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The Spectrum and Quadrature Formulas of Spherical Space Forms

F. PRUFER

Es wird das Spektrum von kompakten -Riemannschen Mannigfaltigkeiten der konstanten
Schnittkrimmung 1, deren Fundamentalgruppe zyklisch ist, berechnet. Daraus ergeben sich
Folgerungen fiir den ersten Eigenwert dreldlmensmnaler sphanscher Raumformen und fiir
Qua.dra.t,urformeln

Bruncanerca CMEKTP KOMMAKTHHLIX PUMAHOBHIX MHOr000pasuil .MOCTOAHHOM CerMenTapHof
KpUBHBHLI | ¢ UMKiInyeckol pyHRaMeHTaTbHON rpynnoft. OTCIONA MOSY4AIOTCA CIeACTBHA
JIAA NepBOro co6CTBEHHOr0 3HAYEHMA TPEXMEpPHHIX ctbepw{ecmtx NPOCTPAHCTBEHHBIX q)opm
M JUIA KBaApaTYpHBIX GOpMyI. q

The spectrum of compact Rlemanman manifolds of constant sectional curvature 1 w1th cychc
" fundamental group is computed. From this corollaries on the first eigenvalue of 3- dlmensnonal
spherical space forms and quadrature formulas are obtained. .

1. Introduction o . -

Let M be a compact connected Riemannian manifold of constant sectional curvature 1.
Then M is the orbit space of a finite group acting freely and orthogonally on a
sphere.of radius 1. Spherical space forms are completely classified by J. A. WoLr
[13]. Let 4 be the Laplacian-acting on the space of C®-functions on M. It has a
purely discrete spectrum consisting-of nonnegative eigenvalues with finite multi-- .

plicities. We denote the spectrum of the operator 4 by spec (M). There are a few ..

explicit results on the spectrum of spherical space forms. For example, the spectra
of homogeneous spherical space forms and certain lens spaces were computed, see
[7, 8,10, 11]. However, we do not know the spectrum of a lot of other spherical
~space forms. Using Ikeda’s gcnerating' function (see [2, 3]), a method to compute
explicitly the spectrum of M was glven in [11].

The main tool of the present paper is a formula for the dimension of the space of
G-automorphic homogeneous harmonic polynomials of degree j (j € Nq) proved in
[7), where ¢ = O(n + 1) is a finite group acting freely on S*m+1. Here, we study this
formula for cyclic groups in more detail.

The algebraic computation of the elgenvalues of orbit manifolds is closely related
to lattice point problems In Theorem 1 we give this reformulation for lens spaces.
This lattice problem is an efficient method to compute the spectrum of spherical
. space forms. For 3-dimensional lens spaces the corresponding lattice problem was
already obtained in [2, 13]. Since the computatlons are purely algebraic we give only
short comments. ~

The purpose of Theorem 2 is to list all the first eigenvalues of 3-dimensional spheri-
cal space forms. To one’s surprise there are only 6 possibilities for 2,. Moreover, the
first eigenvalue gives a few informations on the structure of the fundamental group
of M. In certain cases 2,(M) and the dimension of the corresponding eigenspace
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contain the. whole information on the geometry of M. In these cases the results are -
stronger than the results in [2].

In the last section we apply our results on ‘small elgenvalues to derive integra-
_tion formulas on the unit sphere for homogeneous polynomlals Such formulas are
interesting for a few practical problems. In [5] was given a 19-design with 3600
nodes. Using the blnary icosahedral group we find a 19 -design with 840 nodes.’

2. The resdlts _
Let G = (O) be a cycllc subgroup of order q and let 0 be conjugates in O(2m + 2)
to the element

_0',:( (.p,/q),“ 0. -’ R()=“c.os2yz0 _sin 2a6\ ,
0 R(Pmarl®) —sin 278 cos 2nf

where p,, ..., pnyy are integers prime to g. Then S2™*1/@ is a spherical space form, .
which is a so-called lens space, and we have S2™*1/G = L(q; p,, ..., Pm+). Further
more, let J(q; D1y «--s Pmsr; %) denote the number of lattice poiQts @y -y Qmit)
€ Z™+! such that : : T o ’

() lai| + - + [Bm| = %, : o o
(1) aypy + o F P = O (mod ¢), where ¢,p;,..., Py and x are given
mtegers ’

Theorem 1: Let L =L(g;py--- p,,m)' be a lens space of dimension 2m + 1
(m € N).

(i) For even g the spectrum of L ié given by the ezgenvalues ta; = 4§(j + m), 7€ Ny
with the multzplzcztzes .

d(2j, L) = o( 1 )J(q;’pl,~-~,pm+,;27'—'29)- D ¢
o= : : '

(1)) For odd q the spectrum of L is given by the eigenvalues p,; = 45(j + m) (j € Ng)
with the multiplicities (1) and by the eigenvalues Mot = (25 + 1)(ZF + 1 + 2m),.
7= jo (7 € N), with the multiplicities o .
aei+ 1,0 = 2 (" F T 1) i a2+ 1 - 20,
o=
. Here, j, 1s the smallest positive integer such that there exists a solution (a,,...,0pn,) € ZMm+1

of laa| + -+ + Iam+1_| = 2jo + 1, @191 + -+ + @niyPms = 0 (mod g). a
. We define the following typs of groups: '
~«(I) Z, = (C),-the cyclic group of order ¢, ¢ € N.

(1) Z, X Da,, where {q, 2v) = 1 and Dy, = (4, B), 4" = le =1, BAB' = 41
andl v = 3, v odd. ,
- (III) Z, XD}, (g,2v) =1, where Di, =(A4,B), A*=B'=1, BAB' = A4~!
' and v = 2. : ]
(IV) ZyX Ty, (q,6) =1, where T3y =(X,P,Q), X¥=P'=1, P:= Qe
XPX‘1 =@, XQX' = PQ, PQP*=@andl e N. :
(V) Z, X O*, (g, 6) = 1, where O* = (X, P, @, R) as for Toyand’ RXR-! = X1,
RPR‘—QPRQR‘—Q‘ o

(VI) Zg X I*, (g,30) =1, where I* =(U, W), U2 (UW): = W5, Ut=1.
' (It is I* =~ SL(2, 5), where SL(2, 5) denotes the multlpllcatlve group of
2 X 2 matrices of determinant 1 with entries in the field of 5 elements.)

m+0
m—
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Theorem 2: Let. M be a 3-dimensional sphencal space form o/ curvature 1 and
spec (M) ={0,4),4,,..},0< 2, £, = .. ’
(i) We have 4, € {3, 8, 24, 48, 80, 168} and _ S

;ul=3?///.M S3

A =8ifm(M)=Z 422
Ay = 24 iff 7 (M) s zsomorphzc to a group of typ (II) or (II]) ’ "
2.,:482//7:1(M—Z X Tys, (¢,6) = 1, '€ N, : -
A, = 80 iff m(M) = Z, X 0%, (g, 6) = 1, .
Ay = 168 iff n,(M)4= Zq X I*, (g, 30) = 1.

(ii) Further, let d(4,, ) denote the dimension of the eigenspace correspondmg to 4,.
Then d(2,, M) = 3 iff M s homogeneous. .

‘Now, let H; be the vector space of homogeneous polynomlals of degree j in the
. variables z,, z,, z,and z,. A quadratul e formula of degree j is a set of r points y,, ... ¥,
on 8% and constants ¢y, ..., ¢, su(,h that

\

i |

L f1to=Fesw) forajetosk=i,
3 i=1 S .
s. .

J.

where do is the invariant measure of §% and w; = 2a%. Quadrature formulas for S3
are rare. For a result see [5]. Using the Theorems 1 and 2 we can easily give special
quadrature formulas of degree less than 19. - .

 Let G be a finite subgroup of O(2m + 2). A function f: §2™*1 — C is called G-auto-
.morpkic if foT = fforeach T € G. :

* Theorem 3: Let F, = SO4) (i = 1, ...,5) be finite groups acting freely on the
. sphere of radius 1. and F, == Dy, F, == T* Fy= 0% F,==I* and F; == Z7 x I*.
Then we have the /ollowmg quadrature /ormulas

i — do = T

) f/ 31 21w, -
/EH (0 £ 7 < 5) and y, is any zero of the first nontrivial F,-automorphw
etgenfunction of S3. .

~

(ii) ' —[/do—24£'fo), ’

, fEH;(0<j<5)andz€ S,
) f fdo = 35 Z KT,

‘ feH (0s737)'andxesa,
1v) —ffd = 120 TEZF'/(TQ:)

/eH (0<j<1l)andz e S,

™) —f/do 500 ST
/€ H (0<7<19) and y, is any zero of the /zrst ‘nontrivial F,,-automorphw
ezgenfunclwn of 8% -
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3. Spherical space forms and automorphie eigenfunctions : )

In this section we will- Briefly review the facts concerning the G-automorphic eigen-

functions of §2m*! (see [1, 2]). Let S+ (m € N) be the unit sphere centered at the
origin in R***2. Furthermore, let M be a spherical space form of curvature 1 and
dimension 2m + 1. Then M = $2m+1/@, where G is a finite subgroup of SO(2m + 2)
~and for any 7' € G-with T = Id, 1 is not an eigenvalue of 7. Here Id denotes the

unit matrix in O(2m + 2). The sphere S2™*! is the universal Riemannian covering .

manifold of M. Let ¢ be the covering map of S2™*1 onto S2m+1/@, (: §2m+1 5 §2m+1/@7.

-~ We denote thé.space of complex valued C°-functions on M by C=(M) and denote™ ="~

the Laplacian acting on C®(M) and C=(S2m+1) by'A and 4, respectively. The Lapla-

cian has a purely discrete spectrum ‘spec (M). For k = 0 let H, be the space of com-

plex valued homogeneous harmonic polynomials of degree & on R2m*2, The spectrum

of 4 is well'known, see [1]. Tt contains the eigenvalues x; = j(j + 2m) with multi-

plicities ' ' '
. ) + 2m\. ) — 2 + 2m ;

) = (7 ;'n >.—‘(7 27: ) j € No.

N . v . ) . N
The eigenfunctions of $*™*1/(¢ are exactly the G-automorphic eigenfunctions of
S2m+1, More precisely, let i: §2m+1 L R2m+2 be the natural inclusion map. Then i indu-

ces the restriction map i*: C(R?™*2?) —» C*(§?m+1) and we have the following -

Lemma 1 (see [2]): Let V(j) be the eigenspace with eigenvalue u; of J._Tﬁen the
map i* gives an O(2m + 2)-isomorphism. i*: H; = V(j), jE€ No.

Furthermore, the map induces the injective map o+ C(82m+1 () — Co(S2m+1).
’I_‘h’e following formula is clementary, see [1]: For any f-€ C>(S*m+1G), we have
A(*f) = *Af). Now it follows

‘Lemma 2 (see [2]): Let V(j, G) and H(j, G) be the subspaces of V(j) and H; con-
sisting of ‘all the G-automorphic elements of V(j) and H;, respectively. Then (¢*)-!
V(j, G) is the eigenspace with the eigenvalue u; of the Laplacian A on S™+Y|Q and it is
isomorphic to H(j, Q). Further, every eigenspace of A on S™+1/G {s obtained in this

way. .

Let d(j, G) = {lim H(j, G). Cdnsequent,ly, we need only the values of d(j, ) for
. the calculation of spec (M), M = S+, ° : -

v

4. The spectra of lens spaces

Now wé prove our Theorem'1. Recall that in [7] the following formula for d(j, &) was
_derived: = - :

, —1) ;.
(5, G) =%{1 + S+ <—1)")}d<7',> .
_ i . L i ‘ o
4 Ly R e B ORT R (e N) (2)
qd TeG k=0 :

where g is the order of ¢, }' means that we have to sum up only over T € ¢
\{Id, —Id}, [j/2] is the intire part of j/2, o -

i+ m (7'—{—m'—k—1)

3 B [ 17K -
omlj, k) (=1 i+ m - 2k N k
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and

. 41 ’ 2np'(T))kv
- R(T;q,k) = . cos .
Tin b = bt +%:. =j- 2k-nl ( oT)
Here ¢(T') is the order of T ¢ ¢ and exp (27ip.(T)/q(T)), exp ( —2nip,(T)/q(T)) are
_the eigenvalues of 7' (1 < » < m + 1). Our proof of Theorem 1 is based on an explicit
study of this formula for cyclic groups. We have Z,={(Cyand Cis conjugate to C’
in 0(2m ~+ 2). Similar to [8] this gives o
21, ‘ ' . ‘ '
a(j, q)—Z“mL 2. : 2 L (3
. 1SS Sgy-usSm+1l €1ty gx€{—1,1}
. . c.p9.+---+z,_..pp;-.f-0(modq)

Here we have used the identities

i=2k  2np,l

. . onl B
HCO.S = 2%=j 2 - COS — (elp(h + -+ £j- 2kp91—n)
= d v=1 ' Eetyogr€{— 1.1} q .
an
9-1 2nl 0 for t=0 (mod q),
=
,‘5, o8 q {q for ¢ =0 (modgq). h

The next step ‘is the following
Lemma 3: We have the equality

. ) . 1
1SS -Sexsm+1 i tn€{—1,1}
K T aip,, + +t~p‘,,‘-0(modq) .
¥ 5 z "iil(‘“"" + 23')' @
1=0 [ail+ +|amerl=x—=20 8+ +8pu=1 v=1 Sy o

Pt +8mi1 P mO(MOdg) 81841 20

Proof: The sum on the left hand side runs over all terms a,p; + ' + @p1Pmnr
with @p; + -+ + @uuPmn =0 (mod g) and |a,| + - + [@mes| < x. Here every
term can appear several times in the sum. Next we have only the possibilities |a,| +

- 4 |@pei] =% — 21, 0 < I < [#/2]. This means that the term a;p; appears iff p;
appears. exactly |a;| + 2s; (O =8 = [(x — Jayl) /2]) times. In this case exactly s;
’ CHE + 8i

of the cbrresponding &, ‘must be —1. There are posmbnhtxes for the

choice of these ¢,’s. Further-we have (|a,| + 25,) + - + (|&ms1] + 28m4)) = % and
" for |ay| + o+ + |@pn] =% — 2l we get s, + -+ + s,,,“ = I. Now wé conclude easily
that the term a,p, + --- + a,,,“p,,,“ with |a1| + - + @] = 2 — 21 appears
exactly : -

n(la|+2s)-f - \

st dmp=l =1 - S
81 8mar1 20 \ .

times. This completes the proof of the lemma &

Now we put

2o o bms ) = 3 (bp+ 2, ) (bm +2sm) ;
&+ tama=l s
. I M- 8y Sm

X(x42zeb.—.-»—bm+2s";+l)‘

Sm+1
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with b; € Ny (1 <5 S m) bl + oo + by =% — 2l and x,1 € Ny. A straightforward
calcu]atlon shows that y does’ not depend on b,, . +; by. Therefore we have

201 o b e, 1) = 20, ..., 0; %, 1). ! ' a ‘ (5)

Substituting (4) and (5) into (3) and permuting the sums we get,

a(j, Zg) —ZAm(y, J(q pl,-'-,pm+1;7'—2e) . o :(6)
with o C
e 2s 25\ [j — 20 + 2s,;
Anlis0) =2 auli k) X ( ’) . ( )(7 et “)
k=0 St Hom=e—k \ 1 Sm Sm+1
. 81r-vns Sm+e1

\

Lemma 4: We have 4,(j, ¢) = (m +§,—'l)for5' € Ny, 0 < 0 < [j/2)-m € N.

Proof: To begin with we find (see [8: p. 169]) -

‘ 281 ‘ 28,,, 7 - 2@ + .28m+1
S+t Smn=e—k \ S Sm ~Sm+1

318 )
= 2 2. 2s, 23,,,_1 j— 2k — 25 — - — 28, 1 — S,
e +;:§g « 8 ) Sm—1 .9 — k — ‘Sl e — gm N

. Using the a'd-dition formula for binomial coefficients several times, now we obtain
Anljs 0 + 1) = Ap(j,0) + Amoy(f + 1,0 + 1). Therefore our lemma follows by
induction with respect to j § ‘

From Lemma 4 and (6) we obtain the desired formula in Theorem 1. The further
statements of Theorem 1 are eas1ly to prove by means of thls formula. We omit here
the proofs.

5. The first eigenvalue0f'3-dimenéional spherical space forms . '.(

. The basic theorem of thls section is the following. If G is a finite subgroup of SO(4)
acting freely onS3, then @ is isomorphic to one of the groups of typ (I)—(VI), see
[12] (also [6, 13]). Moreover, let S3/G, and S3/G, be spherical space forms.. Assume -
@, is isomorphic to G, an(l is not cyclic. Then @, is conjugate to G, in O(4) such that’
- 836G, = 83Ya,. :

We now may prove Theorem 2. Next, our Theorem 1 lmphes Theorem 2 for the

groups of typ (I). The furt,her assertions of Theorem 2 we get from the followmg
table.
The calculations are the same in all cases. We decompose the group G into conjugate
cyclic subgroups and then we determine by means of Theorem 1 its multiplicities.
_ Therefore we consider completely. here only the case G = Z X Dg,. In the other
cases we give only the corresponding formulas.

Let G be a group of typ (II). Then @ =2 Z, X Dy, and we have Dy, = (4, B),
A'—Bz'—l BAB™! = A7! with | =3, qEV, » =3, voddand (g, 2v) =1.

. Further, let Z, = (C’) Ci=1,CA=AC,CB=BC. A representatlon 7w Zy X DQI,
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G d(o, G) d2,6) d4,6). 'd(6, G) d@, G)  d(10, ) d(iz,__q)

A
Z,x Dy 1 0 r ‘
Z,x D}, 1 0 20¢>1,v=2)

10(g = 1, v =2)-
1{g>1,v > 2)

, 5(g = 1,v > 2)
Z,x Tys 1 0 0 " lg>dor
! N 1> 1) :
Z,x0* 1 .- 0 0 - 0 C1(g>1) -
' . I -9@=1)
Z,xI* "1 0 0 o o 0 1(g>1)
’ : ' ©18(g=1)
: ‘—’>.SO(4) acting freely on 83 is given by (sée [13])
: R(l) -0 O\ 0 I
v
71(14) = . ’ R(B) - .. 1 ’
| . R(_;) R(z,—_l) 0
i v

Then G.is conjugate to n(Z, X Da,) in 0( ) and 83/G =< 83{n(Z, X Dy,). Therefore
we can suppose G = n(Z, X Dgly) The following facts are obvnously or well known, °
‘see [13]. The group G contains the cyclic subgroups G-, = (7(B24C)) of order 2!~1yq
and G, = (n(BA¢C)) (0 < ¢ <v — 1) of order 2'q. The groups G, are .conjugate
subgroups Further we have G;n Gy = B (i &= ¢’), where 8 = (n(BQC)) is the center .
of G. Let | 3| be the order of 8 Then 8] = 2/-1¢. Now (2) yxelds

I Z‘ Z (2], k) 41 kR(T 27’]‘)
Gl |ré5., o

‘—i—'Z—l 2 Z, xm(2], k) 47 R(T" 2j, k) .

e=0 T€GQ k=0

R Zoc,,, 27,k) 4 "R(T 27,k)}

T€8 k=

d(2j, G) = = d(2)) + —

2
161

1 o
- (29, _,)+—2d27, )——d2j 3).

e=0

Since the groups G, (O Sp=v—1)are conjugate, we have d(27, 9) = d(27, G’o)
I1=Ze=»—1). Thxs gives. .

or ;e 1 .
402, 2 X Do) = 5 (2, 6. _+ d(2j, Go) — 5 (2, B).
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The. groups G, Gy and 8 are cyclic and we can easily’ compute the eigenvalues of
n(B2AC), n(BC) and n(B*C). Then using Theorem 1, we obtain the statements on-

Zq X D;l,. . . .
For the groups of type III similar considerations give

o 1o o .'
2,2, X D}) = 5 d(2), 6) + d2j, o) — 5 d(2), B)
where 6., = (n(AC)), Gy = (x(BC)), 8 = (a(B*C)) and
' o= (_5, ") mo=|

: ' 1 —1d : - 1
0 R (—,—) , . 0 R(—)
S W4 4 o \q

For the grbups of typ IV we obtain

a(A) =

: , . RS T
d(2), Z, X Tie) = (2}, G,) + = d(2), G5) — = (2], 8y)

* where G4 22 (g,) (¢ = 1, 2), B, 2= (g) with

Y4 / E , ‘ ‘ ‘ ' b\ N
~ gl —3 . N p N / ] .
) : . P2
‘ 0 E (2-3‘4) A
R(—2 0 - R(—L 0
4.31g L [ \eeg .
g = |- ’ Py’ ' 1 .
LD (4 - 3’7‘4) ' 0 R (2-3“.‘q)

For the groups of typ V we have
. - -1 . . Hos . '
42, Z X O%) = 5 {d(2), Gy) + d(2), G5) + d(2], Gs) — d(2], Bo)}

where G- (g,) (i = 4, 5, 6), 8, = (gs) with

Y o\ (Y
A A SR

g = ‘(if:q_—q).;_q o R(-‘%iq) 01'

\oafg =

Finally we find for the groups of typ VI

d(2j; B, X I¥) = 5 (@(2], Gr) + d(2i, 6) + d2j, Go) — d(2, B}
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where G, == (g,) with
10 + ¢
R
( 10¢ )' 0

10 — g
0 R( 10q )

97'=

Using Theorem 1 we can complete the proof of Theorem 2.

6. Special quadrature formulas on §* ’

- To prove Theorem 3 we use the followi ing

Lemma 5: Let @ = SO(4) be a finite subgroup of even order actmg /reely on S3.
If 2y € S%is a point with the property f(z,) = O for each/ € V@, @), =5l {hen

= [1do= S iTa)  joramyjeH 0 SiSD.
wss' ) |G| Teq : ‘

"We omit here the easy proof. Now, thé assertions (i)—(iv) of Theorem 3 follow
by the table in'Section 5 and Lemma 5. Furthermore, using Theorem 1 and our
decomposition of Z, X I* we get d(14, F;) = d(16, F5) = d(18, F;) = O by a  straight-
forward calculatlon This completes the proof of Theorem 3.
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