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On the Smgular Values of Toeplitz Matrices

-H. Wmoul) ) ' " ‘ ' I

Dedzcated to S. G Mikhlin on the occasion of his 80th bzrthday -

Im Jahre 1920 bewics G. Szego ein grundlegendes Resultat iiber die asymptotische Verteilung
der ‘Eigenwerte selbstadjungierter Toeplitzscher Matrizen 7',(f). Ein analoges Resultat gilt fiir
die singuliren Werte, und zwar auch, falls 7',(f) nicht notwendig selbstadjungiert ist. In dieser
-Arbeit geben wir eine Prizisierung desletzteren Resultats an (eine Formel ,,zweiter Ordnung*‘)-
und bestimmen auBerdem die ,,Grenzmenge* der singuliren Werte, beides unter geeigneten
Voraussetzungen an die. Funktion f.

B 1920 roay G.Szcgd MOKa3ad OCHOBHOH pe3yJNLTAT O ACHMIITOTAYECKOM pacnpcnc.ﬂe‘ulm
cOBCTBEHHLIX YHCEa €aMOCOTpsA:KeHHWX Marpuy Ténmuna T,(f). AuanormuHetit pe3yJbTaT
CTIpPAaBENANB “IJIH CUHLYJIAPHLIX YUCEN JAWke B cny4ae_Koria T,.(f) e o6a3aTeILHO CAMOCO-
npskenHasA. B aTolf paGoTe Mbl npeicTaBaAeM yTOUHEHHE nocnesiHero peay brara (popmymy
,»BTOPOro MOPHAKA®‘) M onpenessem ,,npefie/lbHoe MHOECTBO'" CHHIYJSPHBIX YUCEIl, i TO I
npyroe NpH MNOAXOAALMX JIOMOJHUTENbHBIX YCIOBUAX XA GynKumn f.

In 1920 G. Szegd proved the basic result concerning the asymptotlc dxstnbutlon of the eigen-

values of selfadjoint, Toeplitz. matrices T (/) An analogous result holds for the singular values
_in case T,{f) is not necessarily selfadjoint. In this paper we present_a refinement of. this (a

second-ordér result) and also detérmine the llmltlng set of the smgu]ar values both undér appro-
~prmte hypothescs in the function /.

Introductlon A clasélcal theorém of Szego states that if 2,0 > . .= g are the
eigenvalues of the Toeplitz matrix Ty(f) = (i,_, 12 assocnated w1t,h a bounded real-
valued furiction f on the unit circle, then for-any continuous (mdeed,\Rlemann inte-
grable) function ¥’ one has .

R

lim 3B = = f Fif0) do. - o w
n—o0 k=1 - - 2m , - -
An ahalogous result holds for the smgular values §,(" = ... =g, of hot n"écessarily
selfadjoint Toeplitz matrices. (Recall that the singular values of a.matrix ‘4 are the -
eigenvalues of (4*A)'/2). The analogue of (1) ;s that :

n—oo k=1

lim 3 Fs®) = 5= f F(vwn) S @

-—n -, -

- As with (1) nowadays (2) can be proved in different ways In [9] PARTER estabhshed
~ it for bounded f satisfying a certain subsidiary condition. The result for general
- bounded f can be deduced easﬂy from ‘a theorem of AVRAM [1] on the.trace of a.
product of Toeplitz matrices.’ ‘ 7

1) Research s11ppor§_ed by a grant from the National Science Foundation.
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The first purpose of this paper is to prove a refinement of (2) under appropriate

conditions on F and f. ' If we set M = ess sup f, m = dist (0, co R(j)), where R(f)

denotes the essential range of f and. “co” denotes convex hull, then it is easy to see
that each singular- value belongs to the interval [m, M]. (See Lemma 1.2 below.)
Thus the function ¥ need only be defined on this interval for (2) to make sense. The
refinement is a little simpler to state in terms of the squares of the singular values
4" = (8'™)? rather than the singular values themselves. We shall assume about f
that it belongs to the algebra K of all functions on the circle such that

et 1/2 .
.Kbn-mm,ww=tzmwﬂ < oo.

=—00

- The point about K, observed in [8], is that if f € K, then the Hankel matrices H(f) -

and H(f) both represent Hilbert-Schmidt operators on l, of the nonnegative integers.”

‘Here

. ﬂ(/) = (f:‘+g‘+1)i.i=o’.1,f.. : ' »(3)

.

and f is defined by f(6) = f(—6). Given our function fweset M = esssup |f|,and we

denote by T'(f) the infinite'Toeplitz’ma-trix (f;_i),-’,-zo,,

thought of also asan opera-
tor on /, (of the nonnegative integers). . -

. Theorem I: Assume f € K and G € C¥([m?, M?]). Then
. . . | " % .. L ‘ .
lim ZGWW—f—fGMWﬂM —
nooo | k=1 . 2n . .

Here is an explanation of the ingredients of the right side of (4). Since T(f) = T(f)*,
the operators T(f) T(f) and T'(f) T(f) are selfadjoint, and both their spectra will be
shown to be contained in the interval [m?, M 2]. (Their spectra can differ only when
‘m > 0 and then the only possible difference is that 0 may belong to one but not the

, .other.) The operators G(T(f) T'(f)) and G(T(f) T(f)) are then defined using the spectral

theorem. It will transpire that the operator in brackets is trace class, and “tr” denotes

“its trace. As the proof will show, the condition G € C3 can be.relaxed somewhat. The .

form of the right side' of (4) is a little unfortunate and it would be nice to have & more

concrete expression for it. Such an expression exists if f is real-valued but an extension

to general f eludes us. o . o .
Formula (4) with G(4) = F(212) is clearly a refinement of (2). An analogous refine-

ment of (1) was obtained in {14]. (Actually that paper was about, thé real line ana-

logue of the Toeplitz matrices, the Wiener-Hopf operators. The two cases are quite

similar.) The proof 'of Theorem I uses the method, and in' fact one of the results, of

[14]. For the little bit of the theory of trace class (= nuclear) and Hilbert-Schmidt
operators that will be needed we refer the reader to [6]. ‘

= w[6(T() 7)) + 6(T() 1) = 2r(Gar®)). @)

Second will be the determination of the “limiting set”” of the singular values. This-

is a set A with the following properties:

(i) If\)’! € A, then there exists a sequence {k,} such that lim s‘k”'" =
(ii) If for some éequencé {kn} and {n,} (with n, < n, < ...) we'have lim s{'™ = 7,

" then 2 € A. . : i >0

Of course there is no a priori reason why such a limiting set should exist. Never-
theless we shall show that for a large class of f’s it does exist and that in fact

* z

A = o{(TG) TOHW) u o ((T() T, | N e

(4
<

.
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Here “o” denotes"‘spectx‘uin”. This set A will be seen to have property (i) for all '
€ Lo but property (ii) requires more.. We shall describe two conditions, either of

. ‘which suffices. The first is that f belongs to the algebra PC, the closure in L, of the

algebra of piecewise continuous functions. Equlvalently f has limits from left and
right ‘at each point. The other condition involves another subalgebra of Lo, denoted
by QC (for ““‘quasicontinuous”). A function w € L belongs to QC if and only if it.
has the representation w = u + Cv where u and v are continuous and Cv denotes the

conjugate function of v,defined in terms of Fourier coefficients by C’vk I (sgn k) D

_Alternatively w € QC if and only if the two Hankel operators H(w) and H(w) are

‘compact. (These and other facts about QC can be found in [11].)

Theorem II: If either f € PC or f is the product of a bounded real- valued function

and a /unctzon in QC, then the limiting set A exists and is gwen by (5).

The two sufficient conditions are overla.ppmg but neither contains the other, as. =

< can be shown by examples. The assumption f € L is not sufficient for the conclusion

"+ of the theorem to hold. It isa question of the applicability of the so-called ‘projection

method” or “finite section method” in this context. (See Part 4 of the last section.)
Thanks are due to Don Sarason for some very helpful remarks on quesbxons that

-arose in the course of this work.

Proof of Theorem I. Asis usual we denote by ||A||,, HA[]z, l4]| the trace norm, Hilbert-
Schmidt norm, and operator norm§ of A, respectively. We write P for the projec-

“tion operator, defined by

4'

P(xoyxl:' )—-(1'0: .y T 17 » ): - L

from [, to the subspace of I, on which T (f) may.be thought of as actmg We identify
To(f).with P,T(f) P, in the obvious way. We define the operator @, on l, by

Qn(xo, Zy, . : ) _“ (xn—l) . A’ Zos 0) "-)-

hnally we recall the deﬁmtaon (3) and the nota.t10n 1(0) = f(— 0)

LemmeI 1: For any f, g € Lo we have " o L
- Tg) — T(Y Tig) = HY H@), 3 )
" Talfg) — Talf) Talg) = PoH(f) H(G) Pa + QuH(f) H(g) Qn o (D)
Proof: Routme computatlon (Or see [2, Props. 2.7 and 3.6].) -

Next we prove the assertions made in the introduction concerning the locatlon of

. the singular values of 7,(f) and the spectra of T(f) 7'(f) and T T(f). The numbersm

and M are as before .

Lemma 1.2: The spectra o/the operators (Ta(f) T 3 )1/2 and (T(/) /il /))‘/2 lie in the

Cinterval [m, M}. ¢

. Proof Consider the first operator. (The second is snmllar) If 2 = (%, ..., Tnoys
..) is.a vector of norm 1, then

(Tn(/) To(f) 2, z) = IT(f) tz - if 1702 do

n-—-1
I
k=0

" which is clearly = M2 On the other hand

T, ()=l = [(Tw(f) =, z)l —IP T(/)x z)| = |(T(/>x, z)|



P
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“these 4 and B, :

- to e!*4 uniformly in s. Second, and this is crucial,
. . ' \
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T . . ) ) <

since P,z = x, and-this equé,l)s

: .- 1 S n—1 -
' o f 1(0) k§0 z €'

i‘dr some complex number f;z 6f absolute value 1,;we have Re «f(8) = m a.e. ana from

this it follows that (8) is = m. We have shown (T,,(/',) T.f) =, :z:) — [m?2, M?] for all z
with [lz|l = 1 and this implies that o(T%(f) Ta(f)) = [m?, M?], whence the first asser-

2 . o I
(lﬂ.. ' < (8)

- ¢ tion of the lemma 1 o

Passing to the'proof of the th@oi‘em we consider first the special case of the func-

tion G(2) = e where ¢ is a real parameter. For any operators 4 and B we have |

d(et*4 e~198)/dt = ieis4(4 — B) e=is5, Integrating with respect to s from 0 to ¢ and
right-multiplying by el gives S ’
eltd __ eitB ifela\A(A — B)eitt-98 g, DT 9)

. ; T .. - A

Wc.apply this first with A=A, = T,,'(f‘-)‘ T.(f), B= B, = T,(If1?) and -apply (7) (:0 T
- obtain, with these 4, and B,,” = ~ . o R ' .

eltn et — _j [ et [P H(f) H(f) P, + QuH(f) H(f) Qu] ett—98x ds.,
ST : LT &
/ T ‘ ;

We also apply (9) with 4 = T(/-)\'T(/), B— T(lf12) and’ identity‘:(ﬁ) to obtain, with.

. t : . _' S
g eitd L eitB — —-,i f_eiaAH(i) H(i) ellt—=8)B ds_. .
= . . . 0 - . N

r

(11) -

’

" The right side of (10) consists of two parts, one involving P, and one involving -

Q». The one involving P, is .
< b o # *
. [ ~ o :
o —i[.ePH(f) H(f). P, ett-98ads,
: 0. : . .

(12)

‘iow this éffproaches the right side of (11), formally, as n'— oo. Here is “;h(y it actu-

ally converges to it in trace norm. First, it iseasy to see that e!*4-P, convergesstrongly
VR % ) - 4
IHD?* = X (fevinlt = ZklfP < oo o (13)
. i.j20 k=1 . : ) o
so all the Hankel operators appearing in (10) are Hilbert-Schmidt. We use the general

fact that if C, — C.strongly and H is Hilbert-Schmidt, then C,H — CH in Hilbert-
Schmidt norm (this is trivial if H has finite rank and follows in general by the density

- of the finite rank operators in the Hilbert-Schmidt operators)todeduce that ets4- P, H -

—>el*4H(f) in Hilbert-Schmidt norm. Similarly H(f) P, e'¢~—98. —» H(f) et¢~95 iy Hil-
bert-Schmidt norm'and so the integrand in (12) convergesin trace norm to the integrand

+in (11), uniformly in ¢. We deduce that the trace of (12) has limit tr [eT(/)T() — e"T”/l"]_.' .
Next we use the identity Q,T.(f) @, = T,(f) and the fact that Q, equals P, times_
a commuting unitary operator to deduce, by the same argument, that the trace of the . .

part of (10) involving @, converges as n — oq to tr [e“TU:WU-’ — e!tTUfM): The transpose

of the matrix in brackets here is the matrix eUTUNITH) _ oitTU/M and so the twohive the -

Al
/ .

- PEEN

(10) -

~
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'same trace. We have therefore shown that

lim tr [euT..(/)T,.(/) — eMTallfN] = tr [eltTHITU) 4 eumm/) — QellT(I/I ], (14) -
. n—c0 ; .

\’ext, we extend this from the exponentlal function to any furiction G € C"’([m2 M2},
We extend G to a C® function with compact support on all of {—o0, ) and apply the’
Fourler inversion formula ,

- G0 = f Gl e dr "where ¢l = 2; f G(;.)'e-—iud;.., | .

The operator version of this gives o .
(T (1) Tulh)) — G(T(f1D) = [ G’(t) [eUTnDTall) — QltTalfN] dg. Ls)

Now it follows from (10) that the operator in brackets here has trace norm O(}t}) as
-t — '+ co. The reason is that since 4, and B, are selfadjoint the exponentxal factors
have operator norm 1 and so (13) shows the operator in brackets in (10) has trace
norm at most 2 |||f|||% Moreover, 3G(t) is bounded since G- belongs to C® and has~
compact support It follows that we can take lim of the trace under the, mtegral sign .

n—00

in(15), and then apply (14) and the Fourier 1nvers10n formula once agam to obtam
Lim tr [G(T0(]) Tu(h) — G(TWD)] ‘
- tr[G(T(/) () + G(T() () — 26(T01P).

" What we are mterested in, of course, is not this but

hmtr[a(T N Ta) — Tulear®)- - -
So it remains to evaluate hm tr [G(T,,(|/| )) =T (G(|f| )} But 1t is preclsely llmlts of

this sort (for the contmuous i.e., Wiener-Hopf, andlogue) that were obtamcd in [14],
by methods very much like t)hose used above. The result, not surprisingly, is that the
limit is equal to 2 tr G(T([/P)) T (G(|/| ))] The requirement on G is that 2G(t) € L,.
To see that this holds note that since G’ € L, we'have 22G(ty € Ly, and we need only
apply Schwarz’s. mequallby Puttmg these things together shows that the proof of

) Theorem Iis complete I . . '

- Proof’ of Theorem II. Here also we Work w1th the & squa.res 4" of the singular values,
and set . : ) .

A= U(T(/ T(f)) v a('l HTGF)

. sothat 4 = A% A number ¢ is not equal to any t,“"’ (k = 1 ) if,ai;d onl'y if the

operator _ . ) ©

, Tu(f) 1) — B S C16)

(where I, is the 1dent1ty operator on the range of P, ) is 1nvertlble In fact '
min 14" — ) = |(Tu) T (/) — L)Y

A sequence of operatoxs {A,} is called umformly invertible” if the operators are
invertible for sufflclently large n and the norms ||A4, “|| are bounded asn — co. By’
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the above remarks we see that “the propertles (i) and (ii) requlred of A' can be re-
phrased in this terminology as follows:

() Ifte A, then no subsequence of (16) is umformly mvertlble
(ii"YIft ¢ 4, then the sequence (16) is uniformly invertible.

Lemma II.1: Forany f € Lc,0 the set 4 has property (i.

’ Proof Write 4, = T,(f) T,,(/) —tly, A =T(f) T(f) — tI. If for r any sequence of
n’s tending to mfuuty we had ||4,7| < g, then we would have [|4,P,z| = p L |Pall
for all z € I, and so also ||Az|| = u |||l Since 4 is selfadjoint, this implies its inverti- _
bility. Slmllarly, since .the ™ are ‘also the eigenvalues of T W) Ta(f), we f1nd that
T(/ T(f) —tlis mvertlble also, contradlctmg the assumptlon teal

Suppose A, is a (noncommutatlve) polynomlal in the Toephtz matrices T (/,
(E=1,...,7), -

=mTwquM S

-

One sa.ys that the * pro_lectlon method” or “finite section mcthod” _applies to this
sequence if the 4, are uniformly invertible. (The reason for the termmology is that
* then the inverse of the strong limit of A, is equal.to the strong limit of A,7L) A
"necessary condition for thns is that the operatoxs ’

are both invertible. The argument for this is vEry similar to the proof of Lemma 1I.1
* which is equivalent to this assertion in case 4, is given by (16). (Note that the com--
plex conjugates of the matrix entries of A in this case are equal to the matrix entries
~ “of T(f) T(f) — tI so the operators are silnultaneously invertible or not.)

Property (ii") is of course just the assertion that the finite section method applies |
to (16) when ¢ ¢ 4. Our proof of this under the stated hypotheses on-f relies on a
theorem of SiLBERMANN [12] (or [2, Th. 3.16]) which gives a neccessary and sufficient
condition for the uniform 1nvertlb1hty of sequences {4,} including all those given by
(17). Heré is the result. . -

- For a sequence of operators A, a.ctmg in the range of P, define A4, =Q,4 2@
where @, is as before. Define 4 to be the set of all sequences {A,} for which there are
operators 4 and A4 -on I, such that : '

AP, > A, A*P,—>A* AP, A, AP, > A*

strongly This is a Banach algebra under the norm [[{4,}|].4 = sup, ||4,| and it con-
tains all sequences {T,(f)} with f € L. Inside A4 there is the closed ideal 7 of-all
sequences P.KP, + Q,1Q, + C, with K and L compact operators on 12 and [|C,|| — 0’

" Theorem (Sllbermann) A sequence {4,} € A is um/ormly znvemble if and only z/
the operators A and A’ are*invertible and the image of {A under the quotient mappzng
A~ o{/?' is mvertzble

In our case of the sequence (16) the operators A and 4 are invertible. T his is pre-
cisely the assumption ¢ ¢ 4. What we must show then can be restated a({T (f) Ta(F)) })
— 4 where “¢” denotes the spectrum of the image of the sequence {1';(f) T,(f)} in
A .

/gVe consider first the (easier) case where f satisfies the second condition, f = gh
where g is real-valued and & € QC. Since the Hankel operators H(h) and H(ﬁ) are both '
compact, it follows from identity (6) thab for any ¢ € Ly,

) - T TN €T, T T Tl )
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B .

and 1t follows easily from this that N , S
{T, (/) T (f) — Talg Ta(B2} € . S S (19)

Now % €,QC 1mphes |h| € QC. (Bemg a closed subalgebra of L, closed under complex
conjugaglon QC is a C*-algebra and 80 by the Gelfand-Naimark theorem [4, Th. 4.29]
~F(h) € QC for any contmuous function F.) It follows therefore from (18) and (19)-
that {T,(F) Tw(f) — Ta(g [1)%) € 7 and s0 o{{Tw(F) Ta(N}) = ol{Ta(g IR1)2).

Now in analogy with what we have just done, using 1dent1ty (10) rather than (6),
we find that oo(T(f) T(f)) = ac(T(g [k1)2) = o.(T(g |R|))? where “g,” denotes “‘essential
spectrum”, the spectrum of the image-of the operator under the quotient map from
.the a,lgebm of bounded operators to its quotlent by the ideal of compact operators.

- Since g |k| is real-valued, we have o(T(g |h|)) = [essinf g |k|, esssupg |h|] by a theorem

. of Hartman and Wintner (see [4, Th. 7.20] or [2, Sec. 2.12]). This is also equal to

. ae(T(g |h|)) since for sclfadjoint operators the essential spectrum is obtained from

"~ the spectrum by removing the isolated eigenvalues of finite multiplicity, and the
spectrum has no such points in this case. Thus wrltmg J = [essinfg |k|, esssupg |A]], °
we fmd that - N

A5 6(T() T(f) = J2. . = R (20)

But the spectra of all T,(g |k|) lle in the interval J, so the spectra of.all T, (g |#|)? lie
“in J2 and so our assumption ¢ ¢ 4 and (20) imply that the operators T, (g |h|)?2 — ¢],
are umformly invertible. (We ‘use here, of course, the selfadjointness of T, (g [R1).) ¢
And this in turn implies ¢ 4 o({T'(g |k])%}) = o({T'w(f) Ta(f)}) as desired.

The proof of sufficiency of the first condition on f relies on a theorem of GOHBERG
and KRUPNIK [7] which determines the essential spectrum of any operator from the
algebra generated by all 7(f) with f € PC. Given such an f one defmes a function f*
on the product of the circle with [0, 1] by f*(6, p) = (1 — u) f(6—) + uf(0+). The
" theorem of Gohberg and Krupnik is that for any fino-sf € PC and any (noncommu-
tative) polynomial p one has »

( (T(fl) T(/Y))) = mngep(/l > :fr

To apply this in our situation we shall use a lemma on the representatlon of so-called
“locally sectorial”’ functions. leen a function | we set : s

mf llm dlst (O co[f(6 — 6,6 + 6)])

Here /(0 — 6 0 + ) denotes the range of the restrlctlon of / to the mterval (0 — 9,
6+ 6). Clearly my = = m.

Lemma IL.2: Assume my > 0. Then /or any & >. 0 we can wrile / = gh where g is
continuous and satisfies gl =1 everywhere and h satisfies Re h = my — ¢ everyu,herc

Proof: For any locally sectorial funct,}on / there exists a continuous function @ of

" absolute value 1 such that Re ¢f.> 0 everywhere [5]. Since replacing f by ¢f does not,
change the value of m, we may assume to begin with.that Re f > 0. We shall then
define log f as the principal value of the logarithm. It follows from our assumption,
and the compactness of the circle, that we can find a finite open covering {U;}. of
the circle, and for each i a constant «; of absolute value 1, such that Re f/a; = my — ¢

. on U;. Let E be the image of {z: Re z = m, — ¢} under the (principal value) logarlthm
_function. Then we have log f — log &; € E on U; for some determinations of log ;.
Let {y;} be a partition of unity, subordinate to the covering {U;}, consisting of non-
negative continuous functions. Since E is convex (a fact which is easily checked), we

PR
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\

" have log f — 3 (log x;)y; € E everywhere The desnred functions ¢ and k are given
by g =exp (X (logi)pi}, b = flg 1 SR

To complete the proof of Theorem IIin thrs case we shall show that fe PC 1mphes

S((T(D) Tal}) = 0T TR, T @

which will give the’result. (This is actaually a special case of Theorem 7. 33(d) in the -
forthcommg book [3] of B6TTCHER and SILBERMANN. We present our alternative
proof here since it is fairly easy, given the ideas already introduced.) We may assume
* that f is, say, right continuous. It follows from the result of Gohberg and Kr upnik .
- that the set on the right in (22) is precisely the interval [m,2, M2] where m, is as in the
" statement of the lemma and -M — ess sup [f| a$ before. The reason is that, as can -
easily be shown, the range of f* is compact and connected. Of course, if ¢ ¢ [0, M2],
then the opera.tors (16) are brwmlly umformly invertible, and so it.suffices to show -
that 0 S t< mg? 1mphes

t 6({T (f) Ta(f) }) ' : . . - (23)
Let g and A be as in the statement of the lemma. Since g lS contmuous we have
{Ta(f) Talf) — Tullgl?) Ta(R) Ta(h)y € 7. - ' _
Smce Re h=m, — ¢ the operators T,(k)and T, (h) are-inver trble for all n and. satlsfy
_ IIT (R)7Y < (mg — &)Y, - I T (R)~ LS (mo = &)t Co
\Ioreover it follows from (6) with f, ¢ replaced by lg12, igl~2 that the image of {’]’,,(Igl )

in4/7 is invertible’and the norm of the inverse is at most 1. It follows that the image -

of {T(f) T.(f)} is invertible and the norm of the i inverse is at most (my, — €)~2. Letting
& — 0 we see that the norm of this inverse is at most m,~2. It follows from this (since
the spectrum of an inverse is thé inverse of ‘the spectrum) that.¢. € a({T (/) ’]’,.(f )
1mp11es [t] = my? and so 0 <+t < mo® implies (23) as desired

Remarks and comectures 1. The function.@ in Theorem I is given-in terms of the
function F in relation.(2) by G(4) = F(/l/z) For ( to-belong to C2.it is not enough that -
. F belongs to C3 but we also must have F” (0) F"(0) = F'’(0) = 0. We conjecture
that ¥ € C3, F'(0) = 0 is enough to imply the conclusion of Theorem I and that
F’(0)' = 0 is necessary, at lcast if all we assume about f is that it belongs to K. How- )
ever, we.conjecture that even this is unnecessary if we assume that f is sufflclently
nice. The question is interesting because consideration of even the simplest, quantrty
2 5™ corresponds to the case F (2) = 2. See also the next remark.

" 2. Suppose f is real- valued Then T(f) T(f) = T(/) T(f) = |T(f)|2 and the right snde
of (4) can be writtén - .
2MEWH—TWWH - o -(m
where F;(2) = F(2) = G(2?). Traces such as these have exphelt integral representa-
-_tions if F, is smooth enough. (The Wiener-Hopf analogue'is in [14].) Unfortunately
F\(2) = ]2| does not meet the smoothness criterion but we conjecture that if f. is
sufficiently well-behaved then the operator in (24) is‘trace class and the formula
- alluded to holds. It would be very interesting to find an analogue of the formula for

- the traces’that appear in (4) in t,he nonselfadjoint case, even under severe condmons
on / and G. - o ) -

3 In the two cases in which Theorem IT was proved the set 4 was shown to contain

" the essential spectrum of T(/) T(f), which was an interval. The set 4, though, can be .

larger than thls set (&lthough not by more than a discrete subset of its complement)

- .

N

-
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- For assume that f is continuous and has constant a.bsolute value, say 1. Then the

essential spectrum in questuon consists of just the point 1. We claim,; however; that 4
is infinite unless f(f) is’ a rational function of e'®. For we have in this case 7'(f) 7'(f)
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we have 0 ¢ 4 but property (ii") ig Vlolated for ¢t =-0. -
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