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In dieser Arbeit werden Naherungsverfahren für singuhire Integra igleichungen auf Kurven 
mit Ecken betrachtet. Es warden notwendige und hinreiclende Stabilitatskriterien für die 
stuckweise kohstante €-Kollokation und füj bestimmte Quadraturformelverfahren hergeleitet. 
B cTaTbe paCCMaTpHBaI0TCR MeToxbI npuGaiu+euuoro peweinin CIlI31RHb1X InlTei'paJlbHblx 
ypaBueliuft iia KpHBblx C yraamii. Jjin MeToa e-1oiIolaIuIt C HC04HO HOCTOBHIIhIMIIK0-
OPJU1HTHLJMH 4yLlKEnflMM 11 JJ1R onpejeiieiiix HBaLgpaTypHbIX MTO)OB goiiajah1BaEoTCF1 
ueo6xou1Mue It joCTaTo4HMe ycnonue ycToflHBocTu.	 5 

This paper is concerned with approximation methods for singular integral equations on curves 
with corners. Necessary and sufficient conditions for' the stability- of the piecewise constant 
e-collocation and of certain quadrature methods are given.	. 

0. Introduction	 - 

0.1.-Many boundary value problems of elasticity, aerodynamics, hydrodynamics, 
flbid mechanics, electromagnetics, acoustics, and other engineering applications can 
be reduced to ' a singular integral equation of the form	:	 '•	. 

A,u(t) := (t) u(t) + Zf -- dr	k(t, r) u(T)'dt = 1(1)	(t E ), 
 t	f (01). 

where f is a closed and piecewise smooth curve in the complex plane, c, d and 'kare - - 
given continuous functions, it is the unknown solution and the first intigral is to be 
interpreted as a Cauchy principal value (see,' e.g., [3, 14, 16, 17]). For the numerical 
solution of this equation spline approximation methods are extensively employed. 
In fact, collocation and quadrature methods are the most Widely used numerical 
procedures for solving-the boundary integral equations of the form (0.1) arising from 
exterior or interior boundar value problems of applications. (See, e.g., [1, 3, 4].) 

If I' is a- closed smooth curve, a fairly complete stability theory and error analysis 
of collocation methods for. (0.1) using smooth splines has-been established (see the 
surveys given in [8, 28, 15: Chap. 17, 26]). A general approach to the stability and 
error analysis of quadrature methods for (0.1) using equidistant quadrature knots 
has been developed in [19, 231.  

In this paper we present a , stability analysis of quadrature 'and spline collocation
methods for (0.1) in the case when F is a closed curve with a finite number of corners. -' 

•	For this case, Costabel and Stephan (unpublished) proved the strong ellipticity of the 
operator A  to be sufficient for the L 2-stability of the piecewise linear collocation We 

- establish conditions for the stability of the collocation method with piecewise con-
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stant trial functions on uniform partitions. Repeating the ariImentation in the 
cbrresponding proof it can be shown that the strong ellipticity is notnecessary for 
the piecewise linear collocation to be stable.	 - 

0.2. The discretization.of (0.1) via spline collocation is very simple. We take a' finite 
set of collocation points {tk ("),IC = 0, . ., n - 1} c: I' and choose a space of spline. 
functions X,, (dim X,, = n) on 1'. For the exact solution u = Ar'/, we determine an 
approximation u,, E X. by solving thesystem	-	-	

0 

	

-	(Arun) (4()) = / k	 = 0,..n —1. .	 (0.2) 

If X is defined'on a suitable graded mesh and the degree of the functions in X. is 
sufficiently large, then a high -order of convergence is to be expected. However, for - 
the sake of simplicity, we restrict our considerations to uniform partitions and picce-
wise constant splines. Using the arguments of this paper it is not hard to treat special 

•	nonuniform meshes (se, e.g., [2-21) and spline functions of higher degree, too. 
In order to solve the system of .eqliations (0:2) one has to compute (Aug ) (Tk). 

If this can not be done analytically, then one has to make use of quadrature rules. in 
• this case we recommend-the immediate discretization of equation (0.1) via.quadra-•	-	ture rules. Thereby, the singularity subtraction technique is needed to -obtain conver-

gent approximation methods. If suitable graded r?ieshes and quadrature rules with 
- high accuracy are used, then a high order of convergence can be achieved (compare - 

the quad raturé methods for the unit circle in [19, 23]). For the akc of simplicity, in -. 
• this paper we use the rectangle rule. However, by the same way a modified rectangle 

rule can be considered. In fact, a suitable modification of the quadrature weights in a 
finite number of knots (in the neighbourhood of the corner points) leads to high accu-

- - racy of the quadrature'rule. It is also possible, but- more complicated to investigate 
•	composite Newton-Cotes rules, e.g. the composite Simpson rule. •	.	- 

- In order to show the nature of our, quadrature methods we discretise the equation 

	

\	Au(i) = /(t),	tE R,	 -	.	 .	(0.3)' 
S	

•	 -.	 •	•	,	-	 S -	
•	_;	 V 

Au(€) = a(t) u(t) +	f _u(t) dr + f k(t t) u()dr	 (04)  1 tt	 -	- 
S	 ..	 •	 •	a	•	R. 

Though, for numerical computation, the resulting quadrature methods are not of 
- interest, they are very simple to deduce and give a good motivation-for the methods •	- in consideration.. Fix n € N, —1 < e < 1, and, for k E. Z, -set tk = k/n, -rk (" - 
= (k + )/n. Using the rule	 -	 •	• 

-	f g(t) dt '-'E g(t)M)!	 - (05) 

we obtain	 • 

•	
it(r) - dt = - r u(T) — U(tk(")) d,'— lu(tj()) fi 1V1 	4(n .)•) -	

- i'J	 1 j€Z	t('"	Tk(	fl 

	

•	a 	a	 •	-.	 • 

	

--	•	
• '-' --	 -k-- - u(i (fl)) 1	--1 -	-• 

-	- -	- -	-	 ,€z	- Tk("	 k	
i jEZ ) —	— is• 

•	-	-	-	•	 -	•	•	1.	•	 (0.6) 
•	•	 /	- 

-S	 'S
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For e = 0, the well-known formula cot (-,Tx) 
= --- {---{	

+	
J} 

yields 

	

79 X 

1
f	

u(r)	
dr	-f-- '
	

- u(')) i cot (ire)	(0.7) 
i	•t -	*	 1	- tL. ) n, 
R	 - 

•	Replacing the inteIa1s in (04) by (0.5), (0.7) and substituting U(Tk') by u(tk ()) we. 
arrive at	-	 • 

[a(t) i cot (s)] u(Q) 4 _ _______  

+ E k(rk ) , t1 1 ) u(ti) .1 = /(rk ( ), - 'k Z.	 (0.8) 
jEZ	 n- 

Fore = 1/2 or = —1/2, ct (n vanishes and the system (0.8) is called the method 
•	0/discrete whirls (see [31). 

If e = 0, then (0.6) and E {1/) + 1/(-7)} = 0 yields 

1	u(r)	1	u(t("))	1	'1	1 
•	if - tk dr

	 -	u'(4).	- 
It	 j+k 

Replacing the integrals of (0.4) by (0.5) and (0.9) and neglecting the small term 

we obtain 
fl	

S	 - It •ri	 .	-	 - 

	

-	1u(t.())	1	 1 
a(tk 1 ')-ufl (tk ()) ± .-.-	 —:+	' L(tk", t1°' >) u(t1"'1) 

-	 .	- - 
= /(tk () ),	k E Z. -	 •	(0.10) 

The corresponding quadrature methods to-(0.8) and (0.10)011 smooth curves has 
been considered in [19, 231. In the present paper-we extend the analysis to the ease of 
curves with corners.	 - - 

Now let us consider a quadrature method which is completely new, even iii the 
case of smooth curves. Therefore, in the discretization of (A RU) (tk () ) = /(tk ("))we use 

f
g(t) dt	E	g (t1) --.	• •	 - 

It	j-k+imod2 
Analogously to the derivation of (0.10) we get	• •	-	: 

1	u(t')' 2	•	• •	2	-. 
a(tk " 1 ) ufl ( 1k 1 " 1 ) 4-	-	

k(t", t ( '! 1 ) uj,(t 1(') - 

• •	 j-k+imod2	 1k+1mod2 

	

k E Z.	 '	 (0.11) 

Since no substitution u(rk ') . u(t," 1 ) and no neglect' of 1/(ii 10 u'(tk 1 " 1 ) is needed; 
this method converges fater then (0.8)and (0.10) in the case of smooth curves. Fur-
thermore, the invertibility,of operator A,- will be eough to secure the stability of 

•	(0.11). For the unit circle, method(0.11) and the method of trigonometric collocation 
coincide.	 -	 •	•	 - -	- - 

• -	All the quadrature and collocation methods of this paper have one thing in äom- 
•	mon. The equation A,-u = /is replaced by a discrete operator equation of the type 

14*	:	•	 -	 -	 •	 • -
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A 8u = /,,, whre Ais an approximate operator of A acting in the space X of spline 
functions' and /,, E X is an interpolation of /. A numerical method of this kind is said 
to be stable if A is invertible for n large enough and sup fJ A 'lJ <. If the method 

- in consideration is stable, / is Riemann integrable and A,, converges stronglyto A,, 
then'the approximate solutions 'u,, converge to u (see, e.g., [15: p. 432]). Furthermore, 
the stability implies the condition number of_the finite linear system of equations 
A,,u,, = /,, to be bounded as n - oo. Thus the main point is the proof of the stability: 

For every approximation, method under consideration, the problem' of stability 
will be reduced to that one of the corresponding method for a model problem on an 
angle' utilizing a localization principle. Moreover, Meilin techniques are applied in 
order to handle the model problems. These arguments are generalizations of those 
used in the case of smooth curves (see, e.g., [2, 18, 25, 26]): In comparison with proof 
techniques based on strong ellipticity (see, e.g., [1]) they are more complicated. How-
ever, in many situations strong ellipticity arguments do not work.. Furthermore, 
contrary to the strong ellipticity techniques our proofs yield not only the sufficiency, 
but also the necessity of the 'stability conditions. 

0.3. We conclude this section by introducing some notations: 

T	- unit circle {z E C: Izi = 11;  
R(f')	- class of bounded Riemann integrable functions on 1'; 

•	'PC(I'). - class of piecewise continuous functions on 1' (i.e., for / E PC(fl, there 
exist the finite limits /(t + 0) and /(t + 0) = f(t - 0) except a finite 
number of points I ET);	 . 

12 ,	, - Hubert space of sequences ,, € C;  
12	- Hubert space of 	€ C;	- 

•	X	- an abstract Banachpa'ce; 
X,,	- linear space of column vectors of length n with entries from X;' 
X,,,,. , - linear space of n X n-matrices with entries from X; 
T(a) . - Toeplitz operator generated by'a E PC(T) (i.e. T(a) = (a _k)O, where

a (lE Z) is the l-th Fourier coefficient of the function a); 

1(X)	- Banach space of continuous line&r operatorson X. 

1. Quadrature methods for singular integral equations on curves with corners 

1.1. Quadrture methods on an angle	. 

Jet us consider quadrature methods for the approximate solution of singular integral 
equations on curves with, corner points. To this end, we shall use simple quadrature 
methods which are siriilar to those ones used in the case of smooth curves (see [19, 
22, 23]). Our aim is to establish necessary and sufficient conditions for the stability. 
Since these conditions will be shown to be'-of local nature, we start with the simplest 

, situation of an angle. After that we attribute the general case to that one of an angle 
by. using localization techniques.	 • .	.	 - 

Let I', (0 <(o < 2n) denote the angle {t e, 0 1< oo} u (1, 0 I < oo);Sup-
pose the -singular integral opeiator A = ci + dSr with c, d EC to be invertible in 
L2(P,), i.e., c ± d == 0. If we seek an approximation u,, for the solution n.E L2(f',) 

of the equation Au = /, / ER(P,,) n L2(P), then [19, 22, 231 suggest the following
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quadrature methods: Choose two different numbers r, ô (0 < e, ô < 1) and set 

	

k+ô	ifk^0,	 k±e 

tk 
00 =	 tk' = 

•	 _k±eiwifkZO,	 k±e1,, ifk<0. 

Determine approximate values '" of u(t1(") (j € Z) by solving one of the systems • 

- icot	

—

	k: + 

d -- { 

X	(n)	 ()	
= f(rk ),	k EZ,  

rn	)00j	k 

1 1	 1	—'	(n) 

Ck' + d	
£J",	IJ 

-	 j*k	 j*k 

= /(t'),	k € Z,	 (1.2) 

1 ( 00
_________ 

.2	-  

• -	
+ d	j	 + j—oo •	 fl 

•	 tjk+Imod2	 j.k+imOd2 

E-	1	 0 

±	
.•,

	e'°) = /(tk1),	k € Z.	(1.3) 

j=O	 I	 / 

	

j-k+imod2	 J 
-	\ 

If there exists a unique solution (41')k(z1 then we obtain an approximate solution u 
• by setting	 - 

= L' k1Zk"'  
•	 kEZ	

0 

•	 xk()=J	
ifk/n;5t<(k±l)/n.,kO 1 2..., 

0 else,.  

1 if kin	_e_j0t	 1)/n, 
k = —1 —2 ....

0 else. 

if the the methods (1.1), (1.2) or (1.3) are 9table, then it is not hard to prove the con-
vergence of 'u to the exact solution u of the equation Au = /. However, we consider 
the quadrature methods (1.1)—(1.3) as model schemes for adequate numerical pro-
cedures on general curves with corners. From this point of view, it suffices to establish 
necessary,and sufficient conditions for the methods (1.1), (1.2) and (1.3) to be stable. 

Let A denote the matrix of the system (1.1), (1.2) or (1.3), respectively, We define 
the interpolation projection K. by K,,y = E Y(rk) Xk°' (y € R(P)) and denote the 

kEZ	
0 

orthogonaF projection onto imK,, n L2 (I',,) by L,,. In what follows, we shall identify 
the operators of .(im L,,) with their matrices corresponding to the base {Xk"1, k E Z}. 
Due to  

L' IkXkln)
	

= fl12 I{}€zJI.	-	0	 • 

kEZ	•	L'(r)	 -	 0	 • 

	

•	 •	 0	 0 

/	 0	 -
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*these matrices are considered to he operators in 72• In particular, since the matrices 
• A E 1(12) are independent of n, the sequence {A} (A E 1(im La )) is stable if and 
only if A 1 € 1(12) is invertible. 

Theorem 1.1: The following assertions are valid. 
a) The operator A 1 E 1(12) is a Fredhoim operator, with index 0 if and only if 

C+	Q, where Q':= (0) for (1.3), Q:== (-oc, 0] for (1.2) and Q:= {e_1(t_b)t, 

—oo <t :E^ 0) for (1.1).	-	 d b) The operator A is invertible in 12 if and only if -
	Q U b. Here J) (leno- 

•	tesan at most countable subset of C \ Q . whose accumulation points belong. to Q. 
c)-IfW = n, then 0 =_ 0. 
Assertion b) of Theorem 1.1 is an easy consequenèe of assertion a). To see this, we 

•	set B(2)	1 
d A 1 for 2= c	

Obviously, the function C \ Q 2 -*B(2)isana- 
lytie (even linear) and its values are Fredhoirn operators with index 0. Since 
C \ Q is connected and B(1) = I, the points of 0: = () E. C \.Q, B(2) is not invertible) 
must be isolated and b) follows. 

To sjiow a) we need some results on Toeplitz operatorswhich are due to GOHBERG 

and KRUPNIK (see [11,. 13]). Let 9t	1(12) denote the smallest algebra containingall 
• .Toeplitz operators T(a) with a E PC(T). Then 9t,IXfl	(l2)nxn(n E N) isanalgebra 

of continuous operators in 12• There exists a multiplicative linear mapping W, , x n3 B - 
4 into the algebfa of bounded n X n-matrix functions over T x [0, 1]. The sym 

bol AB of B = (Bk,f ) _ l ,  Bk., E 9t, is equal to (",)Z
1 1 and the,symbol .4Ta of T(a) 

•	with a E PC(T) is given by T(G) (T,u) := za(T+ 0) + (1 — ,u) a(-r  --0), where 
• ' (r,u) E T x [0, 1]. Furthermore, BE 91flXn is a Fredholm operator if; and only if 

det c45(t, 1u) 0 for allr € T and 0 1. Suppose B € Wnxn isa Fredhôlm opera- 
tor auld there exist w 1 e- (0, 2n) (j = 1 ..., k), c := 0, w

+
.:= 2i such that 4B(T, i) 

= 4B(T, u') for r = e"' (= 0, ..., k) and 0	,u, 1u' ^ 1. Then the index of B is 
• equal to —md det AB, i.e., to the negative -index of the curve P0 u I', U	U Fk, 
I', := {det /tB(e, 0), W1 ^S x ;5 W1 ±i} u {det A ei 0J+, , 

1u), -0 :E^	1). Finally, the - 
- algebra	contains all- compact operators and; moreovei, B € 1nXn is compact if 
and only if AB 0.	-	 -	 - - 

By virtue of 12	12 /2, we can identify 1(12 ) with 1(12 )2x 2 and obtain 2X2 1(12). -
Assertion a) of Theorem 1.1 will be proved if we show A 1 € 212 x2 and inddct AA, = 0. -' 
To do this, let us start-with (see [24: Lenima3.1 and Lemma 3.2]) 

Lemma 1.1: Let z E C, —1/2 <Re z < 1/2, A- := ((k + 1)2 k.j)j_O and a €PC(T). 
•. Suppose that there exist w, E (0, 2n), W0 := 0,	:= 2v such that the restriction of a-	• - 

to {e, (o	W} ( = J, ..., k) is twice differentiable. Then the following asser- - 
•	lions are valid.	-	 - 

(i)-The'matiix A- IT(a) A 2 belongs to 21 and	 •	 -.	- 

•	 -	

-

 

4AT(a)A(t, u)  
-	z() •	-'	 --	-	 if r r= e"°', j = 0, . . .,k, 
—. pa(r ± 0) + (1 — lz)a(r — 0) e- 1	 .	 - (1.4) 

ti	
=	— -	 +-(1 - 4u) e	 if 	eti '2"	 O	k -	- 

(ii) The function z -- A- ZT(a) A is coiltinuous on {z, —1/2 <Re z -< 1/2):	-
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Now let* us consider the method (1.1). The operator A 1 E1(/2 )2x 2 takes the'form 

A1
,Al2

 

- IA ,,1 A2,2J 

where  

A 1 1 = (c — icot (r(e — 6))d) I ± d (ni. _(k —)— (e	 o)), 

	

•	- A =	(f ± 6) + (—k—i + e)e)kjo'

—e' - 
A l2 _	

( j — 1 ± 6) ejw_ (k + ) 00

	

k.j=o '	- 

A 22 = (c — 1 cot ((e — 6)) d) I + d (ni
I 

(k — i) ± (6 — 

For --1<v<1,v+0,ieset 

/(et2 ) =	 (vx) — 1,	0	<1. -: sin .(—:irv)j	-	 -	- 

•	Then a straightforward computation shows /' = E tk tk , where fk'	 —k 

	

kEZ	 76 
— i cot (iv) 6k0• Thus we obtain A= T(c + df 6 ) and A22 = T(c — dl('. - 1)). 
• Now let us prove A21 E- W. The: residue theorem together with the well-known 
formula (see [5, 6])	 5	 -	 S 

1	1	1	1'	1	e'°' 1	• 

-	 =-:- I XZS_j	•dz 
711 1 — et °x	2zi J	(	sin (-rz) J •	- 

	

•	-	 Rczlf2	 -	 S 

gives	 S	 •	- -	 S 

	

1	1	1	C I	e1(zl	-	 S 

	

•	—	= — I	—i	dz, 
nI.T—e1°'x	2t1 J	 sin (-rz) J 

Re: 1/4 

•	1	x i-	r	-	I	
I 

	

I xttz
vi	e1°z	2 i	

i
1 —	 j	 sin (.z) 	S 

	

-	 RCz112	 S	 S	 • 

-	 1	C	I	e_w1	e1'° -	 =	I x	—1	 dz — i - • 
•	2ri J	 sin ('tz)  

Rez=5/4 

1 — x	1 — e_t w C	- .1 - e_h(w_ 1 •	- 

	

–	-	 ------ =	 I - x	—i	 dz — e 1 .	 (1.5) - 
-	1 --- e°x	2	J	I •. sin (rz) J -	 Rez1/4	 - 

I	 /
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/ 

	

Hence -	 - 
/ 

1	
k--1—e	 -	 00. 

	

A	d'	1+ô	1	 1 
2,1	

-• 
\.	1+ O	 k.j=O 

	

•	 (1 - ei0r I . e''°'1 1	 i+6  ) 
2	j j	 sin (z)ji_(k)_(1_e_o)J -	-- \	 Rez=1/4  

/1	 1 
\ti —(k - - (1 - € -6))k,j=O 

The last relation and (1.5) with x = 1 imply 

e- iwS	 1 -	 e'' 
•	 A2	d	

2	f {_ sin (az) } ((k + 1 - )_z 6k )° T(/(i_e_ô)) 
Rez=1f4	 - 

® (& ± ó)Z k 1)z°,-0 dz - d e_T(/Ut)). 

Since the cperator function 

z -> {712T(f(I_6)) A1 - ((k + 1 - e ) ôkJ)kI 

® T(1(1>) ((1 ±â) ÔkI)k} 

is continuous and bounded on (z, Re z = 1/4) and takes compact values only, there 
exists a -compact operator T E 1(12) such that 

	

•	-	 1 - e°-' 

	

•	 A2,1 = T ± d	2	f {' sin (az) }A_
Z T(t/ 1_E_ AZ dz 

Rezi/4 

V	 de0T(10-)). 

•	Thus, by Lemma 1.1 we obtain A 2,1 ,E 91 and	 . 

	

V	

1 - e''	r i	
•	 V 

-	 = d	 I -. —i	 4z dz - d e'4°, 2 -	j	sin (z.) j	 V ItCZ-1/4	 - 

where <,4Z = c4A-.r(f(i--6))A. Extending z '-+ 4z to a 1-periodic analytic function, we 
•	.,	get	 •	 V 

•	 .	 d r f C/tA,,= .—de-1°jt' ± --I 
	
j_i- 	sin(2zz)	. 

LRez=i14	 - V 

--	

f1—•.4zdz •
 -	sin (rz) J '	 S 

Rez=5/4	
-	 V 

In the strip {z, 1/4 <Re z < 5/41, the function z —* 41(r,1i) is constant if t = 1 and 
has a pole at z0 = -- + i -_ log (

	
) if r = 1. Consequently, the residue
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theorem implies.	 . 

-	 d I —i —j(w—) 
c/t A,,(l, ) = —d e'c.4'(1, 1u) - 2ii --	 4u) 

-.	 I1.i	U -	 —i(w—n)—+— log — I	1'	e	2 2n	1 JA

 

s i

n G
1 _sin	 - + i- log 1 - 

d 1_j —i(o--")	 1 
C.44 1 (T,fL) = —d e°'c.4'(r, i) - 2i-- 

[
.41(T, u)  

0 

-4A	JU)

,. 

e	22	1i 

	

if d(—i)	 if r = 1,0  
+ - log 2	22v,1—/z	-..' 

In a similar manner we can prove A 1,2 E W and compute '4A,,' Finally, we obtain 

•	 441(t,fL)	 ,	.	.	 . 

/{c + d/( 6 (r)}	-. 0 I	 -	I	ifr+1,0u	1, 
0	{c - d111-'>(r)}/	 - - 

e	2 2a I—U 

{c ± d(_ + (1 -))}	—d(—i)'	
/ '/1	 -

ju 

sin 
•	 -.	 .	 .:	

-
y) 

•	 -•	/11	U +—IOg---

•	d(—i) 
- . e	

(c —d(—iz+ (1 —t))}' 
- 

ifr=1,0:!E^1.	(1.6) 

Since det 4 4 , is independent of w, we may suppose co = oz. -In this case, the operator 
A 1 E %(/2 )2x2 is a Fredhoim operator with index 0 if and only if the convolution opera- - 
tor A 1 = ci + i(t)k.jEz E '(72) is Fredholm and its index vanishes, i.e., if and only 
if c + d/(' 6)(t) + 0 for all r E T. A simple computation shows that the last condition 

•	is equivalent to	
d	

S 

The operator A 1 corresponding to the methods (1.2) and (1.3) can be treated ana-
logously. We omit the' details and remark only that in these cases 1(6) has to be 
replaced by the functions /0 and /*, respectively, where - 

•	 /0(et2v)= 2x —1,	0 x < 1, and  

/*(ei2X) = J -
1 ' 0 

^X < 
(	1, —1/2 ^x < 1.	,	-	 1
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Jf w = , then A 1 E Z(12) is a discrete convolution operator. Sinôe the Fredhoim 
property of a convolution operator implies its invertibility, assertion c) is obvious., 

-	This completes the proof of Theorem 1.1.	-	 - 

1.2. Quadrature methods on curves with corners 

Let the simple closed curve 1' be given by the 1-periodic continuous parametrization 
y: R C. For a finite subset M of [0, 1), we suppose tht y is twice continuously 
differentiable on [0, 1) \ M that y and 

y have finite limits at the points of M and 
that y'(s ±0) rf ---y'(s -- 0), s e .M. Let c, d E C(F), k E. C(f.x I') and define Sr, T, 
A € Y(L2(P)) by  

(Srx) (1) = 1f_	
dr,	(Tx) (t) =fk(t r) x(x) dr, 

- 
0 

A=cI+dSr±T.'	 . 

We.seekan approximate solution of the equation Au = f, / € R(fl. 

For the sake of simplicity; let us assume that 	is contained in JkIN, k= 0..... 
No --1) (N0 N) and choose ii to be.a multiple of 'N0 . The quadrature methods will. 
be defined as follows: Let' tk t ' := (k ±	 (k ± e) (0 < e, ó < 1, 

e==ô, k E . Z) and determine approximate values	of u(tk 1 ) by solving one 'of the
systems

•	
,	{e(ri.") - i9ot ((e - 5)) d(rk")}	+ d(rk ')	' ()	( n) 

)0 j	 k •	 ' 

+E k (r ,	 = I(tk " 	k = 0, ...,	- 1, ,	, , (1.7) 

—i	,(fl)	 - 
-	 c(tk1) k1' 4 d(tk11)	,'

41(n)  
i 1=011	'_t 

j+k 

+ 'k(tk ,	 = 1(k1),	k =,O,	, n — 1,	 (1.8) 

1	n—i'	 '- 5 

C(tk ( ') k1'	'f- d(tk ( 1 )	• L'	£ 7i	,0	j	 k. 
jk+imOd2  

n—i	 - 
+	'	k(1,(),t,())	(n)zlt1(n) = /(tk1),	k = 0, ..., n  

j=0j-k+imod2  

where zi1j(7z) = y ( + 1) - y R) for :(1.7) - and (1.8) and	=Y,()
	1) 

- -	for (1.9). The number happearing in (1.9) is supposed to be eve. If1(n). 
fl	.	 ,• j- (L)'•+denotesthe characteristic funètion ofthearc [y 	 , y(	 thenthe approxi- 

• L	 fl 	\ fl	 .	
0 

mate s1ution will be defined by u,,= 'E " 1x," .	 '	 0 ' 

j=0	-'	
•	 0 

-

Before. formulating the stability theorem, let us introduce some notation. We set 
A = cL— dSr — T. Analogously to the method 'of freezing the coefficients in the -
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•	theory of partial differential equations, we shall consider certain model problems. For 

tE I', let us define w. E (0, 2r) by w, = arg 
(_ 

''r	and set A' =c(T) + d(r) 8r,0 
The model problem for the quadrature method (1.7), (1.8) or (1.9), respectively, is 
the method (1.1), (1.2) or (1.3), respectively, applied to the operator At 
The matrix of the corresponding system of equations will , be denoted by A 1 '. In the 
proof of Theãrem 1.1 we have shown that. A 1 ' 'E 912X2 

Theorem 1 .2: The' following assertions are valid. - 
a) The method (1.7) or : (1.8),-respectively, is stable if and only if thë operators 

A 'E 1(L2 (P)) and A 1 ' € 1(12 ) (r E ) are invertible The method (1.9) is stable 
if 

and 
only if the operators A,,A E .1(L2(fland Aj' € 1(12) (r E I') are invertible. - 

b) If the quadrature method is stable and fE R(T'), then the systems (1.7), (1.8) or (1.9), 
respectively, are uniquely solvable' for n large enough and the approximate solutions u,, 
onverge to u,= A'/ as h. -*'oo.  

This theorem will be proved in Section 1.4.  
Combining Theorem 1.1 and Theorem 1.2 we get necessary and sufficient conditions for the 

quadrature iethods (1.7)—(1.9) to be stable. In general, the only trouble is that the set 0 in 
Theorem 1.1 is unknown. We conjecture that it is -void in nearly all cases. But now suppose we 
are out of luck and have the folloving situation. The operators A and, for (1.9), also A are 
invertible and the operators A 1', r E f', are at least Fredholm operators with index'O. Moreover, 
let US assume that in one or more corner points the operators A 1' have nontrivial null spaces. 

• Then the quadrature mthods only need a little modification in the neighbourhood of these 

	

•	points in order to become stable (cf. [22]).  

1.3.A local principle for splineapproxi.mation'methods .	 . . 
-ThiT aim of this section is to establish a local principle which reduces the stability of 
approximation methods for'an operator A € 1(L2 (T')) to the stability df correspond-
ing methods for certain model operators. Let us supposO.that there is given a sequence 
{A,j of approximate operators A. E 1(im L5 ), where L. is the L2(r)-orthogonal pro-
jection onto the subspace span {Xk°', k = 0, ...,n - 1) and the scalar product in 

2L2(f') is given by •	 . ,

	 •	 - 

-,	 (/, g) = f(y	g(y(t)) dt. •	•	 •	 ,	 (1.10)	. - 

Furthermore, let there exist certain model operators A 1 ' E 912x2	1(12 ). In order to 
describe the connection between {A 5 } and A'1 ', r € F, we need some notation.	- 

Let the projections K5t, K5 5 : R(f) .-s- L2(f') and P. E 1(12 ) be defined by 
•	 - n—i 

-	K5 ef = ' f(r,")	K551 = ' At,') 
k=O	 -- •	 k=O	 - 

Ik if —n/2 <k ^ n/2, 
Pfl {k}kEz = {ik}kEz,	:	= jo e1e. 

For given t € Fand n € N, we introduce E5': im P. im L5 by	- 

	

•	 •	
-. imP5	{ôkI}kez	Xj.n+j'  

- - where j(r, n) € (0, ..., n - 11 is defined by XJ(,,fl)(t) = L. Since E5 ' is bijective, the 
mapping 1(ith Ii,,) B,, --> B,, 5 := E,,''B,,E,,' € 1(im P,,) is an isomorphism. More-
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/ 

over, a sequence (B.), B, € .2'(im La ), is uniformly bounded (stable) if arid only if 
{B E} has the same property.  

Let m(r) denote the set of Lipschitz-continuous functions x on I' satisfying 
• 0 :5:;51. For x E C(I'), we set x = KN'X I irn L8 . We shall say that {A} is equiva-
lent to A 1 ' at t if, for any s' > 0, there exist n0 E N and a neighbourhood U of r such 
that x € M(J'), supp x 9 U and n no imply Z E (A E - A1') x 5 I! <i'. 

• Theorem 1.3: Suppose A € Y(L2(P)) and {A}, A € ! (imL), satisfy the following 
conditions. 

•	(i) There exist. a /inite.subset r' 9 r such thaI xAxL --A and XA*XL8_ 
X"X for all functions x € c(r) satisfying supp x n I" = 0. 
(ii) The operator A - AX is compact in L2(1') for any Z € C(fl. 
(iii) The norm. IIx A - A.X. —L(xA	AX) im LUll con-verges to 0 for any 

xEq(fl and n-)- . 'S 

(iv) There exist operators A l l € 21 )< 2	.f(12) (r € F) such that {A} is equivalent to 
A 1 ' at r.  

Then A.L.converges strongly to A. Moreover, {A ,,} is stable if and only if the operators 
-A € %(L2(I')) and A 1 ' € 2'(/2) (r € F) are invertible. 

This local principle will be used in order to prove the stability of the methods (1.7) 
and (1.8). For. the proof of the stability of. (1.9), we need the following slight modifi-
cation.	 S 

Define W € Y(imL) by = (-1) Xj°'' j = 0, ..., n - 1, nd •set 
WBU W for B € Y(im La).  

Theorem 1.4: Suppose A € .(L2(P)) and {A}, A € !(irn L) satisfy the assum- 
tions (i), (ii) and (iv) of Theorem 1.3. Assume that, additionally, there hold the following 
properties. .	 .	 .	. 

(i)' ThereexistsanA € 2'(Li(I')) such that xAxL - XA_X and ZnA n *XnLn XA*X 
for all X E,C(flsatisfying supp x n P = 0.  

(ii)' The operator yA - Ax is compact for any x €C(F).	 5 

(iii)' For each x € C(I'), 

Il(x A - Ax) - L,,(A - A) jim L - WL(yA rA X ) I im LUW,,IJ -i-0. 
Then AL converges strongly to A and {A,, } is stable if and only if the operators A, A 
€ Y(L2(I')) and A 1 ' € . (12 ) ( i € r,) are invertible. 

Since the proof of Theorem 1.3 runs analogously to that; one of Theorem 1.4, we 
only prove Theorem 1.4. First, let us recall some results on an algebra of approximate 
operators (see [27 f § 2]). Let 58 denote the algebra of all sequences {B}, B € 1(im La),

• • such that there exist operators B, . € .(L2(fl) with BL -* B, BU*LU -* B*, 
-- P and B*L	. If C € ' (L1(F)) is compact, then {LT I im LU},S{WLT 

jim in W.) € 8 and WLU T I in LWL.-- 0. Define	 •	,	- 

•	• 

-	 •,	T1, q 2 € %(L2(r)) compact,.4jC1 -	. •	 • 
•	and denote the closure of J0 by J. Then J forms a two-sided, ideal in Z. We set 

= 8/J.and {B}° ={B} + J. It has been proved in [27: §2] that a sequence. 
•	{B} € 58 is stable if and only if B, -€ .1(L2 (I'))' and {B}° € 580 are invertible. 

Now we show that the sequence {A} of Theorem 1.4 belongs to the algebra Z.
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Lemma 1.2: If JA,,l satisfies the assumptions of Theorem 1.4, then A.L. -)A, 
A Th *L -^A, AL -± A and A*L — 44* 

Proof: First of all, let us show that {A} is unifoim1y bounded. In view of assump-
tion (iv) of Theorem. 1.3 there exist points r, ..., Tk E I' and functions x'••• Xk, 

•	 E M(r) such that	-IV

= .pi	!X'(	- A11j) y1E11 < 1,	 - 
k 

k,	E=1 
j=1 

k	 Ic	 - 

- Since A = ' tp0 iA(I i- x) + Z vnAnn', it suffices to show the àniform bounded-
i=1	 j1.	 S 

ness of ipiAi änd'?p 1A(I - Xn') Obyiously, 
ipA7 

= V.	 ± X 7E(A n E - A1'1) yiE} n') - '	-, - 

implies that ip'Ax' is uniformly . bounded. From (iii)' and ip 1A(I - Xn) 
=1pn 1 (Xn 1An - AnXn 1 ) we observe the uniform boundedness of ipA(I 

Now, for x' x € M(F) arid z'x = x' we get 

•	(Zn' - fl An = (Zn A n * — A n *Xn ) Zn 
= Wn((Anyn' — x'A) - L(Ay' - y'A) im L 

•	
- W,,L,,(A' - 'A) I imLn Wn }* WnXn 

•	 + WnLn (Ay' — y'A)* I Im LnWnyn 

+ L(Ay' —_ X 'A)* I ImLXn. -. 

•	Assumptions (ii), (ii)' and (iii)' yield (' — 1) A*xL -> (X,' 	I) A*X. If, additio-
nally, supp x' n F' = 0, then assumption (i)' gives A n*ynLnS	A* E Z(L2 (F)). Since 
sup 11A.11	sup fIA n*II < co, we obtain A*IJ	A. The other strong convergences 
can be derived analogously - 1	 - 

In order to prove the sufficieny of the stability conditions in Theorem 1.4 we only 
have to show the invertibility of (A n )°. To this end we shall use the local principle of 
G0II13ERG and KRuPNn (see [10: Xli, § 1]). For t € F, the-set M, ={{y10, z € M(r), 
X 1 in a neighbourhood of r} is a localizing class in 58 0 and (M,, -t € F) forms a co- 
vering system (cf. [12, Lemma 2.6]). By virtue of (iii)', the elements of U{M,, r € I')' 
commute with {A}°. Hence {A}° is invertible if and only if {A}° is M,-invertible 
from the right for all r € F.	 - 

Lemma 1.3: 1/ A 1' € .(72) is invertible, then(A n )° is M, - invertible from the 
right.	 - 

The proof of this lehima is based on the following two lemmas. 

Lemma 1.4: If BI € 12X2	1(12), then the sequence {E'B'(E')-'} belongs to 93. 

Proof: a) Let B,, := E,,'B'(E,,')-' and W := (6,.k(-1))j.kEz € 1(12 ) Then B' € 9t2x2 
implies WB'W € t22 and-we have B,, = E,,'WB'W(FJ,,')-'. Hence it sufficesto prove 
that there exists an operator B € 1(L2(F)) suóh that B.L. -* B and B,,*L,,	B.
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On the real axis, we denote the characteristic'
.
 function of the interval [j/n, 

(j + 1)/n] by (n) and the orthogonaLprojection onto span j E Z) by LR._Let 
us identify the operators of 1(im L') with their matrices corresponding to the base 
{ 991(), j E Z}. Thus the. convolution operator C(a) = (ak_J)k,IEz (a € PC(T)) can be 
considered to operate in im LR . We shall show the strong convergence of {C(a) 

•

	

	Fora(t) = 1 - I, the convergence C(a) LIt —> 0 is easily verified. If 8R is the
Cauchy singular operator on R and ' denotes the function ('see [20]) 

(e12)	- sin' (ax)	sign (k + 1/2)	
c < 

k€Z	(x±k) 
then LS R im L ='C() and C()LR - SR 90+ O)Qa± (1 - 0) PR, 
PR:= 2L(I + 'Sit), QR := 1 - P. Consequently, for a(t)	a(1 + 0) (1 - t)) 

/1+ TM•\	 •	'	 .	2 
• ' .	+ a(1 - 0) (,	2	) + 

b(t) (1 - 1), the sequence {C(a) LR} converges strongly to 
•

	

	, a(1 :j 0)Qa + a(1 - 0) Pa . Byadenityargument,ve conclude C(a) L  --*a(1 + 0)
X Qa -fa(1'— 0)Pa for any aE PC(T).  
-' c) Now we consider the case of the half axis R'. Let 'L,, € .(L 2 (R+)) 'denote the 
orthogonal projection onto span {j(?, J = O 1, ...) 'and  let us identify irn L, with - 
12 From b) we conclude T(a)L + a(1'+ 0) QR+ + a(1 0) PR, where P+ 

'¼ , :=2 1 (I + Sn. ), QR + := I - Pa. and SR is the Cauchy singular operator on R. If we 
co 

define the Mellin transform M L2 (R) —* L2 ({z, Re z = 1/2)) by M/(z) = ft 1/(t) dt 
•	and' the Mellin convolution operator'g(e) E .(L2(R'4')) (g € PC({z,Rez = /2})) , by 

g() / = M'(gM/), then '(see [10])'
1+icot(ia) •	a(1 + 0) QR+ ± a(1	0) PR = a(1 ± 0)	2	•' 

+a(l_O)1_ co t 

:'	-	'	.• •	 ,/" 1 +\ cot ()	•• 
-	 - = -4T(a) k"	2	-	•	'	' 

Therefore, the mapping T(a) -± a(1 + 0) Qa+ + a(1 — 0) P+ extends to amu1tiplica.7 - 
•	tive linear mapping c2t A - 4A 

(1, 1 + 1	(21a)) E 1'(L2(RI-)) and' AL 2. 
I i ± i cot (th)  converges strongly to c/IA 1 , 2	 • 

d) Let I:= [0,1] and-let L' €1(L2(I)) denote the orthogonal projection onto 
span 12(0), j = 0, ..., n — 1). If 7z is the projection of L2(R.) onto L2 (I) and n 

Eo(/2) 
the projection defined by	• ' 

00	 00	 jk ifk<n, 

	

= {1k}k=o,	17k = S (0 - else,	 S 

then A € W, and part c) of this proof imply	 (i 
1 + 1 . cot 

im 7z E 0(L2(I)). • Furthermore,	A*LI	4A' (i 1 + i cot ())	im 
1	/ 1 ± i cot 	2 

= j4A (1, •	 im	Transforming the interval to a subarc of F, - 
'L/	\	 I.	J	 •	 / 

we obtain the strong convergences of {BL} and B*L} U	'	S	
N



Quadrature and Collocation Methods	211	- 

Lemma 1.5: Let T Er be /ixed and B' E W2X2 E .T(12). For eachy' E M(F) whiëh 
is identically equal to.! in a neighbourhood o/ r and for- any €' > 0, there exists a smaller - 
neighbourhood U o/ r such that x € M() and supp x U imply IIx RB(1 - x'5 )I1 <i'. 

Prdof: a) * Le't	denote the set of all B' E 1(12) such that the assertion of the	- 
lemma holds. From

- ZE)	[x5B(i	711E)] C'(I	ZIE) 

	

-	+ 7n1B1[xn $C . (1 - Zn'5)] 

• we observe that .is an algebra. It is not hard to show to be closed with respect 
• to the operator norm, i.e.- is' a closed subalgebra of 1(12). 

•	b) Now consider B' =(bJk ) ,kez which satisfies b1 ,, 7 - 0 for j	k. Choosing 
U = { E I', x'(t) = 11"we obtain x 5B'(1 - Zn' = 0. Thus B' € .	 - 

• c) Let B':=—C(a) = (akJ)k.Ez', where a is piecewise continuous. Furthermore, 
suppose a is twice differentiable at the points of continuity and these derivatives, 
are piecewise continuous. Weshall show B' € (. Let t = '(a) and assume z'(y (s)) = 1 
for a—'O 1 '<so+ôi . We choose U={y(s),a—,ô2<s<a±ö2} for . asuita -
ble 2	Then the element in the j-th row and k-th column of (I - Zn'5) Bl*xE 

• is smaller than Cck _ J ,whereck = lkLfIkI	(ô1 —ô2 )nandck =Oif'IkI	(i —2)n. 

For {} E 12, define {'lj} € 12 by	= 0 if	6,n and 77 i =-k,I if j < 6,n. Then we 
get	 - 

— Zn E ) B''yn5) {,} 1 17. C{ Eci_k7Jk} 
kEZ	 jeZ 1 - kEZ	jEZ I 

Young's inequality yields	((I - Zn15) B*ynE) {j}	^C II{7k}ll7' Il{c,}IIt . Using 

ll{k}II7	fb2n II{ik}II .	An II{k}II 1 

•	I{c;} 7.

 

1/k2 1/'2 ^ C/j/ (6	62) 
kEZ -	 \iki<-6.n  

we conclude' ( (1	E) B*XnE)) {} .	
C ^31 1	I!{}ji.; If we choose 62 -	- 

small enough, then	, 	2 

IZnEBT(I	Xn')I!%(7.) = RI	Zn'5) BT*ZnEIli<7.) 
^CV6	<e'.

d)Now 91x2 9 follows by the fact that t2 < 2 i6- in thesmallest closed subalgebra 
'of (12) containing the operators B' of parts b) and ,c) of this proof. This completes 
the proof of Lemma 1.5 I 

Proof 'of Lemma 1.3: Let r E r be fixed and choose x x" z" E M(F) such that 
X 1 in a neighbourhood of r and supp x' it € f, X"(t) = 1) 9 SUpp y" 

(t, X'(t) = 1). Then we get Zn"Zn = Zn, Xn"Zt' = Zn" and 

Znn 5Zn' 5 = Zn 5 En + 7EA1,  

-	En	Xn"5(An2	A 1 ') Zn' 5 - ZnFEAi(1 - n'5),  
' '
	Xn5An5Zn'5(Ai')' = Zn 5{' + Fn(Ai')-'}.	 '	 -
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- In view of assumption (iv) and Lemma 1.5, we may choose, y', x" in such a manner - 
- that IlF II < 2-' II(A 1') hII' . Hence we obtain II{' + F(A 1 1 )- 1}'jI < 2 and 

Z EA n EZn E (A i T )_ i {I + F(A 1 ') 11' = 

xAR ^Xn)	R. :=En (Xn E (A i ) 1 {1 + F(A,')}) (E')' 

If R} E 58, then {y}0 {A}° {R}° = {Zn}°, and {A}iis'M,-inveIib1e from the right. 
It remains to show E'(A,')' (I + F(A,' 1 } 1 (Es')' € 58. Since the Neumann 

series { + F(A 1 1)'}' converges with respect to the operator norm, it suffices to 
•	prove'E'(A1')-1 {F(A 1')}' (E. T )- 1 € 58 for j = 0,_i.. ... Now the latter term is the 

sum of certain oducts whose factors are of the form y,,", Zn', A or 
(B, ,E 5U22). Thus {R} E 58 follows by Lemma 1.4. This completes the proof I 

Now let us assume {A} to be stable. We shall prove the necessity of the1 condi- 
•	tions in Theorem 1:4. The invertibility of A,1 E W(P)) follows by {A} E 58 (see 

the properties of 58 listed above). We fix r E Pand show A n EPn * A, % A n E*Pn ,-. A1'. 

If this will:bedore, then {k} € 12 and the stability of {A} imply 

IIA n E1 n {ek }Il i*	IIPn{}II,	Il4 h E*Pn { k }lI ? ,	IIPn{}Il 

	

•	Passigtothe limit as n- oo, we get	 - -	
•. 

IA 1 ' (k) 11 7'	-- II{} Ill ' ,	- jA *({k} 11 7.T7 Il{} 1171. 

Here the first inequality proves A 1 ' lo be injective and im A 1 '. to be closed. The 
•	second inequality shows im A 1 ' to be dense. Hence A 1 ' € .'(12) is invertible. 

Since {AR*} is uniformly. bounded (see Lemma 1.2), the strong convergence 
A n E*Pn	A 1 ' follows from A U E*Pn{o, k}kE z	 To show this, let y, 

•	x' EM(f) satisfy x = 1, ' = 1 in a neighbourhood Of r and suppose x'x = x. Then -

	

 
•	 S	 AflE*Pn{o,,}k€, = A l *{Sjk }kEz +tl ± 12 '+ 13 ± 14 ± 15, 

1:= A 1 *[y E - 11 16j.OkEZ,	 12 := [(Zn R - I) A1*yE] {ô;,k}kEZ, 

	

•	 13 := [y E (A E —A1') 'E]* {j.k}k6Z,	14	(I - Xn E ) AnE*xnE{oi,c}klz, 

Zn B] {Ô.&JkEz. 

If we choose x ' x' 1y Lemma 1.5 and assumption (iv), then the terms 12 and 13 be-
come small. For j fixed and n large enough, 1 and 15 vanish. Now we rewrite	. 

14 = [AE*y'E	Zn'n] Xn E { j.k} kE Z = 16 + 1 7 + 1 

t6 := (E')' {XnEXn' A n - Any,' - l 'n(Z'4 - Ay') I im L	 -.

— WL(x'k— Ax') I im Ln Wn ]}* Efl1{6Jk4Ez, 
1 7 = (E'' {Xn"n(X' 4 - 4x') im Ln }* Efl'{âk}kez, 

	

•	 -	 .	 (E1)1W {XnLn(y'A - AZ ') I im L}7 WnEn'{ôjk}keZ. 
The term 6 is small by assumption (iii)' and we have 

yL(7'A - Ay') = [xL - y 	- Ay') + X(X'A - Ay'). . 

-Here the second term on the right-hand side becqmes small for a suitable x whereas 
the norm of the first term tends to zero as n -- co. Thus 17 becomes small. An anal-, 
ogous consideration for 18 yieldsA fl E*Pfl {5)k ) kEz A i'(ô,,jjz, i.e. , .A E*P _*A1*. 
Similarly,one shows A E -* A 1 '. This completes the proof of Theorem 1.4. 1
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- 1.4. The proof of Theorem 1.2	 - 

1.4.1. Let us consider the quadrature method (1.7). We identify theoperators of 
(im L) with their matrices corresponding to the base j = 0, ..., n - 1) and 

denote the matrix of the system (1.7) by A. For the proof of Theorem 1.2 in the case 
of the method (1.7), it suffices to prove the assumptions (i)—(iv) of Theorem 1.3. 
The validity of (ii) 'is well known. Let us denote the set of all corner points of F by 
P. Then, while proving assrimption (i), the curve I' can be assumed to be smooth. 
For smooth curves, the convergence xnAnxnLn -*	has already been proved (see
[23, 22]). Using this result and Atkt = y'(Tk) y'(t,")- ' L1t1> ± 0(n 2 ), we easily 
obtain X A*X Lo	(Note that the adjoint of the integral operator T with 
kernel k(t, t) '(t, t € F) is the integral operator with kernel y'(l) k(t, -r)/y'(-c). This 

• follows by(1.10).) Thus assumption (i) of Theorem 1.3 is satisfied. 

1.4.2. Now we shall investigate the validity of (iii) in. Theorem 1.3.-Setting 

F: L2 (F) -* C, 	= f x(r) d,	 .	 - 
-	r	 - 

we get (Tx) (r) = F(k(-r,.) x). The approximate operator T = (k(rk , t/') 4t/"7.!0 
- E %(im L) takes the form (Tx) (r) = K,,FK 6 (k(r, .) xe ). Thus we obtain 

'(Ta - K'Tl im L) x(r) =K,F(I - K o ) k(T, .)	 - 

• If w denotes the moduls of-continuity w((5') =• sup {I k (r, £) - k(r, 12)1, r € r,	4 ' (f r,
-- t < 6 ' and there is no corner point between 1 and t2}, then 

11(1 - K o ) k(r, ) LflhI1 ( L ( r )) ^ Cw(1/n) , 

• IF (V — K o ) k(r, .) Lx )I ;5 Ca(l/n)'-IIx fl hl L. ( r )	 - 

(see [21, Lemma 4.1]). The latter inequalities imply 

-•	 IIT - KT I im L IL(1L(F) ;j;,Cw(l/n)' 

II T - K'T I im	— 0	(n - oc).  

Since T: L2 (F) -- C(F) is compact, we get II(K e — L) Til 0 and Il T - LT 
im L.--> 0 (n -* oo). Replacing T by T or T, respectively, and , T by yT or 
TKn oyI im L,, respectively, we arrive at  

•	- IInTn - ,TnXT I jiii L-* 0,,  

•	IITnxn — LTy I im ' LlI	II T II IIxn - K 5x I im LII 

	

+ II 1 ' K 'x I irn L. — L.TX I im LVII -- 0,	- 
•	-	

IIxT - T,y - L(zT —x) im L II 0.  

- Since Xncn = CnXn and xc = cx imply XnCn - cy - (xc - cx) = 0, it' remains to 
show (iii) for the singular operator Sr and 

I 1	- zjt	)n-
-i cot	(5)) I + (	gin) _. (n) 

	 -. k-	k.j=O 

Without loss of generality, we suppose that X o y is continuously differentiable and 
set. k'(€, r) = (y(t) - x(r))I(t — r). Thus k'(t,.) is continuous on F\ F' and piece-

15 Analysis Bd. 8, Heft 3 (1989) 

Ii
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wise continuous on 1'. Consequently, 

XnSn - S.X. = M,' ± M 2 ,	M'	(k'(rk(">, t,(') 

1.1 -	 In_i 
LJ2 :=	(	 T 

where JIM.' - L(xSr - Sri) I im L Il - 0 can be shown analogously to JIT,, - LT I 
im L.11	0. The obvious estimate 

1	zlt	 1	1 -	(	 < C  
ti •'	- r'"	/	 "	 n j .--_ k + 1 

with  
j—k	if —n/2<j—kn/2; 

	

_k= j— k+n	if- —3n/2<j—k:E^—n/2, 
•	 - j—k —n	if	n12<i—k<3n12 

implies IIM2 II	C,n'' log n - 0 (n'-* oo). Thus we obtain	- 8nXn	Ln(XSr
- Sr) I ith L II -- Oand assumption (iii) of Theorem 1.3 is fulfilled. 

1.4.3. Now we prove assumption (iv) of Theorem 1.3. Let'us fix t € r and e' > 0. 
The elements of T satisfy Ik(Tk", t()) 11t j (0 1 < C/n. If we choose U = {y(s), a - 
2C <a < a + e'/2C} and z E m(r) with supp	U, then simple estimates show 

'I II < e'. Thus (iv) is proved for T instead of A. If we choose U in such a 
manner that t EU implies Ic(t) - c(t)I <.€', then IIXn E (Cn E - e(t) 1 )11 < ' holds and 
(iv) is satisfied for c instead of A. It remains to consider the case A = Sr, A	S.

Without loss of generality, let r = y(0) be a corner point ,and set co : —.co,  

arg (_y'(l —O)/y'(l-± '0)) €(0, 2t). Chooser' E M(T) such that the only corner 
point of supp ' is r and '	1 in a neighbourhood of t. We define v: R --* P, and 
p: I'	I'by	-(

	

1	1	 1. 'a	ifs^0, 
(y(a))=v(s)- if---<s^--, 

V(S)=jjoif_0 

and set S'x = (Sr,[('x) o yr']) o p. Then T' = X'(SrX" - 8') is a compact integral 
operator and its kernel k' 'satisfies (see e.g. [15:' p. 58])	 • 

	

d	 d2- 
-'	1	-(t)	

•	 i _______ 

k'(T, t) = z'(r) —	— v &) —)(T)
	k'(r, t) = —z'(r)2	d 

dt 

Setting T" = (k'(tk ",	 for XE M(r) and y' = X , we obtain 
XnSnXn = xUx + xT'x,	 • •	 /	d	 \n-1 

•	 •	

•	
-	 (t,') 

U. : = , —i cot (t(a — 3)) I,, + —	(	'	' ut1 
•	 \i v(t, " ) — v'(	)	-	k,j=O • 

As we have shown above, the operator X RT,, EX,, E becomes smaller than any prescribed 
a' > 0 if supp X iscontained in a suitable small neighbourhood of r. Therefore, it 
remains to show that C,, = Xn E( U n E - B1 ') x' is small, where	• -• 

•	
-.	 7 

-	B1':= _icot(n(s —o)) 1+	 (k)	Et2X2. 
76	+ 6) 

•	 I	I	1 .jez	- -
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By

JOW 
- (((n) 

	

- Tktho)	i	 V	 V 

/j + 1\	11 \	dv 11± 1)	 /1+ 1\	11 \ 
-.	 —)—y	)—)'—) 

V	
- /14. +'\ /1 + Vt	/ I	 /1 ö\ F' 

V	
\ —v 1k	

V	 —V	
+ —	 — 

V	

fl	 ,	n 

1
V 

78- ( ii	—1 

V +	V( 

we get G. = Zn EBi IXn Dn , where Dn := (ôf,kdJ )I.k	and	 S •	-	V 

o	
V

	

if 
III^j	

V	 V 

din	 ±1)

	1	<  

?i71 , -	 V 

-Since Y' is piecewise Holder continuous, we conclude IIZn EDn II	0. Consequently, if 
' >O is prescribed, then there exists a number no such that ii n0 implies IIXnEDnI1 

•<. r'JIB iI	and 110 n jj < e'. 
V V	 V 

1.4.4. The method (1.8) an be treated analogously.Let us remark only that Mn 2 has 
to be replacVed by 

(VV1V J1(n) LX (t (n)) 61k)	,	
V	

V 

dl	k.j=O	V 

where the norm of the latter term tends to 0 as j	oc. The verification of (i), (ii), 
(ii)' and (iv) (see Theorems 1.3 and 1.4) for the method (1.9) is also similar to the 
preceding proof. To sh6w (I)', we consider A := ci — dSr — T and the corresponding	

V V 

V 

quadrature method for A. If J), denotes the corresponding approximate operator, 
then (A)1, = A. := WnAnWn. Thus (i)' follows from (i). It remains to show (iii)'.	 V 

For T and Si-, define Tn, Tn', S. and 5' by V 

V	 T1, = (k( tk(n) , t()) ( (?_ ± 1 )..	'(1 - 1)))n-1	 S 

•	Tn' = (k(tk	t"') (y 	_( 
_) — (T)))k.==O'	

V - 

(.fj .+_1 \	If.- 1\ - \ni 
Sfl =	• (fl) —	V	) — l\	

) 
6k.j)' V 

/1	1	1 /1+ 1 \	/i\\\	 -:	 V 

V	
V 

•	 —	11, k fl I — ' kfl,),'V)k.j=o 
where 17(1,0') — i,(n)) := 0 and 3 1, ,j = 0 for k — I even and 3k ,, = 1 for k — j odd. 
Then Vt is easy to prove that IlTn — (Tn ' — WnTn 'Wn )il --0 (n — oo). Thus we 

15*	 •.	 -
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• obtain  
IIx T .- Tx	;{(XnTn" T'y) - lV(yT' - T'x) W}II-^O, 

U.S.	SnXn - {(X S ' - Sn'Xn)	W(xS' .Sn'Zn) W }il	0. 

Since Ta ', S'are the approximate operators corresponding to the method (1.8) and 
(iii) is fulfilled for (1.8), we get	.. 

— T,j - {L(yT - T) I im L - WL(xT - T) J im LW} II -4- 0, 
U.S. - Sx0. - {Ln(ySr. - Sri) im L - WnLn(ySr - SrZ) j imLW)II -- 0. 

- This completes the proof of. Theorem 1.2 I  

2.. Collocation methods for singular integral eq'uations on curves with corners. 
Piecewise constant trial functions 

2.1. Collocation methods on an angle 

Similarly to the, quadrature methods, one can treat other spline approximation 'S 

methods, i.e., collocation methOds and Galerkin-Petrov methods using splines as 
test or trial functions. For simplicity, we shall restrict our considerations to the 
collocation with piecewise constant trial functions In this section, we establish the 
stability of the model problem, more 'precisely, the, stability of the collocation 'for	- - 
singular integral equations with constant coefficients on an angle. Using these results 
in the next section, we extend our analysis to collocation for equations with con-
tinuous coefficients on general curves with corners.  

Let us retain the notation of Section 1.1. For the s-collodation method (0 < e < 1), 
we seek 'an approximate solution u,, = E kxk' E im L0 j(r) satisfying the 

kZ 
equations (Aug ) ( Tk) = /(rk,-'k E Z. The latter system can be vritteri as .Au = K,,/, - 
where A := KA .1 im L € 1(im La ). Here again, A can be considered to belong to 

(12) and these operators do not depend on n. Thus, the sequence {A} *(A € Z(imL)) 
is stable if and only if A 1 € .'(1)2 is invertible.  

Theorem 2.1: The following assertions are valid.'  
a) The operator A 1 € (l2) is Fredholm of index zero if and only if c ±	Q,vhere 

0 f^	i} and	() = fe (-O)(-I) sin (—(e - 

	

-	 -	 sin (—r(e - 
0 

	

f
+ e 1	- 1 do . In particular, Q = (-00, 0) for = 1/2. 

- b) The operator A is invertible in 12 if and only if c ± d	 u 0. Here 0 déno-



tes an at most countable subset of C \ Q whose accumulation points belong to Q 
-S c)I/w='iv, then c1i=ø. 

Proof: Assettions .b) and c). can be derived analogously to' the corresponding 
assertions of Theorem 1.1. In order to verify a), we shall prove A 1 E i2x2 and show 
det44 , to be independent of w. Thus it suffices to. establish a) for w.= n. In this 
case, A 1 becomes a discrete convolution operator and a)' will f011ow easily. 

'S 

•	
-	 -S
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•	'For the sake of brevity, we shall restrict ourselves to the case e = 1/2. Then 

A = ci + d (1	dt)	. '	 '	 (2.1) 
k,jEZ 

If t1 (j E Z, 0 <'6 <1) denotes the point (k + 6) for Ic 0 and —(Ic + 6) e t °' for 
'k<O,then  

1/2  
-i r z( 1 (t)	1 r I ' 1	•.	, 1	1 d	1	if	 2 2 

- ''r! 
T -	 = jlJ ltö - t' 

+ 1i1_ô - TkW1 6 1 e'°' if j <'0. 

Let usset  

Ai o =Ic_1 cot (,-r (i_ôdli+d(1	
1	At(8)) 

 2	 'u tj - rk	 k,JEZ 

1 if	0,  
—ei l ifj<0  

and consider the operator-valued function 6	A(6) := A 1 6. + A 1 6 defined-Oil 
[0,1/]. The proof of-Theorem 1.1 shows A(6) € S{2>2	f(/2). Moreover, the obvious 
estimates  

t10 —Tk' - t6	
- 6!	1 Ic12	

k, , k  Z,
Ij 

	

—Tk' 
+ (16 tk'	

0,	k  Z,  
46

imply the continuity of the function 6	A(6).The equations (2.1) and (2.2) yield' - 
1/2	•	'	 1/2  

A1 
= f {A 1 5 + A 1 ' 6 } dô Ei2X2 ,	c4A	f {C-4A, + cA, l -61 do. 

By (1.6) we *conclude  

4A,(1 ,12 ) ,  

	

/{c ± d(2v (A) - 1)	, 0  
I ' ' ' •'	I if r =e12,0<A<1'0<1u^1, 

0 , {c d(2e 
-

(A) 
-	- •'	 ' '	 '	 '	_ii_w)(+Liog_!_) 

e	2 2'	1-

{c + d(- 1u + (1 - u))}	—d(—i)	1	i 
=	 "sin(( +	log1 - 

/Z)) 

e	2 2'T	l— 

	

Id(_i) d('—,u

01 -	
IL

	+ (1 - IL))} 

-	
sin (

	
+	log -
	,	 - • 

ift=1,0	1. 

Thus det C/LA, is independent of co. For co = ,A 1 takes the form A 1 = ci + ,(/k—j)k.jEZ, 
where Yj denotes the j-th Fourier, coefficient of the function /(e' 2") := '2()) - 1, 
0<2 <-1. This convolution operator is a Fredhoim operator-with index 0 if, and
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only if c + df(t) + 0 for 
all 

-t E T, i.e., if c + d 
Q. This completes the proof 

of the theorem I	 C - d 

•	2.2. Collocation on curves with corners 

Let us retain the notation introduced in Sections 1.2-1.3. The r-collocation method -	 n-I 
determins an approximate solution u.	E k7k1" E im L. L2(T) by solving 
the equations  

•	-	

-

 

(A U.) (Tk)	f(Tk),	k = 0, ...,n - .	 (2.3) 

This syjstein can be written as Au = Kcf, where A := K'A Jim L, €°(ith La). 
If we fix -r € I', then the model prblem of the s-collocation for the operator A ,. € 
.Y'(L2(r)) is the s-collocation for A' E 1(L2(r,)) (cf. Section 12) described in See-
tion 2.1. The matrix of the corresponding system win be denoted by A 1 '. By the 
proof of Theoren-i 2.1 we get A 1 ' € 212x2 

• -Theorem 2.2: The following assertions are valid. 
a) The s-collocation (0 < e < 1)/or the operator A is stable if and only if the operators 

'A E.(/2(r)) and A 1 ' € 2'(/2) (t € I') are invertible.,	 S 

b) If the collocation method is stable and / is Riemann integrable, then the system 
(2.3) is uniquely solvable for n large enough and the approximate solutions u, converge 
to u = A'f as n —* oo.	' 

Combining Theorems 2.1 and 2.2 we obtain necessary and sufficient conditions for the sta-
bility of the collocation method. ,	-	 - 

Proof: It suffices to show that the assumptions of Theorem 1.3 are fulfilled. The 
validity- of (i) and (ii) can be derived analogously to' Subsection 1.4.1. Now let us 
verify property (iii) of Theorem 1.3. Without loss of generality, we supose y o y to 
be continuously differentiable and obtain	 S	 - 

•	 - A ny,, - L(yA - Ay) Jim L 

S	' = K'7LK'A I im L - K CALK X I im L - L(yA - Ay) im L	- 
S	 •	 = Kn CA(! - Kn) x I im L + , (K e - L),( 7A - A) im L.  

'Since XA - AX: L2(f') -*C(I') is compact and (Kc - L,,): C(f) -. L2(P) converges 
strongly toO, wegetII(K' - L)(xA - A) I imLn JJ —0. By virtueofKeA(I - Kne)X 
im L = K,,cbLKeS1.(I - K. e ) . X I im L, it remains to show IIK n cSr(I - K) 
im LnII 0 (compare [21]). The latter relation is an immediate consequence of 

KnSr(I - Kc) z I im L. 
= (-i-f 

x(v) I	7,"('r) dv)) 

	

711	T 

-' - and of the obvious estimate 

1	1	1 r	(-	 1	•	 1	 5 

I X' / -	r	\ i."	 -	 S 

-- 
i	 (r) dv - ̂ C -	--.	S 

Tt J	,	- k1"1 
•	 -	

• n Ik-- . + -1  
I'	 - 

Thus assumption (iii) is satisfied.	 'S
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N N o%i, we consider property (iv) of Theorem 1.3 'retaining the notation of 8', T',	-' 
and v introduced in Subsection 1.43 Repeating the argumentation from this sub-
section we get' the validity of (iv) for A = T, A = KtT I im L and 'for A = c, 
A. = K,,'c I im L,,. Therefore, we can assume A = Sr and A. K,,'Sr im L,,. 
In this case, A 1 ' takes the form	 - 

•	Al':=	r	
1	' dy(s)  

ri J v(s) - v(k ,+ e)  
-• '	'	\.	j	 kjEZ  

By  
(j+1)/n  

/v(s) - 
v(k+ dy(s) f v(s) - (

k	
dy(s) 

(j+1)In  
V	 "S	 -'	 '	'	 d ip •	 .  

-	I	 -s-- (y(s)) 

k+	

,	,	
, _ jV (1)	 V 

- 	

' 1e\	/ -	'	) -	) X7	 : 
-	- J	d (s	 (r —	 V(fl)(t) dl 

poy(s)	°'k	- )	 V 

jin	 '	 V	 r 
and  

yn(Kn'S im L,,) Zn = Zn x,(t) dl)	' 
071 f V(t).;— V(Tk(n) ) 

Z E (K eS' im L,,) 5 Zn5	ZnEAlXnE 

we obtain Zn 5((Kn'Sr I im L,. )E - AI') 7,,E = Xn 5(KnT' I im L. )E Z,,c. Since assertin 
(iv) is true for the case A replaced by the compact operator T' and A 1 ' replaced 
by °r the last expression becómessmaller than any prescribed e'> 0. This com-
plete the proof of the theorem I  
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