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On the Number of Stable Local Minima of Some Functionals

_F. BENEERT -

St

.’ -t R t
Unter' Verwendung der Theorien lokal monotoner Operatoren und elgentllchcr Fredholm:
Operatoren werden Aussagen iiber die Anzahl der stabilen lokalen Minima einer. Klasse von
Funktionalen getroffen und entsprechende Beispiele betmchtet

']Ipumeﬂeuuc.\i TEOPHMM JIOKAJIBHO MOHOTOHHBIX ONeEpaTopoB 1 COOCTBEHHLIX OMEPaTOpPOB
dpenronbmMa NOJYYAIOTCA Pe3yThTaThl 0 YMCIe YCTOHUMBLIX JIOKAJBHRIX MUHHMYMOB He-
KOTOPOro Kiacca PyHKUNOHAJIOB I PAaCEMATPHBAITCA COOTBETCTBYIOLLIE MPHMEPLE.

Using the” theories of locally monotone operators and of proper Fredholm operators, results
on the number of stable local minima of some functionals are obtained and related examples -
" are considered. :

» 1 Introductlon

, Let X be a real Hilbert bpace X’ its dual space, (j u) the value of feX’ at u € X.
Furthermore, let a functional ® € C¥(X, R) be given. For ¢ E X’ we con51dcr the
functlonal P, on X,

Dyw) = D) —(g,w), weX, SR
and call a local minimum u of @, stable if the second variation of D, at u is posmve,
i.e. 02D, (u; k) > Oforall k€ X, h = 0. It is our aim to get proposmons on the num-
. ber of stable local minima of the functxona]s b, and to study the dependence of this

number.on g € X'. ’

Because we are seekmg stable local minima, it is not necessary to study the general.’
ized Euler equation for @, o . .

) =g, ’ - T (1.2)

on the whole domain of definition of the operator @'. We investigate the rest,nct,lon
of this operator to the so-called stability region ST of the functional @, which contains
all points u € X for which the second variation of @ is positive. The operator @' is
said to be locally strictly monotone (cf. definition in Section 2). Under some assump‘-
tions on @ (cf. Section 3) the determination of the stable local minima of @, is equi-
valent to the solution of the equation g .. :

P'(u) =9, u€SlT., L ' (1.3)\

For the investigation of the solution set of this equation we assume that @’ isa pro-
per Fredholm operator of index zero (cf. definitions in Section 2). In.the literature ’
one can find propositions on the structure of the solution set of (1.2) for such opera-
. tors (cf. [1, 4, 5, 8]). These propositions were applied to the investigation of some
sémilinear bounda.ry value problemsin [1, 7]. We wx]l prove a proposmon of this type
for Ioca]ly strlct]y monotone operators . o
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. In Section 2 we prcsent propositions on locally strictly monotone proper Fredholm

operators of index zero, which we apply to the investigation of the functionals (1.1)

in Section 3. In Section 4 we consider some examples. In Example 1, we are able to |

completely describe the global structure of the region of stability.

2: Locally strictly monotone operators

\

In this section we considcr an opera-tor LeCYX, X").

Definition: The operator L € CY{X, X’) is called locally strictly monotone at the
point w € X if (L'(u) K, k) > 0 for all b € X, h = 0. The -monotonicity regzon M, of L
is the.set of all pomts of X in which it is locally strictly monotone. L is said to:be
locally strictly monotone if M, + @. 'L is called a.(nonlinear) Fredholm operator of
index zero if its Fréchet derivative L’(u) is a linear Fredholm operator of index zero
for each 4 € X. The operator L is called proper if L~1(K), for any compact set K — X',
is compact. The pomt u € X is called regular /or Lif L'(u) is a linear homeomorphlsm
of X onto X'. (Cf. e.g. [4])

Proposition: Let L be a locally stnctly monotone Fredholﬁm operator of index zero. .
Then every point of its monotonicity region M, is.a reqular point for L. ‘
s ’ ‘ '

Proof: From the Fredholm property of L -and from Banach’ s theorem it follows
" that u is a regular point for L if and only if dim (Ker L'(u)) = 0. Let u € X be no

all k € X. I‘ork:hltfollows(L (u) A, h)—O ie.ud M1
‘Remark: Let L be the operator of the Proposition and let u € ﬂif, According to

“the Inverse Function Theorem there exist neighbourhoods U of -and V of L(u) such

‘that L is a homeomorphism of U onto V.

We denote by M = M a subset for the locally st,rlctly monotone operator L.LetL

be the restriction of L to M. Then L: M — L(M) is a continuous surjective mapping.
For g € L(M) we denote by c(g)_the cardinal number of the. sct L\g). Using these

* notatlons we have

\

.

Theorem 1: Let L be a locaéty strictly monotone proper Fredholm operator of mde:c -
’ zero and let M = M 1 Then

(1) c(g) s /mzte for each g € L(M)\ L(dM),
(i) c(-) s constant on every connected component of L( M) \L(@ M).

Proof: (1) We show that for.g € L(M) with c(g ) infinite there holds g € L(OM). "

Let g € .L(M). If ¢(g) is infinite, then.there exists a sequence {v;} M with Lv)=yg
=1,2,..). Because {g} is compact and L is proper, there exist a subsequence
{vyr} of {v;} and v € My 8M with 2, — v in X for I’ — oo. L is continuous, conse-

' quently L(v) = g. If v € M, then there cxists a neighbourhood U .of v with U n L~1(g)

='{v}, by our Remark. But this is a contradiction to v =V for ' - o00. Conse-
quently, v € oM, and g € L(0M).

(ii) Let g € L(M)\ L(2M). Because of L(M)\ L(oM) = (mt M)\L(aﬂ), there
holds ¢ € L(mt M). According to (i), we have L-Yg) = {uy ..., u}. We choose for
each u; € L-1(g) anej ghbourhood U; = M insuch a way tha,tL 1s a homeomorphism
of U; onto L(U)). Accordmg to the Remark, this is always possible, because g

€ L(mt M) yields %; € int M. We can suppose U nU; =0 fori = j;if necessa.ry,

_ regular point for L. Then there exists an & € X, k =+ 0, so that (L'(u) h, k) = 0 for-

- .
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we can také smal]er nelghbourhoods U; so that this holds Now, let W = L(U,) n
. n L{U;). We show that there is a nelghbourhood V of g in W so that c( ) is con-
stant on V. If there were no such V, then there would exist a sequence .{y;} = M
with L(»;) — g in X' for I — co and v, ¢ L7}(W), ! € N. Because L is a proper operator
and {L(v, )} v {g} is a compact set, the sequence {v;} contains a subsequence {v;} with

v —>v in- X for I’ - oo. L is continuous, conscquently L(v) = g. According to-

{vy} = M, v is in the closure of M. By L(v) = g and g ¢ L(@M) we have v € int M-
Consequently, v € L-Y(g), which is a contradiction to the fact that from v, — v for
} — 0, vy § L~YW), and L-Y(W) bemg an open set it follows that v ¢ Lvw). .
Thus, we have shown that ¢(-) is constant on a neighbourhood V of an arbltrary
point g € L( M) \L(BM), which yields that ¢(-) is constant on every connected com-

ponent of LM\ LM 1

i

In the following theorems we ‘make additional assumptlons on the monotommty

region of the operator L.

Theorcm 2: Let L be a locally clnctly monotone proper Fredholm opemtor of mdex
zero with monotonicity region M, = X. Then L 15 a dlffeomorphzsm of X onto X',
) partzcular c(g) = 1 for every g € X'

Proof: M; = X ylelds that every point of X is regular for L, by-the Proposntlon
Because L € CYX, X’) is a proper operator, the theorem follows from the theorem of
Banach and Mazur [4: p: 221; 6] 1

" Theorem 3: Let L be a locally strzctly ‘monotone proper Fredholm operator of index

/

zero and let M — M, be a convex subset Then L: M — L(M )yisa hmneomorphzsm n -

particular, c(g) = 1 for every g € L(M).

Proof: L is surjective by cdnstruction. We show that L is mJectwe Let u;, u, € M,

Uy = Ug, with L(u,) = L(u,). Then L(ul) = L(u,). On the other hand according to -

Taylor’s theorem L(uz) — L{w,) = f L'(u, + sh) h ds, where b = u, —u,, b+ 0.
This implies : HEEN 0 . ’ o

ZL(u;) — L(w), by = f (L'(wy + sh)h, hyds. 2.1

Because of the convexnty of M, we have u, + sh € M for all s € [0, 1]. Conscquently,
(L'(uy + sh) b, k) > 0 for all s € [0, 1] so that, by (2.1), it follows (L(uy) — L(w,), k) .
> 0, which contradlcts L{u,) = L{u,).

L is continuous because of the continuity of L. The contmulty of L1 follows from
the fact that L is a local homeomorphism on M, § :

3 Application to the calculus of variations

We want to apply the theory of Scctlon 2 to mvestlgate the functlonals (1 1). To this
end, let the Hilbert space X be compactly imbedded in a real Hilbert space Y. We
denote the normsin X, ¥ by ||-|lx, || -|ly, respectively. Let @ € C* X, R). The operator
¢': X — X' is called the Lagrange operator of the functional @; & € C* X, R) yi ields .
@' € CYX, X’). We assume that & satisfies the followmg additional assumptlons

" (A) For each u € X and for each ¢ > 0 there exists an n(g) > 0 such that
\ : ?7 )
KD (u + k) h, By — (D" (w) b, B)| < ¢ |hllx® - for all b, k € X, [ik]lx < n(e).

N
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v

+(B) d&rding inequality: For each u € X there exist constants ¢ > 0, o > 0 such

Cthat ‘ .
AP ), By Z o b5t — g [llly* forall he X.
(C) @' is a proper Fredholm operator of index zero.

‘We define 'a functional y: X' =R by
vl -

@ =win@ @B, - B=HheX [ by=1. " @1

“set

o ST ={ue X|yw) >0 R . .
is called the stability region ofk’,o-he functional @ (cf. [2]). If ST = O, then @' is a locally
strictly monotone proper Fredholm operator of index zero with the monotonicity
region ST - ' e

An element weXisa stable local minimum of the functional D, if and only if it is a
solution of the equation (1.3).. . o . :

Indeed, at first let «® be a stable local minimum of d’a- Then 0 is a solution of the

Euler equation Py (w?) =0, therefore, &'(u%) = g. Furthermore, we have

' 80,0 k) = (w0 h, k) forall ke X. N 32

This implies u® € 87 Therefore, u° is a solution of (1.3). - :

Conversely, let u? be a solution of (1.3). Then the functional @, has a local mini.
mum at 0. This follows from the facts that, becausc of P’ (u?) = g, u° satisfies the
Euler equation @,'(u% = 0 and that the sufficient Jacobi criterion is fulfilled, be-
cause of y(u®) > 0 (cf. [10: p. 200-203]). From u°® € ‘S7'.it follows)that u? is a stable
local minimum of &@,, by (3.2) & L " C

’

~ 4. Examples- >

Leth be a bounded domain in R" with sufficicnt regular boundary. We denote By

L?(G') the space of p-integrable functions with the usualnorm ||-||»; by ||+l we denote-

the norm in L%G). Furthermore, let HY(G) be the Sobolev space with the norm
Ml Tl = fal? -+ (10%/82)g? + ... + [|w/2a7ll?), and H(G) the closure of the
space C;®(@) in HY(G). The dual space of H,!(G) we denote by H~Y((@), its norm by
l|-ll-1- Using the notation of the preceding sections, we set X = H (@), X’ = H (@),
Y = L¥(). Looking at an clement g € H-1(G) as aregular distribution we can write
(cf. [8: p. 262)) (g, u) = [ gudz, u € H(G) Weset ' S
‘ - . : . .

Yo A =min[[VAEdz, B = (heHMG)| hly = 1}.

h€B G

* The minimum 4, exists (éf. {10: p. 200—’20.3]),‘ fur‘thermprc,.

JIVRZde = 3, [ h2dz  for all k€ Ho(G).
, ‘6, . ¢ S : ]

S ’ ‘o ) .o
- Exam plel:Let 1 S n < 6, let F € C3R, R) be a function such that, with some
constants K >-0 and L > 0, . . '

F'(t) =0, [F'@)| =K, |[F"0)|<L forallteR, - (41

/ .

- According to (A), (B), y(u) is 4\Vell-defi_ned' for every u-€ X, of. [10: p. 200—203). The .
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and let the functional @ be defined by . ‘ _' . . -

tD(ui - f[% vI.VuIZA +. F(u)] dz (we Ho“(G));

G

Then the functnona,ls (1.1) are of the form

Py(u) =f[ [Vu[2 + F(u) — gu] dx (g.E H“(G)). )
S 4 . '

. Our goa.l is'to obtain a. global description of the region of stability.
Because of the assumptions n < 6 and (4. 1) there holds @ € Cz(Hol(G'), R) The
Fréchet derlvatlves of @ are given by -

U (@' (u), by = f (VuVht+ Fyhde | | o

: (h, k € HNG)).
(P"(u) b, k) = f [VA VEk + F(u) ;,,k] dz ~ : o

i

The functional @ satisfies (A) (this can be proved using the Sobolev 1mbedd1ng theo-
rems and the contmulty of the Nemyckii operator; one can find a detailed proof in
(30). The validity of the Garding inequality (B) follows immediately. if one takesinto
a(,count the condition |F"(t)| S K. In [3] one can find the proof that the Lagrange
. operator @’ satisfies the assumption (C). Here we give only the 1deas of the proof.:
First one uses that N .

(i) @ is weakly coercive, i.e. |®'(u)ll., - oo a8 |jull, > co; s
()(D'—D—{—P\there : '

DIHMNG) — HNG),  (Du by = [ VuVhdz - (h€HMNG)),
. ¢ . . R
'vis a homeomorphism of H,!(6) onto 'H‘I(G’) and, therefore, a proper operator, and

P: HoG) > HYE),  (P(u), by = f Fhde (b€ HNG)),

is a compact operator. Then, accordmg to [4: p. 103], @’ is proper. The assertion that
¢’ is a Fredholm operator-of index zero follows from the fact that D" (u): Hy{(G) .
—> HYG)foreachu € H((G)isa compact perturbatlon of alinear homeomorphlsm of
HO (G) onto H*‘(G)

i .
i

Under a.ddmonal assumptions on the nonlmearlty F we can get more information
_on the stability region ST of the functional @. We consider two special casesfor ¥.

é) Let F satisfy (4.1) and F”'(t) > —2, for all t € R. Then
(@ (u) b, by = [.[|VA[2 + F"(u) h?] dx > f [|'Vh]2"— MWh?dxr =0
] . ¢ .

for all b € HMG), kB = 0. According to (3.2), from this follows y(u) > 0, thereforc ‘
ST = H,!(G). Because of Theorem 2 and the investigations of Section 3 the function-
al @; has for each g € H-}(G) one and only one stable local minimum in H\(G).

\ N b
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b) We assume 1 < n < 4. Let F € CY(R, R) satlsfy 4. 1) and
lim F () =l < —A,, lim F7@¢)=0, , °

- t——o0 t—+o00 ~ . )
F()>0, |FO@ <N = - const.. forallt € R.

A subset 4 of a Banach space Z is called a Cl-manifold of codimension 1 if for every

- pointu®e 4 there exist a neighbourhood U of %% in Z and a functional -I" € C\U, R)

such that I"w®) +=0and 4 n U ={u € U.| I'(u) = 0}. Now under our assumptions

* the following holds (the proofs are carried out in [3] usmg mcthods of—AMBROSETTI

. and PropI [1]):

Ttiis follows immediately using the Schwarz inequality:

i ’\Tow let us’ set

(i) 88T is a closed connected C*- mam/old of codzmenszon 1 HOI(G) N\ 88T has exactly
two connected components and ST is one of them.

(ii) 9'(98T) is a closed connected C'- mamfold of codimension 1, HY(G) \ @' (08T has
exactly two connected components and @' (ST) is one of them; ' (ST) n@'(a8T) = M.

J(iii) ¢(g) = 1 for each ge€ @’ (ST).
Example2: Let F € C”(R R) be a function with F (t)¢ =0 for all ¢ €R. I‘or

“u € IMG) set @ = |G| f udz mth |G| = f dx. Then

[ﬁ|§]0[‘1"2|§ullo 'ioreachuEHol(G).' R %)

t

[l = 1617 f udx|<16*l G2 [fully = G|~ mnuno

) "cp(u) = f [% '|V%42 + F(a)] dz - (ue¢ HOI(G)).
i G K

Then the function'als (1. l) are of the form -

/

“® (u) f [— |Vult & F(@) — gu] dz (g € H-1(@)).

Under. our assumptions it holds that @ € C”(H0 (&, R) The Fréchet derivatives of '
D are glven by

(d>’-(u), k) = f[Vu vﬁ + F'(@) k) dx \
T . a (b k€ HXG)).
(®"(u) b, k) = [ [Vh VE + F"(@) hk] de ~

G

"The functiona;l P satisfies (A) (this can be proved using the Sobolev imbedding theo-

rems and the continuity of the Nemyckii operator, if one takes into account (4.2);
for a detailed proof ¢f. [3]). The Gérding inequality (B) follows immediately with the

“help of (4.2). The proof that @’ satisfies the assumptlon (C) is analogous to Example 1.

We will now investigate the stablllty region ST of the functional . We define-a .
functlon r: R — Rby. . .

N

-

Ie) = min [ (VB + F*(s) B dz, B = (h ¢ H(O) | liklly = 1}.
hB G .
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" Lemma: (i) T(s) > 04 F*(s) > — 2. (i) (e) S 0if F"(s) < —h.
- Proof: (i) Let k € B. If F"(s) > 0, then ' .,
[ UVHE + F(s)E2)dz = [ VAP dz > 0
J .

G °

if 0= F'(s) > —4, then by (4.2)" LT N
[ VR + F'(s) h?)dz = f \VA|2 dz + IGI Fr(s) |GI7* 1Af® |
G - . .

/ ' >11+F"(s)>0 *

’ " Because the minimum I'(s) is attained, the assertion is proved

(ii) Let F'(s) < —2, b €.B with 1, = [ |VA{2 dz. Then
: . ., G
T(s) = [ [|VR]2 + F'i(s) h?] dz < [ [|VA]>'— 1,k?) dz
G : G T '

.= [ \VA2dz — 4 [jhllsz = 0.8 : -
.6 ’ . : .

This lemma yields the cheracterizetion N
w € ST if and only if F"(@) > —A&. S (4.3)
We_define sets S— R and E,— H)\G) for each s € R by | o

s

' S_{seRllv;”(-) i} and B, = {u € HXG) | T = s}

Accordmg to (4.3), ST:= v {E, | s € S}. Because of the contmulty of F" S is the
union of countably many open mterva.ls Let S be a connected component of Srie.
a maximal open interval which is contained in S. We defme

ST =y E,. e (a4

. . ! -8€8 .
ThlS set possesses the following propertles:
(1) ST is conves.
To prove this, let u,, u, € ST. Then Uy, Uy € S For each ¢ € [0, 1] there holds al,
+ (1 — 0) %, € 8. Therefore, we have ou, + (1 — o) u, € ST.

(u) ST zs a connected component of ST, i.e. there exists no connected set A = ST wzth
ST — A, 8T =+ A.

If such a set 4 existed, then we could choose » E A with u ¢ ST. ‘Because of the con-
nectedness of 4 follows 7 € S, which contradicts u ¢ ST, by (4.4).

We _now apply the theory of Sections 2-and 3. Because every connected compo-
nent ST of the stability reglon ST is convex, by Theorem 2.5 the restriction of @’ to
. 8T is a homeomorphism of ST onto &' (ST) In-other words, for arbitrary g € H- y@)
the functional @, has at most one local minimum in ST. Letce Nu { } bé the num-
ber of connected components of the stabllxty reglon 8T. Then the functional @, for
arbitrary g € H-1(G) has at most ¢ local minima in 8T. According to' (4.4), we can
easily determine ¢ by determining the number ¢ of the connected components of S,
because we have ¢ = ¢. :
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