Zeitschrift für Analysis und ihre Anwendungen
Bd. 8 (2) 1989, S. 163 – 167

Traces of Anisotropic Sobolev Spaces with Mixed Lp-Norms on Hyperplanes

M. MALARSKI

Wir skizzieren einen neuen kurzen Beweis für einen bekannten Spursatz für anisotrope Sobolev-Räume mit gemischten L_p Normen, der auf Methoden der Interpolationstheorie beruht.

Мы наметим новое короткое доказательство для одной известной теоремы о следе для анизотропных пространств Соболева со смешанными $L_{\mathbf{p}}$ -нормами базирующее на теории интерполяции.

We outline a new short proof of a known trace theorem for anisotropic Sobolev spaces with mixed L_p -norms based on methods of interpolation theory.

1. Introduction

The aim of this paper is to outline a new proof of direct and inverse embedding theorems for traces of anisotropic Sobolev spaces with mixed L_p -norms on hyperplanes in \mathbb{R}^n . Our arguments will be quite similar as in [4: 2.9]. First of all let us recall some definitions and results. Let $(p) = (p_1, ..., p_n)$, $(1) \leq (p) \leq (\infty)$, i.e. $1 \leq p_1, ..., p_n$ $\leq \infty$. Then one sets

$$
L_{(p)}(\mathbf{R}^n) = L_{p_n}(\mathbf{R}, L_{p_{n-1}}(\mathbf{R}, ..., L_{p_1}(\mathbf{R}), ...))
$$

Let A be an arbitrary Banach space and $f: \mathbb{R}^+ \to \mathbb{A}$. We define

$$
||f| L_q^{\ast}(A)|| = \left(\int\limits_0^{\infty} ||f(t)||A||^q \frac{dt}{t}\right)^{1/q}.
$$

We use standard notations for differences and derivatives: $D_i^m = \partial^m/\partial x_i^m$, $\triangle^1_{i,j}(x)$ $= f(x_1, ..., x_j + t, ..., x_n) - f(x)$, and $\triangle_{j,t}^m = \triangle_{j,t}^{m-1} \triangle_{j,t}^1$.

Definition 1: Let $(p) = (p_1, ..., p_n), 1 \leq p_1, ..., p_n \leq \infty$. (i) If $m \in \mathbb{N}$ and $1 \leq j \leq n$, then

$$
W_{(p),j}^m(\mathbf{R}^n) = \{f \in L_{(p)}(\mathbf{R}^n) \mid ||f|| W_{(p),j}^m|| = ||f||L_{(p)}|| + ||D_j^m f||L_{(p)}|| < \infty\}.
$$

(ii) If $(m) = (m_1, ..., m_n) \in N^n$, then

 $W_{(p)}^{(m)}(\mathbf{R}^n) = \{f \in L_{(p)}(\mathbf{R}^n) \mid ||f|| W_{(p)}^{(m)}|| = ||f||L_{(p)}|| + \sum_{i=1}^n ||D_i^{(m)}f||L_{(p)}|| < \infty \}.$ (iii) If $s > 0$, $1 \leq q < \infty$, $1 \leq j \leq n$, $k, l \in \mathbb{N}$, $0 \leq k < s$ and $l > s - k$, then $B_{(p),q}^{s,j}(\mathbf{R}^n) = \{f \in L_{(p)}(\mathbf{R}^n) \mid ||f|| B_{(p),q}^{s,j}||^2$

$$
= ||f| L_{(p)}|| + ||t^{-(s-k)} \triangle_{j,t}^l D_j * f | L_q^*(L_{(p)})|| < \infty
$$

(iv) If $(s) = (s_1, \ldots, s_n)$ with $s_1, \ldots, s_n > 0$, and $(k) = (k_1, \ldots, k_n) \in \mathbb{N}^n$ and (l) $= (l_1, ..., l_n) \in \mathbb{N}^n$ with $(0) \leq (k) < (s)$ and $(l) > (s - k)$, i.e. $0 \leq k_i < s_i$ and $l_i > s_i - k_i$ for all admissible *i*, then

4 M. MALARSKI
\n(iv) If
$$
(s) = (s_1, ..., s_n)
$$
 with $s_1, ..., s_n > 0$, and $(k) = (k_1, (l_1, ..., l_n) \in N^n$ with $(0) \le (k) < (s)$ and $(l) > (s - k)$, i
\n $> s_i - k_i$ for all admissible *i*, then
\n
$$
B_{(p),q}^{(s)}(\mathbf{R}^n) = \left\{ f \in L_{(p)}(\mathbf{R}^n) \mid ||f| B_{(p),q}^{(s)}|| = ||f| L_{(p)}||
$$
\n
$$
+ \sum_{j=1}^n ||t^{-(s_j - k_j)} \triangle_{j,t}^{l_j} D_j^{k_j} f| L_q^*(L_{(p)})|| < \infty \right\}.
$$
\nProposition 1 (cf. [1: 5.4/p. 73] for (i)): For $(p) = (p_1, ..., p_{\infty}$, the following propositions hold:

p,) with ¹ $< \infty$ the following propositions hold:

(i) ("Lebesgue's theorem") Let $\{f_k\}_{k=1}^{\infty} \subset L_{(p)}(\mathbf{R}^n)$ be a pointwise convergent sequence, $f_k(x) \to f(x)$ if $k \to \infty$. If there exists a function $g \in L_{(p)}(\mathbb{R}^n)$ with $|f_k(x)| < g(x)$ for all $x \in \mathbb{R}^n$, then $f \in L_{(p)}(\mathbb{R}^n)$ and $f_k \to f$ (convergence in $L_{(p)}$). (ii) $C_0^{\infty}(\mathbf{R}^n)$ *is dense in* $L_{(p)}(\mathbf{R}^n)$.

Remark: To prove (ii) one can use Sobolev's mollification method, which works also in the case of mixed L_p -norms, cf. [1: II §§ 5, 6].

Proposition['] 2 (cf. [1: Theorem 18.2/p. 294]): *All norms in Definition* $1/(iii)$ *and* (iv) *are equivalent to each other for all admissible k, 1 and (k), (1), respectively.*

Proposition 3: *We have*

$$
x \in \mathbf{R}^n, then \quad j \in L_{(p)}(\mathbf{R}^n) \text{ and } f_k \to j \text{ (convergence in } L_{(p)}).
$$
\n(ii) $C_0^{\infty}(\mathbf{R}^n)$ is dense in $L_{(p)}(\mathbf{R}^n)$.
\nRemark: To prove (ii) one can use Sobolev's multification
\nalso in the case of mixed L_p -norms, cf. [1: II §§ 5, 6].
\nProposition 2 (cf. [1: Theorem 18.2/p. 294]): All norms
\n(iv) are equivalent to each other for all admissible k, l and (k),
\nProposition 3: We have
\n(i) $W_{(p)}^{(m)}(\mathbf{R}^n) = \bigcap_{j=1}^n W_{(p),j}^{m_j}(\mathbf{R}^n)$, (ii) $B_{(p),q}^{(s)}(\mathbf{R}^n) = \bigcap_{j=1}^n B_{(p),q}^{s_j,j}(\mathbf{R}^n)$.
\nProposition 4: $||f||W_{(m)}^{(p)}||^* = ||f||L_{(p)}|| + \sum ||D^*f||L_{(p)}||$

Proposition 4: $||f| W_{(m)}^{(p)}||^* = ||f| L_{(p)}|| + \sum_{p} ||D^q f| L_{(p)}||$ is an equivalent norm in *• • <i>•<i>• • • • • • <i>• • <i><i>• <i><i>• <i>• <i><i>• <i>• <i><i>• <i>• <i><i>• <i>• <i><i>• <i>• <i>• <i><i>• <i><i>• <i>• <i><i>• <i><i>• <i><i>•*

Proposition 5 (cf. [2] and also [1: 11.5/p. 165]): Let $A = \{x \in \mathbb{R}^n | x_1, ..., x_n = 0\}$ (i) $W_{(p)}^{(m)}(\mathbf{R}^n) = \bigcap_{j=1}^n W_{(p),j}^{m_j}(\mathbf{R}^n)$, (ii) $B_{(p),q}^{(s)}(\mathbf{R}^n) = \bigcap_{j=1}^n B_{(p),q}^{s_j,j}(\mathbf{R}^n)$:
 Proposition 4: $||f|| W_{(m)}^{(p)}||^* = ||f|| L_{(p)}|| + \sum_{\alpha \in J} ||D^{\alpha}f|| L_{(p)}||$ is an equivalent norm in
 $W_{(p)}^{$ *W*_(p)'(\mathbb{R}^n), $J = \{ \alpha \mid 0 \leq \alpha_1/m_1 + \ldots + \alpha_n/m_n \leq 1 \}$.

Proposition 5 (cf. [2] and also [1:11.5/p. 165]): Let $A = \{ x \in \mathbb{R}^n \mid x_1, \ldots, x_n \neq 0 \}$

and let *M* be a function on \mathbb{R}^n , such that $x^{\alpha}D^{\alpha}M$ $L_{(p)}(\mathbf{R}^n)$, $(1) < (p) < (\infty)$, i.e. $||F^{-1}MFf||L_{(p)}|| \leq cC||f||L_{(p)}||$ for all $f \in L_{(p)}(\mathbf{R}^n)$, *where c is a constant independent of f and M and where* $C = \sup \{x \cdot D \cdot M(x) \mid x \in A, 0 \le \alpha_1, ..., \alpha_n \le 1\}.$ $\begin{aligned} \textit{and let } M \textit{ be a}\\ \textit{every multiind}\\ L_{(p)}(\mathbf{R}^n), \textit{ (1) } \prec\\ \textit{where c is a c}\\ 0 \leq \alpha_1, \dots, \alpha_n \end{aligned}$

Proposition 6 (cf. [1: Theorem 14.14/p. 235]): $C_0^{\infty}(\mathbf{R}^n)$ *is dense in* $W_{(m)}^{(m)}(\mathbf{R}^n)$, $(1) < (p) < (\infty)$.

As usual, $S(\mathbb{R}^n)$ stands for the collection of all complex-valued infinitely differentiable rapidly decreasing functions on \mathbb{R}^n . The dual space $S' = S'(\mathbb{R}^n)$ is the collection of all tempered distributions on \mathbb{R}^n . We recall that *F* and *F*⁻¹ stand for the Fourier transform and its inverse on S' , respectively. We need the following

 L emma 1: We have: (i) The norms $||f|| W_{(p),j}^m||^* = ||f| L_{(p)}|| + \sum_{i=1}^m ||D_i^*| L_{(p)}||$ and $||f| H_{(p),j}^m|| = ||F^{-1}(1 + x_j^2)^{m/2} Ff| L_{(p)}||$ are equivalent in $W_{(p),j}^m(\mathbf{R}^n)$. (ii) $C_0^{\infty}(\mathbf{R}^n)$ is $\lim_{d \text{ense }} \lim_{m \to \infty} W_{(p),j}^{m} (\mathbb{R}^n), (1) < (p) < (\infty).$ Lemma 1: We have: (i) The norms $||f|| W_{(p),j}^m||^* = ||f| L_{(p)}|| + \sum_{k=1} ||D_j^k| L_{(p)}||$ and
 $|H_{(p),j}^m|| = ||F^{-1}(1 + x_j^2)^{m/2} Ff| L_{(p)}||$ are equivalent in $W_{(p),j}^m(\mathbf{R}^n)$. (ii) $C_0^{\infty}(\mathbf{R}^n)$ is

nse in $W_{(p),j}^m(\mathbf{R}^n)$

 $||f| H_{(p),j}^m|| = ||F^{-1}(1+x_j^2)^{m/2} Ff| L_{(p)}||$ are equivalent in $W_{(p),j}^m(\mathbb{R}^n)$. (ii) $C_0^{\infty}(\mathbb{R}^n)$ is dense in $W_{(p),j}^m(\mathbb{R}^n)$, $(1) < (p) < (\infty)$.

Proof: (i) We show $||f| W_{(p),j}^m||^* \leq c ||f| H_{(p),j}^m||$ for all *Dj k* = *cFx1 cFf* we obtain the assertion. Now we show *lIf* I H,)jII *^cIll I W14) 11.* $D_i^k f = cF^{-1}x_i^k \hat{F}f$ we obtain the assertion. Now we show $||f|H_{(p_i,j)}^m|| \le c||f|W_{(p_i,j)}^m||$. Using again Proposition 5, we find that for $\sigma \in C_0^{\infty}(\mathbf{R})$ with $\sigma(t) = 0$ if $0 \le t \le 1/2$, $\sigma(t) = 1$ if $t \ge 1$ and $\sigma(-t) = -\sigma(t)$ the function M_o , $M_o(x) = (1 + x_i^2)^{m/2}$

 $/(1 + \sigma^m(x_i) x_j^m)$, is also a multiplier. Then it follows that

Traces of Anisotropic Sobolev Spaces
\n
$$
+ \sigma^m(x_j) x_j^m
$$
, is also a multiplier. Then it follows that
\n
$$
||| | H_{(p),j}^m|| = ||F^{-1}(1 + x_j^2)^{m/2} Ff | L_{(p)}||
$$
\n
$$
= ||F^{-1}M_o(x) FF^{-1}(1 + \sigma^m(x_j) x_j^m) Ff | L_{(p)}||
$$
\n
$$
\leq c ||F^{-1}(1 + \sigma^m(x_j) x_j^m) Ff | L_{(p)}||
$$
\n
$$
\leq c (||f | L_{(p)}|| + ||F^{-1}\sigma^m(x_j) x_j^m Ff | L_{(p)}||)
$$
\n
$$
\leq c (||f | L_{(p)}|| + ||F^{-1}\sigma^m(x_j) x_j^m Ff | L_{(p)}||)
$$
\n
$$
\leq c (||f | L_{(p)}|| + ||F^{-1}\sigma^m(x_j) F_1 D_j^m f | L_{(p)}||) \leq c' ||f | W_{(p),j}^m||,
$$
\nhere F_1 refers to the 1-dimensional Fourier transform, and where we used it is a 1-dimensional multiplier. This completes the proof of part (i).
\n(ii) It is sufficient to remark that because of Proposition 1 the proof in [4: 2.5, plicable in our situation 1
\nLemma 2 (Interpolation): The following propositions hold:
\n(i) $(L_{(p)}(\mathbb{R}^n), W_{(p),j}^m(\mathbb{R}^n))_{\theta,q} = B_{(p),q}^{\theta m,j}(\mathbb{R}^n).$
\n(ii) $(L_{(p)}(\mathbb{R}^n), W_{(p)}^m(\mathbb{R}^n))_{\theta,q} = B_{(p),q}^{\theta m,j}(\mathbb{R}^n).$
\nProof: Define a strongly continuous semi-group on $L_{(p)}$ by

where F_1 refers to the 1-dimensional Fourier transform, and where we used that σ^m is a 1-dimensional multiplier. This completes the proof of part (i).

(ii) It is sufficient to remark that because of Proposition 1 the proof in $[4:2.5.1]$ is applicable in our situation I

Lemma 2 (Interpolation): *The /ollowing propositions hold:*

Lemma 2 (Interpolation)
(i) $(L_{(p)}({\bf R}^n), W_{(p),j}^m({\bf R}^n))_{\theta,q}$
(ii) $(L_{(p)}({\bf R}^n), W_{(p)}^{(m)}({\bf R}^n))_{\theta,q}$ $q = \mathop{B_{(p),q}^{\theta m, j}(\mathbf{R}^n)}\limits_{q} \ = \mathop{B_{(p),q}^{\theta (m, j}(\mathbf{R}^n)}\limits_{q}$

Proof: Define a strongly continuous semi-group on $L_{(p)}$ by

$$
G_j(t): L_{(p)}(\mathbf{R}^n) \to L_{(p)}(\mathbf{R}^n): f(x_1, \ldots, x_n) \mapsto f(x_1, \ldots, x_j + t, \ldots, x_n).
$$

 A_j denotes the infinitesimal operator of ${G_j(t)}_{t \geq 0}$. As usual one defines A_j^m (m-th power of *As).* We use Proposition I and Lemma 1 and obtain in the same way as in [4: 2.5.1] that the domain of A_j^m equals $W_{(p),j}^m(\mathbb{R}^n)$. Now one can use the interpolation formulas from *[4:* 1.131. Therefore (i) is proved. (ii) is a consequence of Proposition 3/(i) and the results in [4: 1.13.2 and 1.12.1] **^I**

We refer to the trace method of interpolation (cf. [4: 1.8]). Let ${A_0, A_1}$ be an inter**formulas from [4: 1.13].** Therefore (i) is proved. (ii) is a consequence of Propositio 3/(i) and the results in [4: 1.13.2 and 1.12.1] \blacksquare
We refer to the trace method of interpolation (cf. [4: 1.8]). Let {A₀, A₁} polation couple, $m \in \mathbb{Z}$, $1 \leq p_0, p_1 \leq \infty$ and $\eta_0, \eta_1 \in \mathbb{R}$. One sets by the trace method of interpolation (cf. [4: 1.8]). Let {A₀, A₁ couple, $m \in \mathbb{Z}$, $1 \leq p_0, p_1 \leq \infty$ and $\eta_0, \eta_1 \in \mathbb{R}$. One sets A_0, p_1, η_1, A_1 = { $u = u(t) | u$ is a regular $(A_0 + A_1)$ distribution $||u|| ||v|| ||$

with
$$
||u||V_m|| = ||v_m u(t)||L_{p_0}^{\bullet}(\mathbf{A}_0)|| + ||v_m u^{(m)}(t)||L_{p_1}^{\bullet}(\mathbf{A}_1)|| < \infty
$$
.

We need the rather technical concept of quasi-linearizable interpolation couples in order to employ theoretical results of interpolation. But for the sake of brevity we omit details on this subject and refer for an exact definition to [4:1.8 and 1.12].

Theorem 1 (cf. $[4:$ Theorem 1.8.5 $/(a)$)): *Let* $\{A_0, A_1\}$ *be a quasilinearizable interpolation couple. Let* $m \in \mathbb{N}$, $1 \leq p \leq \infty$ and $\eta_0, \eta_1 \in \mathbb{R}$. If $J = \{j \in \mathbb{Z} \mid 0 \leq j \leq m - 1\}$ $and -\eta_0 < j < m - \eta_1$, then

$$
R: V_m(p, \eta_0, A_0; p, \eta_1, A_1) \to \prod_{j \in J} (A_0, A_1)_{\theta_j, p}: u \mapsto \{u^{(j)}(0)\}_{j \in J}
$$

is a retraction. One has $\theta_i = (\eta_0 + j)/(m + \eta_0 - \eta_1)^{-1}$.

Remark: We recall what is meant by a retraction. If A and B are two Banach spaces, then a mapping $R: \mathbf{A} \to \mathbf{B}$ is called a *retraction* if R is a linear and bounded mapping from A onto B and if there exists a linear and bounded mapping S from B into A with $RS = \mathbf{E}_{\mathbf{B}}$ (identity mapping in B).

2. Direct and inverse embedding theorem

Let $(1) \leq (p) \leq (\infty)$, $(m) = (m_1, ..., m_n) \in \mathbb{N}^n$ and $\mathbb{R}_+^* = \{x \in \mathbb{R}^n \mid x_n > 0\}$. Then one defines

$$
W_{(p)}^{(m)}(\mathbf{R}_{+}^{n}) = \{f \in L_1^{\text{loc}}(\mathbf{R}_{+}^{n}) \mid \exists g \in W_{(p)}^{(m)}(\mathbf{R}^{n}) \text{ with } g(x) = f(x) \text{ if } x \in \mathbf{R}_{+}^{n}\}.
$$

This is a Banach space normed by

$$
||f| W_{(p)}^{(m)}(\mathbf{R}_{+}^{n})|| = \inf \{||g| W_{(p)}^{(m)}(\mathbf{R}^{n})|| | f = g | \mathbf{R}_{+}^{n} \}.
$$

3. Direct and inverse embedding theorem

2. **Comparison**

2. **Comparison**

2. **Comparison**

2. **Comparison**
 $W_{(p)}^{(m)}(\mathbf{R}_{+}^{n}) = \{f \in L_1^{\text{loc}}(\mathbf{R}, n) \mid \exists g \in W_{(p)}^{(m)}(\mathbf{R}^{n}) \text{ with } g(x) = f(x) \text{ if } x \in \mathbf{R}_{+}^{n}\}.$

This is *lion. If* $k \in \mathbb{N}$, *then there exists a coretraction S which is independent of* (m) *with* $m_n \leq k$ *and* (p) . 166 M. MALARSKI

2. Direct and inverse embedding th

Let $(1) \leq (p) \leq (\infty)$, $(m) = (m_1,$

one defines
 $W_{(p)}^{(m)}(\mathbf{R}_{+}^{n}) = \{f \in L_1^{\text{loc}}(\mathbf{R}_{+})$

This is a Banach space normed by
 $||f|| W_{(p)}^{(m)}(\mathbf{R}_{+}^{n})|| = \inf \{||g|$
 -

Proof: The proof is analogous to that in the case of unmixed *La-norms.* We recall only the definition of the coretraction S: For $k \in N$ let $0 < \gamma_1 < \ldots < \gamma_{k+1} < \infty$. For a smooth function / vanishing for large values of *x* one sets

$$
W_{(p)}^{(m)}(\mathbf{R}_{+}^{n}) = \{f \in L_{1}^{n_{0}}(\mathbf{R}_{+}^{n}) \mid \exists g \in W_{(p)}^{(m)}(\mathbf{R}^{n}) \text{ with } g(\text{a})\}
$$
\neach space normed by

\n
$$
W_{(p)}^{(m)}(\mathbf{R}_{+}^{n})\| = \inf \{||g + W_{(p)}^{(m)}(\mathbf{R}^{n})|| \mid f = g \mid \mathbf{R}_{+}^{n}\},
$$
\nion 7: The restriction $R: W_{(p)}^{(m)}(\mathbf{R}^{n}) \to W_{(p)}^{(m)}(\mathbf{R}_{+}^{n})$

\nWhen there exists a correction S which is indepe

\nthe proof is analogous to that in the case of unmi

\ninition of the correction $S: \text{For } k \in \mathbb{N}$ let 0

\nh function f vanishing for large values of x one

\n
$$
(Sf) (x) = \begin{cases} \sum_{j=1}^{k+1} a_j f(x_1, \ldots, -\gamma_j x_n) & \text{for } x_n < 0, \\ f(x) & \text{for } x_n \geq 0 \end{cases}
$$
\nthe claim that Sf possesses continuous derivative

\n8: Let $(m) \in \mathbb{N}^n$, $m \in \mathbb{N}$ and let $1 < p < \infty$ and (1)

where a_j fits the claim that Sf possesses continuous derivatives up to order k in \mathbb{R}^n .

Lemma 3: Let $(m) \in \mathbf{N}^n$, $m \in \mathbf{N}$ and let $1 < p < \infty$ and $(1) \leq (p) < (\infty)$. Then

fits the claim that *Sf* possesses continuous derivatives up to
\nna 3: Let
$$
(m) \in \mathbb{N}^n
$$
, $m \in \mathbb{N}$ and let $1 < p < \infty$ and $(1) \leq (p$
\n $V_m\left(p, \frac{1}{p}, W_{(p)}^{(m)}(\mathbf{R}^n); p, \frac{1}{p}, L_{(p)}(\mathbf{R}^n)\right) = W_{((p),p)}^{(m),m)}(\mathbf{R}_{+}^{n+1}).$

Proof: Let $u(t)$ $(x) = f(x, t)$ be a smooth function contained in $W_{(p,p)}^{((m),m)}(\mathbf{R}_{+}^{n+1})$ that vanishes for large values of |x|. These functions are dense in $W^{(\{m),m\}}_{(\{p\},p)}(\mathbf{R}_{+}^{n+1})$. By a straightforward computation one obtains that $||u|| V_m||$ and $||f|| W^{((m),m)}_{((p),p)}(R_+^{n+1})||$ are equivalent to each other. It remains to show that functions of the described type are also dense in V_m . For this purpose take $f \in V_m$, $f(x, t)$, and $\delta > 0$. Then $f(x, t + \delta) \in V_m$ and $f(x, t + \delta) \rightarrow f(x, t)$ in V_m if $\delta \rightarrow 0$. We apply Sobolev's mollification method Proof: Let $u(t)$ $(x) = f(x, t)$ be a smooth function contained in $W_{((p),p)}^{((m),m)}(\mathbf{R}_{+}^{n+1})$
that vanishes for large values of $|x|$. These functions are dense in $W_{((p),p)}^{((m),m)}(\mathbf{R}_{+}^{n+1})$. By a
straightforward computatio and $\int \omega^{j}(t) dt = 1, j = 1, ..., n + 1$. Let $\omega_{h}(t) = h^{-1} \omega^{j}(t/h)$. One sets $\omega_{h}(x, t) =$ ralent to each

dense in V_m . Fo
 $f(x, t + \delta) \rightarrow f(t)$
 $x, t + \delta$). Let C
 $\int_0^\infty \omega^j(t) dt = 1$,
 $\int_0^b \omega^j(x_2) \dots \omega_1$ $\omega_h^{-1}(x_1) \omega_h^{-2}(x_2) \ldots \omega_h^{-n}(x_n) \omega_h^{-n+1}(t)$, and, for $g \in L_{((p),p)} (\mathbf{R}_+^{-n+1}), (g)_h(x,t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \omega_h(x-t) \, dt$ *a*) $f(x, t + \delta) \rightarrow f(x, t)$ in V_m if $\delta \rightarrow 0$. We apply Sobolev s indifferent includes the $f(x, t + \delta)$. Let $0 < h < \delta$ and $\omega^1, ..., \omega^n, \omega^{n+1} \in C_0^{\infty}(\mathbb{R}^1)$ with supp $\omega^j \subseteq (1/2, \delta)$ and $\int_0^{\infty} \omega^j(t) dt = 1$, $j = 1, ..., n + 1$ $t-\sigma$) $g(z,\sigma) dz d\sigma$. Then $(g)_h \to g$ holds in V_m for $h \to 0$. Hence $(\tilde{f}(x,t+\delta))_h \to$ $f(x, t + \delta)$ in V_m , $h \to 0$. The function $(f(x, t + \delta))_h$ can be extended to \mathbb{R}^n via the construction described in Proposition 7 and hence is contained in $W^{((m),m)}_{((p),p)}(\mathbb{R}_{+}^{n+1}).$ **Fig. 10. Fig. 10. Fig. 10. Fig. 11. Fig. 12. Fig. 12.**

Now we come to the main result of this paper.

Theorem 2: Let $(m) = (m_1, ..., m_n) \in \mathbb{N}^n$, $m \in \mathbb{N}$ and $(1) < (p) < (\infty)$. *Then*

$$
R: W^{((m),m)}_{((p),p)}(\mathbf{R}_{+}^{n+1}) \to \prod_{j=0}^{m-1} B^{\sigma^j}_{(p),p}(\mathbf{R}^n): f(x, t) \mapsto \{D_t^j f(x, 0)\}_{j=0}^{m-1}.
$$

is a retraction, where $(\sigma^{j}) = (\sigma_1^{j}, \ldots, \sigma_n^{j})$ *is given by* $\sigma_k^{j} = m_k(1 - m^{-1}(p^{-1} + j)),$

$$
166
$$

Proof: Because of Lemma 2, the definition of $W_{(p)}^{(m)}(\mathbb{R}^n)$ and the results from [4: Theorems 1.13.2 and 1.12.1] it follows that $\{W_{(p)}^{(m)}(\mathbf{R}^n), L_{(p)}(\mathbf{R}^n)\}\)$ is a quasi-linearizable interpolation couple. Therefore the above Lemma and Theorem 1 yield that

$$
R: W^{((m),m)}_{((p),p)}(\mathbf{R}_{+}^{n+1}) \to \prod_{j=0}^{m-1} \bigl(W^{(m)}_{(p)}(\mathbf{R}^n), L_{(p)}(\mathbf{R}^n)\bigr)_{\theta_j,p}
$$

is a retraction. For θ_j one obtains $\theta_j = m^{-1}(p^{-1} + j)$. Hence by Lemma 2 and the relation $(A_0, A_1)_{\theta,p} = (A_1, A_0)_{1-\theta,p}$ it follows $(\sigma^j) = (m) (1 - \theta_j)$. This completes the proof \blacksquare

REFERENCES

- [1] Бесов, О. В., Ильин, В. П., и С. М. Никольский: Интегральные представления функции й теоремы вложения. Москва: Изд-во Наука 1975.
- [2] Лизоркин, П. И.: Обобщенное лиувиллевское дифференцирование и функциональные пространства $L_p{}^+(E_n)$. Теоремы вложения. Матем. сб. 60 (1963), 325-353.
- [3] Никольский, С. М.: Приближение функций многих переменных и теоремы вложения. Москва: Изд-во Наука 1969.
- [4] TRIEBEL, H.: Interpolation theory, function spaces, differential operators. Berlin: VEB Deutscher Verlag der Wissenschaften/Amsterdam-New York-Oxford: North Holland Publ. Co. 1978.

Manuskripteingang: 02. 12. 1987; in revidierter Fassung 17. 05. 1988

VERFASSER:

MIRCEA MALARSKI Sektion Mathematik der Friedrich-Schiller-Universität Universitätshochhaus DDR-6900 Jena