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A Geometric Maximum Prineiple for Surfaces of Prescrlbed Mean Curvature
in Rlemannlan Manlfoldso)

U. DIERKES

Sei M eine dreidimensionale Riemannsche Mannigfaltigk-cit, und f eine Fliche vorgeschriebener

mittlerer Kriimmung, die in einer Menge J u 8 < M mit § als Rand beschrinkter mittlerer

Kriimmung 9 liegt. Unter natiirlichen Bedingungen wird bewiesen, daBl S véllig in J liegt. Als
unmittelbare Konsequenz dieses Resultats ergibt sich eine hinreichende Bedingung fir die
Existenz von' Minimalflichen in einer Menge J C R?, deren Rand S nicht §-konvex ist. '

[lycrs M rpéxmepHoe puMaHoBoe MHOrooGpasite M IyCTb f MOBEPXHOCTb MPEXIMCAHHON

cpeaHelt KPHBU3HH M JeKAIAA B Muomectse J u S C M ¢ Kpaém S orpaHu4eHHOIT cpefiHel
' Kpnaualm 9. Ilpu ecrecTBEHHBIX YCIOBHAX JOKA3BIBAETCH, YTO S JEKUT NoNHOCTbI0 BJ . Hak
HEMOCPEACTBEHHOE CJieNCTBHE MOJy4aeTCA [IOCTATOYHOE YCIOBUE CYLIECTBOBAHMA MHHH-
MaJIbHHIX NOBEpPXHOCTelt B MHOsecTse J C R3 Kpaﬁ KOTOPKIX He -BhIMYKJIO.

Let M be a three-dimensional Riemannian manifold and let f be some surface of prescnbed
mean curvature which is restricted to lie in some set J u S © M with boundary S of bounded

mean curvature . Assuming natural conditions, we prove that the image of f lies completely -

in J. An immeédiate consequence of this result is a sufficient condition for the existence of
minimal surfaces in a set J < R?, the boundary § of which is not $-convex.

-

0. Introduction

In this paper we shall derive an inclusion theorem for surfaces f of prescribed mean
curvature H in a three-dimensional Riemannian manifold M. The decisive quantities
which are involved in our result are the absolute values of both, the prescribed mean
curvature H and the mean curvature § of the boundary § of some including set J,

the area of the surface f and the distance from the boundary of f to S. To be more

precise, if f: 2 > J u S.= M is some conformally parametrized surface which is of .-

-prescribed mean curvature H in the interior J, then there exists some constant
¢ = ¢(A, 7, x, R) depending only on A = max {|H|y, |Dlo}, the injectivity radius z, an
upper bound for the sectional curvature » and the distance R = disty, (j(a.Q S)
such that f(Q) = int J provided the area of f is smaller than c.

Thus the ‘main emphasis of the theorem, which also distinguishes this result from

the 9 — A4 maximum principle by HrLpEBRANDT [11], and GULLIVER and SPRUCK
[7], is the fact that the inward mean curvature § of the boundary S need not be

greater than the absolute value of the prescribed mean curvature H. In particular we.

allow obstacles S the (inward) mean curvature 9 of which is negative. thenor do—
mains are therefore typical examples which fit.in our framework.

. The analytic tool for the proof of our theorem is an estimate by GRUTER [5], who
used a method from geometric measure theory to prove a pulled ba,cl\ version of the
standard monotonicity formula, -

o) AMS classification code: 49 F 10, 53 A 10, 35 A 15.
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In view of certain éxist-encc-regularit,y results of HILDEBRANDT and KauL [13].

and HILDEBRANDT [12] a direct consequence of the inclusion theorem is a new exi-
stence result for minimal surfaces in IR3, which are restricted to lie in J (Proposition
1). Again we are interested in cases where S is not §-convex (i.e. § = 0 is not satis-
fied). If Ar ; is the infimum of area of surfaces spanned by the curve I'in J, then the
condition is that ||, < {(—1/4R? 4 /24 ;}1/2 — 1/2R. Two examples illustrate this

result: Another application of Theorem 1 appears in Proposition 2, which sharpens -

a result of BoEME, HILDEBRANDT and TauscH [1: Theorems 12, 13} concerning the

existence of extremals for the integral E(x) = fxs [Va(u, v)|? du dv Againa smallness

condition.on the quantlty Ary 1mplles existence of an extremal for E.
A further application is treated in [3].

1. Notations and results

- We shall adopt here the definition of H-surfaces in Riemannian manifolds given by
HiLpEBRANDT and KavuL [13], but, in short, repeat the basic concept. Let M be a
complete, connected and orientable Riemannian manifeld of differentiability class
three and 2 < R? be an open, connected and bounded set with Lipschitz boundary
982 and with standard Euclidean metric, put w = » + iv, and w = u,;, v = u,. The

Levi-Civita connection on M will be denoted by D, furthermore d: M X M — R--

stands for the distance function on M and I, -, -), denote the norm and the scalar
* product on T, M, respectively. A function f: 2 > M belongs to the class H,} (2, M)
if fe H,(L, lRN and f(2 — Ny M, N.— 2 denoting some null set (cp. [5: (2.1)
Def.]). Here M is thought to be isometrica]ly embedded into some R¥, and H,}(2,R¥)
stands for the Sobolev. space of L,(£2; R¥)-functions the derivatives of which are
again in L,. The classes H,%(£2, M) are defined similarly.

In the following let M be three-dimensional and ¢: U — IR3 denote some chart of
an open set U < M. Then z stands for the representation of f corresponding to that
chart. Furthermore, with respect to these coordinates, g, and T} denote the coeffi-
cients of the metric and the Christoffel symbols, respectively. Put g := detg i and
g% := (gi)”. Consider now a function o € C"’(M IR) and.its level surface S;:= {p-€
"M:o(p) = ¢}, for ¢ € R, as well as its “interior” J,:= {p € M: o(p) < ¢}. Note
that S, is.regular, at p, provided grad, ¢ &= 0. As usual the gradient vector field
grad, o for p € M is given by (grad, o, V) = Vo for any V € T,M. Also the Hessian
tensor Hess o, the Hessian bilinear form hess ¢ and the Laplacnan Lap o are defmed
by .
HesspoV—DV grad, o, EM Vel,M,

hess, o(V, W) = (Hess, oV, W), V WelT, M,

Lap,, o = trace (Hess,, ).

The mean curvature H(p) of S; at p w1th respect to the “interior normal” — grad, a/
Ilgrad al| is defined by

1

O(P) = 5 lgrad, of

; hess,, a(grad, o, grad, q)} ..

' 1
{ 2P 9(P) ~ grad, o

Consider a fnappmg f € HE oo, M) n H} (2, M) and Iet H = H(f be a functlon of
class Lo(£2, R). Then f is called an H-surface if it satisfies the equatlon

Dy fo(Us) = 2H(f(w)) fo(U1) X [2(U2) ' W
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and If (U = [f(Ua)ll, (f4(U1), f£(Us)) = O a.e. in 2. Here U,, U, denote the basis
fields with respect to u,, u, and f,: T2 — T'M is the induced mapping of the tangent
bundles. Moreover * x” denotes the cross product, on T, M. Let wy € 2 and Q, =
be a neighbourhood of w, such that f(,) is contamed in some coordinate neigh-
bourhood U — M with some chart ¢: U — R3. If £ = @ of is the representation of
'f, then (1) implies

Azt + I z:‘axua = 2H (x( w)) g“‘ Vo, A :z:,,),r )y  aeon® (=1,23),
- gii(z) =t ‘) = = ¢;i(%) zizd, - gii(%) 4 2 = 0 a.e. on 2. .
Here 4 = 0%/ou® + 8%/dv? denotes the (Euclidean) Lapla01an Note that H-surfaces

are also weak H-surfaces in the sense of [5: cp. (3.5) Def.]: Moreover we use the ab:
brevxatlons D(fy = fg,,(x) D,z'D,a? dudv. and T’ = {(32) to denote the Dirichlet

integral and the boundary{ of f, lespectlvely. Fmally, put. B = dist (I, S,) = inf
{d&,m): ¢ €l neSl,); A(f) = area of f, A = max {|H|yq, 19lo.s.}, where .
|Hlo.0 = ess sup |H(f(w))]  and 19lo.s, = sup 1DEN.

3

Let  be the injectivity radius on f(£2) and x denote an upper bound for the sectlonal
“curvature on f(£2) (for a precise defimblon and further properties concerning the in--

jectivity radius and the sectional curvature we refer to GROMOLL, KLIVGE‘IBERG and
"MEYER [4]. :

Theorem 1: Let 2, M, o, J,, S, be defined as above. Assume that f + const is some
surface of class H 1(.Q M) n CYQ, M)ynH § 10c{$2, M) with the followmg properlies: :

(i) (@)= J, us,,

(i) Dy fo(U,) = 2H(f) f+(U,) X/*(Uz)a e.on =0 — Q* where 2% = f- l(S ),'
©(iii) MU = MU, {f2(Uy), f(U2)) = 0 ae. on Q. ’

Then. {(2) = J, provided that either o/ the cases 1 or II kolds:

mo?
I)»x=0 vm.zd A(f) < 1T 20 7 @A) Q',— mm: {R, 7}.
: b nx1 '
(Il x > 0. end Ay < I YR N ok o := min {R T, Vx}

sin(pVx)  sin? (V) %
. Furthermore/zs of class C¥+(Q, M)if M belongs to Ck+1= gnd H 18 of class C" La( M, lR)
k=2 .

! —
Remarks 1. Since / is supposed to be contmuous on 2 wehaver > 0and x < oco. 2. If, in

" . addition to the other hypotheses A is simply connected then case I holds with @ = R provided

that s < 0. In fact, this is a consequence of a theorem of Hadamard and Cartan, cf. [4:Section °,
7.2/Satz}. 8. In view of (iii) we find that D(f)/2 = area of /. 4. The area of / can be estimated
by L¥I'), L = length of I' = f(82), plus suitable error terms, cf. [14].

The following corollaries are simple consequences of the theorem.

" Corollar y 1: Suppose that M is a simply connected, complete and orzentable Rie-
mannian manifold of class C* with non-positive sectional curvature and let f € C°(.Q M)
nHE (2, M) n H (2, M) satisfy conditions @ —(m) of Theorem 1 with H = 0. Then

* 1) Here and in the sequel we agree to sum over repeated Iatm mdlces 4,5, k... from 1 to 3 and
over «, f§ from 1 to 2. .

.7
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HD) = J, is a minimal surface in M provided that, in additién, A(f) < =R2/(1 + 24R
+ 27Y(24R)?) where A = |9lo,s,. (Note that M = R? is possible.) ' .

Corollary 2: Let the assumption of Theorem 1 hold with » < 0 and assume
]/ ]/ — A2
A < YnjA(f). Thenf 2y < J, provided that |} D 4 D2+ 22”A2DA D <o, D= 2A(/).
T —

Let fc J < IR? denote some closed Jordan are, then the class (I, J) is. defmed
by (I, J) := {f € H,Y(B, R3): f(B) = J.a.e., flog: aB — I' is continuous and weakly

‘monotonic}, where- B {(u, v):u? + 02 < 1} Put Ar, = 2-2inf {D(f): f € &(T", J)},~- -

then the existence-regularity . results of [12, 13] togebher with Corollary 1 1mmed1ately
lead to

Prop0s1t10n 1: Let ' mtJ be a closed Jordan curve with G(I',J) &= 0 and
suppose 8 = dJ is of class C3, has bounded principal curvatures and a global parallel
surface in J. If A = |Dlos salisfies A < {—1/4R? + #/2A4, jV2 — 1/2R, then there
exists a minimal surface b in J, i.e.(i)—(iii) of Theorem 1 hold with H = 0, Q* = @.

Example.1: Let J be the torus of revolution which is generated by revolving the disk
(6, — a)® + &2 < r? about the §,-axis and assume I’ permits G(I, J) + @. Forr < a < 2r the
torus § = -8J has regions of negative inward mean cu}‘vature and thus the § — A maximum
principle by HILDEBRANDT [11] and GULLIVER and SPrRUCK [6, 7] cannot be applied to solu-:
tions of the variational problem D(f) = f |Vf(u, v)|2 dudv ~> minimum in@(I, J). On the other
hand the maximum absolute value of the mean curvature of § is given by A, = 2-! max
{(a + 2r)/r(a + 1), la — 2r|/r(a — r)}. Proposition 1 gives the existence of & minimal surface

spanned byI‘merovnded Ar.gand R satisfy Ay < {—1/4R* + =[24r s}'* — 1/2R. To obtain
" a numerical example one may assume further that I" is contained in the torus of revolution
that is generated by the disk (¢, — a)? + &,2 < (0.87)% and that r = 2, @ = 3. Then R = 2/5
lea.ds to the sufficient condition Ary <041, '

. Example 2: Let, J = {& € R3: |§] = 1} be the exterior of the unit ball. Then = —1,
A = 1 and'for R = 1 Proposition 1 gives the existence of a minimal surface spanned by I in J
if Ar s < nf5. Note that the critical value for Ar ; in this configuration is 37, since the disk
spanned by the circlé {§; = 1} n {|&] = 2} has area 3n and touches |§] = 1 in (0, O, 1).

Now we are concemed with solutlons of the degenerate system

1 ’ 1
Az, = T (Vxl Vi), dz, = T (Va,Vag), Az = —— (Vx;,sz) + o va|2 '
; 3 3
0 : (2)
which turns out to be the system of Euler equation for the mtegral E(x f:v3

[Va(u, v)|> du dv, x = x(u, v). Special interest is given to the vanatlonal problem
E(-)Mminimum on (I, J), J = {& = 0}, since it describes surfaces of least
potential energy under gravitational forces, cf. [1, 2] for various existence results.
Proposition 2 improves the corresponding results Theorem 12, 13 in [1].2)

-Proposition 2: Let J = J, = {§ € R® & = ¢}, ¢ > 0, and let h(T') := sup {&,:

K & € I'} denote the height of I'. Assumethat f € (S(I" J.) is asolution of E(-) ~> minimum
on §(I', J.), and that either : o

' 1 _— R2%2 - ‘ R2g2
Ay =5 [ 1Vedudy < — or  Ary, < =
\ . e + ¢R + —;—R? : b

. i 1 )
e+ eR + — R?
B ' ’ 2
2) The constants 24ze-2¢2 and (/h) n(defe)? which appear in [1: Theorems 12, 13] bave to be re-
placed by 22ne-2¢? and (e/h) n(2¢/e)?, because in Lemma 7 of that article § denotes 2-times the
mean curvatures which is actually used by these authors. -
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Then | = f(u, v) 18 contamed in the open half space. {53 > ¢} and furnishes an analytw
solution of (2). -

We now turn to the proof of Theorem 1: Let y denote the characteristic function -
of Q* = {1(8,) and put A¥(w) = x(w) H(f(w)) + (1 = - y(w)) H(f(w)). Following an
observation of HILDEBRANDT [11], which was also used in [2], we claim that _

Duaf*(U)—n?A‘f*(U)Xf*(Uz) aeon® . @)

In fact, (3) is obvious on 2 — 0% w hlle itis a consequence of the conformaht,y rela-
tions on 2*. We refer to [2, 11] for explicit calculations. Introduce local coordinates
@: U - IR3, where 2, = 2 fulfils {(2,) = U = M, and let z(w) = 9o f(w). Then (3)
vields . .

4t 4 Taing + ziml) = 20@) Vi g nzyr (4_)7

a.e. on 2, and for I = 1,2, 3. By virtue of |A*jo0 < A < oo -and arguments from
L, theory one immediately infers f-€ HZ (2, M) nCv(2, M), for all p < co_and
o 6 (0, 1). In view of f € C‘(.Q M) and (4) we see that |dz| < const |Vz| ae. in @ for
every £2 —— Q. Hence a technique of HARTMAN and WINTNER is apphcable cf. [8 to
10]. In particular one obtains the asymptotic expansmns

29;,,,( w) =z, — iz, = (a — ib) (w —wg)” +o(lw —wel") LG

for w close to w, € 2. Here the vectors.a, b € RS fulfil the conformallty conditions
*llall = [1bll, {a, b) = 0 and » = v(w,) stands for a non-negative integer. It is now proven
as in [2: cf. Lemma 3. 11] that (5) in turn implies the densnty estimate. . :

1 : : KR
lim sup — f gii(z) D x‘D,,x’ du dv = 21(1: + 1) v (6)
e—0 0 . ’

I\Q(wo) ’ '

where K (w,) = {w € Q d(/(w) b wo < g} Note that (6) holds for'every w, € Q and
for some v = 0. We are thus in a posmon to carry over a result of GRUTER, compare
[5: (3. 10 Theorem] %) . _ !
Lemma (cf. [5]): Let f be as above, then the /ollowmg assertions: hold.
a) If » <.0 and if infag d(/(w), f(w,) ) = r for some wo € Q where 0 < r S T, then

(v + 1) 22r* < D {1 + 247 4 271 (2Ar)).
'b) If x > 0 and if infag d(/(w) Flwy) ) 27 for some w, € O where 0 < r < min {‘t, A
nf2 }/—} then _ ) :
(v + 1) <> 1  oar (24)2 o
% =D {sin2 (r V) + sinZ (r V) + x | '

Observe that the proof of the theorem in [6: (3.10)] applies to our situation even if
wy 18 & branch point, i.e. Vz(w,) = 0. In fact in- this case w, may not belong to the
class of “good” points, compare the definition of the set 4 in [5]. However, in view

8 (I\'Iot,év that the left-hand side of (3.11) in [5] has to be replaced by 2n/x (instead of 27:/!{';):
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of what was said before, especially relation (6), it is clear that, in our case, branch
points are even ‘“‘better” points, since » = 1 then. This, in turn leads to the estlmates
of the Lemma, as follows now from a repetition of Griiters argument,

Proceeding with the proof of our theorem; we now assume on the contrary to the
assertion that there exists some w, € 2*. Since R = dist (I, S.) we obtain infsg d(f(w
fw 0)) = R = . Putting r:= ¢ and » = 0 in the previous lemma one 1mmedlately
derives the desired contradiction. We have thus proved that f(2) =J,. The remain-
_ing assertions will follow from potentlal theory 1 , N
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