräume under Nathematik der (1979), 293–319.

ERR, E.: Nonlinear functional analysis and its applications,

in - 9) WLOKA, J.: Part
Leipzig: BSB B.
O) ZEIDLER, E.: No.
Berlin – Heidelbe
Manuskripte
Manuskripte
VERFASS
Dr.: FRANK 1
Sektion Mat
Karl-Marx-I
DDR-7010 Karl -Marx-Platz 10 DDR-7010 Leipzig