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On the Behaviour of the Distributional Stieltjes Transformation at the Origin 

S. PILrPovIO 

Es wird das Verhalten der Stieltjes-Transformierten soicher Distributionen aus 'Y',' im Ur. 
sprung 0 uñtersucht, die ein geeignetes quasiasymptotisches Verhalten in 0 besitzen. Diese 
ieuen Ergebnisse werden mit Hilfe bekannter Rsultate uber das asymptotische Verhalten 
hei pc erhalten. Ferner wird auch ein Satz vom Tauberschen Typ fiber das Verhalten in 0 
hewiesen. -' 

14cc.i1e1yeTcn noBeaeHIle TpaI1C4OpMaIMH CTMrlbTbeca Ta1x HCTpH6ylJMf) MB	B Haqajie 
oopjw uaT 0, ROTObl HMeIOT noj xoanuee KBa3IIaCHMnTOm4eC}coe UOBCeHMe B TOH 0+. 

3TM JIOBbIC peayJlbTaml noiyaioca C noMou1,IO M3oecTl(blx o6 acilMnToTu'lecKoM rioaejeun 
B TO'IRe 00. JoHa3bInaeTcn TaloHe OIJHll pe3yJIbTaT TayöepoBa THI1B 0 noBeeH1aH B T0 q He 0. 
The behaviour of the distributional Stieltjes transformation at the origin 0 is investigated 
for distributions of Y' having appropriate quasiasymptotic behaviour at 0+. These new 
results follow by known ones for the asymptotic behaviour at co. A Tauberian-type result 
for the behaviour at 0 is also obtained. 

1. Notions and known results 

The sets of real and natural numbers are denoted by 91 and91, respectively. 0() 
= 

and °'(R) = T' denote the spaces of rapidly decreasing functions and tempered 
distributions, respectivel5. The space 7'(r), r E R \ (-1) is defined in [3] as a sub-
space of	= E à°'(R); supp / c [0, co)) consisting of all / of the form-

/ = DmF, for some m E 9? = IR u {0}, 
FE L' bc,	supp F c[O, oo), 

D is the distributional derivative, such that 

JIF(t )J( t + x m1j dt	oo, . x> 0.	 (2) 

Obviously, if / E 7'(r + p), then /(P) E 7'(r), p E . 910 . We also need the definition of 
the space J'(r), r € J1 \ (-91). This is a subspace of 7'(r) consisting of all /E 7'(r) 
for which (1) holds and instead of (2),-there holds 

IF(1)I < C(1+ e)+ m- 1 ,	t > 0, for some C, E > 0.	 (2)*

The distributional Stieltjes transformation of = DmF € 7'(r) is defined by [2] 
00

ZE\(—oo,0],	 (3) (Sri) (z) = (r + 1)mf	
F) dt 

(z + ty+m+1 '. 
0	 -

(1)
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where (a) m = a(a+ 1)... (a + m - 1), m  91, (a)0 = 1, a E 91 and	is the set of
complex numbers. This is a holomorphic function. 

We always denote in this paper by L a function which is slowly varying at 00 (0k), 
i.e. which is a continuous positive function defined in (0, oc) such that L(Ax)/L(x) -- 11 
as x ' cc (x - 0k ), ). > 0. For the properties of such functions we refer to [7]. 
When in connection with a function L we deal with the point cc (0k ) we shall always 
assume that L is slowly varying at co (0k). 

In our investigations of the distributional Stieltjes transformation the notions 
of quasiasynaptotic behaviour at co and at 0 play a fundamental role. These notions 
are introduced by ZAvIAL0v[9]. Note that in [6] we changed slightly, the definition.... 
of the quasiasymptotic behaviour at 0. Recall, / E °+' has the quasiaymptotic be- -. 
haviour at cc (0k ) related to k"L(k) ((Ilk)' L(11k)) with the limit g E 

lim / /(kx)	
) k\kL(k)	

=(g(xq(x)),	q7EJ',
(4) 

(urn (
	

/(x/k)	, (x))' = (g(x), (x)),	E 
\k-+oo (l/k)L(1/k) 

is the dual pairing between ?' and X. We include in the definition the case 
g = 0, as well, while in [9] and [6] were assumed g 0. It is well known that g in 
(4) must be of the form g = C/,+1 , where 

i H(t) t/r(a + 1)	if a >	(t E 91) = L D'i±n+I(t )	if a	—1 

for some n E 91 with n + a > —1 see [8]; H is Heviside's function, F is the gamma 
function. For the properties of the quasiasymptotic behaviour at cc we refer to [8] 
and at 0 we refer to [6]. Let us only quote the so-called structural theorem. Let 
/ E +' have the quasiasymptotic behaviour at cc (0 k ) related to kL(k) ((1/k) L(1/k)) 
with the limit Cl. -,.,; then there is an integer m0 E 9l, m0 + a > —1, such that for 

- every m m0 there is a, locally integrable function Fm With SUPP:;Fm [0, oc) such 
that

	

(m)	 Fm(X)	C	I	F,,(x)	. C 
/ = Fm ,	urn	=	 lim	=	 j. '(5) I'(a + m ± 1) \.0+X.+m	F(a + m + 1), 

Note that (5) is proved in [8] and [6] with the assumption 'C	0. One can easily 
prove that this holds with C = 0, as well. 

We shall need the following theorem from [5]. 

Theorem A: Let / E T' have the quasiasymptotic behaviour at co related to kL(k) 
with the limit C/, 1 , where a < r. Then 

• . (ksY	 CF(r -
 

a) 
L(k) (STI) (ks) 

= F(r + 1) '	'	 (6) 

for any sE 92, = (e':g >0, - + 	7r—s, where 0 <e</2.I/L= 1,

then
r_(5/) (s) 

-^	
uniformly in Q, when 181 —i- 00.,	 (7) 

This theorem was proved with the, assumption C + 0. But it also holds with 
C = 0, because the main step of its proof is the use of (5) which holds with C = 0. 

As well, we need from [4] the following theorem..
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Theorem B: The following two statements are true:
Co 

(i) Let 0 be integrable on R,supp	[0, oo) and C = f (t) dt. Then urn ø(/c.)/k-' 
= Co in " (0 is the delta distribution). 

(ii) Let 0 E	supp 0	[0, co), lirnø(t)1t'L(t) =C ad let L*(x) =f (L(t)/t) di 

-* oo as x oo (a > 0). Then urn (I)(k.)/k-'L(k) = CO mY'. 

Note that (i) holds trivially and that (ii) follows from the fact that 

f(t) dt/L*(x) . C,	x	co	(L'Hopita1's'ruIe), 

and so

urn f(t) dt/L*(k) = CH(x) in Y'	(x E ). 
k-00 0 

Now, by differentiation we obtain (ii). 
Note that we include in Theorem B the case C = 0. - 

Remark: By developing the notion of the quasiasymptotic at 0 we proved in 
[6] the same theorem for the behaviour of Sri at 0: 1ff € 7'(r) has the quaiasymptotic 
behaviour at 0 1 related to (1/k) L(lfk),a < r, then (6) holds with 1/k instead of k 
and (7) holds with ii -* 0 instead of I sl -- 00. The aim of this paper is to extend this 
theorem using Theorem A. We shall also give a Taitberian-type result. It is based on 
the following theorem from [2: p. 339]. 

Theoreth C: Let us suppose that for some m. > 0 
00	 00 

fd().)/(2 + X)m1	fd(A)[() ± x)m+,	x - cc, 

and that the following conditions are satisfied: 

1. q, and ip are non-decreasing; 
2..v,(x)—*ooasx—oo; 
3. for any C> l there are y and N,0 <y <m,N> 0, such that for any x > y> N, 

v(x)/V(Y) <C(x/y). 
Then, q(A)	2),	cc. 

2. Abelian-type results 

Theorem 1: Let F E 3'(r) have the qucisiasymptotic behaviour at 01 related to (1/k)a 
X L(11k) with the limit Cf +1 . Then: 

For r> a, lim (St) (x)	CF(r - a) 
(i) _rJ(X) - F(r+ 1) 

(ii) For r < a, urn (St) (x) = B, for some B E .
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(iii)	Assume that r =a and that L 1 (t)	L(lft), t > 0, is locally integrable in
(a, oo), for some -a > 0. If 

co	< oo, then urn (S/) (x) = B, 
r:EL d, JI t	oo, then lim ((Sf) (x)/L(x)) = B 

for some B 91, where L(1/x) = L1(x) = f ((L1(t)/t)) dt, x	0. 

Note that B in part (ii) and in both cases of part (iii) denotes always different constants 
which depends on C, oc and r. This dependence will be clear from the proof. Clearly, (i) is it 
part of the assertion given in the Remark. We shall give here another proof of this fact. 

Proof: Assume that, (1) and (2)* hold for / with some W € 910 . Then for Fm defined 
by

Fm(X)fFm(t)dt	(x€ ;m+	 F)

there holds: 

Fm is continuous, supp Fm	[0, co), 
Fm(t)I	Cm(l ± t)-, t > 0,	F.W = 

(Sri) (z)	(r+ 1)mf( 
±tY±m^i 

dt,	z E \	00, 01 

(for a see (2)*). Note that the functions Fm are uniquely determined. The structural 
.theorem at . 0 given in (5) implies that, for m ^ max {m0,-}, lim (Fm(X)/X+-) 

= C/I'(c + m + 1). Fix m> max {m0, i} and denote	by F again. We have, for 
k>O and zE-\(—oo,0],

00 

(
1)"+m

/z\r+m+1 ' F(t)dt 
 (S,j) (._) 

= (r -1- 1),,,	 j (t + z/k)r+m+l 
0 

00	 - 00 

(1/) 2 F(1/u)du	 uT+m_lF(1/u)du 
(r + l)m)

	(1/u + Z/U)r+m±I = (r + l)rnJ (u + k/z)r+m+1 
0	 0 

So, we obtain, for k > 0 and z E \ (-00,0], 

z r-fm-3-I 

)	
(Sri) (T) = (r ± 1) () 

( k ),	 -.	(9) 

where (t) =tr+m_lF(l/t) for I > 0 and (t) = 0 for I < 0. Obviously, 
lim ((t)/tt-_1L1(t)) = C/P(cx -F ni + 1)	 (10) 

(L 1 (k) = L(Ilk) is slowly varying at oo). Because of (8) we have (with suitable C1) 

Ct 1 '(1 + t)r +m_ e ,	' t > 0.	 (11)

((11) shows that 0 is locally integrable on
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(i) Assume a <r. Since r - a - 1 > —1, (10) implies that 0has the quasi- 
asymptotic behaviour at oo related to kY_a_ 1L1 (k) with the limit C(I'(r - a)/F(a + m 
+ 1)) fr-a [8]. So, Theorem A implies (i). 

(ii) Assume a> r. Now, from (10) (and (11)) it follows that 0 is integrable on 
From Theorem B/(i) it follows that 0 has the qusiasymptotic behaviour at oo rela-
tedto k-' with the limit Eo where depends on m and (see Theorem B). Theorem

	

implies (ii): We have by (9) (Sri) (1/k) = kr+?1+l(r + 1)m (5T+m) (k)	(r + 1)m B, 
Ic -*oo, i.e. (S/) (t) -. B = (r + 1)m E, t - O. Note that B does not de-pend on m. 

(iii) Assume a = r. We have by (10), (t)	Br'L1 (t), t , 00, where B is a suitable 
co 

constant. If f ((L1 (t)1 1)) dl <00, then from Theorem B/(i) it follóws that 0 has the 

quasiasymptotic behaviour at 00 related to k' with the limit [16 where R depends 
on m and 0. Theorem A completes the proof of the first part of (iii). Assume now 

that a = r and I ((L1(t)/t)) dl = oo. Then (10), Theorem B/(ii) and Theorem A com-

pletes the proof of (iii), because 0 has the quasiasymptot . ic behaviour at 00 with the 
limit Ea related to k-'L(k) I 

Let us set for €, 0 < e 

L(0, R) = {s: Isl < R},	A,' = {e': Lo > 0, 1 9 1	- 

Lemma 2: Let / satisfy the conditions of Theorem 1 with a r > —1. Then the 
functions

S± (Srf)'(S ),	s E-. A, n L(0, R),	for a > r, 

-	
(Sri) (s),	s E A, n L(0, R),	/or a = r, L = 1, 

are bounded (Ins = In Isl + iq,,	37 - a). 

Proof: Observe first the case a >. r. Clearly it is enough to prove that Si] S 
bounded in A, n L(0, R). For z = E A, n L(O, R) we have il/ziilt + lfzi 
= 2(12 - 20. cos a + ).2)_2, A = l /e,> 11R. From 

- 212 cos'a ± 22, ^ 12 +A2 + (12 + ),2 ).cos-e - (1 + 2)2 cos•e 
^(t2+).2)(1+ COS e)-2(t2.+).2) COS a 
= (12 ± )2) (J - cos a) > (1 + 2) 2 (1 - cos E) 12 

we have (;. = il/zi) 

l/z	_________ ______ 2	1f2	) 

+ lIz <(1__	+ 2'	1>0, z € A, n L(0, R).	(12) 

This, implies that, for suitable C, i 1 /z i/i t '+ 1/z ^5 C (t > 0, z € A, n L(0, R)). Since 
(9) implies

00

, 

	

- (r+ 1)m f '(t)dt	 01 (Sf) (z) - 
Zr+m+l	(I + 1/z)r+m+l	

z E	(-00, 
0	 'I 

and 0 is integrable, we have 

i(S /) (z)I ,i; Cr + m + h f 10(1)1 dl < 00,	Z E A. o L(0, R).
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Observe now the case a = r, L = 1. In this case in Theorem 1/(iii), second case, 
we have L(x)	—in x, x - Ot Since the limit urnO(x)lx-1 is finite, with suitable 
A, B E R, and s E A, n L(O, R), 2 = 1/s, (9), (11) and (12) imply 

	

/	A	 .	 00 

	

1/8 r+m+1	 1	11s ?+m+I 
(S f)(s) ^(r + 1)m(fI(t)I	j•'	dt+Bf	j	dt 

......-
 (10(t)l

.	 rm+1	)r++1 dt ^ (r + 1 	dt ± B 
(-'T_COS€ )	I t(2+ t)"1 

From the identity 

1 Gi7\!+m±I .
)	=t	t ± A (t + ).)2	 (t + 2)m+ 

we have
00 

r 1 / 2 	(in I	 . dt=—+	 ... +
J t \2t/ 	t--i	t+i.	(r+m)(t+2Ym/ A 

We obtained that the integral  ... is bounded . independent.iy of 2. This implies that 

(Sf) (s), s € A, n L(O, B), is bounded. Since 1/in s, s € A, n L(O, B), is -bdunded, as 
well, the proof is complete I 

Assume that the conditions of Lemma 2 hold -. We set 

(5/) ()
	

if a > r,	
1 

A(z) =	1	
..	( €A, + —i).

	
(13) -z (Sri) ()

	
if = r, L = 1 

	

ln	z 

Lemma 2 implies that in both case A i bounded in A, + 11B. Set A 1 (z) = A(z ± 11R), 
z € A,. 

Lemma 3: There holds A 1 (z) -* B uniformly in A, when Izi - oo, where B is from 
Theorem 11(u) or (iii), second case. 

Proof: We have that A 1 is bounded inA, and that A 1 (x) —.-B,x - 00 (Theorem 1/ 
(ii) or (iii)). So Montel's theorem [1: p.5] implies the assertion I 

Theorem 4: Assume that the conditions of Theorem 1 hold for /with x ^t r> —1. 
(i) If x > r, them (Sri) (z) -* B, !zI -*- 0, z € A,, uniformly. 
(ii) If x = r, L = 1, then (1/in z) (Sf) (z) --3-- B, zI - 0, z E A,, uniformly. 

Proof: Lemma 3 implies that in both cases A(z)-* B, Izi -- 00, Z € A, + 11R, 
uniformly. So, this implies the proof of the theorem I
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3. A Tauberian-type result 

Let r E 91 \ 91. Assume that / = F( m) E à"' where F is a non-increasing positive 
locally integrable function such ' that F(x) <AxTmt, x > 0, for some A > 0. Assume 

• that s > 1, r + m - s > 0 and that x"_8L1 (x), x > A, is non-decreasing, where 
x > 0, is slowly varying at 0 and L 1 (x) = L(1/x), x> 0. With the given 

assumptions we have 
Theorem 5: Assume that	 - 

F(s)	L(x) 
(S/) (x)	(r ,+ l)m F( 

± m + 1) Xm+T+I_8'	
X -+0 

Then
/(xfk)	B (1/k)8-m-'L(1/k)	8Lm
 

in	, 

where B is a suitable constant. 

Proof: The assumption of the theorem and (9) imply that 
F(s)	L1(x) (S,+.) (x) F(r + m + 1) x8' 	X —>	, 

where (x) = xT + m_ LF(lfx) , x > 0, is a non-decreasing function. Let 

1 0,
xf+m_8Li (x)Ir(r + m -s + 1), z > A, 

x A. 
Theorem A implies 
Co 

_dv(t)	
= (r + m) ?	(t)	dt C	 (r +m)F(s) L, (x)

J (x + ty'-tm	 J (x + t m ' —oo F(r + m + 1) X8 
0• .	 0 

So,
00	00 

(d/(x + t)")	f((df(x + t)f+m)) as x	oo. 

If we show that for every C> I there are constants y and N, 0 <y <r + m — I, 
N>0,such that 

x> y > N = xr+m-IL 1 (x)1yr + rn-EL 1 (y) = C(x/y) 7 ,	 (14) 

then all the assumptions of Theorem B are satisfied and this theorem implies 

•	P(x)—ip(x),	x -^oo.	 (15) 

Takey = r + m — s + e where € > 0 such that y > 0 and E <s —1. With such y 
and x = Ày, 2> 1, y> N, (14) becomes L1 (Ay) C1'L1 (y), and this is true [7: p. 181; 
note, N depends on C. So, (15) implies p(x) xr+m_8L1(x)1F(r + m — s + I), x —i- 00, 

and thus 
•	 / 1 \	 XT+m-8 

•	xr+m-F I1 .—	•	 L1(x)	x -^ 00, 
\x/ F(r+m—s+1) 

i.e.
x8_' 

F(x) I'(r ± m - s'+ L(x),	x -^ 0. 

Since / = F( m) we have for suitable B the assertion I
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