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A Geometric Maximum Principle for Surfaces of Prescribed Mean Curvature 
in Riemannian Manifolds°) 

U. DIERKES 

Sei M eine dreidimensionale Riemainsche Mannigfaltigkcit und / eine Fläche vorgeschriebener 
mittlerer Krummung, die in einer Menge J u M mit S als Rand beschriinkter mittlerer 
Krummung licgt. Unter naturlichen Bedingungen wird bewiesen, daB S vollig in J licgt. Als 
unmittelbare Konsequenz dieses Res ,ultats ergibt sich eine hinreichende Bedingung für die 
Existcnz vonMinimalflächen in einer Menge J	1R 3, deron Rand S nicht -konvex ist. 
Hycrb M rpexMepHoe pueaiionoe Muoroo6pa3lse It flCTb / flOBXHOCTb npeanHcaHHo1 
epeaiieti 5llBH3Ub1 it jieaivati B MuoaecTBe J u S c: M C xpaeM S orpailIt4eHHofl cpejuietl 
HHBH31ib1 &. 'Ilpu ecTecrBeHHbIx YCJIOBII.9X AoKa3blBaCTCH, 'ITO S 3IeHIIT HOJ!IIOCTbIO B J. Ham 
sienocpeacueoe cjicicTuIte no1y'IaeTcH gocao quoe yciosue cyu(ecTnonaHLtn Millill-
MaJIbHEJx noBepxHocTen B MIIoecTBe J	R3 upal IOTObIX iie -nbinyscJio.	- 
Let M be a three-dimensional Riemannian manifold and let / be some surface of prescribed 
mean curvature which is restricted to lie in some set J u S c: M with boundary S of bounded 
mean curvature . Assuming natural conditions, we prove that the image of/lies completely 
in J. An immediate consequence of this result is a sufficient condition for the existence of 
minimal surfaces in a set J c 1R3, the boundary S of which is not b-convex. 

0. Introduction 

In this paper we shall derive an inclusion theorem for surfaces / of prescribed 'mean 
curvature H in a three-dim'ensional Riemannian manifold M. The decisive quantities 
which are involved in our result are the absolute values of both, the prescribed mean 
curvature H and the mean curvature of the boundary S of some including set J, 
the area of the surface f and the distance from the boundary of / to S. To be more, 
precise, if /: Q — J u S M is some confornially parametrized surface which is of 
prescribed mean curvature H in the interior J; then there exists some constant 
c = c(/I, r, x, R) depending only on A = max Hj O, It} the injectivity radius r, an 
iiper bound for the sectional curvature	and the distane R = dist 1 (/(aQ), 8)

such that 1(Q), mt J provided the area of / is smaller than c. 

Thus tlienrnin emphasis of the theorem, which also distinguishes this result from 
the - A maximum principle by HrLDEBRANDT [ii], and GIJLLIVER and SPRIJCK 
[7], is the fact that , the inward mean curvature of the boundary S need not be 
greater than the absolute value of the prescribed mean curvature H. In particular we 
allow obstacles S the (inward) mean curvature of which is negative. Exterior do-
mains are therefore typical examples which fit.in  our framework. 

The analytic tool for the proof of our thorern is an estimate by GRUTER [5], who 
used a method from geometric measure theory to prove a pulled hack version of the 
standard monotohicity formula.  

0) AMS classification code; 49 F 10, 53 A 10, 35 A 15. 
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In view of certain existence-regularity results of H1LDEBRANDT and KAUL 11:31. 
and H1IDEBRANDT [12] a direct consequence ofthe inclusion theorem is a new exi-
stence result for minimal surfaces in 1R 3, which are restricted to lie in J (Proposition 
1). Again we are interested in cases where S is not b-convex (i.e. 0 is not satis-
fied) If Aj- ,j is the infimum of area of surfaces spanned by the curve PinJ, then the 
condition is that IIo < { - 1/4R2 + 7v12Ar.j } 1/2 - ' 1/2R. Two examples illustrate this 
result. Another application of Theorem 1 appears in Proposition 2, which sharpens 
a result of BölrME, HILDEBRANDT and TAUSCH [1: Theorems 12, 13] concerning the 
existence of extremals for the integral E(x) = fx3 IVx(u, v) 1 2 du dv. Again a smallness 
condition on the quantity	implies existence of an extremal for E.	-	-- - 

A further application is treated in [3]. 

1. Notations and results 

- We shall adopt here the definition of H-surfaces in Riemannian manifolds given by 
HILDEBRANDT and KAUL [13], but, in short, repeat the basic concept. Let M be a 
complete, connected and orientable Riemannian manifold of differentiability class 
three and Q c 1R2 be an open, connected and bounded set with Lipschitz boundary 
Q and with standard Euclidean metric, put w, = u ± iv, and u = u 1 , v = u2. The 

Levi-Civita connection on M will be denoted by D, furthermore d: M x M - IR-
stands for the distance function on ill and J.j, (., .), denote the norm and the scalar 
product on T,M, respectively. A function /: Q -* M belongs to the class H2 1 (Q, M) 
if / E H21(Q, JR1) and /(Q - N) M, N Q denoting some null set (cp. [5: (2.1) 
Def.]). Here  is thought to be isometrically embedded into some RN , and ll,'(Q, IR'') 
stands for the Sobolev. space of L,(Q, RN)-functions the derivatives of which are 
again in L2 . The classes.H2 2(Q, M) are defined similarly. 

In the following let M be three-dimensional and : U -. 1R3 denote some chart of 
an open set U M. Then x stands for the representation of/ corresponding to that 
chart. Furthermore, with respect to these coordinates, g ik and denote the coeffi-
cients of the metric and the Christoffel symbols, respectively.. Put g := det g jk and 
gik :=r (q)'. Consider now a function aE . C'(M, IR) ancl.itslveLsurface S:= {p-E 
M: a(p) = c}, for c E IR, as well as its "interior" J,: = {p E M: o(p) < c}. Note 
that S, isregular, at p, provided grad, a z4= 0. As usual the gradient vector field 
grad, a for p E M is given by (grad, a, V) = Va for any V E TM. Also the Hessian 
tensor Hess a, the Hessian bilinear form hess a and the -Lapladian Lap a are defined 
by

Hess.ciV = Dv grad,, a,	p. € M, V € TM, 

hessa(V, W) = (Hess,,aV, W), V, , W E TM, 
Lap, a = trace (Hess, a). 

The mean curvature (p) of S at p with respect to the "interior normal" - grad,, a/ 
llgrad, all is defined by	 - 

2 Jgrad, all {L 
a(p) - igra, all2 

hess, a(grad, a, grad, 

Consider a mapping / € H C(Q, M) n H2 1 (Q, M) and let H = 11(1) be a function of 
class LDO (Q, IR). Then / is called an H-surface if it satisfies the equation 

Duj(U,) = 2H(/(w)) 1(U1) xf( U,)	 (1)
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and II/( U1) = Il/(UU1), /(U2)) = 0 a.e. in Q. Here U 1 , U2 denote the basis 
fields with respect to n.y, u2 and 1* : TQ -* TM is the induced mapping of th6 tangent 
bundles. Moreover "x" denotes the cross product on TM. Let to0 E Q and 921 Q 
be a neighbourhood of w0 such that f(Q1 ) is contained in some coordinate neigh-
bourhood U M with some chart : U 1R3 . If x = 99 0/is the representation of 
f, then (1) implies 

zix' + rhxx = 2H(x(w)) gik j/jx. A xV)k 1)	a.e. on Q1 (1 = 1, 2, 3), 
g 17 (x) x,x,) = g,(x) Xv i Xvi ,	, g 17 (x)	= 0	a.e. on 921. 

Here zl = 2/3u2 + a2/av2 denotes the (Euclidean) Laplacian. Note that H-surfaces 
are also weak H-surfaces in the sene of [5: cp.(3.5) Def.]. Moreover we use the abL 
breviations D(/) ==f g,(x) DaXtDXI du dv. and P = f(w)to denote the Dirichlet 

integral and the boundary of f, respectively. Finally, put. R = dist (F,	= mi 
E r, 77 E S }; A(/)	area off, A = max {I HJ00, I.lo.s,}, where 

1111o.o = ess sup (H(f(w))I	and	I ' Io.s,	sup 1)1. Q	 S 
Let v be the.injectivity radius on f(Q) and x denote an upper bound for the sectional 
curvature on f(Q) (for a precise definition and further properties concerning the in-
jectivity radius and the sectional curvature we refer to GROMOLL, KLINOENBERO and 
MEYER [4]. 

Theorem 1: Let Q, M, a,	be defined as above. Assume that / =1= const is some

surface of class H 2 1 (12, .2W) n C°(Q, M) 1) H I OC (Q, M) with the following properties: 
(i) /(Q) c:::.J uSe, 
(ii) Duj*(U.,) = 2H(f) 1(U1 ) X/(U2)a.e. onQ' := Q _Q*, where Q* 

(iii) II/( U1 )II = If( U2)IJ, (/*( U 1 ), f( U2) = 0 a.ë. on Q. 
Then, f(Q) cJ provided that either of the cases I or TI holds: 

(I)x :!E^0 and A(/). < +2AU21(2A2' := min{R,r}. 

(H)x> 0 and A(f) <	
+	

2A	(22' 	min {R r, 
+  sin2 ( V)	sin2 (e V) 

Furthermore f is of class Ck (Q, M)if M belongs to C1C±1 and Hiso/class C''(M, 1k) 
Ic^2.  

Remarks: 1. Since / is supposed to be continuous on f2 we have t> 0 and x < co. 2. If, in 
addition to the other hypotheses M is simply connected then case I holds with = R pr,ovided 
that c :5-. 0. In fact, this is a consequence of a theorem of Hadamard and Cartan, cf. [4: Section 
7.2/Satz]. 3. In view of (iii) we find that D(/)/2 = area of /. 4. The area of / can be estimated 
by 1,2(1'), 1, = length of P = 1(82), plus suitable error terms, cf. [141. 

The following corollaries are simple consequences of the theorem. 
Corollary 1: Suppose that M is a simply connected, complete and orientableRie- 

mannian manifold of class C3 with non-positive sectional curvature and let / E C°(Q, M) 
n H 2. 1 (Q, M) n H2 1 (Q, M) satisfy conditions (i)—(iii) 0/Theorem 1 with H	0. Then 

1) Here and in the sequel we agree to sum over repeated latin indices i, j, k ... from 1 to 3 and 
over a, ft from 1 to 2. 

7*
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J is a minimal surface in M provided that; in addition, A(/) <R2/(1 + 2AR 
+ 21(2AR)2) where A = IIo,s . (Note that M = IR' is possible.) 

Corollary 2: Let the assumption of Theorem 1 hold with x <0 and assume 

A < I /A(/). Thenf(Q) c: Jprovidedthat ji75 A 2-2A'D
	<, D = 2A(/). 

Let Pc J JR' denote some closed Jordan arc, then the class (P, J) isciefined 
by (P, J) := {f E H2 1 (B, IR'): 1(B) c J.a.e., has: OB —* I' is continuous and weakly 
monotonic), where B. = {('u, v):.u' + v < 1}. Put Ar.j = 2 1 inf {D(/): / E (P, J)},- 
then the existence-regularity results of [12,13] together with Corollary 1 immediately 
lead to	 ..	 - 

Proposition 1: Let Pc mt J be a closed Jordan curve with (P, J)	0 and

Suppose S = J is of class C3 , has bounded principal curvatures and a global parallel 
surface in J. If A =	O,s satisfies A < {— 1/4.R' + i-r/2Ar j}'/2 — 1/2R, then there

exists a minimal surface h in J, i.e. (i)—(iii) of Theorem 1 hold with H = 0,.Q* 

Example. 1: Let J be the torus of revolution which is generated by revolving the disk 
( - a)' ± 2 < r2 about the ,-axis and assume F permits (P, J) 0. For r < a < 2r the 
torus S = J has regions of negative inward mean curvature and thus the — A maximum
principle by H1IDEBRANDT [11] and GrJLLIVER and SP/RUCK [6, 7] cannot be applied to solu-'. 
tions of the variational problem D(/) = f IV/(u, v )t' dudv-..+. minimum iii(', J). On the other 
hand the maximum absolute value of the mean curvature of S is given by A0 = 2-' max 
)(a + 2r)/r(a + r), ja - 2r 1/r (a — r)}. Proposition I gives the existenco of a minimal surface 
spanned by I' ü J provided Al' , and R satisfy A0,< ( - 1/4R2 + /2Ar,j } 1I' — 1/2R. To obtain 
a numerical example one may assume further that F is contained in the torus of revolution 
that is generated by the disk (, — a)' + E22 (0.8r)' and that r = 2, a 3. Then R = 2/5 
leads to the sufficient condition Ar,j 5 0.41. 

Example 2: Lot J = ' 6 IR';	11 be the exterior of the unit ball. Then = —1, 
zl = I and for R 1 Proposition 1 gives the existence of a minimal surface spanned by P in J 
if Ar j < n15. Note that the critical value for Ar.j in this configuration is 37r, since the disk 
spanned by the circle (E = I) n {I,'I = 2) has area 3t and touches 'I = tin (0, 0, 1). 

Now we are concerned with solutions of the degenerate system 

Ax1 = — -- (Vx j Vx,), Ax, = -	(Vx,Vx,), Ax, = — .1. (Vx,Vx,) +	VxI' X3	 x3	 x3	 2x3
(2) 

which turns out to be the system of Euler eqution for the integral E(x) = f x3 
Vx(u, v)J' du dv, x = x(u, v). Special interest is given to the variational problem 

E( . ) ...> minimum on (T, J), J 0), since it describes surfaces of least 
potential energy under gravitational forces, cf. [1, 2] for various existence results. 
Proposition 2 improves the corresponding results Theorem 12, 13 in [1].2) 

Proposition 2: Let J = J. = {' € IR": , ^ c), c > 0, and let h(F) := sup{,: 
E P} denote the height of F. Assume that / E (F, J) is asolution of E( . )	minimum


on (F, J,), and that either 

	

= -- f v/I' du dv < 
2 + ER + -- R' 

or Ar t < j -j 'j -	 1 

2) The constants 2 4 e 2e' and (c/h) i(4c/e)' which appear in [1: Theorems 12, 13] have to be re 
placed by 22 e 2e' and (c/h) i(26/e) 2, because in Lemma 7 of that article denotes 2 - times the 
mean curvatures which is actually used by these authors.	-
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Then / = f(u, v) is contained' in the open half space 3 > e} and furnishes an analytic 
solution of (2). 

We now turn to the proof of Theoreiii 1: Let y denote the characteristic function 
of Q* = /_'(S) and put A*(w) = (w) (f(w)) + (1 (w)) 11(1(w)). Following an 
observation of HILDEBRANDT [11], which was also used in [2], we claim that 

Duj*(U) = 2A*/*(U i ) x/(U2) a.e. on Q. (3) 

In fact, (3) is obvious on Q - *, while it-is a consequence of the eonformality rela-
tions on Q*• We refer to [2, 11] for explicit calculations. Introduce local coordinates 

: U -* 1R3, where Q 1	Q fulfils /(Q1 )	U	M, and let x(w)'= 01(w). Then (3)

yields  

Llx' +,I'h(xx + xx} = 2A*(w) }/ gth(x A x,, )'	 (4) 

- a.e. on Q 1 and for 1 = 1, 2, 3. By virtue of IA* O,Q	A < 00 and argument from

• L-theory one immediately infers / E 11 1 (Q, M) n C'(Q, M), for all p < coancl 

a E (0,i) 1n view off E C'(Q, M) and (4) we see that jAxj	const IVxI ate. in Qfor 
every Q	Q. Hence a technique of HTia, and WINTNER is applicable, cf. [8 to

10]. In particular one obtains the asymptotic expansion 

2x(w) := x - ix = (a - ib) (w - w + o(jw - wol) (5) 

for w close to w0 E Q. Here the vectors- a, b E 1R3 fulfil the conformality conditions 
h a il = hI b Ii, (a, b) = 0 and v = v(w0 ) stands for a non-negative integer. It is now proven 
as in [2: cf. Lemma 3.111 that (5) in turn implies-the density estimate.' 

urn sup - ! - r g 11 (x)	du dv ^ 2(v + 1) '	 (6) )	J K(w,)  

where K(w0) = {w € Q: d(/(w), 1(wo)) < }. Note that (6) holds for'every w 0 E Q, and 
for some v ^ 0. We are thus in a position to carry over a result of GRUTER, compare 
[5: (3.10) Theorem].3)  

•	Leni ma (cf. [51): Let I be as above, then the following assertions , hold. 
a)' If x !E^.0 and if infa d(/(w), 1(wo)) ^ r for some w0 € Q where 0 < r	r, then 

(v + 1) 2nr2	D(f) 11 + 2Ar ± 2-1(2A r)2). 

-b) If x > 0 and if infod(f(w), 1(wo))	r for some w0 Q where 0 < r	mm 
'z/2},then  

2n(v + 1) D(/) J	1	
+	

2Ar	
+ 

—	 sin' (r ')	sin2 (r i)	x 

Observe that the proof of the theorem in [5: (3.10)] applies to our situation even if 
w0 is a branch point, i.e. Vx(w0) = 0. In fact in , this case w0 may not belong to the 
class of "good" points, compare the definition of the set A in [5]. However, in view 

8 (Note that the left-hand side 'of (3.1-1) in [5] has to be replaced by 2/x (instead of 2/Vc)
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of what was said before, especially relation (6), it is clear , that, in our case, branch 
points are even "better" points, since v 1 then. This, in turn leads to the estimates 
of the Lemma, as follows now from a repetition of Griiters argument. 

Proceeding with the proof of our theorem, we now assume on the contrary to the 
assertion that there exists some w0 E Q* Since B = dist (I', S) we obtain inf Q d(/(w), 
1(wo))	R	. Putting r :=o and v = 0 in the previous lemma one immeditely 
derives the desired contradiction. We have thus proved that 1(Q)	The remain-




ing assertions will follow from potential theory I 
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