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,H. WID0M')  

Dedicated to S. G. Mikhlin on the occasion of his 80th birthday	- 

• Tm Jahre 1920 bewies G. Szego ein grundlegendes Resultat uber die asymptotische Verteilung 
der 'Eigenwerte selbstadjungierter Toeplitzscher Matrizen TX). Ein analoges Resultat gilt Mr 
die singularen Werte, und zwar auch, falls T5 (/)'nicht notwendig selbstadjungiert ist. In dieser 
Arbeit geben wir eine Präzisierung desletzteren Resultats an (eine Formel ,,zweiter. Ordnung") 
und bestimmen auBerdem die ,,Grenzmenge" der singulären Verte, beides unter geeigneten 
Voraussetzungen an die. Fuiiktion /.	 .	 . 
B 1920 roy G. S.ego goaaii ocHOBHol pe3y.nbTaT 0 aduMnTo'rn qecicoM pacnpeeJ1eilIIu 
c06c'rBdnHijx 'inceji caMoconpanellHblx MaTpu 'l'ënrniia T(/). AI4aJlorll'IHblft pe3yjlbTaT 

Ch1HFJiHIIbIX qcei jtaHce n c.nylaeHor)a T5 (1) iie o6n3a're3lbHo canoco-
npaenHa. B 3TOtI pa60Te MU npecTansineM yoieiie nocJ1eHero-peayJ1bTaTa (opeyiiy. 

•	,,BToporo nopHiHa") H onpeeiae ,,npeJeJ1hHOe MH0+{eCTB0" C11HryJIHpHE1X 'iuceu, It TO 11 
ipyroe flpii fl0XOIMEUHX J0flOJ1HhfT1bHhIX YCJIOBIIRX (JIfl YIIKUHhi I. 

In 1920 G. Szego proved the basic result concerning the asymptotic distribution of the eigen: 
values of selfadjoint Toeplitz matrices T(/). An analogous result holds for the singular values 
in case T5(/) is not'necessarily selfadjoint: In this paper we present_a refinement of this (a 
second-order result) and also detimine the limiting set of the singular values, both under appro-

•	priate hypotheses in the function /.	"	 S	 •	 • S	 - 

Introduction. A classical theorem of Szego states that if .:. are the 
eigcnvalues of the Toeplitz matrix 7'5 (/) = (fi_j)7.o associated with a bounded real-
valued function f on the unit circle, then for anycontinuous (indeedRiemann inte-

•	grable) function F one has	- - 
2t 

--	 1" 

	

urn , 'F(2k ) = --- J F(f(0)) do. •	 •	.	 (1) 
rz—	k=i •	• 

Anahalogbus result holds for the singular values s( " 	 of not ncessarily 
selfadjoint Toeplitz matrices. (Recall that the- singular values of a matrix 'A are the• 
eigenvalues of (A*A)hIl). The analogue of (fl is that •	- 

-	'	 •	a	 •	 •	•	 -	-' 

	

r	 - 

	

• • urn ,' F(sk') = -- I F(f(0 )I) do.' •	'	-	'	- •	•.	(2) 
n-+ook=1

	

—n	•	/	-	 -	'	 • 

As with (1) nowadays,'(2) can be proved in different ways. In [9] PABTER estblished 
it for bounded f satisfying a certath 'subsidiary condition. The result for general 

, bounded f can be deduced easily from a theorem of Avm'jzi [1] on the.traceof a, 
product of Toeplita matrices.'  

2) Research supported by a grant from the National Science Foundation.  
-	.•	\
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The first jurpose of this paper is to prove a refinement of (2) under appropriate 
conditions on F and /.' If we set M = ess sup/, m = dist (0, Co R(/)), where R(f) 
denotes the essential range of f and. "co" denotes convex hull, then it is easy to see 
that each singular , value belongs to the interval [m, 'M]. (See Lemma 1.2 below.) 
Thus the function F need only be defined on this interval for (2) to make sense. The 
refinement is a little simpler to state in terms of the squares of the singular values 

= (k")2 rather than the singular values themselves. We shall assume about I. that it belongs to the algebra K of all functions on the circle such that 

L- 00	
oo 1/2 

EL	and	 IHfiU : =E kIJIk I 2	
< )	 - 

- The point about K, observed in [8], is that if / E K, then the Hankel matrices H(/) 
and H(/) both represent Hubert-Schmidt operators on 12 of the nonnegative integers. 
Here	 . 

H(/) = '(3) 
and 7 is defined by 7(0) = /(-0). Given' our function / we set M = ess sup /, and we. 
denote by T(/) the infinite Toeplitz matrix (fi-j)i,j01 thought of also as an opera-
tor on 12 (of the ronnegative integers).	-	S 

Theorem I: Assume / E K and U E C3([m2 , M2 ]). Then 

lim	G(tk) -. 	f(I/(o)) dO  
n-	k=1 

= tr [o(T(j) T(/)) ± G(T(/) T(j))	2T(G(I/12))1.	.	 (4) 

Here is an explanation of the ingredients of the zight side of (4). Since T(j) = 
the operators T(/) T(/) and -T(/) T(j) are selfadjoint, and both their spectra will be 
shown to be contained in the interval [m2 , M2]. (Their spectra can differ only when 
m> 0 and then the only possible difference is that 0 may belong to one but not the 
other.) The operators G(T(j) .T(/)) and U(T(/) T(j)) are then defined using the spectral 
theorem. It will transpire that the operator in brackets is trace class, and "tr" denotes 
its trace. As the prof will show, the condition U E G can be.relaxed somewhat. The 
form of the right side of (4) is a little unfortunate and it would be nice to have a more 
concrete expresion for it. Such an expression exists if / is real-valued but an extension 
to general / eludes us.	 ..	 - 

Formula (4) with GO,)-='F0.112) is clearly a refinement of (2). An analogous refine-
ment of (1) was obtained in [14]. (Actually that paper was about, the real line ana-
logue of the. Toeplitz matrices, the Wiener-Hopf operators. The two cases are quite 
similar.) The proof of Theorem I uses the method, and in fact one of the results, of 
[14]. For the little bit of the theory of trace class, (=r nuclear) and Hilbert-Schmidt 
operators that will be needed we refer the reader to [6]. 

Second will be the determination of the "limiting set" of the singular values. This 
is a set A with the following properties: 

(i) If E, A, then there exists a sequence {k} such that urn 4t) = 2. 
noo 

•	(ii) If for some sequences {km } and in (with n1 < n2 < ...) we have lim s"' = 2, 
then 2€A.	S	 -	

S 

Of course there is no a priori reason why such a limiting set should exist. Never-
theless we shall show that for a large class of f's it does exist and that in fact 

..	-	A = a((T(j) T(/))1,2) ' U o((T(/) T(j))1 1 2).	-	—	. -. (5) 
I 

'-S
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Here "a" denotes "spectrum". This set A will be seen to have property (i) for all 
/ E Loo but property (ii) requires more. We shall describe two conditions, either of 

•	which suffices. The first is that / belongs to the algebra PC, the closure in L of the 
algebra of piecewise continuous functions. Equivalently / has limits from left and 

•	right at each point. The other condition involves another subalgebra of L denoted 
by QC (for "quasicontinuous"). A.function iv  L belongs to QC if and only if it. 

•	has the representation w = u + Cv where u and v are continuous and Cv denotes the 
conjugate function of v, defined in terms of Fourier coefficients by Cv,, = - i (sgn k) . 

•	Alternatively w E QC if and only if the two Hankel operators 11(w) and H(t) 
cod'pact . . (These and other facts about QC can be found in [11].) 

• :	Theorem II: If either / E PC or / is the product of a bounded real-valued function 
and a function in QC, then the limiting set A exists and is given by (5).	- 

The two sufficient conditions are overlapping but neither contains the other, as 
can be shOwn by examples. Theassumption tE L is not sufficient for the conclusion 
of the theorem.to hold. It is a question of the applicability of the so-called "projection 
method" or "finite section method" in this context. .(See Part 4 of the last section.) 

Thanks are due to Don Samson for some very helpful remarks on questions that 

arose in the course Of this work.	'	

5	
5 

Proof of Theorem I. As is usual we denote by IIA11 1 , JJA1121 hAil the trace norm, Hilbert 
Schmidt norm, and operator normaof A, respectively. We write P. for the projec-

'- tion operator, defined by	 '	S 

S .	 P(x0, x1, ••)(= (x0 , .. ., x,_, 0,  
from 12 to the subspace of 12 on which,-T, maybe thought of as acting. We identify 
T(f) . with. PT(f) P. in the obvious way. We define the operator Q,, on 12 by	- 

Q. (X0, x1 , ..) = (x_ 1 , ..., x0 , 0, ...).	 S


' Finally we recall the definition (3) and the notation 7(0) =.f(-0). 

-	Lemma 1.-i: For any f, g E L we have	 S 

T(fg) - T(J)T(g) = H(/) H(),	:	 (6) 

T(/g) - T(/) T(g) = PH(/) H() P + QH(7) !i(g) Q,.	 (7) 

Proof: Routine computation: (Or see [2, Props. 2.7 and 3.6].) I	-	 ' S 

Next we p 'rove the assertions made in the introduction concerning the location of 
the singular values of T(f) and the spectra of T(f) T(/) and T(f) T(J). The numbers m 
and M are as before.	

-	S 

•

	

	Lemma 1.2: The spectra of the operators (T 0 (j) T(f))1I2 and (T(j)T(f))1I2lie in the

interval [?n, M']. 

Proof: Consider the first operator. (The second is similar.) If x = (x0 , . .. 
.0, ...) ia vector of norm 1, then	•	 S	

S 

	

•	11'	 2 
(Tfl (J) T(/) x, x) = hlT(f) x1i2--

J 
1/(0)1 2 	el" dO 

k=O 

which is clearly	M 2 . On the other hand	 S	 • 

llT (/) xli	I(Tn(f) x,,x)I = I(4/) x,	=• I(T(I) x, x)I	•	• 

-	/ 
•	.	/	S
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since P8x = x, and-this equls	-	 -	 - 
---1  r	n–i	 -.	 - 

— 11(0)	' Xk e11'
- 2 

0 (10 	 (8) 2	k=O	 - 

For soe complex number a of absolute value 1-we have Re c/(0) rn a.e. and from 
this it follows that () is ^ in. We have shown (T. (f) T. (f) x, x) c: [70, M 2} for all x 
with I x II = 1 and this implies that (T(/) T(/))	[1112 , M 2], whence the first asser-
tion of the lemma I	-	- -	- -	-	-	-	- - . .	Passing to the'proof of, the theoiem we consider first the special caseof the func-
tion 0(2) = e' t- where / is a real parameter. For any operators A and B we have - 
d(e e_ i8B)/dt = ie14 (A - B) e8B. Integrating with respect to s from 0 to t and 
right-multiplying by e ilP gives	 -	- 

e1t — eUB = i f e'(A — B) e 1t8 ds	 (9) 

We-apply this first; with A = A = T(j)'T(/), B = B	T (1/I 2 ) and-apply (7j ,to 
obtain, with these A and B,	 -	 -	.	-	-	- 

	

— e' = —i f ei31n[PH(j) H (1) -P + QH(7) 11(1) Q]	ds. - - 

/	-	

°
	 (10) : 

We also apply (9) with A = T(jjT(f), B = T (I/1 2) and identity -. (6) to obtain, with. 
- these A and B, 

eitA - e'18 = -if e'-4 H(/) H(7) e1(1--'MB ds	 (11) 

- The right side of (10) consists of two parts, one involving F,, and one involving 
Q,,. The one involving P. is  

-if e' 4 P,,H(/) 11 (1) F,, eut8)R ds	 (12) 

Now this ajcproac-hes the right side of (11), formally, as n— oo. Here is why it actu-
ally c5nverges to it in trace norm. First, it is easy to seethat- &3 -4 nP,, converges -strongly - 

- to ei8i, uniformly in s. Second, and this is crucial,  

-	JH(f)12 2 =	I!+I	E k Ilk 12 < co.	 .	(13) - 

• -

	

	so all the Hankel operators appearing in (10) are Hilbert-Schmidt. We use the general 

fact that if C. - C. strongly and 11 is Hubert-Schmidt, then C,,H - CU in Hilbèrt-- -	Schmidt norm (this is tiivial if H has finite rank and follows in general by the density •	of the finite rank opertors in theHilbert-Schmidt operators) to deduce that e 1 '"P,, 11(j) 

eH(J) in Hilbert-Schmidt norm. Similarly 11(7) P,,	H(7) ei(8)B in Hil-

	

bert-Schmidt norm and so the integrand in (12) converges in trace norm to the integrand	- -' 
in (11), uniformly in$. We deduce that the trace of (12) has limit tr [e itT(f )T(f) - ettT(IfI')]. 

Next we use the identity Q,,T,,(f) Q. = T,,(7) and thefact that Q. equals P. times_ 
a commuting unitary operator to deduce, by the same argument, that the trace of the - - 
part of (10) involvingQ,, converges as n -- oto tr [OT(7)T(j) e1tT(JI9]The transpose 

- of the matrix in brackets here is the matrix e'(f) T(!) — e1tT(1f1') and so the two hive the 
/ - S
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same trace. We have therefore shown that 

limtr [e ttTn (i )T(f) - e Ta(fI)] = tr [eUT(J)T(i) .+ eU 11T() - 2eu tT(1fI)]. (14) 

Next we extend this from the exponential function to any function 0 E C3([m2 , M9). 
We extend G to a C3 function with conipact support on all of (—oo, oo) and apply the 
Fourier inversion formula 

0(2.) = f O(t)e l dl	where	Ot) 
= .- f G(2.)e	d)	-


The operator version of this gives  

G(T(j) T(/)) - 0(1 1 (I11 2 )) = fO(t) [eit (f)T,,(f) 	e TntIfI] dl.	(15) 

Now it follows from (10) that the operator in bracketshere has trace norm 0 (1 1 1) as 
t -^ ± 00 . The reason is that since A and B. are selfadjöinit the expqnential factors 
have operator norm 1 and so (13) shows the operator in brackets in (10) has trace 
norm at most 2 11/111 2; Moreover, tO(t) is bounded since (3-belongs to C3 and has 
compact support. It follows that we can take urn of the trace under the. integral sign 

in 15), and then apply (14) and the Fourier inversion formula once again, to obtain - 

-	lim tr [G(T(j) T(/)) - G(T(l/I2))]	
5 

n-,-oo -.	 - 

. 
= tr0(T(j) T(/)) ± 0(T(1) T(j)) _20(T(I1I2))]. 

• What we are interested in, of course, is not -thi but	 S


hmtr [G(T(j) T(/) - T(G(I1J 2 ))] - 

So it remains to evaluate Lim tr[G(T(I/I )) - T(G(111 2))] But it is precisely limits of 

this sort (for the continuous, i.e., Wiener-Hopf, analogue) that were obtained in [14], 
by methods very much like those used above. The result, not surprisingly, is that the 

	

limit is equal to 2 tr 1013 (1/12)) - T(G(I/12))]. The requirement on 0 is that t26 (t) E L.	- - 
To see that this holds note that since 0" E L2 we-have t6(l) € L, and we need only 
apply Schwarz's. inequality. Putting these things together shows that the proof of 
Theorem I is complete I	- 

• Proof of Theorem, H. Here also we work with the quares 1k 1 " of the singular values, 
and set.  

= (Tj T(f)) u (T(/) T(j)) - -	-	 -	
- 

• so that J = A 2 . A number I is not equal to any Q" 1 (k = 1, ...,n) if.and only if the 
•	operator  

T,,(J) T(/) - LI,,	 -	S -	 (16) 

- (where I,, is the identity operator on the range of P,,) is invertible. In fact	- - 

min'14 (n) - = IRT,, h TX) - hln)1111.	
5	

5 

• - A sequence of operators {A,,} is called "niformly invertible" if the operators are 
- invertible for sufficiently large n and the norms IA,,'II are bounded asn -* 00. By
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the above remarks we see that the properties (i) and (ii) required of A' can be re-
phrased in this terminology as follows: 

(i') If t-E A, then no subsequence of (16) is uniformly invertible. 
(ii') If t 4 A, then the sequence (16) is uniformly invertible. 

Lemma 11.1: For any / E L. the setA has property (i'). 
Proof: Write A n = T,,(j) T,,(/) - ti,,, A = 'T(J) T(/) - ti. If for any sequence of 

n's tending to infinitywe had II A ,,- ' Il	i, then we would have IA,,P,,xII	u 1 IIP,,xII 
for all x € 12 and so also 1A4 ,u IIx I . Since A is selfadjoint, this implies its inverti-. 
bility. Similarly; since ,th&tk( ñ ) are also the eigenvalues of T,,(/) T,,(/), we find that 
T(/) T(/) - II is invertible also, contradicting the assumption £ € A I 

Suppose A. is a (noncommutative) polynomial in the Toeplitz matrices T,,(/) 
(i= l,...,r), 

A. _—p(T,,(11), ..., T,,(f)).	 -	 (17) 
One says that the "projection method" or . "finite section mcthod" applies to this 
sequence if the A. are' uniformly invertible. (The reason for the terminology is that 
then the inverse of the strong limit of A. is equal to the strong limit of A,,'.) A 
necessary condition for this is that the operators  

A = p(T(/1 ).., T(Ir)),	A	p (T('li), ..., 
are both invertible. The a'rgument for this is very similar to the proof of Lemma 11.1 
which-is equivalent to thisassertion in case A. is given by (16). (Note that the com- 
plex conjugates of the matrix entries of A in th

,
is case are equal to the matrix entries 

of T(/) T(j) - II so the operators are simultaneously invertible or not.) 
Property (ii') is of course just the assertion that the finite section method applies, 

to (16) when t q A. Our proof of this under the stated hypotheses on / relies on a 
theorem of SILBERMANN [12] (or [2, Th. 3.16]) which gives a necessary and sufficient 
condition for the uniform invertibility of sequences (A,,) including all those given by 
(17). Here is the result.	-	-	 - - 

For a sequence of operators A. acting in the range of P. define A,, = 
where Q. is as before. Define 4 to be the set of all sequences (A,,) for which there are 
operators A and A -on 12 such that  

A,,P,,-->A,	A,,*P,,	A* , ., A,,P,- * A,	A,,*F,,A* 
strongly; This is a Banach algebra under the norm {A,,)I = sup,, IIA,,II and it con- 
tains all sequences {T,,(f)} with / € L. Inside 4 there is the closed ideal 7 of'all 
sequences P,,KP,, ± Q,,LQ,, + C,, with K and L compact operators on 12 and II C,,II -- O 

Theorem (Silbermann): A sequence {A,,} € it is uniformly invertible if and only if 
the operators A and A - are 'invertible and the image o/ (A,,) under the quotient mapping 

•	-- 417 is invertible. 
In our case of the sequence (16) the operators A and A are invertible. This is pre-

cisely the assumption t q A. What we must show then can be restated a({T,,(f) T,,(f)}) 
c A where "a" denotes the spectrum of the image of the sequence {T,2 (j) T,,(f)} in 

/7. 
We consider first the (easier) case where f satisfies the second condition, f = gh 

where g is real-valued and h € QC. Since the Hankel operators 11(h) and H(h) are both 
compact, it follows from identity (6) that for any q € L 

{T,,(qh) —T() T,,(h)} € 7,	{T,,(qh) - T,,(h) T,,()}€	:	(18)'
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and it follows easily from this that 

T,(1) T(1) - T(g)2 T0(I h'1 2)} E 7 .	 .	 (19) 
Now h E1 QQ implies hi € QC. (Being a closed subalgebraof L closed under complex 
conjugafion QC is a C*algebra and so by the Gelfand-Naimark theorem [4, Th. 4.291 

'F(h) E QC for any continuous function F.) It follows therefore from (18) and (19). 
that {T(/) T(I)	T(g ihD 2}€ 7 and so a((T(/) T(/)}) = ci(T(g ihj)2}). 

Now in analogy with what we have just done, using identity (10) rather'than (6), 
we find that a0 (T(1) T(/)) = a0 (T(g hJ)') = ae(T(g ih1)) 2 where " 1e " denotes "essential' 
spectrum'', the spectrum of the image-of the operator under the quotient map from 
the algebra of bounded operators to its 'quotient by the ideal of compact operators. 

- Since 9 IhI is real-valued, we have a(T(g h i)) = [ess inf g l hl, ess sup 9 h i] by a theorem 
of Hartman and Wintner (see [4, Th. 7.20) or [2, Sec. 2.12]). This is also equal to 

• ae(T(g h i)) since for selfadjoint operators the essential' spectrum is obtained from 
the spectrum by removing the isolated eigenvalues of finite multiplicity, and the 
spectrum has no such points in this case. Thus, writing  = [ess infg JhJ, ess sup g JhJJ, 
we find that	-	 ' 

LI	(Tj T(/)) :) J 2	 "- 	(20) 
But the spectra of 'all T(g hi) lie in the interval J, so the spectra of,all T(g hJ)2 lie 
in J2 and so our assumption t 4 LI and (20) imply that the operators T(g hJ)2 - tI, 
are uniformly invertible. (We use here, of course, the selfadjointness of T(g hi).) 
And this in turn implies I J a(T(g ihI)2)) = r({T(f) T(I)}) as desired. 

Theprôof of sufficiency of the first condition on / rlies on a theorem of G0I1BERO 
and K.nupN1 [7] which determines the essential spectrum of any oerator from the 
algebra generated by all T(/) with / € PC. Given such an / one defines a function /* 
on the product of the circle with [0, 11 by /*(0, t) = (1 -,u) /(0—) + u/(0 +) . The 
theorem of Gohberg and Kruphik is that for any /, ... /. E PC and any (no'ncommtI-
tative) polynomial p one has  

(le(p(T(/i), .:., T(f))) = range p(/1 * , ..., 

To apply this in our situation we shall use d lemma on the representation of so-called 
"locally sectorial" functions. Given a function / we set'  

m0 = inf lim dist (0, co [1(0 - (5,0 + 6)]). 

Here 1(0 - & 0 + 6) denotes the range of the restriction of / to the interval (0 - 6, 
0'+ 6). Clearly in 1	M.  

Lemma 11.2: Assume m0 >0. Then for any e >.0 we can write / = gh where 9 is 
continuous and satisfies Jg J ^ 1 everywhere and h satisfies Re h m0 - s everywhere. 

Proof For any locally sectorial function / there exists a continuous function 99 of 
absolute value 1 such that Re ç/_> 0 everywhere [5]. Since replacing / by q./ does not 
change the value of n0 we may assume to begin with.that Re f> 0. We shall then 
define log / as the principal value of the logarithm. It follows from our assumption, 
and the compactness of the circle, that we can find a finite open covering {U 1 }, of 
the circle, and for each i a constant aj of absolute value 1, such that Re //c 1 = rn0 - e 
on U. Let E be the image of {z: Re z ^ m0 - e} under the (principal.value) logarithm 
function. Then we have log / - log aj E k on U'1 for some determinations of log a. 
Let {} be a. partition of unity, subordinate to the covering {U 1 }, consisting of non-
negative continuous functions. Since E is convex (a fact which is easily checked), we
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have log / - ' (log	E everywhere. The dsired functions g and hare 'given

by, q=exp{' (log ),,},h//g I 

To complete the proof of Theorem II in this case we shall show , that / E PC implis - 
E ae(T(J) T(J)),	 .,	 (22) 

whiéh will give the result. (This is actually, a special case of Theorem 7.33(d) in th 
forthcoming book [3] of BOTTCIIER and SrLEERMANN. We present our alternative 
proof here since it is fairly easy, given the ideas already introduced.) We may assume 

• that / is, say, right continuous. It follows from the result of Gohberg and Krupnik 
that the set on the right in (22) is precisely the interval [rn9 2 , M 2] where m0 is as in the 

- - statement of the lemma and M = ess sup 1/1 a6 before. The reason is that, as 
easily be shown, the range of /* is compact and connected. Of course, if t q [0, M21, 
then the operators (16) are trivially uniformly invertible, and so it suffices to show 
that 0 t rn02 implies  

•	.	..	t q a((T.(1-)-T.(1))).	.-	 -	.	(23)

Letg and h be as in the statement of the lemma. Since g is continuous, we have 

•	{ Tn (/) T(/) ._ 71n(1 g 1 2 ) T(h). T(h)YE , 7.	 - 
SinceRe h - m - r the operators T(h) and T()reinvertible for all 71and.satisfy 

T(h)- 1 11 ;S (?no	rY', '.	pT(i'ii ;5 (m 
•	Moreover it follows from (6) with], y replaced by JgJ2, jg 2 that the image of {'l1(igi2)} 

in 417 is inve'rtibleand the norm of the inverse is at most 1. It follows that the image - 
of {T(/) T(/)} is invertible and the norm of the inverse is at most (m0 - c)-2. Letting 
e - 0 we see that the norm of this inverse is at most 02. It follows from this (since 
the spectrum of an inverse is the inverse of -the spectrum) thatt.E a({Tn(/) T(/)}) 
implies Itl > m02 and so 0 -t <m 02 implies (23) as desired' I 
Remarks and conjectures. 1. The function 0 in Theorem I is given-in terms of the 
function F in relation. (2) by 0(A)= F I2 ). For 0 to belong to C 3 .it is not enough that 
P belongs to C3 but we also must have F'(0) = F"(0) = P ... (0) 0. We conjecture 
that F E C3 , F'(0) =0 is enough to imply the conclusion of Theorem I and that 
F'(0) = 0 is necessary, at least if all we assume about / is that it belongs to' K. How-
ever, ve.conjecture that even this is unnecessary if we assume that / is sufficiently 
nice. The question is interesting because consideration of even the simplest quantity 
E s' corresponds to the case F(2) = A. Se also the next remark. 

2. Suppose / is real-valued. Then T(j) T(/) = T(/) T(J) = I7'(/)1 2 and the right side 
of'(4) can be written '	 .	 .	 •	- 

2'tr[Fi(T(/)) --- T(F(/))J ,	.	.	"	' .	 ,	(24) 
where F(2) = R(12.p)5= d2) . Traces such as these have explicit integral representa-' 

- tions if F1 is smooth enough. (The Wiener-Hopf analogue' is in [141.) Unfortunately 
F1 (2) = J2 I does 'not meet the smoothness criterion but we conjecture that if f . is 
sufficiently well-behaved then the operator in (24) istrace class and tile formula 
alluded to holds. It would be very interesting to find an analogue of the formula for 

• the traces'that appear in (4) in the nonselfadjoint case, even under severe conditions 
on/ and O.  

• 3. In the,two cases in which Theorem II was proved the set zl was shown to contain 
the essential spectrum of T(/) T(/), which was an interval. The set A, though, can be - 
larger than this set'(although not by more than a discrete subset of its complement). 
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For assume that f is continuous and has constant absolute value, say 1. Then the 
essential specVrum in question consists of just the point 1. We claim; however; that zI 
is infinite unless /(0) is 'a rational function of e' 9 . For we have in this case T(/) T(f) 
= 1 - H(1) .H(1)* and so G(T(/) T(/)) is infinite unless a(H(f) H(f)*) is finite. Sirce H(f) 
is compact, this can occur only if it has finite rank. By a theorem of Kronecker [10, 

	

Ch. 1, Prob. 27] a necessary and .sufficient condition for this is that X Ik el" is a	- - 

•	rational function of e'°. Similarly a(T(j) T(/)) is finite (if and) only if	fk elkO is a 
rational function of e'°and our claim is established.	 '	k=—co 

4. So *me assumption beyond / € L is necessary for the conclusion of Theorem II to 
hold; In fact examples were found by ThE1L [13] of bounded functions / for which 
T(/) and T(7) are both invertible but {T(/)} is not uniformly invertible. For such an 
we have 0 4 but property (ii') is violated for t =0. 
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