Zeitschrift für Analysis und ihre Anwendungen Bd. 8 (2) 1989, S. 169-176

On the Behaviour of the Distributional Stieltjes Transformation at the Origin

S. **Ρπ.ρ**ονιć

Es wird das Verhalten der Stieltjes-Transformierten solcher Distributionen aus \mathscr{G}_+ im Ursprung 0 untersucht, die ein geeignetes quasiasymptotisches Verhalten in 0⁺ besitzen. Diese ieuen Ergebnisse werden mit Hilfe bekannter Resultate über das asymptotische Verhalten bei ∞ erhalten. Ferner wird auch ein Satz vom Tauberschen Typ über das Verhalten in 0 bewiesen.

Исследуется поведение трансформации Стильтьеса таких дистрибуций из \mathscr{S}_+ ' в начале координат 0, которые имеют подходящее квазиасимптотическое поведение в точке 0⁺. Эти новые результаты получаются с помощью известных об асимптотическом поведении в точке ∞ . Доказывается также один результат Тауберова типа о поведении в точке 0.

The behaviour of the distributional Stieltjes transformation at the origin 0 is investigated for distributions of \mathscr{S}_{+}' having appropriate quasiasymptotic behaviour at 0⁺. These new results follow by known ones for the asymptotic behaviour at ∞ . A Tauberian-type result for the behaviour at 0 is also obtained.

1. Notions and known results

The sets of real and natural numbers are denoted by \Re and \Re , respectively. $\mathscr{S}(\Re) = \mathscr{S}$ and $\mathscr{S}'(\Re) = \mathscr{S}'$ denote the spaces of rapidly decreasing functions and tempered distributions, respectively. The space $\mathscr{J}'(r), r \in \Re \setminus (-\Re)$ is defined in [3] as a subspace of $\mathscr{S}_+' = \{f \in \mathscr{S}'(\Re); \text{ supp } f \subset [0, \infty)\}$ consisting of all f of the form

$$f = D^{m}F, \text{ for some } m \in \mathfrak{N}_{0} = \mathfrak{N} \cup \{0\},$$

$$F \in L^{1}_{loc}, \quad \text{supp } F \subset [0, \infty),$$
(1)

D is the distributional derivative, such that

$$\int_{0}^{\infty} |F(t)|/(t+x)^{r+m+1}| \, dt < \infty, \qquad x > 0.$$
(2)

Obviously, if $f \in \mathcal{J}'(r+p)$, then $f^{(p)} \in \mathcal{J}'(r)$, $p \in \mathfrak{N}_0$. We also need the definition of the space $\mathcal{J}'(r)$, $r \in \mathfrak{R} \setminus (-\mathfrak{N})$. This is a subspace of $\mathcal{J}'(r)$ consisting of all $f \in \mathcal{J}'(r)$ for which (1) holds and instead of (2), there holds

$$|F(t)| < C(1+t)^{r+m-\epsilon}, \quad t > 0, \quad \text{for some } C, \epsilon > 0.$$
(2)*

The distributional Stieltje's transformation of $f = D^m F \in \mathcal{J}'(r)$ is defined by [2]

$$(S_rf)(z) = (r+1)_m \int_0^\infty \frac{F(t) dt}{(z+t)^{r+m+1}}, \qquad z \in \mathfrak{C} \setminus (-\infty, 0],$$
(3)

where $(a)_m = a(a + 1) \dots (a + m - 1)$, $m \in \mathfrak{N}$, $(a)_0 = 1$, $a \in \mathfrak{R}$ and \mathfrak{C} is the set of complex numbers. This is a holomorphic function.

We always denote in this paper by L a function which is *slowly varying at* ∞ (0⁺), i.e. which is a continuous positive function defined in $(0, \infty)$ such that $L(\lambda x)/L(x) \to 1$ as $x \to \infty$ ($x \to 0^+$), $\lambda > 0$. For the properties of such functions we refer to [7]. When in connection with a function L we deal with the point ∞ (0⁺) we shall always assume that L is slowly varying at ∞ (0⁺).

In our investigations of the distributional Stieltjes transformation the notions of quasiasymptotic behaviour at ∞ and at 0⁺ play a fundamental role. These notions are introduced by ZAVIALOV [9]. Note that in [6] we changed slightly the definition of the quasiasymptotic behaviour at 0⁺. Recall, $f \in \mathcal{S}_+$ has the quasiasymptotic behaviour at ∞ (0⁺) related to $k^{\alpha}L(k)$ ((1/k)^{α} L(1/k)) with the limit $g \in \mathcal{S}_+$ if

$$\lim_{k \to \infty} \left\langle \frac{f(kx)}{k^{\alpha}L(k)}, \varphi(x) \right\rangle = \langle g(x), \varphi(x) \rangle, \quad \varphi \in \mathcal{S},$$

$$\left(\lim_{k \to \infty} \left\langle \frac{f(x/k)}{(1/k)^{\alpha}L(1/k)}, \varphi(x) \right\rangle = \langle g(x), \varphi(x) \rangle, \quad \varphi \in \mathcal{S} \right).$$
(4)

 $\langle \cdot, \cdot \rangle$ is the dual pairing between \mathscr{S}' and \mathscr{S} . We include in the definition the case g = 0, as well, while in [9] and [6] were assumed $g \neq 0$. It is well known that g in (4) must be of the form $g = Cf_{a+1}$, where

$$f_{a+1}(t) = \begin{cases} H(t) t^{\alpha} / \Gamma(\alpha + 1) & \text{if } \alpha > -1, \\ D^n f_{\alpha + n + 1}(t) & \text{if } \alpha \leq -1 \end{cases} \quad (t \in \mathfrak{R})$$

for some $n \in \mathfrak{N}$ with $n + \alpha > -1$ see [8]; *H* is Heviside's function, Γ is the gamma function. For the properties of the quasiasymptotic behaviour at ∞ we refer to [8] and at 0^+ we refer to [6]. Let us only quote the so-called structural theorem. Let $f \in \mathscr{S}_+$ have the quasiasymptotic behaviour at $\infty (0^+)$ related to $k^{\alpha}L(k) ((1/k)^{\alpha} L(1/k))$ with the limit Cf_{a+1} ; then there is an integer $m_0 \in \mathfrak{N}_0$, $m_0 + \alpha > -1$, such that for every $m \geq m_0$ there is a locally integrable function F_m with supp $F_m \subset [0, \infty)$ such that

$$f = F_{m}^{(m)}, \qquad \lim_{x \to \infty} \frac{F_{m}(x)}{x^{\alpha+m}} = \frac{C}{\Gamma(\alpha+m+1)} \quad \left(\lim_{x \to 0^{+}} \frac{F_{m}(x)}{x^{\alpha+m}} = \frac{C}{\Gamma(\alpha+m+1)}\right).$$
(5)

Note that (5) is proved in [8] and [6] with the assumption $C \neq 0$. One can easily prove that this holds with C = 0, as well.

We shall need the following theorem from [5].

Theorem A: Let $f \in \mathcal{F}'$ have the quasiasymptotic behaviour at ∞ related to $k^{\alpha}L(k)$ with the limit Cf_{a+1} , where $\alpha < r$. Then

$$\lim_{k\to\infty}\frac{(ks)^{r-\alpha}}{L(k)}(S_rf)(ks) = \frac{C\Gamma(r-\alpha)}{\Gamma(r+1)},$$
(6)

for any $s \in \Omega_{\epsilon} = \{\varrho e^{i\varphi} : \varrho > 0, -\pi + \varepsilon \leq \varphi \leq \pi - \varepsilon\}$, where $0 < \varepsilon < \pi/2$. If L = 1, then

$$s^{r-\alpha}(S_r f)(s) \to \frac{C\Gamma(r-\alpha)}{\Gamma(r+1)}$$
 uniformly in Ω_{ϵ} when $|s| \to \infty$. (7)

This theorem was proved with the assumption $C \neq 0$. But it also holds with C = 0, because the main step of its proof is the use of (5) which holds with C = 0. As well, we need from [4] the following theorem.

As well, we need from [4] the following theorem.

Theorem B: The following two statements are true:

(i) Let Φ be integrable on \Re , supp $\Phi \subset [0, \infty)$ and $C = \int_{0}^{\infty} \Phi(t) dt$. Then $\lim_{k \to \infty} \Phi(k \cdot)/k^{-1} = C\delta$ in \mathcal{S}' (δ is the delta distribution).

(ii) Let $\Phi \in L^1_{\text{loc}}$, supp $\Phi \subset [0, \infty)$, $\lim_{t \to \infty} \Phi(t)/t^{-1}L(t) = C$ and let $L^*(x) = \int_a^x (L(t)/t) dt$ $\to \infty \text{ as } x \to \infty \text{ (a > 0)}$. Then $\lim_{k \to \infty} \Phi(k \cdot)/k^{-1}L(k) = C\delta$ in \mathscr{S}' .

Note that (i) holds trivially and that (ii) follows from the fact that

$$\int_{0}^{t} \Phi(t) dt/L^{*}(x) \to C, \quad x \to \infty \quad (L'Hospital's rule),$$

and so

$$\lim_{t\to\infty}\int_{0}^{kx}\Phi(t)\,dt/L^{*}(k)=CH(x)\,\mathrm{in}\,\,\mathscr{S}'\qquad(x\in\mathfrak{R})$$

Now, by differentiation we obtain (ii).

Note that we include in Theorem B the case C = 0.

Remark: By developing the notion of the quasiasymptotic at 0^+ we proved in [6] the same theorem for the behaviour of $S_r f$ at 0: If $f \in \mathcal{J}'(r)$ has the quasiasymptotic behaviour at 0^+ related to $(1/k)^{\alpha} L(1/k)$, $\alpha < r$, then (6) holds with 1/k instead of k and (7) holds with $|s| \to 0$ instead of $|s| \to \infty$. The aim of this paper is to extend this theorem using Theorem A. We shall also give a Tauberian-type result. It is based on the following theorem from [2: p. 339].

Theorem C: Let us suppose that for some m > 0

 $\int_{0}^{\infty} d\varphi(\lambda)/(\lambda+x)^{m+1} \sim \int_{0}^{\infty} d\psi(\lambda)/(\lambda+x)^{m+1}, \qquad x \to \infty,$

and that the following conditions are satisfied:

1. φ and ψ are non-decreasing;

2. $\psi(x) \rightarrow \infty as x \rightarrow \infty$;

3. for any C > 1 there are γ and $N, 0 < \gamma < m, N > 0$, such that for any x > y > N, $\psi(x)/\psi(y) < C(x/y)^{\gamma}$.

Then, $\varphi(\lambda) \sim \psi(\lambda), \lambda \to \infty$.

2. Abelian-type results

Theorem 1: Let $F \in \mathcal{J}'(r)$ have the quasiasymptotic behaviour at 0^+ related to $(1/k)^{\circ} \times L(1/k)$ with the limit Cf_{a+1} . Then:

(i) For
$$r > \alpha$$
, $\lim_{r \to 0^+} \frac{(S_r f)(x)}{x^{\alpha - r} L(x)} = \frac{C\Gamma(r - \alpha)}{\Gamma(r + 1)}$.

(ii) For
$$r < \alpha$$
, $\lim_{x \to 0^+} (S_r f)(x) = B$, for some $B \in \mathfrak{R}$.

(iii) Assume that $r = \alpha$ and that $L_1(t) = L(1/t)$, t > 0, is locally integrable in (a, ∞) , for some a > 0. If

$$\int_{a}^{\infty} \frac{L_{1}(t)}{t} dt \begin{cases} < \infty, then \lim_{x \to 0^{+}} (S_{\tau}f)(x) = B, \\ = \infty, then \lim_{x \to 0^{+}} ((S_{\tau}f)(x)/\tilde{L}(x)) = B \end{cases}$$

for some $B \in \Re$, where $\tilde{L}(1/x) = \tilde{L}_1(x) = \int_a^b \left((L_1(t)/t) \right) dt$, x > 0.

Note that B in part (ii) and in both cases of part (iii) denotes always different constants which depends on C, α and r. This dependence will be clear from the proof. Clearly, (i) is a part of the assertion given in the Remark. We shall give here another proof of this fact.

Proof: Assume that (1) and (2)* hold for f with some $\overline{m} \in \mathfrak{N}_0$. Then for F_m defined by

$$F_m(x) = \int_0^x F_{m-1}(t) dt \qquad (x \in \Re; m = \overline{m} + 1, \overline{m} + 2, \dots, F_{\overline{m}} = F)$$

there holds:

$$F_{m} \text{ is continuous, supp } F_{m} \subset [0, \infty),$$

$$|F_{m}(t)| \leq C_{m}(1+t)^{r+m-\epsilon}, \quad t > 0, \quad F_{m}^{(m)} = f,$$

$$(S_{r}f)(z) = (r+1)_{m} \int_{0}^{\infty} \frac{F_{m}(t)}{(z+t)^{r+m+1}} dt, \quad z \in \mathfrak{C} \setminus (-\infty, 0]$$
(8)

(for ε see (2)*). Note that the functions F_m are uniquely determined. The structural theorem at 0⁺ given in (5) implies that, for $m \ge \max\{m_0, \overline{m}\}, \lim_{x \to 0^+} (F_m(x)/x^{\alpha+m}) = C/\Gamma(\alpha + m + 1)$. Fix $m > \max\{m_0, \overline{m}\}$ and denote F_m by F again. We have, for k > 0 and $z \in \mathfrak{C} \setminus (-\infty, 0]$,

$$\left(\frac{z}{k}\right)^{r+m+1} (S_r f) \left(\frac{z}{k}\right) = (r+1)_m \left(\frac{z}{k}\right)^{r+m+1} \int_0^\infty \frac{F(t) dt}{(t+z/k)^{r+m+1}}$$
$$= (r+1)_m \left(\frac{z}{k}\right)^{r+m+1} \int_0^\infty \frac{(1/u)^2 F(1/u) du}{(1/u+z/u)^{r+m+1}} = (r+1)_m \int_0^\infty \frac{u^{r+m-1} F(1/u) du}{(u+k/z)^{r+m+1}}$$

So, we obtain, for k > 0 and $z \in \mathfrak{C} \setminus (-\infty, 0]$,

$$\left(\frac{z}{k}\right)^{r+m+1}(S_rf)\left(\frac{z}{k}\right) = (r+1)_m(S_{r+m}\Phi)\left(\frac{k}{z}\right),\tag{9}$$

where $\Phi(t) = t^{r+m-1}F(1/t)$ for t > 0 and $\Phi(t) = 0$ for $t \leq 0$. Obviously,

$$\lim_{t\to\infty} \left(\Phi(t)/t^{r-\alpha-1}L_1(t) \right) = C/\Gamma(\alpha+m+1)$$
(10)

 $(L_1(k) = L(1/k) \text{ is slowly varying at } \infty). \text{ Because of } (8) \text{ we have (with suitable } C_1)$ $|\Phi(t)| \leq C_1 t^{-1+\epsilon} (1+t)^{r+m-\epsilon}, \quad t > 0.$ (11)

((11) shows that Φ is locally integrable on \Re .)

(i) Assume $\alpha < r$. Since $r - \alpha - 1 > -1$, (10) implies that Φ has the quasiasymptotic behaviour at ∞ related to $k^{r-\alpha-1}L_1(k)$ with the limit $C(\Gamma(r-\alpha))/\Gamma(\alpha+m+1)) f_{r-\alpha}$ [8]. So, Theorem A implies (i).

(ii) Assume $\alpha > r$. Now, from (10) (and (11)) it follows that Φ is integrable on \Re . From Theorem B/(i) it follows that Φ has the quasiasymptotic behaviour at ∞ related to k^{-1} with the limit $\tilde{B}\delta$ where \tilde{B} depends on m and Φ (see Theorem B). Theorem implies (ii): We have by (9) $(S_rf)(1/k) = k^{r+m+1}(r+1)_m (S_{r+m}\Phi)(k) \rightarrow (r+1)_m \tilde{B}$, $k \rightarrow \infty$, i.e. $(S_rf)(t) \rightarrow B = (r+1)_m \tilde{B}$, $t \rightarrow 0^+$. Note that B does not depend on m.

(iii) Assume $\alpha = r$. We have by (10), $\Phi(t) \sim \vec{B}t^{-1}L_1(t), t \to \infty$, where \vec{B} is a suitable

constant. If $\int_{a} ((L_1(t)/t)) dt < \infty$, then from Theorem B/(i) it follows that Φ has the quasiasymptotic behaviour at ∞ related to k^{-1} with the limit $\tilde{B}\delta$ where \tilde{B} depends on m and Φ . Theorem A completes the proof of the first part of (iii). Assume now that $\alpha = r$ and $\int_{a}^{\infty} ((L_1(t)/t)) dt = \infty$. Then (10), Theorem B/(ii) and Theorem A completes the proof of (iii), because Φ has the quasiasymptotic behaviour at ∞ with the

limit $\tilde{B}\delta$ related to $k^{-1}\tilde{L}(k)$

Let us set for ε , $0 < \varepsilon < \pi/2$,

$$L(0, R) = \{s \colon |s| < R\}, \qquad \Lambda_{\epsilon} = \{\varrho e^{i\varphi} \colon \varrho > 0, |\varphi| \le \pi - \epsilon\}.$$

Lemma 2: Let f satisfy the conditions of Theorem 1 with $\alpha \ge r > -1$. Then the functions

$$\begin{split} s &\to (S_{r}f)(s), \qquad s \in \Lambda_{\epsilon} \cap L(0,R), \qquad \text{for } \alpha > r, \\ s &\to \frac{1}{\ln s} (S_{r}f)(s), \qquad s \in \Lambda_{\epsilon} \cap L(0,R), \qquad \text{for } \alpha = r, L = 1, \end{split}$$

are bounded ($\ln s = \ln |s| + i\varphi$, $|\varphi| \leq \pi - \varepsilon$).

Proof: Observe first the case $\alpha > r$. Clearly it is enough to prove that $S_r f$ is bounded in $\Lambda_{\epsilon} \cap L(0, R)$. For $z = \varrho e^{i\varphi} \in \Lambda_{\epsilon} \cap L(0, R)$ we have $|1/z|/|t + 1/z| = \lambda(t^2 - 2t\lambda \cos \varepsilon + \lambda^2)^{-1/2}$, $\lambda = 1/\varrho > 1/R$. From

$$t^{2} - 2t\lambda \cos \varepsilon + \lambda^{2} \ge t^{2} + \lambda^{2} + (t^{2} + \lambda^{2}) \cos \varepsilon - (t + \lambda)^{2} \cos \varepsilon$$
$$\ge (t^{2} + \lambda^{2}) (1 + \cos \varepsilon) - 2(t^{2} + \lambda^{2}) \cos \varepsilon$$
$$= (t^{2} + \lambda^{2}) (1 - \cos \varepsilon) > (t + \lambda)^{2} (1 - \cos \varepsilon)/2$$

we have $(\lambda = |1/z|)$

$$\left|\frac{1/z}{t+1/z}\right| < \left(\frac{2}{1-\cos\varepsilon}\right)^{1/2} \frac{\lambda}{t+\lambda}, \qquad t > 0, z \in \Lambda_{\varepsilon} \cap L(0, R).$$
(12)

This implies that, for suitable C, $|1/z|/|t + 1/z| \leq C$ $(t > 0, z \in \Lambda_t \cap L(0, R))$. Since (9) implies

$$(S_r f)(z) = \frac{(r+1)_m}{z^{r+m+1}} \int_0^\infty \frac{\Phi(t) dt}{(t+1/z)^{r+m+1}}, \quad z \in \mathfrak{C} \setminus (-\infty, 0],$$

and $\boldsymbol{\Phi}$ is integrable, we have

$$|(S_rf)(z)| \leq C^{r+m+1} \int_0^\infty |\Phi(t)| \, dt < \infty, \qquad z \in \Lambda_{\epsilon} \cap L(0, R).$$

Observe now the case $\alpha = r$, L = 1. In this case in Theorem 1/(iii), second case, we have $\tilde{L}(x) \sim -\ln x$, $x \to 0^+$. Since the limit $\lim_{x\to\infty} \Phi(x)/x^{-1}$ is finite, with suitable $A, B \in \mathfrak{R}$, and $s \in A_{\epsilon} \cap L(0, R)$, $\lambda = 1/|s|$, (9), (11) and (12) imply

$$(S_{r}f)(s) \leq (r+1)_{m} \left(\int_{0}^{A} |\Phi(t)| \left| \frac{1/s}{t+1/s} \right|^{r+m+1} dt + B \int_{A}^{\infty} \frac{1}{t} \left| \frac{1/s}{t+1/s} \right|^{r+m+1} dt \right)$$
$$\leq (r+1)_{m} \left(\int_{0}^{A} |\Phi(t)| dt + B \left(\frac{2}{1-\cos\varepsilon} \right)^{r+m+1} \int_{A}^{\infty} \frac{\lambda^{r+m+1} dt}{t(\lambda+t)^{r+m+1}} \right).$$

From the identity

$$\frac{1}{t}\left(\frac{\lambda}{\lambda+t}\right)^{r+m+1} = \frac{1}{t} - \frac{1}{t+\lambda} - \frac{\lambda}{(t+\lambda)^2} - \cdots - \frac{\lambda^{r+m}}{(t+\lambda)^{r+m+1}}$$

we have

$$\int_{A}^{\infty} \frac{1}{t} \left(\frac{\lambda}{\lambda+t}\right)^{r+m+1} dt = \left(\ln \frac{t}{t+\lambda} + \frac{\lambda}{t+\lambda} \cdots + \frac{1}{(r+m)} \frac{\lambda^{r+m}}{(t+\lambda)^{r+m}}\right) \Big|_{A}^{\infty}$$

We obtained that the integral $\int \dots$ is bounded independently of λ . This implies that $(S_rf)(s), s \in \Lambda_{\epsilon} \cap L(0, R)$, is bounded. Since $1/\ln s, s \in \Lambda_{\epsilon} \cap L(0, R)$, is bounded, as well, the proof is complete

Assume that the conditions of Lemma 2 hold. We set

$$A(z) = \begin{cases} (S_r f)\left(\frac{1}{z}\right) & \text{if } \alpha > r, \\ \frac{1}{\ln z} (S_r f)\left(\frac{1}{z}\right) & \text{if } \alpha = r, L = 1 \end{cases} \qquad \left(z \in A_{\epsilon} + \frac{1}{R}\right). \tag{13}$$

Lemma 2 implies that in both case A is bounded in $\Lambda_{\epsilon} + 1/R$. Set $A_1(z) = A(z + 1/R)$, $z \in \Lambda_{\epsilon}$.

Lemma 3: There holds $A_1(z) \to B$ uniformly in Λ , when $|z| \to \infty$, where B is from Theorem 1/(ii) or (iii), second case.

Proof: We have that A_1 is bounded in A_i and that $A_1(x) \to B, x \to \infty$ (Theorem 1/(ii) or (iii)). So Montel's theorem [1: p. 5] implies the assertion

Theorem 4: Assume that the conditions of Theorem 1 hold for f with $\alpha \ge r > -1$. (i) If $\alpha > r$, then $(S_r f)(z) \to B$, $|z| \to 0$, $z \in \Lambda_{\epsilon}$, uniformly. (ii) If $\alpha = r$, L = 1, then $(1/\ln z) (S_r f)(z) \to B$, $|z| \to 0$, $z \in \Lambda_{\epsilon}$, uniformly.

Proof: Lemma 3 implies that in both cases $A(z) \to B$, $|z| \to \infty$, $z \in \Lambda_{\epsilon} + 1/R$, uniformly. So, this implies the proof of the theorem

3. A Tauberian-type result.

Let $r \in \Re \setminus \Re$. Assume that $f = F^{(m)} \in \mathscr{S}_+'$ where F is a non-increasing positive locally integrable function such that $F(x) < Ax^{r+m-\epsilon}, x > 0$, for some A > 0. Assume that s > 1, r + m - s > 0 and that $x^{r+m-\epsilon}L_1(x), x > A$, is non-decreasing, where L(x), x > 0, is slowly varying at 0^+ and $L_1(x) = L(1/x), x > 0$. With the given assumptions we have

Theorem 5: Assume that

$$(S_r f)(x) \sim (r+1)_m \frac{\Gamma(s)}{\Gamma(r+m+1)} \frac{L(x)}{x^{m+r+1-s}}, \quad x \to 0^+.$$

Then

$$\lim_{k\to\infty}\frac{f(x/k)}{(1/k)^{s-m-1}L(1/k)}=Bf_{s-m} \text{ in } \mathscr{S}',$$

where B is a suitable constant.

Proof: The assumption of the theorem and (9) imply that

$$(S_{r+m}\Phi)(x) \sim \frac{\Gamma(s)}{\Gamma(r+m+1)} \frac{L_1(x)}{x^s}, \quad x \to \infty,$$

where $\Phi(x) = x^{r+m-1}F(1/x)$, x > 0, is a non-decreasing function. Let

$$\psi(x) = \begin{cases} x^{r+m-s}L_1(x)/\Gamma(r+m-s+1), & x > A, \\ 0, & x \leq A \end{cases}$$

Theorem A implies

$$\int_{0}^{\infty} \frac{d\psi(t)}{(x+t)^{r+m}} = (r+m) \int_{0}^{\infty} \frac{\psi(t)}{(x+t)^{r+m+1}} dt \underset{x\to\infty}{\sim} \frac{(r+m) \Gamma(s)}{\Gamma(r+m+1)} \frac{L_1(x)}{x^s}$$

So,

$$\int_{0}^{\infty} (d\Phi/(x+t)^{r+m}) \sim \int_{0}^{\infty} \left((d\psi/(x+t)^{r+m}) \right) \text{ as } x \to \infty.$$

If we show that for every C > 1 there are constants γ and N, $0 < \gamma < r + m - 1$, N > 0, such that

$$x > y > N \Rightarrow x^{r+m-s}L_1(x)/y^{r+m-s}L_1(y) = C(x/y)^r, \qquad (14)$$

then all the assumptions of Theorem B are satisfied and this theorem implies

$$\Phi(x) \sim \psi(x), \qquad x \to \infty.$$
(15)

Take $\gamma = r + m - s + \varepsilon$ where $\varepsilon > 0$ such that $\gamma > 0$ and $\varepsilon < s - 1$. With such γ and $x = \lambda y, \lambda > 1, y > N$, (14) becomes $L_1(\lambda y) \leq C\lambda^{\varepsilon}L_1(y)$, and this is true [7: p. 18]; note, N depends on C. So, (15) implies $\varphi(x) \sim x^{r+m-\varepsilon}L_1(x)/\Gamma(r+m-s+1), x \to \infty$, and thus

$$x^{r+m-1}F\left(\frac{1}{x}\right)\sim \frac{x^{r+m-s}}{\Gamma(r+m-s+1)}L_1(x), \qquad x\to\infty,$$

$$F(x) \sim \frac{x^{s-1}}{\Gamma(r+m-s+1)} L(x), \qquad x \to 0^+.$$

Since $f = F^{(m)}$ we have for suitable B the assertion

Acknowledgement. This material is based on work supported by the U.S.-Yugoslav Joint Fund for Scientific and Technological Cooperation, in cooperation with the (IFP) under Grant 838.

REFERENCES

- [1] BOAS, R. P.: Entire Functions. New York: Acad. Press 1954.
- [2] Владимиров, В. С., Дрожжинов, Ю. Н., и Б. И. Завьялов: Многомерные Тауберовы теоремы для обобщенных функций. Москва: Изд-во Наука 1986.
- [3] Забьялов, Б. И.: Автомодельная асимптотика электромагнитных форм-факторов и поведение их фурье-образов в окрестности светового конуса. Теор. Мат. Физ. 17 (1973), 178—188.
- [4] Костюченко, А. Г., и И. С. Саргсян: Распределение собственных значений. Москва: Изд-во Наука 1979.
- [5] LAVOINE, J., and D. P. MISRA: Abelian theorems for the distributional Stieltjes transformation. Proc. Camb. Phil. Soc. 86 (1979), 287-293.
- [6] PILIPOVIĆ, S., and A. TAKAČI: The quasiasymptotic behaviour of some distributions. Rev. Res. Fac. Sci. Univ. Novi Sad 15 (1985), 37-46.
- [7] PLIPOVIĆ, S., and B. STANKOVIĆ: Abelian Theorem for the Distributional Stieltjes Transform. Z. Anal. Anw. 6 (1987), 341-349.
- [8] PILIPOVIĆ, S., and B. STANKOVIĆ: Initial value Abelian theorems for the distributional Stiletjes transform. Studia Math. (to appear).
- [9] SENETA, E.: Regularly Varying Functions (Lect. Notes Math. 508). Berlin-Heidelberg-New York: Springer-Verlag 1976.

Manuskripteingang: 02. 06. 1987; in revidierter Fassung 09. 12. 1987

VERFASSER:

Prof. Dr. STEVAN PILIPOVIĆ Institute of Mathematics, University of Novi Sad dr. Ilije Djuričića 4 Yu-21000 Novi Sad