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Traces of Anisot_ropic,Sobolev Spaces with Mixed L,-Norms on Hyperplanes

M. MALARSKI

N
Ry

Wu' skxzzneren einen neuen kurzen Beweis fiir einen bekannten Spursatz fiir nmsotrope Sobolev-
Ridume mit gemischten L,-Normen, der auf Methoden der Interpolationstheorie beruht. -

Mu HaMeTMM HOBOE KOPOTKOE N0KA3aTeJLCTBO AJNA ONHON H3BECTHON! TeopeMul O cieae AAA -
aHN30TpoNHKX npocrpancts Cobonesd co CMELUANHEIMU L,-nopmamu Gasupyioliec ia Teopuu
HHTEPOAALMH.

We outline a new v short proof of a known trace theorem for amsotroplc Sobolev spaces with
mixed L,-norms based on methods of interpolation theory :

1. Infroduction

The aim of this paper is to outline a new proof of direct and inverse embeddmg theo-
rems for traces of anisotropic Sobolev spaces with mixed L,-norms on hyperplanes
in R®. Qur arguments will be quite similar as in [4: 2.9]. First of all let us recall some
definitions: and results. Let (p) = (P1; -.»Pa), (1) = (p) = (00), ie. 1 £py,..., D0
< 'co. Then one: sets - R ' ' :

Ly (R®) = L, (R, L, (R, ..., L,(R) ...)). v ' ,
Let A be hn arbitrary Banach space and f: R* — A. We define
. . ~]/q‘ .

zren={ o s
. ) 0 A‘

We usé standard notations for differences and derivatives: D™ = om|ox;™, N} if(x)
= /(xl: ’ xj + t: LR xn) —'f(x)’ and A;t - Am_l l'.

Definition.1: Let (p) = (s, ..., Pa)y 1 < Py ..., Pw S 00.
() IfmeNand1 gj < n, then:

Wi i(R®) =Af € Ly(R*) | If | Wl = 1If | Ll + 1D | Lpyll < oo} .
(ii) If (m) = (my, ..., m,) € N", then ' '
"'"(R") ={fe L(p) (R®) [ I} Wf,’!%’ll = |If | Lpyll + Z IID-""I I'Lm'[[ < oo}.
(m)Ifs>0 1 Sq<oo 15550, k leN, OSk<sandl>s—Ic then
Bl (R") = {f € Lm(R") LIf | Bigh.all- ,
=lf | Lipll + lle==9 Af Dt | LML)l < o0}

11*
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(iv) If (s) = (s1,...,8,) with s,,...,8, >0, and (k) = (k,, ..., k) € N* and (1)
= (b, .. ls) €N®_with (0) < (k) < (s) and () >(s—k), ie. 0k <'s; and
l > s; — k; for all admissible 7, then .

B = {7 € LR |11 B = 11 Ll

n .
+ E et ALDH | LAl < oo}.
2 .

“Proposition’1 (cf. [1: 5.4/p. 73] for (i)): For (p) = (pl,:..,p,,) withl < py, .oy Pn -

< oo, the following propositions hold :

(1) (““Lebesgque’s theorem’) Let {feli2, = L(,,)(R") be a porntwise convergent sequence,
fu(z) = f(z) if & — oo. If there exists a function g€ L(R") with [fk(x I <g(@) for all
x € R, then f € L, (R" ) and f —f (convergence n Ly). .

(ii) C’o (R") is dense in L, (R" )

Remark: To prove (ii) one can use Sobolev ] molllflcatxon method w thh works
also in the case of mixed L,-norms, cf. [1: II §§5, 6].

Proposnslon 2 (cf. [1: Theorem 18. 2/p 294)): All norms m Deﬁ'nition 1/(iii) and
(iv) are equivalent to each other for all admissible k, I and (k), (1), respectwely

Proposutmn 3: We have

~

(i) WE(R®) =le W (R, (ii) B3 o(R7) = 2’;)’ q(R")

Proposition 4: |f | Wf,’i.’)ll* = ”/ | L(p)” + Z HD {1 Ly is an equwalent norm in
CWBERY, J = {x|0 < xy/my R xnf g 1). s

~ Proposition 5 (cf. [2) and also [1: 11.5/p. 165)): Let A = {x € R* | z, ..., z, = 0}
~and let M be a function on R®, such that z°D*M is bounded and continuous on A for
’every multitndex « = (&, ..., 0p) With 0 < &y, ..., &, = 1. Then M is a multiplier for
Lip(B?), (1) < (p) < (o), ie. IFMF] | L)l < cCllf | Linll for all € Lip(R),

where ¢ 13 a constant independent of f and M and where C = sup {z=D*M(x) | x € A

Ogo‘l:- ’anél} ‘

Proposition 6 (cf. [1: Theorem 14. 14/p 235]): Co™(R") is dense in -W{,’;‘)’(R"),
(1), <(P) < (o0)- : -

As usual S(R") stands for the collection of all complex-valued mfmlt,ely differen-
tiable rapidly decreasing functions on R”. The dual space 8§’ = §’(R") is the collec-
“tion of all tempered distributions on R®. We recall that F and F-! stand for the Fou-
_rier transform and its inverse on §’, respectively. We need the following

Lemma 1: We have: (i) The norms Ilf | W, * = If | Ll + 2 IDj* | Lyl and

I H(p, ’[| = |IF-1(1 + z;2)™/? Ff | Ly are equwalent in W3, (R® ) (11) Co™(R") 1
dense in W(p).; (BR"), (1) < (p) < (o0).. .

Proof: (i) We show ||f | W, ,|]* = cllf| Hpy 4l for all f € L, (R"). Proposition 5
yields that M, (z) = z*(1 + z; 2)=mi2 ig a Fourier multiplier for Ly, if k < m. By
D}f = cF-z*Ff we obtain the assertion. Now we show |If [ H7, Il < ¢ lif | We, ,|]
Usmg again Proposmon 5, we find that for ¢ € C,*(R) with a(t) =0if 0 = ¢t < 1/2,
oty =1 if t=1 and o(—t) = —o(!) "the function M,, M.(z)= (1 + z;2)=?
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/(1 +a™(z;) x,"'), is also a mult,lpller Then it follows that

1 Hy = IF-31 + 2202 Ff | L
= |F-2M () FF-2(1 + o™(z;) zif"l Ff | L _ |
N B S|P 1+ om(zy) z;™) Ff | Ly
| < ¢(lif | Ll +F~20™(z)) 2,7 Ff | L)

Zc{lf | Lipll + IFy20™(z;) FyDy™f | Lifl) < ¢ lif | W41,
, wller‘e F, refers to the l-dim‘ens.ional'Fourier transform, and where we used that
" o™ is a 1-dimensional multiplier. This completes the proof of part (i).

(ii) It is sufficient to remark that because of Proposition 1 the proof in [4: 2.5.1]is
applxcable in our situation § ’

-

Lemma 2 (Interpolation): The /ollowmg propositions kold :
i) (L(p) R ): (p)](R’ ))Oq - Bom’(R")

(p).q

(i) (Lp(R"); Wi ’(R ))o.e = BETAHRR).

.Proof:' Define a strongly contmuous semi-grolx‘p on L, by
(r”(t) L(p)(R’") g L(p)(R‘"). /(xl: CERF} xn) > f(xl: ceey xi + t L 3} xn)

A; denotes-the infinitesimal operator of {(/j(t)}izo. As usual one defines A m (m -th
po“ er of A;). We use Proposition 1 and Lcmma 1 and obtain in the same way as in
[4:2.5.1] that the domain of A,” equals W, i(R"). Now one can use the interpolation
formulas from [4: 1.13]. Therefoxe (i) is proved. (ii) is a consequence of Proposmon
3/(i) and the results in[4:1.13.2 and 1.12.1] 8

- We refer to the trace method of interpolation (cf. [4 1.8]). Let {Ao, A;} be an inter-
polation couple, m € Z, 1 < p,, p; =< oo and 7, 7, € R. One sets
,,,(po, 7o, Ay; P1> N> A)) = {u = u(t) | w is a regular (A, + A,)-— distribution on R+

with |lu | Vall = |ltmu(?) | Ly (Aol + lemautm () | L3, (Al < oo}

We need the rather technilckal concept of quasi-linea-riiable interpolation c()llples
in order to employ theoretical results of interpolation. But for the sake of bréwty we
. omit details on this subject and refer for an c\act (leflmtlon to[4:1.8and 1.12].

Theo rem 1 (cf. [4: Theorem 1.8. 5/ a)]): Let {Ao, A,} be a quasilinearizable inter-
polation couple. Letméngpgooandno,n,eRI/J feZ|0<j=sm—1 .
and —ny < j < m — 0}, then )

R: Vou(ps 105 Ao; P, M, Ay) —>[J7 (Ao» Al)@,.p: u —> {u(i)(o)}iEJ' ’
A R §13
8 @ retraction. One has 01 = (70 + 9)/(m + 7 — )7}

Remark: We reca]l what is meant by a retraction. If A and B are two Banach
spaces then a mapping R: A — B is called a retraction if R is a linear and bounded
mapping from A onto B and if there exists a linear and boun(lecl mappmg S from B
into A with RS = Epg (identity mappmg in B). ' , v
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2. Direct and inverse embedding theorem

~

Let (1) < (p) £'(00), (M) = (my,...,my,) € N"and R,* = {z € R® | z, > 0}. Then
one defines . ‘ :

Wm(R,") = {f € D(R,") | 3g € WR(R®) with g(z) = f(z) if = € R.7).

»)

This is a Banach space normed by
If | Wim(Rumil = inf {llg | WERM| | f =g R."}.

- Proposition 7: The restriction.R: W{m(R") — W"”’(R ":.gr>g|Ri"isa retrac- = -

(p)
tion. If k € N, then there exists a coretmctzon S which is 'mdependent of (m) withm, < k

and (p).
. Proof: The proof is analogous to that in the case of unmlxed L,-norms. We 1ecall

- only the definition of the coretraction S: For k € N let 0 < y; < ... < ppsy << 00.

For a smooth function f vanishing for large values of « one sets -

k41 _—
(S/)' (2) = ’é;a,»/(x,, veny —yi%,) _ for z, <O,
. f(x) forz, =0

. where a; fits the claim that Sf possesses continuous derivatives up to order kinR" 8

Lemma 3: Let (m) € N*, m € N and let 1<p < oo and (1) = (p) < (o). Tkén
I'/ , W(R): p, L R® ) wim.m (R n+1
( re (R"); p, — s @(R") ( )

(» «(p).p)

Proof: Let u(t) (x) :l.f(x, {) be a smooth function contained in W{mm(R n+1)

{(pap)
that vanishes for large values of |z|. These functions are dense in Wf:z';‘,’;’,"(l{ ). Bva
straightforward computation one obtains that |[u| Vyll and |If | W}:;")’p’",’(R a+1)|| are

equivalent to each other. It remains to show that functions of the described type are
also densein V,,. For this purpose take f € V,, f(z, t),and é > 0.Then f(z, £t + 8) € V,

and f(zx,t + 8) = f(z;t) in V,, if 6 > 0. We. apply Sobolev’s mollification method
to /(3L t+ 5) Let 0.<h < éand w!,. ,w" w1 € Cy2(R') with supp o = (1/2, 1)

" and, fw’(t dt =1,j=1,..,n+ 1. Let wii(t) = b 'wi(t/k). One sets w,,(x, ) =

whl(xl) Wy (xz) o - Wy (2} +l(t) and fOI‘gE L((p) p)( ) (g (x t) —ffwh(x — %

't — a) g(z, a) dzds: Then (g »=>¢g holds in V, for A — 0. Hence (/(x t+ (5)),,
f(xz,t +6) in V,, h > 0. The function (/(x t + 6)),, can be extended to R” via the
construction described in Proposition 7. and hence is contamed in Wﬁ;j’,”;’)”(l{." n,
Thus, the lemma is proved 1 ‘

"Now we come to the main result of this paper.

Theorem 2: Let (m) = (m,, , m,) € N*, m € N and (1) < (p) < (00). Then

R: W:t;f',’,,","< ) »17 Bw ): flz, 1) > (Ddf(a, 0 iy
isa retraction, where. (07) = (ay), ..., 0,%) is given by ol = mk(l‘ —m Y p~t + 7")),

k=1,..,n;5=0,...,,m—= 1.
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s’ ' '

<l ‘ - . . ’ .
Proof: Because of Lemma 2, the definition of W{m(R") and the results from [4:

Theorems 1.13.2 and 1.12.1] it follows that {W{W(R?), L, (R")} is a quasi-linearizable

interpolation couple. Therefore the above Lemma and Theorem 1 yield that

W::;',),;';)(R n+l) "*U(W( (R®), Lin(R)s,.0

is a retraction. For 6; one obtams 6; = m‘l(p‘1 + 7). Hence by Lemma 2 and the -
. relation (A,, A,)op'— (A,, Ao 0.0 1t follows (a?) = (m) (1 — 6;). Thls completes

thé proof i

\
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