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On the Behaviour of the Distributional Stieltjes Transformation at the Origin

S. Poxrovié

Es wird das Verhalten der Stieltjes-Transformierten solcher Distributionen aus f,’ im Ur.
sprung O untersucht, die ein geeignetes quasiasymptotisches Verhalten in 0+ besitzen. Diese
:1euen Ergebnisse werden mit Hilfe bekannter Resultate iiber das asymptotische Verhalten

bei oo erhalten. Ferner wird auch ein Satz vom Tauberschen Typ iiber das Verhalten in 0O
bewiesen. -

. Mccnenyercs nosenenne tpancpopmaunn CruibTbeca TaKKX RUCTPUOYIMA H3 .’ B HAvaje
®oopauHat 0, KOTOpble MMEIOT MOUXOAAINee KBA3MACUMNTOTHYECKOE MOBEleHHe B Touke 0.
OTH HOBHE PE3YJIbTATH MOJNYYAIOTCA C MOMOMILIO HIBECTHHX 06 ACHMITOTHYECKOM MOBENEHHH
B TOYKe 00. JlOKA3LBAETCA TaKHe ONMH pe3ynbTaT TayGepoBa THNA O MOBENEHUH B TOUKe 0.

The behaviour of the distributional Stieltjes transformation at the origin 0 is investigated
for distributions of &, having appropriate quasiasymptotic behaviour at 0+. Thesc new
results follow by known ones for the asymptotic behavnour at co. A Tauberian-type result
for t,he behakur at 0 is also obtained.

1. Notions and known results ’ S

The sets of real and natural ‘numbers are denoted by R .and N, respectively. S(R) = &
and S'(R) = & denote the spaces of rapidly decreasing functions and tempered
distributions, respectively. The space J'(r}, 7 € R \ (—N) is defined in [3] as a sub-
space of &, = {f € F'(R); supp f <= [0, )} consisting of all f of the form--

/_D"‘F forsomemE‘)?o—WU{O} o

1)
F‘E L., supp F — [0, 0), '
D is the distributional derivative, such that
JIF@)@ + 2y dt < o0, - x>0, | @
g o X

Obviously, if f 6 7J'(r+ p), then ftere g’ (75, p € Ny We also need the definition of
the space J'(r), r € R\ (—N). This is a subspace of J'(r) consisting of all /€ 7’ (r)
for whlch (1) holds and instead of (2), there holds

IF(t)] < C(1-4 t)yrtm—e, £ > O, for some C, e > 0. (2)*
The distributional Stieltjes transformation of f = D™F € 7'(r) is defined by [2]

(S.f) (2) = (r + 1), F(t) dt

" W’. z€ €\ (—o0,0], = (3)
0 . _
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where (a), =ala 4+ 1)...(@a +m — 1), m€ N, (a); = 1, a € R and € jis the set of
complex numbers. This is a holomorphic function.

We always denote in this paper by L a function which is slowly varying at co (0*),
i.e. which is a continuous positive function defined in (0, o) such that L(Az)/L(z) — 1.
as £ — oo (x —07%), 2 > 0. For the properties of such functions we refer to [7].
When in connection with a function L we deal with the point co (0*) we shall always
assume that L is slowly varying at oo (0%).

In our investigations of the distributional Stieltjes transformation the notions
of quasiasymptotic behaviour at oo and at 0+ play a fundamental role. These notions

are introduced by ZAVIALOV' [9]. Note that in [6] we changed slightly the definition _ -

" of the quasiasymptotic behaviour at 0*. Recall f € £, has the quasiasymptotic be-
hamour at co (0%) related to k*L(k) ((l/k L(1/k) ) with the limit g € J’P if

im (E’% qz(x)> = (g@), 9lz), g€,
( ll (ﬂa <P(x ) (g x)’ .’C)), ‘P € ‘?)' .

1/kyL(1k

(-, -y is the dual pamng between &’ and . We include in the deflmtlon the case
g = 0, as well, while in [9] and [6] were assumed ¢ =+ 0. It is well known that g in
(4) must be of the form § = Cf.,,, where .

(4)

. &) t|I'x + 1) foa>—1, '
fan(®) = { Do 12Tl eew

for some n € N with n + « > —1 see [8]; H is Heviside’s function, I" is the gamma
function. For the properties of the quasiasymptotic behaviour at co we refer to [8]
and at 0* we refer to [6]. Let us only quote the so-called structural theorem. Let
f € &, have the quasiasymptotic behaviour at co (0%) related to k*L(k) ((1/k)" L(l/lc))
with the limit Cf,.,; then there is an integer my € Ny, my + « > —1, such that for
“every m = m, there is a. locally integrable function F,, with supsz Lo [O o0) such

that A
' . F m(x) ¢ . Fu(z) - C '
— (m) —3 ] f—t . v
f=Fn™, 2112 ze¥m o+ m + 1) (,LT+ zetm (e 4+ m + 1)) (5)
Note that (5) is proved in [8] and [6] with the assumption C =#= 0. One can easily

prove that this holds with C = 0, as well.
We shall need the fo]lowmg theorem from [5].

Theorem A: Let f € & have the quasmsymptotw behaviour at oo related to Ic“L(k)'
with the limit Cf,.,, where x < r. Then .

. (ksy _Crr —«)
,,hli () (S+f) (ks) TeT)’

forany s € 2, = {0el?: o > 0, —71+e§¢§n—8},where0<e<ﬂ/2.I/L= 1,
" then '

(8)

C'r(r %)
T (r+ 1)
ThlS theorem ‘was proved with the assumptlon C #+ 0. But it also holdg with

C = 0, because the main step of its proof is the use of (5) which holds with ¢ = 0.
As well, we need from [4] the following theorem. .

uniformly in 2, when |s| — oo (7)

8" %(84f) ()
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Theorem B: The /ollowmg two statements are true: /

(i) Let P be mtegrable on R, supp P = [O oo) and C = f d(t) dt. Then lim d)(k )k
= Cd in S (0 is the delta dwtnbutzon) : k—>oo

(ii) Let ®@ € L}, supp @ < [0, oo) hm D)/t 1L(t) = C and let L*(”c f (L(t)/t
- o0 as > oo {a > 0). Thenllmd)k)/k 1L(k) = C(Smf’

Note that (i) holds trivially and that (ii) follows from the fact that
[ @) dtjL*2) ~C, w>c0  (L’Hospital'srule),
0 ,

and so
' R kz -
lim [ o@) dt/L*(k) CH(z)in & (z € R).

k—c0 0

Now, byldifferentiation we obtain (i1).
Note that we include.in Theorem B the case ¢ = 0. °

Remark: By developing the notion of the quasiasymptotic at 0+ we proved in
- [6] the same theorem for the behaviour of S,fat 0: If f € 7'(r) has the quasiasymptotic
behaviour at 0* related to (1/k)* L(1/k), « < r, then (6) holds with 1/k instead of k
and (7) holds with |s| — O instead of |s| = co. The aim of this paper is to extend this
theorem using Theorem A. We shall also give a Ta.uberlan -type result It is based on
the following theorem from [2: p. 339].

'Theorem C: Let us suppose that /or some m > 0

v

fd(p (4 + )™~ f d‘lp(A)/; + x)"'“ z — 00,

and that the followmg comlz_tzons are satzs/wd: ]

1. @ and p are non-decreasing; .

2. y(z) > o0 as z — 00; ' ) :
3. /oranyC > lthereareyandN 0<y<mN>0, suchlhat/oranyx >y>N,
p(@)/yly) < Clzly)-

Then, g(1) ~ p(4), 2 — oo.

2. Abelian-type results

Theorem 1: Let F € <7 (r) have the quaszasymptotw behaviour at 0* related to (1/k)°
- X L(1/k) with the limit C/,H Then:

. (SHf) () _CI'r— o)
(i) . Forr > a,zlilol’ L@ — Tr+ 1)

(1) For r < &, lim (S,f) (x) = B, for some B € ).
. z—0+ " ) _
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(ii1) Assume that r = x and that L,(t) = L(llt), t> 0 18 locally mlegrable n
(@, 00), for somea > 0. If i

< oo, then lim (8,f) (x) =
r—0*

f L®. 41
-t ‘= o0, then lim ((S,f) (x)/E(x)) =
- 0t ' .

a

for some B é‘ R, where zll/x) = L,(2) = f ((L,(t)lt)) dt, x> 0'.

Note that B in part (ii) and in both cases of part (m) denotes a]ways different constants
‘which depends on C, « and r. This dependence will be clear from the proof. Clearly, (l) is a
part of the aﬁscrtlon given in the Remark. We shall give here another proof of this fact.”

Proof. Assume that (1) and (2)* hold for f with some m € R,. Then for F,, defined
by : o : . ’

Fu(x) = [ Fp(t)dt (eERym=m+1,m+2,..., Fa=F)
M 0 , N ta ’ )

there holds:

F,, is continuous, supp F,, < [0, co), .
NFu(®)] < Cu(1 +t)y*m=5, >0, Fp™={,
o w . . .r . (8)

" (84) ()= (r+

Fat) - o
(Z,H—)fzmﬂdh 2€E\ (=00, 0]

) (for & see (2)*). Note that the functions F,, are uniquely detcrmmed The structural
theorem at 0* given in (5) implies that, for m = max {m,, ™ hm (F,,,(x)/x“““")

= C|I(« + m + 1). Fix m > max {mo, } and denote F, by F agam We have, for
.k>0andz€@:\(—oo O]

z f+m+l z z\rtm+1 ~ F(t) dt
(?) (S+f) (7) = (r + 1)m (—) f(l ¥ zfk)y tmr
0

u'tm=1F(1u) du

2\t (L) Plu) du '
(7 + l)m ( ) (I/u + 2/u)'+”'+l - (r + l)m (u + ]C/Z)'+m+_l .
0
So, we obtain, for k > 0 and z ¢ _(S\ (— o0, 0}, . o
z\r+tm+1 z k X ’ ! .
where &(t) =+m~1F(1/t) for ¢ > 0 and Dt ) = 0 for ¢ £ 0. Obviously,
hm (qs(z v L) = O« + m + 1. -, . (10)

(Lll(k) = L(1/k) is slowly varying at cc). Because of (8) we have (with suitable C,)
D) < C=1e(1 + ty+m=,  £>0. . (11)
((11) shows that & is locally integrable on %.)

/
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(i) Assume « < 7. Since 7 — « — 1 > —1, (10) implies that @ has the quasi-
asymptotlc ‘behaviour at co related to k*—e—1L,(k) with the limit C(F(r — o)l +m"
"+ 1)) fr—a [8]. So, Theorem A implies (i).

(i1)-Assume « > r. Now, from (10) (and (11)) it follows that @ is integrable on R.
From Theorem B/(i) it follows that @ has the quasiasymptotic behaviour at oo rela-
ted to k-1 with the limit Bé where B depends on m and & (see Theorem B). Theorem
- implies (11) We have by (9) (S,f) (1/k) = k¥ r + 1) (Spim®P) (k) = (r + 1) B
k— oco,ie (S,f)(t) > B =(r + 1), B,t —0*. Note that B does not clegend on m.

(i) Assume o = r. We have by (10), B(¢t) ~ Bt-1L,(t), t — oo, where B is a suitable

constant. If f ((L (¢)/t)) dt < oo, then from Theorem BJ(i) it follo“s that @ has the

‘ quasxasymptotlc behaviour at co related to £~! with the llmlt Bb where B depends
onm and @. Thcorem ‘A completes the proof of the first part of (1u) Assume now

_ that « = r and f ((L,(t)/t)) dt = oo. Then (10), Theorem B/{ii) and Theorem’A com-

' pletes the proof of (iii), because @ has the quasmsymptotlc behavnour at co with the
limit B related to k- 1T(k) 1

Let us set for &, 0<e< 72,
L(0, R) = {s: |s|<R} A, = {pel®:0 >0, || = — ¢}

, Lem ma 2: Let f satzs/y the condztwns of Theorem 1 wzth « =1 > —1. Then the
functions ’

8.~ (8:/)(s), $ €d.n L.(O» R), fora >,
—)In]_s(sr/)(s)v S€A¢nL(O,R); /OTa:r,L=1’

are bounded (Ins = In |s} + 1<p, lpl-= 7 — &).

Proof: Observe first the case > r. Clearly it is enough to prove that S,[ is .
“ bounded in A, n L0, R). For z=ge? € A, nL(0,R) we have |[1/z|[|t 4+ 1/z|
= A(t2 — 2tAcose + 42712, 4 = 1fp,> 1/R. From B
— 2t2 cose + A2 =% + A% 4 (824 )2)0058 — (t + /)20088
= (82 4+ 22) (1 + cos &) — 2(2.4 2?) cos € ,

= (2 4 A2) (1 — cose) > (£ + A)2 (1 — cos¢)/2 '
we have (4 = |1/z}) o

1/2 ‘ '
‘I/z <( 2 ) A 1>0,2€ AL, R). (12)

e+ 1)z 1—cose t+ 2

Thls implies that for sultable c, [1/z/lt + 1[;| =C (t > 0,z € A, o L(0, R)). Since
(9) implies R

, D omda
(S,f)(Z)"—‘ (:ri_m-{-)l f(t 1(/:r+m+l’_ ZEG\(—OO’O];

and d> is mtegrable, we have

1(S+1) ()] < orem f |¢>(t)| dt <o, z€d,nL0,R).
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Observe now the case « = , L = 1. In this case in Theorem 1/( iii), second case,
‘we have L(z) ~ —Inz, x — 0*. Since the limit llm D(x)[x~! is finite, with suitable

A,B € R,and s € 4, n L0, R), 2 = 1/s], (9), (11) and (12) 1mply

8.0 ( | f 0| B K s _|amtt
) (S ’
)=+ 1 I )Ilt+1/ + f L+1/s dt
A . 0
PR A , U g \remer e gramda gy
) < 1 . ! — 1. A —
T './.ld)(t)ldtTB(l»-—cose) . ft(Ht)rﬁM
\o A
From the identity
1 ( A \rtml B 1 1 ‘ J . jrim .
EAL A+t I S e N S
we have
1 A Ytmtl B ¢ ; . 1 Jrem oo
f 7(7~—+-'t) dt_(l“t+_;~+ t—+—/'.m+(r+m)<(t+).)'+"')4

-We obtamed bhat the integral f . is bounded m(lependenth of 2. This implies that -

(S,f) (s), s € A, n L(0O, R), is bmmde(l Smce 1/lns, s€ A, n L(O R), is —_bounded, as
- well; the proof is complete 1 N

Assume that the conditions of Lemma 2 hold: We set

{ s (l) e,
11
lnz (S+) (——) 1fo<=r,L—1

Lemma 2 1mp11es that in both case 4 is bounded inA, 4+ I/R Set Al(z) = A(z + l/R),
z€ A,

Lemma 3: There holds A 1(z) > B um/ormly in A, when |z] — oo, where B is /rom
Theorem 1/(ii) or (iii), second case.

-Proof: We have that 4, is bounded in A, and that 4,(x) - B,z — oo (Theorem 1/
(ii) or (iii)). So Montel s theorem [1: p..5] implies the assertion A .

A(z) = (z €, + lR) (13)

Theorem 4 Assume that the conditions of, Theorem 1 hold for fwitha =1 > —1
(i) If o« > r, then (S,f) (z) = B, 1z| =0, z € A,, uniformly.
(ii) If « =1, L = 1, then (1/In 2) (S,f) (z) = B, |z| — 0, z € A,, uniformly.

Proof: Lemma 3 implies that in both cases A(z) > B, |z| > 00, 2z € A + l/R'
umformly So, this implies the proof of the theorem B
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3. A Tauberian-type result.

‘Let r € RN N. Assume that f = F™ ¢ £, where F is a non-increasing positive
locally integrable function such that F(z) < Az"+™— ¢,z > 0, for some 4 > 0. Assume
"that s > 1, r + m — s > 0 and that 27" *L,(x), 2 > 4, is non-decreasing, where
~ L{z), z > 0, is slowly varying at 0* and L,(z) = L(1/z), x > 0. With the given
" assumptions we have : J :
Theorem 5: Assume that : _
sy - ' L) .

(7‘ +m + 1) xm+r+l—s",

z— 0",

(S.0) @) ~ (r + D =

Tken .
. Halk)
eI

where B is a suitable constant.

= Bfszmin &', .-

, Proof: The assumption of the theorem and (9) imply that

I'(s) . Ly=) ' -
(Sr+m¢)() F(r+m+l) xa"‘.x—"oo

where &(x) = x'*""‘F(l,lx), z>0,is a non- decreasing function. Leb

(z) = e (x)[(r + m—s+1), >4,
¥® =1, , < A.
Theorem A implies - ' ’

[ <]

dy(t) (¢ (r + m) I'(s) Ly(z)
f(x+t)r+m (r+m)f(x+tv+m+1 z—?oor(7+m+ ) xa"
0-

So, .
f (dD(z + t)7+m) ~ f ((dw/(x +t)*™)) as z — oo0.
If we show that for every C > 1 there are constants v and N,0<y<r+m—1,
N > ‘0, such that ‘ ‘
2>y > N =>armeL(z)y+mL(y) = Clzlyy, (14)
then all the assumptions of Theorem B are satisfied and this theorem implies
) ~ ), - x> oo S (15)

Take'y = r 4+ m — s + & where ¢ > 0 such that y > 0 and ¢ < s —"1. With such y
and z = Ay, A > 1, y > N, (14) becomes L,(dy) =< CA°L,(y), and this is true [7: p. 18];

note, N depends on-C. So, (15) implies p(z) ~ x'*"‘ Ly(@)[I'(r + m—s+ 1),z > oo,

and thus

- 1\~ ' ’xr+m s I
v (;)~F(r+m——s+1) ,(x), T
ie. : .
’ : -1
F(z) ~ il L(x), z —0t.

I'r+m—s+1)
Since f = F™ we have for suitable B the assertion 1 . .
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