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Continuous Dependence of the Solution of a System of Differential Equations
‘with Impulses on the Initial Condition :

A. B. DisELIEV and D. D. Barxov

Es werden ‘Anfangswertprobleme fiir Differentialgleichungssysteme mit Impulseffekt betrach-
tet. Die Impulse sind in den Momenten realisiert, wenn die Integralkurven einige fixierte Hyper-
flichen im erweiterten Phasenraum schneiden. Es werden hinreichende Bedingungen fiir die
stetige Abhingigkeit der Losungen dieser Systeme von den Anfangsbedingungen’ gefunden.

PaccMarpnsalorca 3afayd ¢ HAYAJAbHBIMM 3HAYEHHAMH WA cHeTeM AuddepenuuanbHBIX
YypaBHeHHH ¢ MMIYJIbCHBIM Bo3feficTBueM. VIMIymbchl peasin3oBaHbl B T€ MOMEHTH KOrAA
MHTErpadbHAA KPUBAA MIepecekaeT HeKOTOP e HANePE] 3alaHHbIE THIIEPNIOBEPXHOCTH B PACLIM-
pensHom dazoBoM npocrtpaHcTBe. HaXomATCA mocTaTouHhe YCIOBHA Henpepum{on 3aBUCH-
MOCTH pelleHHil TAKHX CHCTeM OT HAYaJIbHBIX AAHHBIX.

Initial value problems for syst,cms of differential equations Wlth impulses are con51dered The

_impulses are realized in the moments when the integral curves meet some of previously fixed
hypersurfaces in the extended phase space. Sufficient conditions for the continuous dependence
of the solutions of these systems on the initial conditions are found.

1. Introduction

Systems of differential equations with impulses provide an adequate mathematical
description of numerous phenomena and processes studied by physies, chemistry,
radiotechnics, etc. By means of such systems phenomena and processes subject to
short-time perturbations during their evolution are studied. The duration of the per-
turbations is negligeable in comparison with the duration of the phenomena and pro-
cesses considered, therefore they are regarded as “momentary”’ of the type of “impul-
ses”. Thefirst publications on mathematical theory of systems with impulses were by
V. D. MiLmay and A. D. MysHkIs [5, 6]. This new and perspective theory was devel-
oped further in the works of A. M.SamoILENKO {13, 14], T. Pavripis [11], V..RacHA-
vENDRA and M. Rao [12], S. G. PanpiT [7, 8], etc. Recently the interest in systems
of differential equations with impulses has grown considerably due to the numerous
applications of these systems to mathematical control theory. The first two mono-
graphs dedicated to this subject appeared by A. Haraxar and D. VEXSLER [4] and
by S. G. PanprT and S. G. DEo {10]. Systems of differential equatlons with impulses
are a subJect of study of the present paper as well.

2. Preliminaries

'Consider the hypersurfaces _
ait_t(x) (te R;ze Dy = 1), ' _ (1)
where Disa domain in R® Denote by P, a pomt with current coordma.tes (¢ =)

.
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such that the la.w of its motion is déscribed by means of:
. a) the set of hypersurfaces o; (: = 1);

b) a set of functions I;: D — R® (z = 1);

c) a system of ordinary differential equations

) SO
Folen iz @

where f: §'— R, 8 = {(t,z) |t = 0, x € D). The points
are the moments in which the mapping point P, meets the hypersurfaces o; (note that

P; meets o; only in the moments 7;);
d) the equalities

#lr; +0) — afr, — 0) = Lifa()) (= 1) , S )

where 7; is the number of the hypersurface met by the point P, in the moment 7;. In
general it is'possible that i & j; (examples can be given such that for some 7 the in-

equality 7 <C §; holds as well as examples for which ¢ = j; or'¢z > j;). We assume fur-

ther that x(t;) = z(r; — 0), i.e. the function z is left contmuous in the points t;
(i =1).

The set of obJects a)—d) is called & system of dszerentzal equations with impulses.
_ The law of the motion of P, is called a solution of the system of differential equations
with impulses and the curve described by this point is called an integral curve of -the
system of differential equations with impulses. In the present paper the initial value
problem for such a system is considered with the initial condition - '

. 2{0) = g, xo € D. . : _ T (5)

We shall give a brief description of the motion of the point P, along the integral curve of the
initial value problem for a system of differential equations with impulses. The initial position

of P, is the point (0, z,). For 0 < ¢ < 7, the point P; moves along the integral curve of the -
system (2) with initial' condition (5). In the moment r, the pomt P, meets the hypersurface .

gj, in the point (r,, z,) where 2, = z(t,) and “jumps instantly” from the position (z,, z,) into
the position.(z,, 2, + I;,( \(z,)). Further on.it moves along the integral curve of (2) with the mltml
point (z,, x, + 1,,(‘171)) until the moment 7, in which it meets the hypersurface g;, Jumps

again, etc. If after a “jump’ ’ the point P, meets a hypersurface from (1), then a new ]ump

this moment is not realized. The solution of the system of differential equatlons with 1mpulses '

is a piecewise continuous function with points of dxscontmutty of 1st type in which it is left.
continuous.

Further on we shall use the followmg notation: x; = 2(zy), ;* = x; + I, (z;) -

(t=1),19=0,7, =0, tx) =0 for z € D, 2,* = x,; by z(¢, t*, 2} we denote the
solution of the system of differential equations with impulses with the initial condi-
tion xz(t*, T*, x*) = z*; z(t) = z(t, 0, x,); (-, -) is the Euclidean scalar product in
R and ||-|| is the Euclidean norm in R®; o(4, B) is the Euclidean distance between
the non-empty sets 4-and B in R". The set of points (t, ) € R X R® satisfying the
inequality ¢t —* = L |lx — x*|| where. (¥, z*) is a fixed point in R X R* and L is
a positive constant will be denoted by K(z*, z*, L).

.The qualitative theory of systems of differential equations with impulses in the case when the

functions ¢; (¢ =°1) are constant, therefore ¢;(x) = 74, z € D (i.e. when the impulses are realized
in fixed moments), is comparatively better developed than in the case when the functions ¢;-
are not constant. One of the reasons for this is that in general it is possible for the integral curve
of the system with impulses to meet repeatedly one and the same hypersurface from (1). This

’
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phenomenon-is called ‘“‘beating”. When the phenomenon “beating” is present, the integral
curve may be not defined for ¢ sufficiently large. Hence one cannot claim that, e.g., the solution
of the system of differential equations with impulses depends continuously on the initial con-
dition in a given finite interval since the solution may be not defined in this interval. In the
following example the phenomenon ‘‘beating” is observed.

Examplel: Letn = 1, D = (0, +00), t;(x) = arctan z + #z (z € D; ¢ = 1). Then for"every
choice of the functions f and I; (¢ = 1) such that ’ . :

a) f satisfics conditions for the existence and uniqueness of the solution of (2) for ¢t = 0;
b) I;(x) > 0 forz € D, o ’ - :

the integral curve (¢, z(¢, 0, z,)) “beats” on the hypersurface (in this case on the curve) t = L (x)
for every choice of the initial point (0, z,) such that z, > 0. What is more, in this case the solu-
tion of the equation with impulses is not defined for ¢ = nf2.

3. Main results

3.1 Continuous dependence on the initial condition when the phenomenon “beating™
is absent o ' : ' -

Denote by (A) the following conditions:

(A1) The function f = f(t, ) is continuous on its first argument on [0, o) and is
uniformly Lipschitz on its second argument on D with a constant L.

(A2) |If¢t, )| = M ((¢, ) € S) for a constant M > 0.

-(A3) The functions ¢; = ti(x) are Lipschitz on D with constants L; < 1/M (z = 1).

(A4) The inequalities - ) : .

' 0 < 4(x) < ty(z) < ... (z€D) - - o (6)
hold and, uniformly on D, t;(z) — -} oo for ¢ — oo.

(AB) ti(z + 1i(2)) < tifz) (€ D; i 2 1). :

{A6) The integral curve (t, :c(t)) of the system of differential equations with impulses
(z(t) = (¢, 0, z,)) does not leave the set S for ¢ € I where

‘ 0, +o0) - if the 7; are a finite number,
- U (Tio1, 73] if the 7; are infinitely many.
i=1 . .

We shall show that the condition (A) is sufficient for the absence of the phenome- -
non “beating”. For this purpose we shall use the following ‘

Theorem 1 [12]: Let the conditions (A2), (A3), (AB) and (A6) are satisfied. Assume
further that (Tisy, Tisy) € K(vi, 23, 1/M) (i Z 1). Then the integral curve (¢, xz(t)) of the
system of differential equations with initial condition (5) meets each of the hypersurfaces
(1) not more than once. :

- By mesns of Theorem 1 we get the following

Theorem 2: Let the condition (A) hold. Then the integral curve (t, :t(t)) meets each
of the hypersurfaces (1) not more than once and the solution z(t) = z(t, 0, x,) exists for
allt =2.0. ° ; ‘ ' o .

Proof: If (¢, z(t)) for ¢ > 0 meets no hypersurface from (1), then the proof is
trivial. Suppose that, for ¢ > 0, (¢, z(t)) meets at least one hypersurface from (1).
Conditions (A1) and (A6) imply the existence and uniqueness of the solution z = z(t) -
for t € 1. Since for 7; < t < 74, this solution coincides with the solution of the inte-

1
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gral equation

2(t) = z;* +ffr, z(@)dr (= 1), ' (7)
then by the condition (A2) for ¢t = 7;,, we obtain '
i — 2t S Mz — 1), (8)

i.e., the conditions of Theorem 1 are satisfied. Then, according to Theorem 1, (t, x(t))
meets each of the hypersurfaces (1) not more than once.

Finally"we shall show that the solution x = z(t) is continuable for ¢ = 0. In fact; =

if the integral curve (t x(t)) meets a finite number of hypersurfaces from'(1) for¢t > 0,
then the claim follows directly from conditions (A1) and (A6). Suppose that (t :z:(t))
meets infinitely many hypersurfaces from (1). We shall show that j;,, > j; (1 = 1).
Suppose that this is not true, i.e. j;;, < j; (the equality j;.; = j; isimpossible since
(t x(t)) meets each of the hypersurfaces (1) no more than once). Then, according to
(6), ,m(a:) < t,,(x) z € D. By this we obtain :

S T = () < i) BN
Condition (A5) implics the mequaliby '
b)) < 4z = i i o ' ©(10)

Let 7’ € .(t;, Tisy) be an arbltrary point. Then, accordmg to condmon (A3),
ti(z(z") — zi_g tiz()) — t'j‘(xi*) < H le(z’) — 2l . (11)

By (7) and condition (A2) we obtain the estimate [z(z') — z;¥|| < M(z' — r;). ‘Then
we have t,-‘(x(t’)) — 1; < ' — v; which implies

ti(z (")) <. : ' ' A (12).

Consider the function ¢, ¢(t) = t“(x(t ) —t on [, Tin)- Since the function 2 = z(t)
on (7', Tisy) is a solution of the integral equation (7), it is continuous in this interval,
hence ¢ is also continuous. From (9) and (12) we deduce (p(T ) p(Tisy) < 0. Hence
there exists a point 7' € (¢, 'L',”) satisfying g(t"’ ) =0,ie 1" =1 (x(r ) From this
it follows that (t x(l)) meets o;, in the moment z”’. This contradxcts the fact, that for
T <t < Tin the mtegral curve (t z( t)) meets no hypersurface from (1). Hence the
, mequallty jix1 > J; holds, i.e. .

T=5 < <een o : - ‘ ' (13)

By this, since 7, are positive integers, we obtam ji —> +oo for i — oo, hence, accord-
ing to condition (A4),

1—>00

lim 7; = llm tj‘(xA) = +o0. » 4(14)

Since the solution z = z(¢) is defined in each of the mtervals (Ti, Tin] (£ = 0) we con-
clude that it is continuable for allt = 0 §

Tt is possible for the integral curve of the system of differential equatlons with impulses, in
spite of the condition (A), to meet not all hypersurfaces from (1), as it is seen by the following

Example 2: Let n =1, = (0, 4+00), o:t=z+1i (1 =1), dzfdt =0, Az(t) |¢=s
= —z/2(¢ = 1). The condition (A) is satisfied for M = 1/2, L; =1 (i = 1). In spite of this’
for z, > 2 the integral curve (¢, z(t)) does not meet the hypersurface (in this case the curve) Gy
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Theorem 3: Let the conditions (Al) and (A6) hold. Assume further that the functions
ti = ti(z) (1 = 1) are continuous in D and that the integral curve (t x(t)) for t =20
meets at least one hypersurface from (1) Then

(i1 — tal@inn) (2i — to(@i) 20 (5,8 2 0).

Proof: From conditions (A1) and (A6) it follows that the solution . = z(t) exists
and is unique in each of the intervals (r;, 7;;,] (¢ = 0). Consider the functlon @ on

[Tu tH-l],
(t):t—t(x*(t)) x‘(t): xi'*', tzfi:
7 A (), 1<t T
From the continuity of the function 2* it follows that ¢ is contmuous Suppose that
(r,.,, ,(x.+,)) (r, - t,(x,*)) < 0. Then ¢(z;y,) ( ) < 0, which implies that there
exists-a point 7’ € (z;, 7;4,) such that ¢(z’) = 0, ie. 7" =1 ( x(t )) which means that

(t () ) meets the hypersurface g, in the moment t’. This result contradlcts the man-
ner in which the moments .4 (1 =1) are defined B8

Consider the following condition
(B) ti(2) < tin(z + Ii(®)  (@e D3iz1).
Theorem 4: Let the conditions (A) and (B) be satzs/ted Tken the mtegral curve
(t x(t ) meets each of the hypersurfaces (1) precisely once.

Proof: At first we shall show that if (t x(t)) meets ¢;, in the moments z;, t,hen
ji =1t (¢ = 1). We shall prove this claim by induction. Suppose that (t x(t)) meets
6, in the moment 7,. Then 7, =¢; (x(r,)) Suppose that j, > 1. Then, according to
(6), we get \

nmt,.(x(r:))—t;.(xl)>t(x1) B c : (15)

By the first inequality of (6) we find 7, = 0 < ¢,(z,*). This together with (15) con-
tradicts Theorem 3. Suppose that. j, =s for s =1,2,...,7 and that ( (t)) meets
0j,,, in the moment z;,,,i.e. 7;y;, = t,m(z(r,ﬂ)) Accoxdmg to (13) we havej;,, = ¢ -+ 1.
Suppose that j;,, > ¢ +-1. By condition (B) and the inductive assumpt,lon we obtam

_ the inequality

.M%)—n—adm+lwﬁ—l()>ﬁ o e

From the assumption 7;;, > ¢ + 1, the inequality

tiri{Tiv1) — Tinn = bina(Zisn) — ;‘m(xiﬂ) <0 . (175

follows. But (16) and (17) contradict Theorem 3.

- Now we shall show that the integral curve (t x(t)) meets the hypersurface a,.
Suppose the contrary. Then for ¢ > 0 the integral curve (t x(t)) meets no hyper-
surface from (1) at all (above we have shown that if the integral curve meets
hypersurfaces from (1), then the first one of them is g,). Hence,

z<t1'(z(z))  fort 20. : . (18) '

In fact, if we suppose that there exists a point 7’ > 0 such that 7/ = ¢ (x(r )) then for
the funct,lon @, p(t) =t (x(t)) — t, we find @(0) > 0 and ¢(r’) < 0. From this follows
that there exists a point ¢'* such that o(tr"’) =0, i.e. (t x(z)) meets o,. By (18), usmg
the conditions (A2) and (A3), we obtain ¢ — ¢;(x,) < ¢ (x(t)) — ty(wo) < LyMt, i.e.
t < bzo)/(1 — L M) = const. This contradicts mequahty (18). Now suppose that

BN
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)

(t, x(t)) meets successively the hypersurfaces 6y, 0y, ..., g; in the moments 7,, 7,, ..., 7;,
respectively, and that for ¢ > 7; it meets no hypersurface from (1) ' Then t < tm(x(t))
for all ¢ > 7;. By this we obtain the inequality ¢t < (1 — L;,, M)~ (tH,l — L,-.HMT,')
which leads to a contradiction 1§ :

Definition 1: Let 7' be an arbitrary positive constant. We shall say that the solu-
tion z = z(t) of a system of differential equations with impulses defined for0 < ¢t < T
depends continuously on the initial condition (0) = z, if for every choice of ¢ > 0-
and 7 > 0 there exists = d(¢,.n) > 0 such that each solution y = y(t) of the’ system
. considered with initial codition y(0) = y,, for which |lz; — || < 8, satisfies the ine--
" quality |ix( )—yt)l <e for 0=t <T and |t — 7;| > n where 1,, 1,, ... are the
“moments i in whlch the mtegl al curve (t x t)) meets the hypersurfaces (l)

Consider the followmg condition
(C) The functlons I; (i = 1) are continuous in D.

Theorem 5: Let the conditions (A)—(C) kold. Then the solution x = x(t) of the system
of differential equations with zmgmlses depends continuously on the initial condition
z2(0) = z, for 0 < t =< T where T is an arbitrary positive constant.

Proof: If for 0 =< ¢ =< T the integral curve (t x(t)) meets no hypersurface from ( )s
then the proof follows directly from [3: Ch. 5, § 2, Theorem 2.1]. Suppose that, for-
0st<T, ( z(¢ )) meets at least one hypersurface from (1). Then from (14) it follows
that there exists a nonnegative integer p such that 0 =7, <7, < ... <7, < T
=< tp41- According to Theorem 4 (t, x(t)) meets successively, precisely once, each one
of the hypersurfaces (1). Hence, for 0 < ¢ < T, it meets successively the hyper-
surfaces gy, 0y, ..., 0,. From (7) for T, <t < 743 we deduce that x = x(t) satlsfxes the
mtegra] equatlon

z(t) = x(r,) + Ii(z(r)) + f/(z 2()) dr.

1

By this inductively we obtain

2(t) = xo + X Ii(z;) -}—f/(r z(z))dr, O=t=<T. . (19)

<t

Let y = y(t) be a solution of:the system of differential equations with impulses with

initial condition y(0) = », and the moments, in which the integral curve (t 2 (t))

_-.meets the hypersurfaces (1) for0 < ¢t < T, ben, 7, ..., 1],,, q = q(T, yo)- Analogously
to (19) for the solution y we obtain ‘

yo) =yo+ X I J)+ff(r,y(r>) dr, O0=<t=T, (20)
r“<l .

‘ where ¥i = y(n;) (z = 1) Introduce the notations ;" = min (z;, %;), 0;" = max (z;, n;),

Q;=0/,06""1c=1), 2 [O TIN(2,u2,u...). It is easily seen that for t € Q

the number of the addends-in the rJght -hand s1des of (19) and (20) is one and the

same. Hence

lle(t) — )l < llwo — woll + X || (x(r.)) — Iy (J("? DIl

nsny<t

+ f iz, @) — £z 9@l d
0 .
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te Q by which we find
llx(‘) — YOI < llwo — woll + 2 ”1 (2(za) — I‘(J(n))”

. rSg<t
+ X Mizm)) — Ii(z (J(’?.))" + f L |lz(x) — (o)} dr
n<t <t
+ 2 ) = L)l + 2 ete) — Letaall, 21
=<t < .

te .Q Suppose that the mequallty 7, < 7, holds. We shall show that
le(r) — y(e)ll < exp (Ley) 2o — woll- , (22)
"In fact, by (21) for 0 < ¢ < 7, we get the inequality

. . t .
l2(t) — y(O < llzoe — %oll + [ L llz(z) — y(z)iidz,
°

from which, using the Lemma of Gronwél] Bellman, we deduce |lz(t) — y(t)l|
< |l%o — yoll exp (Lt). By this for t = z, we obtain (22). Put b, = ¢ (J(r,)) — 1, and
ke = m, — ti(y(z))): From condition (A3) we deduce h, =t ( y(r1)) — ti(2(zy))
< L ||J(r,) — z(7y)ll, by w hich, according to (22), we obtain h; < L,exp (Lt,) ||z, — yoli-
Since .
lly(m) — gl S M, — ) =-M(hy + hy), : ©(23)

the estimate -
hy =t (y(m)) —t ( (Tl)) = Ll ly(n) — y(z)li = L M(hx + hz)

- holds which implies hy < L, Mh,/( l — L, M). Having in mind these mequalltles we
find the estimate. 4
< L, exp (Lt,)

m—t=h+h= W llTe — woll - . (24)
Bv (23) and (24) we obtain: the incquality \
! "L, M exp (Lr,)

lye) =yl < == o —wll- . (25)

We shall estimate the expression |lz(n, + 0) — y(7, + 0)| provxded that », < 7,
(further on we shall show that if llxe — woll is sufflcmntly small, then 6/_, < 0,/ (i = 1),
6, =0, = 0 which 1mpl|es m < 1) :

'illx(m +0) — .?/(771 + Ol = llz(m + 0) — 2(zy + O)i| + llz(z: + 0) — y(m + O)I
SMip— 1)+ ||x () + 1 (x(Tl)) —y(m) — 11(J(’71 it
5 M(n, — ;) + llz(z,) — yim)ll + "1 71)) - 11[(./ M) || '
S My — ) + llz(z) — @)l + lly(z) — yon)l
+ “11(73(““)) - 11(?/(71))” + "L(?f(ﬁ)) - ]1(?/(771\))l|-
By the last inequality, using successively (24), (22) and (25), we obtain
ot + 0) =y + O < LEEDSRLED) oy

) = Lye)l + ) — Leall. @)
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‘If 7, > n,, we obtain inequalities analogoué to (22), (24)—(26) with the only differ-
ence that the roles of the moments 7,, 7, and of the functions z, y have changed.

More precisely, define the functions ,
N z(t) if ;> 5
; : — . < o
Z“ Z‘( ) ] {?/(t) lf Ti é 7?i (O g t = T)

Then the following inequalities hold :

L, exp (L6,")

4, :__Q;H —__0_1' = Im — il =, 1 — LM llxe — Yol
Lo o LM exp (L6,")
Jes0) = 60 = 27T E2 o — il

l(6,') — (6.l = exp (L0,") [|Izo — oll»
(1 + L, M) exp (L6,")
1 — LM

4 I (260) — L@+ (z06:) = Li(z:60)]]- S@n

Assume that 6/, < 6/, 7= 1,2, ..., p+ 1 (further on we shall show that these ine-
qualities are fulfilled for sufficiently small values of ||z, — ). Consider the solu-
tions z(t, 6, (6, + 0)) and y(t, 07, (6, + 0)), (¢ = 1) of the system of differen-
tial equations with impulses which coincide for ¢ > 0;_, with the solutions z = z(¢)
and y = y(t), respectively. Analogously to the inequalities (27) we obtain the follow-

. ing ones:

2(6,” + 0) — y(6:" + Ol = Il — woll

v a L;exp (L(O{ — 0:.’_.1)
0" =0 = 1— LM
L.M:exp (L(; — 6;.}))
. 1— LM
(@) — y(0)Il < exp (L0 — 62)) (B, + 0) — y(@L, + O, (28)
. 1 + L,M)exp (L6 — 6
(6" +0) — g6y + oy = LT LR O Z ) )
‘ — y(By + Ol + ||Z:(2(6:)) — Tulw(0)I|
+ 11izi6:) — Lifzit6))]-

"Let ¢ > 0 be arbifrarily. Then from (28) for i = p +1 and from cordition (C) it
follows that there exists a positive constant 6, = d,(¢) > 0 such that the inequality
lx(0,” + 0) — (6, + O)|| < d, implies the inequalities

0;4-1 — 0 <&, o ”zp+1(6’;;+1)'—f 2o (654l < €,
(@ er) — YOl <&, . lz(6yay +0) — y(65. + Ol <e.
Ana-logously, for each i = p,p — 1,...,1 we define successively the positive con-
stants 6.y, Op_g, ..., 09 such that the inequality lz(6_, + 0) — »(6_, + O)l| < &;,
implies the inequalities ‘ . : .
6 =0 <e, lzi(6:") — (00 <&,
(1) — YOI <&, k(6,7 + 0) — 36 + O)]| < min (e, 6).

,oe

) lz(6;_, 4+ 0) — ?/(61',—1 + O)”,

llz(6:") — 26 = ll2(6;-y -+ 0) — (6=, + O,

(29)
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From this it follows that if ||x0 — %oll < &y, then for every ¢ = 1, 2 P+ 1 the
left-hand sides of each of the inequalities (28) are smaller than . Usmg ‘these results
we conclude that if > Qisan arbitrary constant, then for suff1c1ently small ||z, — ol
the following relations are fulfilled:

p+1
Z l’?x — 7 < 77

b) 0 " < 6t+l) 1.e. max (Tl’ nl) < mln (rl"‘l) nl+l) l - l 2 *y p

¢) If 1, < T < 7,4, then the number of the meetings of the integral curve (t J(t))
with the hypersurfaces (1) for 0 < ¢ < 7T is precisely p. In fact, if we put
n =min(T — 7, t,,; — T), then from a) it follows directly that p =¢. Note that for
T = t,,, both equalities p = g and p + 1 = ¢ are possible. .
- d) Directly from a) we obtain {t € [0, T] | |t — 7;| > 9} = Q.
From inequality (21), using inequalities (29), condition (C) and the above conclusions
it follows that for the arbitrarily chosen positive ¢ > 0 and 5 > 0 for sufficiently
small ||z, — ¥, the inequality -

¢

.- t : )
) —y@Ol = e+ [ Llz(x) —y@lde O=t<7T, |t — vl >7)
. . 0 .

holds by which, acco'rding to the inequality of Gronwall-Bellman, we obtain
flzt) — g S eexp(LT) (0Ot < T, |t—r|>7} =l

In the followmg theorem we shall prove the continuous dependence on the initial
condition of the solution x = z(t) of the system of differential equations with impulses
substltutmg for condxtlon (B) the following less restrective condltlon

(D) ty(i*) + 73 (i = 138 2 ). ' T

Note that by the-conditions of the folléivmg theorem it is possible for'the integral
curve (t, z(t)) not to meet each one of the hypersurfa(,es(l), i.e. the claim of Theorem 4
is no more true.

Theorem 6: Let Conditions (A), (C) ‘a‘nd (D) be [ulfilled. Then the solution x = z(t)
of the system of differential equations with impulses depends continuously on the initial
“condition 2(0) = z, for 0 < t < T, where T is an arbitrary positive constant. )

* Proof: First we shall show that if e — #oll is small enough, thenfor 0 = ¢ < 7
the integral curves (t, z(t)) and {t, y(t)) either both do not meet, or both meet the same
hypersurfaces from (1). Assume that (t x t)) meets no hypersurfaces from (1) for
0 =t < T. Denote

A__{(tx)IOStSTx_x(t)} _{(tx)lt_-t,(x),xeﬁ}.

where D is the closure of D. Since 4 and B are closed, 4 is bounded and A n B = @,
then o(4, B) = ¢ > 0. Applying [3: Chap. 5, § 2, Theorem 2.1], we conclude that lf
o — %ol is small enough, then }lz(t) — y(t)|]| < ¢, holds for 0 =< ¢ < T from which it
follows that (¢, y(t)) for 0 ¢ < T meets no hypersurface from (1). .

Now assume that the integral curve (t :z:(t)) meets some hypersurfaces from (1)
for 0 <t < T. We shall prove that if .

t,(a:f) <nu< ta+1(z|+):. : o (30)'

then s + 1 = ji,y, ie. (t z(t)) in the moment 7;+1 Meets the hypersurface 7,,,. In
fact, if we assume that j;,, > s + 1, then, according to (6), Ly 1 (Tir1) < i (Tis1) = Tinr-
C . .

e
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This inequality and the second one of (30) contradict Theorem 3. If we assume that
jis1 < 8, then the inequality v;,, = t,m(xm) < ty(%iv1) and the first one of (30) con-
tradict Theorem 3. If we assume that j;,, = s, then by (30) we obtain

: ' 1
Tin — U< tim( -+l) — t 5 (Z; +) = ts(xH-l) — (it ) U lziey — 24 “

which contradicts inequallty (8). :

Having in mind that t,(z;*) — + o for s — co and by condition (D) we conclude
that for any ¢ = 1 there exists a nonnegative integer s such that the mequalltles (30)
* hold. Hence o

L (@) < 7 < i {zit). o . . . (31)

In order to show that.the integral curves (¢, z(t)) and (¢, y(t)) meet the same hyper-
surfaces for 0 < ¢t < T it suffices to show that 1f llzo — gl is small enough, then

' ti(él_l(yi+) < 77‘ < tiﬁl(yi ) (2 = l 2 sey p)’ ’ . ° (32)

where y;* = y(n;) + 1;,(y(n:)) and j; is the number of the hypersurface met by (¢, ()
in-the moment 7;. The two integral curves meet the hypersurface ¢, in the moments
7, and 7, respectivelly. Assume that fori = 2,3, ..., s — 1 the inequalities (32) hold,
i.e. the two integral curves meet successively the hypersurfaces 61, Gj,, + -+, 0j,- We shall
show that for |z, — g,/ small ehough the inequalities (32) hold for i = s as well
which implies that (¢, z(t)) and (¢, y(¢)) meet the hypersurface g;,,, in the moments
7441 and 7,,, ,respectively. In fact, by the inductive assumption analogously to (29)
it can be shown that for ||z, — 7, small enough the inequalities :

0, — 6 =t —mol <&, 0" +0) —y6," + Ol <e (33)
hold. Assume 1, £ 9, < 6, (the case 1, > 7, is considered analogously). Then
e = g*ll < lla® — 2no)l + lzt) — 9471 | |
= My — %) + 16" + 0) — y(0, "4 o)
by whxch according to (33) we obtain

Iz — 3l < (M + 1) e A 34
From the first inequality of (33) and inequality (34) it follows that. o
of(ze %"), (10 457)) S (M + 2) 6. (35) -

By (31) the point (t;, %) belongs to the open set
CE =l 2) () << b,,(®), % € D}

From (35) it follows that for sufficiently small ¢ > 0 the inclusion (7, ,*) € G is
fulfilled which implies (32) for ¢,= s. By induction we obtain that for |z, — y,ll
small enough the inequalities (32) are satisfied for ¢ = 1,2, ..., p. If (t x(t)) meets
no hypersurface from (1) for 0 = t < T, since for |z, — = ol small enough the integral
curve (t, (t)) also meets no hypersurface from (1), by [3: Chap. 5, § 2, Theorem 2.1]
we conclude that the solution £ = z(¢) depends continuously on the initial condition.

Assume that the integral curve (t x(t)) meets some hypersurfaces from (1) for
0 <t < T. By Theorem 2 it meets each hypersurface no more than once. Then by
condition- (A4) we conclude that (t x(t)) meets a finite number of hypersurfaces
Gjyseevns 05, (J1'= 1) from (1). For ||z — |/ small enough ( y(t)) meets the same hyper-
surfa(,es for 0'< ¢t < T. Further on the proof of the theorem is similar to that of
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Theorem 5. In fact, analogously to the inequ\alibiés (21), (28) we obtain the inequali-”
ties . : '

l2(6) — YOl < lizo — yoll + 2 lx(z0)) = Lidy(@)]

<

+ 2 M=) — Liyml + [ L llx(z) — y(o)ll de
0 .

m<n<t

+ 2 <!|1;.(1/(T,i)) = Lyl + 2 M=) — L=z, teQ,

= ' m<te<it
’ ; - Lil €xp (L(o" — 6,l,—l)) ’ ' ’ . f
0 — 07 < T O 0 — v + Ol
6. ) 0. < LilM exp (L(O‘I - olll—l)) 9 0 9’ . L0 '
0/°) = 0. £ S P el £ 0) = 0L, + O
I=(0¢) = 9O < exp (L) — 670) IOy + 0) — 9O, + O},
; o 1 + L, M) exp L(O; — 6;" oo
(6" +0) — g0 + oy < WLE L) exp L ) a0+ 0) = w0, + o1
) , - i . ) ) o ‘
S + M5(26:) — 1,50

+ |[1;(z:(6:")) — Ii(zs(bs'))ll

where the points 6;" and 6;", the function z and the set £ were introduced in the proof
of Theorem 5. From these inequalities repeating the arguments from the proof of
Theorem 5, it follows that the solution of the system with impulses depends contin-
uously on the initial condition @I

-

3.2 antinuous dependence on the initial condition when the phenomenon Sbeating”
is present . o

Denote by (E) the following group of condijtions:

(E1) my < [[Ii(x)| < M; (x € D;¢ = 1), where m;, M; are positive constants.
(E2) The functionst; = ¢;(x) (: = 1) ' '
(i) are Lipschitz on D with respective constants L; < my/M(m; + M;); -
(ii) . satisfy the inequalities ti(:z: + I;’H(x)) < ti(2), x € D. ) v
(E3) Foranyz € Dandi = 1 there exist neighbourhoods U;(z), Vi(z) and W (z) such
. © that ' :
(i) Vi=z)is bounded, -
(i) Uiz) = Vi) = Wi(z) = D, : .
(iil) o(R™*\ V(x), Uiz)) 2 m; + M, o(R™ \ W (z), Vi) = m; + M;,
(V) ti(z)) 2 tilze) for 2 € Vi(x) \ Ui(z) and z, € Wi(z) \ V(z).
(E4) For any z € D and ¢ = 1 there exist a unit 2-vector yi(x). and a-function d;:
D — R such that ’ ' :

(itz), yil@)
]

As it was shown by Example 1, if the integral curve (¢, x(t)) of the system with .
impulses meets infinitely many times one and the same hypersurface, it is possible,

MLM,

Vi), o= —pma

0i < di(z) <

13 Analysis Bd. 8, Heft 2 (1989)
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for the solution z = z(t) not to be'continuable for all ¢ = 0. The following theorem
contains sufficient conditions by which the integral curve meets a finite number of
times each one of the hypersurfaces (1). : ‘

Theorem 7 (’cf. [14]): Let the conditions (A1), (A2), (A4), (A6) and (E) be satisfied..
Then the integral curve (t, x(t)) meets each one of the hypersurfaces (1) a finite number
of times. : - : : . :

‘Thedrem 8: Let the conditions (A1), (A2), (A4), (A6) and (E) hold. Then the solu-
tion x = x(t) of the system of differential equations with tmpulses is continuable for all
_t=0. N _ o ; ‘

1 +

Proof: If the integral curve (t, z(t)) mects a finite number of hypersurfaces from
(1), then, having in mind Theorem 7, it follows that the moments z; are a finite num-
ber which by conditions (A1) and (A6) implies that the solution z = z(t) is defined
for all ¢ = 0. Assume that (¢, z(t)) meets infinitely many hypersurfaces from (1). Then
by Theorem 7 only a finite number of members of the sequence of positive integers -
i1, fas .- can be equal to 1, 2, .... Hence j; — +oo for ¢ — oo by which, according to
condjltio'n (A4), we obtain (14) and conclude that z = z(t) is defined forallt =0 B

Theorem 9: Let the conditions (A1), (A2), (A4), (A6), (C)~(E) be satisfied. Then

" the solution 2 = z(t) of the system of differential equations with impulses depends con-

tinuously on the initial codition z(0) = z,.for 0 < t < T, where T is an arbitrary posi-
tive constant. : .

Proof: If for 0 < t < T the integral curve (¢, z(t)) meets no hypersurface from (1),
then the assertion is proved analogously to Theorem 6. Assume that (t, x(t)) meets
some hypersurfaces from (1) for 0 < ¢ < T. We shall show that for any ¢ = 1 the
inequality §;,; = 7; holds. In fact, let us suppose that there exists a positive integer s -
such that - )

ot < fa- \ (36)

Since for 7, < ¢ < 1,., the solution x = z(¢) coincodes with the solution of the integral
equation i

t .
o) == + [ima@)de, -

then by condition (A2) we obtain the estimate )

MZper — 2,7 £ M(zgey — 74)- ’ - : (37)
By inequalities (37), (6) and condition (E2)/(ii) we find

Lol @s™) < Lpan(@*) < oon < (@) < 4(2,) = T (38)
’ By this and condition (F2)/(i) we obtain :

t

. [ :
Terl — Ty < ti.o;(zaﬂ) - ti.n("u’T) =S —A; g — x"ﬂ"

which contradicts the inequality (37). Hence j, < j, < ... In the proof of Theorem 8
we showed that inequality (14) is satisfied. Having in mind this inequality, inequality
(38) and Theorern 7, we conclude that the integral curve (¢, a:(t)} for 0 < t < T meets
successively a finite number of hypérsurfaces o; respectively =; times, where 0 < »;
< +o00(t=1,2,...,p), n, > 0and p < co. Assume that the integral curve (t,-y(t))
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of the system of differential equations with impulses with initial condition ¥(0) = y,
for 0 <t < T meets successively the hypersurfaces o; respectively m; times, where
0=m < +oo(i=12,...,9),my>0and q < co. Let 0, and o, be the last hyper-
surfaces from (1) met by (¢, z(t)) and (¢, y(t)) for 0 < ¢t < T, respectively. We shall
show that for [jz, — y,|| small enough these integral curves meet for 0 < ¢t < 7T the
same hypersurfaces an equal number of times. Suppose that this is not true, i.e.
p=m; (1=1,2,..,8 — 1), n, <m, and 1, <, where l=n, + ... + Ng_y
(the remaining three cases: n, < m, and 7, = n;; 2, > m, and 7, < N¢; ny > m, and
Ty 2 7y, where r = m, + ... 4 m, are considered analogously). Let ¢ > 0 be arbi-
trarily. For ||z, — y,/l small enough, similarly to (35) we obtain the inequality )

ol(z, &), (m yi*)) = (M + 2) e : , (39)

From condition (D) and the fact that (t, y(t)) ‘meets at least once the hypersurface
o, for ¢ >n it follows that (n,y*) € G, G = {(t, ) | ; ,(x) <t < t,(z), z € D}.
Since the set G is open, from (39) it follows that, for & small enough, (7, z;*) € G
which contradicts the assumption that (¢, z(t)) for ¢ > 7, does not meet the hyper-
surface g,. Further on the proof of the theorewm is analogous to that of Theorem 5 1

Example 3: Let n = 1, D = (—oco, +c0) and the hypersurfaces (in this.case they are

curves) are of the type o :

5 — |z|, x € [—i, i)

F= i) = {4i. zqi—iq. =D

Consider the differential cquation with impulses

dx 1 . . B8(—1)¢
TR 1(1'.'.4-0) — () = (4)

It satisfies the conditions of Theorem 7 for M = 1/4, m; = M; = 5/4, L; =1, Uyz) = (—i
—lzhit2l), V@) =(—i—3 —lz,s 4+ 3+ |2), Wiz) = (=i—6—|z|,i+ 6+ |z]),

- di(x) = 1 and if the unit vector y;(z) (in this case it is one-dimensional) has a coordinate {—1)t.
Hence, by Theorem 7, the integral curve (¢, z(t)) meets each one of the impulse curves t = ¢;(z)
a finite number of times. E.g., if 2, = 0, i.e. the initial point of (¢, =(t)) is (0, 0), then (¢, z(t))
meets the curve g, consccutively twice in the points (4, 1) and (5, 0) and for any + = 1 meets
the curves o,; once in the points (10%, 0) and the ‘curves oy, three times each in the points

(106 + 3, 2), (108 +4, 1) and (10 + 5, 0). It is easy to verify that this system satisfies condi-
tions (C) and (D), too. Then from Theorem 9 it follows that the solution of the initial value
problem depends continuously on the initjal condition. )
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