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I-	( 

Wir erhalten unter gewissen Voraussetzungen grobe Asymptotik fur die Eigenwerte'elliptischer 
Operatorn; eine der Voraussetzungen bcstcht darin, daB die Werte des Haüptsymbols nicht 
die ganze komplexe Ebene ausfüllen. Wir betrachtcn auch eine Reihe von Beispielen nicht-
seibstadjungierter elliptischer Operatoren; insbesondere soiche mit ungewohnlichen Formein 
für die Asymptotik der Eigenweite; mit regularer Asymptotik der Eigenwerte, aber ohne Volt-' 
sthndigkeit der veraligerneinerten Eigenfunktionen; mit volistandigem System von Eigen-
funktionen, das keine Basis bildet.	 - 
• BHBOHTCB rpy6aii ac[IMHT0TH14a coGcTBeHHblx 3HaeIInft Aim aJIJuhELTH qecHllx onepaopo 
npu HI4OT0h1X npewOJToH4eH14HX; O)11O 03 HIIX COCTOHT B TOM, 'ITO 3U411Hfl r1aBHoro 
coMBoJia He 3anOJlIlnIoT Bcet% HOMITJIeRCHOft nisocoocTo. Pacc1oTpeH pHj iipimepon iie-

JilJIHnTII qecKllx OHepaTOpOB, B qacTilocTo: C Heo6hI'irlblMo OMJ1BMH 
J!R aduMirToTulili cOGCTBeHHLIX airaeHuft; C- npaBHJIbHot1 adlIMnToT00011 coöcTBeHIIbIx 

3HaqeHuft, 110 6e3 nO3IHOTM I4opHeBblx (yilHUj411 C flOJlHOfl cllcTeMotl co6cTBeHhrhIx yl1HUll, 
He nBJ1HIouef1cR 6.a311COM. 

We establish a rough asymptotics for eigenvalues of elliptic operators under some assumptions; 
one of them is that the values of the principal symbol do not cover the whole complex plane. 
We consider also a collection of some examples of non-self-adjoint elliptic operators: in partic-
ular, with unusual formulas for asymptotics of eigenvalucs; with a regular asyniptotics of 
eigenvalues but without the completeness of root functions; with a complete system of eigen- - 
functions which is not a basis. 

0. Introduction 

Let M be an n-dimensional closed Cm-manifold, provided with a positive density dx, 
and let A be a classical (i.e. polyhomogeneous) elliptic pseudo-differential operator 
of order t > 0 on M with the principal symbol ao(x, ). At first we suppose A to be a 
scalar operator. Denote by H3 (M) (s E R) the Sobolev- space of orders on M ; H0(M) 
=L2 (M). We may regard A as alosed operator in 110 (M) with the dense domain 111(M). 
If its spectrum 1(A) does not cover the whole plane, A has the compact resolvent 
RA (A) =-(A - ).1)-' and r(A) consists of eigenvalues of finite multiplicity with the 
only possible limit point at infinity.	 '	- 

By spectral properties of A we mean first of all asymptotic properties 9f the cotint-
ing function of modules of its eigenvalues and geometric properties of the system of 
its root functions, i.e. generalized eigenfunctions (to be complete, to fof-m the basis 
etc.) in H3 (M). If a(x, ) > 0 on non-zero cotangent vector, then A is near the self-' 
adjoint pseudo-differential operator A 0 = (A + A*)12 -in the following sense: the 
order of A - A 0 is not greater than t —.1. (Here and below we denote by A* the - 
pseudo-differential-operator formally adjoint to A, with respect tothe natural scalar 
product (u; v) .= f u(x) i dx on M, as well as the adjoint to A as an operator in
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L2(M).) The case jdst indicated has been-well studied (see e.g. [2, 18] and references 
there). Iñthis case, in particular, the eigenvalues 2,(A) of A are known to be contained 
in some "parabolic" neighborhood of the half-axis R, and N(2)	card {j: ).(A)l 

A} has the regular asymptotics	- 

.	N(2) = d02 1' + 0(A)I9(2	oo) with- d0 -=	
f

dX d^. 	(0.1) .	- - - 
-	. 

Moreover, in this case one can constructa complete minimal system of root functions •	of A, and this system is a good "basis with parentheses" if the orderi.of A - A0 is 
smallenough.  

The case when a0(x, ) has a non-constant argument has been studied far less (be-
low * we list the coi-resonding papers known to us). It is just the case to be studied in 
the present paper.	 .	. 

In Section 1 we assume that the values of the principal symbol do not cover the 
whole plane: Jarga0(x, )I :E^ 0 where 0 <ii. Our Aim is to obtain some lower and 
upperbounds for lower and upper limits l_ and 1 + of the function 2T"11N) as	cc. 
Let us introduce two quantities	 - 

/	d= (2" f I [a(x, )]R dS,	-	-	-	- 

 (0.2) 

fdx fIao(x,ut ds.	 . 
M	I=1 

(Here they are put down roughly, without using local coordinates;the exact expres-
sions are presented below in (1.30)—(1.33)) If a(x, ) > 0, we have d = = d0. 
The main results of Section 1 are as follows:	-	-	- 

•	• :.	l>0 if d4Q;	1_4;	IdIi+e4..  

When d 0, we obtain fro'm (0.3) the rough asymtotics	 . 

N().	2n1t,..	i.e. C1	 C2	(2 ^C3y•	 (0.4) 

with positive constants C1 , C2 , C3 . We do not know if the case 1_ <1, is possible (an . 
interesting question, in our opinion). If.L	1, =1, we obtain from (0.3) that 

dI :!z^1 ^ 4	
S.	 -	

-	(0.5) 

The inequalities (0.3) with some corollaries are proved in Subsection -1.3. -In Sub-
sections 1.1 and 1.2 some preliminary- material is contained. In Subsection 1.1 we 

- establish a certain Tauberian inequality. Namely we prove that if N(2) is a non- - 
- decreasing function on IL and if its Stieltjes transform of order q, - 

Sq(/z) =f(2+)-dN(i),	 (06) 

has the rough. asymptotics (,u) (0 <6 <.q), then N(2) has the rough asymp- 
totics N(2) x 26 . The last statement is analogous to the well-known Tauberian Hardy-
Littlewoodtheorem (see Subsection 1.1). In Subsection 1.2 we establish inequalities 
analogous to L :^, 4, 1+ ^,ezi for compact operators in the abstract Hilbert space. 
Note that-the constant e in the second inequality turns out to be exact. In Subsection
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1.4' the main results of Subsection 13 are extended to matrix elliptic pseudo-differen-
tial operators with the spectrum of the principal symbol lying in two closed sectors 
A 1 and A2 which have the unique common point 0. We investigate separately the 
behaviourof counting functionsN 1 (A) and N2 (2) for modules of, eigenvalue of A in 
slightly broader sectors A 1 (a) and A2(0- In Subsection 1.5 we consider' briefly opera-
tors corresponding to elliptic boundary problems with homogeneous boundary 
conditions and outline the proofs of assertions analogous to the main results.' 
- The quantity d is obviously non-zero if On <xt/2 (when n> 1 and M is connected, 
it is 'true if On :< t/2). In this case one' can see from-(0.4) that there are "sufficiently 
many" eigenvalues. Another well-known indication of such situation is the complete-
ness of the system of root functions whiëh has been established exactly under the 
condition On <t/2 (cf. [11). Such condition is only sufficient both for the completenss 
of root functions and for the presence of the rough asymptotics for N(A). Indeed these 
two.propeIties of A are preserved when we pass to Ak (with positive integer k), while 

• the sector free from values of the principal symbol can disappear. On'the other hand, 
if the values of the principal symbol cover the whole plane, we cannot point out any 
sufficient conditions for the completeness or for the presence 91 the rough asymptotics' 
for N(A) (and even conditions,under which the spectrum of A is non-empty or discrete). 

We examine these problems in Section 2 on some exampls. First of all we give very 
simple examples of elliptic operators on the torus either with the empty spectrum or 
with the spectrum filling the whole plane (each point is an eigenvalue). Then we 
discuss in detail (in Subsections 2.2 and 2.3) the example of the elliptic differential 
operator of first order on the circle. As it has turned , out, this example has been con-
sidered by SEELEY before us. In his note [26] he indicates the conditions under which 
the spectrum of the operator is empty or covers the whole plane. He also points out 
that if neither of the two degenerate cases takes place, then N(A) has the regular 
asymptotics with somewhat unusually defined coefficient d0 . We recall these calcila-
tions, and in addition we.obtain' in Subsection 2.2 the exact condition for the comple-
teness of eigenfunctions of this operator. (In the non-degenerate case all its root func-
tions are eigenfunctions.) This condition deals only with the principal symbol and is 
non-local. The counting function N(2) has the regular asymptotics in the non-degene-
rate case even if these is no completeness. Assuming the completeness, we deduce in 
Subsection' 2.3 the exact condition, under which the system of eigenfunctions is a - 
basis, and obtain an example of an elliptic operator whose system of eigenfunctions 
is complete but is not a basis. We construct also such examples of operators on the 
torus using the separation of variables. In Subsection 2.4 we consider an'othr example 
of an elliptic differential operator on the torus, admitting the separation of variables, 
in order to demonstrate the pOssibility in —(0.5) of all three cases 

IdI=l<4,	'IdI<l=4,	IdI<l<A.	'	(0.7) 

In Subsection 2.5 we establish thd existence of the regular asymptotics of N(A) for 
elliptic differential operators on the unit circle whose coefficients admit continuous 
extentions in the unit disk holomorphic in its interior. 

Now we list the results known to us and more or less closeto the subject of the presànt article. 
In the paper[6] of BOJMATOV some abstract test for validity of (0.4) has been formulated. For 
differential operators this test yields (0.4) if On mt14. KolEvNixov [14] has considered a 
matrix elliptic pseudo-differential operator'A with spectrum of the principal symbol lying on 
several half-lines. He has obtained asymptotics of eigenvalues of A close to one , -of , the half. 
lines. An extension of this result to the case when in addition to the half-line under considera. 
tion there is ã sector covered by eigenvalues A 1(x, ) ((x, ) E T'M \ 0) of the principal symbol,
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has been obtained by AGRANOVICH [3. R0sENBL00M [21, 91 has obtained an asymptotic for-
mula for the modules of eigcnvalues for normal elliptic operators and elliptic operators very. 
close to normal, in a sector, whose bounds may even contain the values of the principal symbol. 

The main results of this paper have been reported at the 10" Session of the Petrow-
skii Seminar on differential equations and mathematical problems of physics and 
Moscow Mathematical Society in January of 1987 [4]. 

We wish to express our sincere gratitude to V. I. Matsaev and F. L. Friedlander 
for valuable discussions and to V. I. Matov for the help in translation.	 - 

1. Rough asyrnptot.ics for counting functions 

1.1. An.analogue . of the Tauherian Hardy-Littlewood theorem. Let N(2) be a non-
negative non-decreasing function on the non-negative half-axis R, with N(0) = 0. 
Ifq>Oand  

f2- o dN) <cc,	 (11) 

then the Stielijes transform of order q of N(2) is defined by (0.6). We shall only need 
the case when N(A) is the counting function for some non-decreasing sequence {a,}j°° 
of positive numbers aj with o -'cc as j -+ cc: 1(A) is the number of the aj not 
exceeding 2. In this case the condition (11) means that ' a <.co and w6 have 

(12) 

Let N1 (A) and N2 (),) be positive functions for A A. We shall write 

N(),)	N2 ().) if urn N1(A)1N2().)= 1 
2—,.00 

(the strong equivalence), and	 . 

N1 (2)	N2 ().) if urn N(2)/N2().) 0;	H N, N, < cc 

(the weak equivalence). Since the classical works of Carleman, the following Tau-' 
berian Hardy-Littlewood theorem has been successfully applied in the study of 
spectral asymptotics (see e.g. [29: Chapter V]):	 - 

Suppose (1.1) holds and Squ)	-q Cu -. cc) for some ô E (0, q). Then. N(A)

b55 A5 (A -+ cc), where 

b6, q = of t 1 (1 +t) dt = oB(o, q -	:	 (1.3) 

We shall need an analogous result for the weak equivalence instead of the strong 
one: 

Theorem 1.1: Let (1.1) hold and S0(,U) x S-q Cu - c) for some 6 E (0, q). Then 
N(;.) , X A5 (A	00).	

0 

Proof: Since  
a 1	 / 

f A + /2)-dN(A) =	+ )-q N(2) + q  (A +,U)-q— I  N(A) dA,.	(1.4)
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from (1.1) it follows that 

f( +	q-1 N(A)d <00.'	 (1.5) 

Hence the limit of N() (1 + ,u)- as -^ co exists, and from (1.5) we see that it is 
equal to 0.Sø (1.4) implies	 "	 V 

- 	
Sq(L)	qf(2	 N(A)d2.	

V	

(1.6) 

By the assumption,	 -	 .	V	 V• V 

=	> 0, 	 V	

(1.7) 

V	
V	

Vh	
/Sq (/L) = 02 <.	

V	

(1.8) - 

V	

Obviously	
V	 V	

V	

V	

V	 - 

Co	Co	 Co 

	

_N(A) dA	 f N(A) d1 > N() (	
d),

( +'— 	2	=	J	+' q(2i) V	

V	

V 

•	0	 V..:	•4	 .	
V 

V 

V 

From this relation, (1.6) and (1.8) we have	 V	

V	 V - 

V	 limdu_öN(u)	2.	.	 V	

(1.9) 

	

- V	 -	 .	 .	 - 	

•	V	 •	 V	 - 

	

Now e ssant to estimate iiiLuN(u) Evidently for y > O .	 - 

•	r N(A) d)	 r	dA	
V r	dA	• N(u) V 

•	V	().•+ )Q+.1	
N(Y) ( +
	

N(y) 
J	. ±)'	V..qq	 . V 

V	 V'	

V	 VV	

V 

On the other hand, by (1.9) we have for any e> 0, if y,u is sufficiently large, 
Co
_	.	-	V	 •	

V	 - 	 .	

V	 V 

I () + z)-Q-1 N) d)	(02 + ) 2Q f () + 1))od) 
YA 

;52Q (02 +' E ) f  Aôq idA = 2q
 (92 + e) (q - ö)' ()ô-q	 (1 11) 

	

V 
V From (1.6), (1.10), (1.11) it follows that	

V	 V	 • 

IU QScU) - q2(02 + ) (q - ô)' y q	r oN(yu).	.	. •	 (1.12)	V 

V	

Chooseyo so large that 1 Q-6S(u) > o - for u >	(see (1.7)) and .yso large that 
the second term in the left-hand side of (1.12) is less than E. Then N(y/L) > (e, 	2e)aö 

	

- ( u > u0), and therefore	 V 
V	 V	

V 

V 

V	 limA5N(2) ^_:	(oi - 2e). .	V	 ,	

•	 (1.13) 

From (1.9) and (1.13) we qbtain the conclusion of the theorem I	V	 V 'V
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Remark 1.2:In the proof of (1.9) - only (1.8) has been used, whereas in the proof of (1.13) 
we have used both (1.7) and (1.8)-

Rethark 1.3: We do not try toobtain the best estimates for lim kN(A) and urn )N) in 
terms of 6, and ..  

Remark 1.4: In the proof of Theorem 1.1 we have shown that (1.7) and (1.9) imply 
Jim 2-3N(,) > 0.  

We shall need also the following statement which is inverse to Theorem 1.1 (Abelian 
theorem). It is valid in a sharper form, and the requirement that N(A) should have a 
finite variation on each finite segment instead of monotonicity-is sufficient 

Let (1.1) hold. Then	. 

	

bô.qll	),- 6N(2),	.	.	.	 . (1.14) 
•	 A-+oo	 - 

lim 	b65 Ui2N(2),	 (1.15) 
S	 S	 - 

where	is de/i-ied-in (1.3)..  
The proof is elementary; see e.g. [29: Chapter V]  

1.2. Asymptotic estimates for eigenvalues.of a compact operator by its singular values. 
In this subsection K is a compact operator in a Hilbert space. Let J),(K)1, 00 he 
the seqiIence of its eigenvalues, counted according . to their multiplicities (i.e. 

- the dimensions of the correspénding root subspaces) and arranged so that I(K)I 
'.^ A2 (K)j	If K has only a finite number of non-zerO eigenvalues, we complete the 

• sequence -by zeros. The numbers s(K) = 2((K*K)112) are called the si?igular values 
of K. The. eigenvalues and the singulii;r values are connected by the well-known 
Weyl inequalities (see e.g. [8: ChapterIl-, § 3]):	 .	 S 

11 1s2 ,(K)!	s,(K)	(n = 1 2,	)	 (116)


They have many -consequences; in particular,  

1 I 2,(K )I 9	2sj'(K)	(n = 1,2	,p> 0)	 (117) 

Denote by n(t) (respectively by v(t)) thecounting function for IA(K) (respectively 
for ;-1 (K)). As it is- pointed 'out in [19],•(1.16) can be rewritten in the form 

ftn(t) dt :!S^ f t'v(t) di	(i> 0) ..(1. 18) 

Here we want o establish some connections between the asymptotic behaviour of 
n(t) and that of v(t) following from (1.17)1 and- (1.18).  
- Theorem 1.5: For any ô>0,	- - -	 - 

Em2n(A) <,li,v)	 .	.	 (1.19) 

Proof: 1fK has only a finite number of non-zero eigenvalues, then the left-hand . 
side of (1.19) is 

-equal to 0. Therefore we can assume that all the*).. (K) (and by (L16) 
all the s(K)) are distinct from 0. Set y. = I2- 1(K)I and o,, = s (K). Obviously; 

lirnkv(2) ^ lima,n	 .	/	-	 (1.20)
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and for'each €> Owe have  
r 

	

A_on(2) 5 urn Cu.-	ii	limy.-an. (1.21) 
-	- 

	

•	Suppose that (1.19) is false. Then (1.20) and(1.21) ,imply urn 1u,¼ > lim crn, and 

	

- 9	therefoie, with some a> 0;	- a.-' > an- ' on ^t n Hence ', It 	a,, 

> a	co- as m -.00, which contradicts (1.17) -with p = ÔI- 
- nn. . - 

.Theorem 1.6: For any ô> 0, 

lim 2n(2) :!c^ e lim?.:v(2).	 i.22) 
2-,-oo	'	1--

Jroof It follows from (1.18) that for any y> 0-  
•	

A)'	 Ày	 Ày	 - 

f t'v(l) di	f 1 1n(1) dl	f r'n(l) dt	n(t) in	 (1-23) 

Let d2 be the upper limit in the right-hand side of (1.22) (we assume it to befinite) 
and bean arbitrary positive number. Then v(2)	(d2 -+ r) 21 	2 2, and there- - 
fore we obtain from (1.23)	 - 

n(2) 5 (In ),)71 (1 1'v(t) dl + (d2 + e) f &' di 
,-  

= (In y)- 1 (Const + (d2 ± ) 12oyo),	 - 

or

 (In y)- 1 y)' (2	onst + (d2 + ) 6'y6) 

• - Setting here y ='&, we obtain the inequality	 -	-	- 
- 2n(2) ^S60, 6-Const + (d2 -+ e) ôJ e),	-.	 . 

from which (1 22) follows ' l 

Remark 1.7. : The constant e in (1.22) is the best possible. Indeed, by Horn's theorem [11], 
for any integers -Iand m (0 1 <rn) there exists an operator A i m, acting in a Hubert space of 
finite dimension m—.l, such that A(A,) = (i!/rn!)l(mI) and j(Aim) = (1 +  
M - 1). Choose an increasing sequence (M. 1, 00 of positive integers such that m/m i --oo and'


	

• •	denote the operator Am j m, by K, (q = 1, 2, .'..; rn0 = 0). Let K be the orthogonal sum of 
= (mq_j!/niq!)!I(mam._.) (m 1 < j	q = 1,2, ..'.) and s,(K)-= Kg. Evidently, A,(K) 	j- '


(j = 1,2,...). Hencev(t) = [t] and n((mq !fmq_ 1 !)11(m.na_)) = mq (q = 1, 2, ...). Using Stirling's 
formula, we obtain	 '	• 

1	 m_,+I/2  
i -	^t lim (Jma_m.. 

= e lim (\rnq_mq. = e. 
q—Ko \ m! j	• 	 Mq. /	-	,	•	-	- 

So lim t'n(t)	e = e lim t'v(t) U	 •	-	 -	 '	 -. 
g--oo 

1.3. Theorejns on rough asymptotics for modules of eigenvalues of elliptic operators. 
Let M be an n-dimenional .C°°-manifold provided with a positive C-densitydx.' 
We consider a classical (i.e. polyhomogeneous) scalar psudo-differential operator A 
of order 1> 0. Let a0(x, ) be its principal symbol. It is a C°°-function on T*M \ 0,
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•	positively homogeneus of order t in	(see e.g. [27]). The values of a0(x, ) ((x,)

E 7 1*M) cover a sector with vertex at the origin. We assume that the sector does not 
coincide with the whole plane C. We ' may' also suppose that its bisectrix is R, and 
then our assumption is as follows: 

-	arga0(r,) 0 -(0 <a) . (1.24) 
This condition means that . A is elliptic with a parameter in any-sector 
•	- {A: I arg2 - a  ;5 7r'— 0 - e}	(0 <e < n __O).	 (1.25) 
It follows (see [23]) that  (as an operator in L2(M) 110(M) with We domain H(M)) 
has the compact resolvent RA(A) = (A - Al)-' and that in any sector (1.25) A may 
have only a finite number of eigenvalues. Moreoyer each half-line (A: arg). = 

•	lying outside the sector ().: Iarg Al	0} is a iay of maximal decrease (by the termino-




logy in [l],-aray of minimal growth) of the resolvent, i.e. II RA(A )II = O().l-') as A —* cc 
•

	

	
- along such a hall-line. Replacing if necessary A by A — c with an appropriate c, we


assume (without loss of generality) that.all the points in some sector (1.25), includind l-
0,.are regular for A. -	•	 - 

Let It > n (I E N); then [RA (.)]' belongs to the trace class, so we may consider its 
trace tr [RA ())] 1 . It is well known (see e.g. [141) that 

• tr[R(--)]'	czt''	(i- +°°)	 (1.26) 
where	-	 -	 - 

c, • = (2)-f,(áo(x,)+ 1)-'dxd.: ,	 (1.27) 

The coefficient c1 may be expressed also, using a sufficiently small partition of unity 
.(9,k(X)}lm on M and values a0 (")(x, ) of the principal symbol in corresponding local 
coordinates in the form 

--	
b,-. r	C,	..	-, --	 - 

- - -	 Cj	(2)n j ki	 f (a0 '(x, ))'/'dS dx..	 (1.28) 

	

M -	 Ifl=I 
-	•	 Here d = e 'ddS, o =	in local coordinates, and by (ao(")(x, )_n/t we mean 

the main value of the fu,nction z'I for z,= a0 '(x, ) (if z = re'', — <  	, 
- -.	then z''	r	e_1wlt). From (1.27) to (1.28) one may pass applying the s'ell-known 
-	formula	-'	-	 •.	•	 -	- 

' e"	dg	-	-	- 
I /	

= v'aI'B(n/,u— n/v) (1 :E^ n, < v/L,a (—cc, 0])' (1.29) 

/

j	- ir  
0,	 •	 I	 '	 - 

	

(see e.g.' [9: p. 299]). Introduce two quantities	-	 -	 - 

d= b 1(2)f (ao(x,fl+ 1)'dxd	'- •	 '	 ' (1.30) 
-	-	TM	•	 - 

= b(2yf (jao(x, )I + 1)-' dx  

	

TM	-'	 I	•	 •	 - 

Using (1.29), we can rewrite (1.30), (1.31) in the form 

-•	

(2	n f	f (a0')(x, ))It.dS dx,	 '(1.32) 

	

M	•	IJ=l	 -.	•	 -	 - 

(2	n f k!() f a0  (x, )l" dS dx.	 -	(1.33) 
-	M	=,	IEI=1	 --	 •	 -	 -

0
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From this we see that Idl ^5 4 and that d, ,d do -not depend on l..Since (1.24) implies 

Re [(ao ( k)(, ))n11]	Iao(x, )1-1 cos (On It) ',  

we obtain from (1.32), (1.33) also  

d I z1 cos (Onht ) .	 (1.34)' 

Denote by N(2) the counting function for modules of eigenvalues of A, i.e. the 
number of them in the circle {z: Izi ^5 2). Recall that each 'eigenvalue is counted 
according to its multiplicty.  

Therem. 1.8: Under the above assumptions,'  

.IdI	Jim 2_I tN) :E^ eJ.	 / ,	(1.35) 
S	

,	 2-.00 

Proof: Let us verify that in tae proof of the inequality 

•	d ;5 lim1 1'N(2)	'	 '	'	'	 - (1.36) 

may be'replaced by t/p, where p is an arbitrary positive integer. By this replacement 
a0(x, ') turns into (ao(x, OP IP while d, as it is-seen from '(1.32), remains the same. 
Further, if NW(A) is the counting function for modules of new eigenvaluè ).,I1P, then 

- ,u" I'N(1z) = 2" PIIN (P) (2), for a= 2. Therefore the right-hand side of (1.36) also does 
not change. 'Hence we may assume that all the eigenvalues 2, of A lie in {2: Iarg I 'c} 
where q <r/2. We shall first establish the inequality of the type (1.36) for the count-
ing function NR (A) of the real parts of 2,:	

5 

•	-d _^ lim2	N,(2). '	,	 ,	 (1.37), 

It is obvious that, for i > 0, f (Re )., + z)-' E 2, ±H	Z (A, + )_l,


-and consequently  

•fimyl- nll (Re 1, +	urn	(2+'' .	 (1.38) 
S	 '  

Since tr [ RA(-1u)]' = E'(), + lA Y', by (1.26)'the right-hand side of (1.38) is equal 
to cjj, and we.may rewrite (1.38) in the form  

Fim- p l— "11 f(2 +):' dNR (2)	cIi.-
 

•O  
Now (1.15) and the equaiity c 1 = b 111d imply (1.37). Since jarg 2•,	(< /2), we 
have N(A)	N,(). cos ), so from (1.37) it follows that I dl (cos p)flhi	lim 2"ItN(A)'. 

Replace here I by t/p: jdI (cos (p/p))7/t--:5: fîm 2"f'N(A). Evidently (cos (92/p)) n PI1 —* 1 

as p -- o, so in the limit we- obtain (1.36).  
Now pass to the proof of the right inequality in (-1.35). Without loss of generality, 

assume that 0 a(A). If K - A', then obviously N(A) = n(2), where n(2-) is the 
counting function for modules of the , characteristic values of the compact operator K. 
By Theorem 1.6  

- Jim 2- 0n(A)	e IT A_1'v(2). '	(1.39) 

17 Analysis Bd- 8, Heft 3 (1989)	'	 •	 -	 -	 -	 -
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- It is easily seen that v(t). coincides with the counting function for eigenvalues of 
B = (A*A) 1 / 2 . It is a positive elliptic operator of order 1, and its principal symbol is 
equal ao(x,4)l. Therefore

(1.40). 

•	 .	 (see e.g. [27: 15]). Thus (1.39) yields the right inequality in (1.35) I 
- Using (1.40) and Theorem 1.5, we obtain the following assertion.	- '• - 

	

Theorem 1.9: Under the above assumptions,	 - 
-	 IiaA"ItN(A):^,-A	 (1.41) 

-	A—,-oo	 V	 - 

Remark 1.10: As it is seen from the proofs, the right inequality in (1.34) and (1.41) are 
both valid for eachelliptic pseudo-differential operator with a discrete spectrum (the condition 
(1.24) is not necessary).	-	V	

V	

V	 V 

V	V	

Theorem 1.11: Let d == 0. Then,	 V	 V	
-	 V	

V 

A-'"N(A)'> 0.	V	 V 

(1.42) 

	

-	V 

Proof: Since, according to our assumption, all the eigenvalues A, lie-in some sector - 
•	{2: JargAI	O} (O < yr), we have for u> 0 -	 V 

V V	 V	

+	= A2 +,U2 -+ 2 12,1,u cos.arg A,	(IAI + ,U)2 tOS2	,	(1.43)	
V 

and hence	
V	 V	 -. 

+t)'	C	IA,V±L l	C	(A, +	
V -

	

V 
V 

V	

V	 I	'-1	 ,1	,-	 — 

	

V where CV= (cos (0s /2))-'. From this we obtain	
,	V	 V 

S	 V - 

hmnfl Z (IA , I + z)-' Clim'"	(f + 
V	 By. (1.26) the latter limit is equal to IcI = b1.1dI. So	 V	 V 

Lim t—n/t Jo + iY' dN(A) > 0.	
V 

V	 (1.44) 
V	

V	
°	 -	 V 

- On the other hand, by Theorem 1.8 V	

V	 V	 ,	 V•V V 

•	 V	
lim 	< co. -	-	

V	

(1.45)- 

According VtoRemark 1.4, (1.44) and (1.45) imply (1.42) U 

- From Theorems 1.8 and ifi follows V	

V - 

- V	
V	 Corollary 1.12- 1/ d+ 0, then N(A) >< A"!'.	V	 V -	 V V	

V 

Remark 1.13: If	V	 V	

V 

'V	 nO < ntl2,	
V	

V	 V	

V	 V	 (1.46) V	 V 

where 0 is the same as in (1.24),'then d-4 0. This follows from (1.34). If 'M is connected and 
V	 -	

- n> 1, the sign < in (1.46) may be replaced by ^5. Indeed, in this case the real part of the inte-
• grand in (1.32) is non-negative, and if d = 0, we have Re (a0(k)(x, ))_fl/t = 0 on U = ((x, 

/7
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q(th) > 0, = 11 (k =-1.... . m). But then, since Al and the unit sphere in R' (n > 1)is 
connected, there exist a number k and a point (x 0, ) E U'such that Tm (a0(")(x0, 0))_flhi = 0, 
so that a0(k)(x0, ) = 0, which contradicts the ellipticity of A. 

Remark 1.14: Corollary 1.12 shows that A has "many" eigenvalue if d 4 0. As it has been 
mentioned in the Introduction, the condition (t46) assures the completeness of root functions 
of the operator.	 - 

Theorems 1.8 and 1.9 imply 

Corollary 1.15: 
If 

the limit of ). 1 N(2) as 2 -.	exists, it belongs to the segment

[Id i, zl]. 

Remark 1.16: If Idl = A, then the limit of A—h/tN(A) as A --> cc emits (and obviously coin- 
cides with Idi = J). Indeed, from (1.32) and (1.33) it follows that in this case arg a0(x, ) = 
const. But then A = (A 0 + B), where cc E C, A 0 is a selfadjoint elliptic pseudo-differential 
operator (withthe principal symbol tx'a 0(x, ) > 0), and B is a pseudo - differential operator of 
order.	t - 1. Therefore for A the formula of the type (0.1) is valid with , 1a0 instead of a0 
(see e.g. [18]). 

1.4. Generalizations to matrix elliptic operators. Let A be a (r X r)-matrix elliptic 
pseudo-differential operator of order t > 0 with , the principal symbol a0(x, fl . Denote 
by 21 (x, ) (j = 1 ..., r) the 'eigenvalues of the matrix a0 (x, ). Under the condition 
argA,(x, )I 0 < (j = 1,;.., r), Theorems 1.8, 1.9, 1.11 and Corollaries 1. 12, 
1.15 , can be easily extended to the matrix case, with the replacement of (a 0 + 1)-' 
and (1a10+ 1)-' in (1,30) and (1.31) by tr (a 0 + E)-' and tr ((a0*ao)112 + E)-', 
respectively. Assume now that the eigenvalues of a0(x, ) lie in 'two closed sectors A1 
and A 2 with vertex at the, origin and without any other common points. For defini-
teness assume that 

= {: j argI	 A2=	: largJ	02},  
where 	6 <02 ;5 r. For arbitrary small e> 0, A is elliptic with a parameter in 

= : 0 + €	±arg	02 - s} ( <(02 - 0)/2), and 'these sectors can con-

tain only a finite 'number of eigenvalues 2(A).• Fixing e>0, denote by N 1 (2) the 
counting function for modules of those 2(A) which lie in A 1 (e) = {: Iarg C  0 + s}. 
Generalizations we are going to obtain concern .N 1 (A) (instead of N(A)). Since N1(1) 
!E^ N(A), some upper bounds for N 1 (2) come from appropriate bounds for N(2), so' 
we shall deal only with lower bounds; Set. 

•	 ,	 c1>	(2r)"" f '' (2,(x, ) + 1)-' dx d,	d(1) = b 1 c1 O ,	(1.47) n1t
TM .AA,

(1.48) 

	

-	 - 
where 1 is an arbitrary positive integer greater ' than n/t (one can verify easily that d(') 

•	does not depend on 1). The desired generalizations will be derived from the following 
Theorem 1.17: I/I — i <nJt <1, then -. 

9 i(C) = 
C (1 )( C)fl/L1 + o(lCI"')	(C -^ oo)	 '.(1.49) 

uniformly in {C: Iarg	O + s}. 
- -	Proof: We begin with the-known formula (see e.g. [14)). 

tr (RA (C))' = (2n)- f tr [ao(x, ) - CE]-' dx dE + 0	 -, 

17*.	 '	,	-
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which. is valid in A ± . Setting S2.) = t.r(RA())'	S 	we put down this for- 
mula in the form 

S 1 ) + S2.1 () = (2)	.1	().1(x, ) —	dxd 
TM AjE4, 

+ (2) f	()(x, ) - )' dx d + 0  
•	 TM AjEA2 

Here the first integral makes sense if Iarg I > 0 and we can transform-it by setting 
i' /"ij for g = — <0 and using the holomo'rphic extension in . The second 

integral makes sense if arg < 0 and admits a similar transformation: we set •	= p077 for = > 0 and then use the holomorphic extension in . So we obtain for 
EJ1	 ••	 - 

•
	
.( I CI 

n-1\ 

SIAO + S2•1() = c 1 ( ' ) ( — I'' + Cj(2)t_1 ± O'),.	(1.50) 

where c (' ) is defined by the first equality in (1.47) and	by the analogous equality -. 
with ).(x, )E A2 .	- 

Let us estimate the growth ofS11() when largI 0 + E. Since Iarg A4 0+ /2 
in each term in (1.48) with sufficiently largev, we have, by the inequality aimlogOus 
to (1.43)-,  

IS 1 )I	1.,(A) -	:2^ C1	IA(A )I +	D'	 - 
- 4€A,(') .	 A(e) 

for sufficiently large	. Since N(?.) = 0(2 111t ) (see (1.35)), we have k, 1(A)I = 0(v_1173), 
and-therefore	•

00	 00 
dx 

IS1 (c)I	Ci E (v + II) - '	Cif, 
± Il)' 

= CiIht_1f	
1)' 

•	(we use the substitution x =	y). Thus 

= O(I'')	(	00, iarg C1	0	e)..,	 (1.51) 

Similarly we * can verify that 

S23(0	O(II')	(C	co, Iarg C 1	— ).	 - (1.52) 

The formula (1.49) we shall derivefrom (1.50) by "separating" the asymptoticsof 
To do this, take the contour P consisting of'two half-lines {: arg = 

+ c)}, passing from oo to 0 on the lower and from 0 t oo on the upperhali-line. If. - - 
•	some A,(A) are found on P (there is at.most a finite numberof such ;.,(A)), we slightly. 
- . deform P pear such points so as to ayoid them, but make this to that all the eigen- - 


• val'ues of A, contained in the sector {: Iarg I > U i + E}, remain at the left of rand 
•

	

	 so that the origin remains the unique point common to. P and R. Divide (1.50) by

22ii( --- z) apd integrate along F, assuming z lies-at the left of F: 

• •	-	-	'--  fS1.z(d+ f d 
2ti 	— z	2n1	- z •	 - 

-	 -F	 •	I- 

CI(
f

	(2) C 	C1?()
 d ±--- I •	•d +	I	d, •	(1.53) 

2711 	z •	2z1J	—z	• 2mj	—z 
-	.	-	 'I..	 • F	-	 I'



0• 
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where R() is the remainder in.(1.50) (all the integrals converge ábsolutely.in virtue 
of the coiidition n/I <land relations (1.51) and (1.52)). In the first term of the right-
hand side we can replace 1' by a closed contour surrounding z and lying at the left of 

• r. From the Cauchy integral formula it follows immediately that this term is equal to 
c1(1)(__z)1. Analogously, in the second term of the righthand side we can replace. 
I by a closed contour lying at the right of r; so this term is equal to 0. Similar argu-
ments permit to calculate easily the terms in the left-hand side of (1.53). The first of 

• them is equal to S ,(z); the second is equal to 0. It remains to estimate the third term 
in the right-hand side of (1.53). Let r be so large that the part I" of r lying outside 

- -the disk (C: ] 	r} consists of half-lines, and let -I" be the part of P lying inside the	- 
disk. Then	 .:	 . 

fRd	 d + C3	 jdCj 

for Iarg zi	0,'+ r (we again apply the inequality analogous to (1.43)). The first term

on the right-hand side obviously has the order O(1z1'). The second term-is not greater 
than	.	.

00 /1 
n-I	I r u-i	r n-i 

C3 z!	( J t	dr +• J r'	•(1 + t' (it 
- -	 \r1z1'.	 1	 . 

(here we use the substitution ICI = r Izi and he inequality (1 + t) - ' < 1 fort E (0, 1)). 
/ 

The order of this quantity is 0 jzj t	),when (n — 1)/i —1 > —1, 0 (I zL' In z), when 
— 1)/I — 1 = —1, and Q(IzI 1), when (n — 1)/I — I < —1. Since I - 1 < n/i < I, 

•

	

	in all the cases we obtain the estimate b( I z V" 1 ') for the third integial in the right-hand

side of (1.53) I  

The main result of the present subsection is  

Theorem .1.18: 1/ d( 1 )	0, then  

urn 2'tN 1 .) -> 0,	km A_ n I eN 1 )	Id(. .	.	- (1.54) 

	

Proof: The proof of the first inequality is quite similar. to, that 	Theorem 
To. prove the second inequality, it is convenient to change the- notations ,and assume 
that the bisectrix of one of the sectors separating A 1 and i1 2 -coincides with R_. For 
this, A is tobe replaced by &WA with an appropriate V . Theorem 1.17 gives the asymp- - 
toticsof S1,1 () outside the angular neighbourhood of A 1 in its new poition and, in 
particular, along R_ if n/i is not an integer. Now we note that it is sufficient to obtain 

• the desired result for A, = A with an arbitrary a E (0, 1) (taking into account that 
the first formula in (1.47) can be rewritten in a form analogous to (1.32) with 
instead of ao_It). Therefore wemay as 	that I is irrational and that we-have a

formula of type (1.49) for A 11 along 4_. Now we-can prove.the second: inequality in 

• (1.54) in the same way as (1.36) I 

- Note that. if 01 = 0, i.e. if A 1 is reduced to R, one of the authors [3] has obtained the regular 
asymptotics N,().) ,7- dA"t (A -* po). Here we have used the way of reasoning employed in [3]. 

1.5. Results for elliptic boundary value problems. Let C-be a boundd domain in R" 
with. a C°°-boundary dO. Consider an elliptic boundary, value problem 

Au	fin 0,	B1U6 = 0	(j = 1, ...,rn)	- •	 (1.55)

S
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(see e.g. [15]) with. homogeneous boundary conditions. Here u, 1. are scalar (for sim-: 
plicity) functions, A is a differential operator of order I = 2m, elliptic in 0, B5 are 
differential-operators of order-I, <1 and all the operators have C0o'coefficients. De-
note by A B the corresponding closed operator in L2(G); its domain is the subspace in 
H2.(0) defined by the boundary conditions B,uIaG = 0 ( j = 1 ..., m). Suppose the 
problem, obtained from (1.5) by replacing A with A - 11, is elliptic with a param-
eter in a (closed) sector 2' with the bisectrix IL. Then the boundary operators form 
a normal system (see e.g. [241), the resolvent RA()) exists for 2 E Y with sufficiently 
large 2I and satisfies - the estimate IIRA B().)II = 0 (1). 1 -1 ) (see [1]). As in Subsection 1.3, 

- we may assume that RAJA) exists for all 2€ Y. - 
Define d and zi ,by (0.2) (where a0 (x, ) is the, principal symbol of A and I = 2) 

with 0 instead of M. Let N(2) be the counting function for modules of eigenvalues 
2,(A).  

Tlieorem 1.19: Under the above assumptions,	
0 

dl :E^ 1Ti 2_ 1 / tN(A) ;5 e4,	urn 2'1'N(1) 
A- .00	 '	 2-,.00 

furthermore, if d + 0, then urn 2 01N(2) > 0.. 

The proof is similar in the main to the proofsof Theorems 1.8, 1.9, 1.11 1 and we restrict 
ourselves to the following explanations. First of all, a- formula for AB of the form (1.40) is valid. 
It comes from- the fact that the composition A5*A5 corresponds to the self-adjoint elliptic 
boundary, value problem in 0 for the differential operator A*A with the principal symbol

a0(x, 2 (see e.g. [10]). Secondly, one can define the powers ABOf AB, 0 < a < 1 [25]. Set


= (A Bn - 2I)- (q e N). If 2nio.q> n, this operator belongs to the trace class and the 
following lemma is valid.  

Lemma 1.20: Under the above assumptions,  
a n-i / 

tr .R,.q(2) = bn/2rn.,qd(A) 2"	+	 ()-. —no).'	- 
To prove this formul. one must apply the equality	- 

= -- j. (L - A)Q RA(U)d/z
2jTi 

 .'	. 
-	

.	F. 
and SEELEY'S formulas [24] for the parametrix, which approximates R A in Y. Here I' is the 
contour consisting of two half-lines {u: arg 1 = d'. jul > 5} and the are z: I4uj = 6, jarg /41 

); 6 is a small positive number; 0 <	i and V is sufficiently close to ; the direciori of 
passing is counter-clockwise on the arc.	 - 

One can take a compact manifold with boundary instead of 0 and consider effiptic 
boundary value problems for vector functions, including the case of two sectors of 
ellipticity with a parameter. But we shall not dwell on that. 

2. Examples and counterexajuples 

2.1. Elliptic operators with empty spectrum and with spectrum tilling the whole plane. - 
Consider an elliptic differential operator of-the form  

A = eiPXP(D) 

on the n-dimensional torus P. Here P() is a polynomial and is a non-zero multi-
index. (We identify functions on T 8 with appropriate functions of x = , (x1 , ..., x) E W',
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2-periodic in every x,.) Assume first that P(x) = 0 for each x E V. Suppose Au = Au 
for some A € C and some function u E L2(P). Substituting here the Fourier expansion 

U(X) = ' c e z	 -	/	( 2.1) 
aEZ"	 - 

we obtain
P(c.) C. = Acp.	 -	 ( 2.2) 

If A = 0, from (2.
,
 2) it follows that c = 0 for all, so that -u(x) = 0. Now let A	0. 

If cn, + 0, for some ao, then by (2.2)-	 - .--	 ,•. 

Cn.+k	1-kP(0) P( 0 +	... P( + (k - 1) ) C-.	(k € N), 

- so that C+kfl co as co. This contradicts the condition u EL2 (T8 ). Hence c = 0 
for all , i.e. u(x) = 0. Thus A has no eigenvalues. The same fact can be similarly 
established for A*. So the spectrum of A is empty. 

•

	

	Now consider the case when P(a0 ) = Ofor some a, € Z'. Since A is elliptic, P(s) 0

for sufficiently large . Hence we may assume that 'P(x0 --l) r 0 fort E N. For an 
arbitrary A € C, set c = 1, = ).'[P( 0 - ) •.. P(a - l)]1' (1 € N) and c, = 0 
for all other a. Evidently Au = Au where u (€ L2 (T n )) is given by (2.1). Thus in this 
case the eigenvalues of A cover the whole plane. 

2.2. Elliptic operator with an incomplete system of eigcnfunctions Consider the 
•	differential operator	 S	 - 

A=ao(x)D+a1 (x)	(D=—id/dx)	 V	

(2.3) 

	

on the circle T with complex functions ak (k = 1, 2). For simplicity assume a. € C;	V V 

we identify functions on T with appropriate 2-periodic functions on R. Assume also 
that A is elliptic: a0(x) + 0 for all Each solution of Au = Au has the form 

- -	
u(x) = C exp [ ( A f a0'(t) dl -f a1 (l) a0- 1 (t dl)].	 (2.4) 

For C	O'this function is 2-periodic if and only if	 - - 

Afa0 1 (l) dl _faj (t) a0 1(t) dl E2Z. 

From this it follows that in the-case when	 - 

fao 1 (l) dl = 0,'	- -	 ,	(2.5) 

the spectrum of A either covers the whole plane (if fai (l) a0 1 (l) dl € 22rZ) orisempty 
(if the condition-is notfulfilled). In the case when 0	

•	 V 

-	

f -'(l) 
dt + 0,	•	

-	 V •

	

( 2.6)	
V 

the spectrum of A consists of the eigenvalues Ak = a(k + c) (k € Z), where 

	

2n	 -1	 2n	 S - 

a =(._fao_1(l)dt) , c	-fai(t ) ao'(l) dl. The Ak,ajproach the lie z = at 

(I € -R) as k	oo, and the counting function N(A) for their modulèshas the regular-

, 

	

V	 -	 I
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asymptoticsN(2)= 2 al- 1 1 + 9(1)(). - co). By (2.4) the eigenfunction correspond-
ing to the eigenvalue 1k has the form	 • 

Pk(X) = gk(x) h(x) ' (k E Z),	-	 -	(2.7) 
where	-	 - 

g(x) =exp (ialao_ 1 (t) dt) 
0	

-	 -(2.8). 

[i (ac!a0 1 (t) dt—fa1 (t) a0 (t) (it)]. 

-	These assertio n' s are contained in [26].	- 

	

Let us now discuss.th&propetties of the system of eigenfunctions (2.7) of A (we	-. 
--	assume that (2.6) holds unless otherwise is specified). One can easily deduce from 

• (2.6) that the-equation Au = Pk has no 2i-periodic solutions. This means that 
all the root functions of A are eigenfunctions and that the multiplicity of each eigen-
value is equal to 1. Denote byf the closed curve given by - the equation z = g(x) 
(0 :5: x	2r). Since g'(x) =0, 1' is smooth. It does not pass through the origin.

Since Re (a! a0 1 (t) dt) is a continuously depending on x value of aig g(x)P goes 

- around the origin once in the positive direction while x goes from 0 to 2 (the index. 
•	of g(x) is equal to 1).	 - 

Proposition 2.1: The system {k} of egenfinctions of (2.3) is complete in L2(T) 
if and only if I' has no points of self-intersection. If this condition is not satisfied, then 
the system has anin/iniledefeel.  

.Proo{; If g(x) == g(x2 ) for 0 x, , < x, < 2jr, then the function z = g(x) defines a 
map ing of the segment [0, 2r] with identified endpoiiits onto P,vhich is one-to -one 
and continuous and has continuous inverse. It generates the mapping /(z) - /[g(x)] 
of f,2 (r) onto L2(T) which is a continuous (in both directions) isomôrphism. Hence' 

- the study of geometric properties of {gk(x)},0 (and by the inequality h(x).== 0 also 
of {q'k(x)},) in L2 (T) is reduced to the study of appropriate properties of {zk} ji 
L2 (I7). In the case under consideration the system {z"} is completein C(P) (see e.g. 
[28: Chapter II, Theorem 7]) and hence in ]? 2 (P ) . Therefore {Wk(X)} is complete in 
L2 (T).	 - 

Now assume P to have at least one point of self-intersection. Since P has no cusps 
and goes around the origin exactly once, the set C \_F has at least one bounded con-
nected component 0 not containing the origin. The functions Zk (k € Z) rè holo-
morphie in 0; and if some sequence of their linear combinations converges to a func-
tion f(z) in L2 (P),- then evidently f(z) must belong to Srnirnov's class E2(G) (see e.g. 
[20: Chapter Ill, Section 17.2]). Therefore (ZkJ00 has an infinite defect in L2(6, :	thus q(x)	has an infinite defect in L2(T) I	'-

Let us consider a particular example.	 S 

Example 2.2: Let a 0(x) = (1 ± ib 1x) (b ER, b	+1.). Then the function (2.8) 
has the form g(x) = exp [i(x + b e' - b)]. By Proposition 2.1, {q(x)}	is complete 

- in L2(T) if and only if for some k € Z 'the system of equations x 1 - x2 + b(cos x1 
- cos x2 ) = 2kn, sin x 1 = sin x2 has.a solution (x 1 , x2 ) with 0 ^-, x1 <x2 <2z. It is 
easily seen that, if JbI > 42,such a solution exists for k = —1 and, if Ibi E (1, z/2], 
fork = 0. If b E (-1, 1), then the function arg q(x) = x + b(cosx - 1) -is increasing, 
so that g(x1 ) + g(x2 ) for 0	x1 <x2 < . We see that the system {k(X)}	is:

00complete if and only if b E (-1; 1). In particular, in SEELEY's[26] example (b	2) 
the system is incomplete. •	 •
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Remark 2.3: The- completeness of (q)&(x))'00 in L2 (T) yields its cothpleteness inSobolev's 
space H(T)for each t e R. Indeed, if )o is a regular point of A, then B = (A - A01)- maps 
L2(T) onto H(T) isomorphically and continuously (in both direction): Therefore o 
iA complete in H(T), and it remains to note that Bq	(). -	q'j.  

Remark 2.4: By means of Levy's tleorem [16: § 341 one can easily show that 1" has no - 
-	2n 

points of self-intersection if and only if the equality f a0-'(t) dt = f a0-'(t) dt(x 1 , x2 E R) 
implies that z2 -	= 2.	 -	S	 0	 - 

Remark 2.5: If (2.5) holds and the spectrum' of (2.3) covers the whole plane, to an' A E C 
there corresponds the infinite chain of root functions UA,'k(x) = dkuA (x)/dAk (k = 0, 1, ...), where 
uo(x) = u2 (x) is an eigen.function. In accordance with (2.4), u4 (x) can be put 'down in the form 

u2 (z)	v(x) exp (i).6v(x)),	(x) = of a0 '(t) dl,	-' '•	-	. - 
0. 

-•	where 0 > 0 has been chosen so small that IRe w(z) < 7r12 (0	x -<- 2). Then the curve 
= (z = exp (iw(x)): Q( x 2r} lies in the open right half-plane and he functions dkzflô/ 

dAk ()€ C; k = 0, 1.... . ) are holomorphic (in z) in.each bounded component of the cbmplement 
of y. It follows immediately that the closed linear span of the root functioris of A has an infinite 
defect in L2 (T) (cf. with the second part of the proof of Proposition--2.1).  

Now we shall give some examples of operators on a two-dimensional manifold with 
'incomplete systems of eigenfunetions. 

Example 2.6: Consider the elliptic differential operator A	a0 (x) (D + iDe) 011

T2 (we write (x,) instead of (x 1 , x2 )). The C-function a0(x) is normalized so that 

dg , 2; Ietu(x, y) bean eigenfunction of A. Expand. it in Fourier series in 

Y : u(x ) y)= E v,(x) e lly . Substituting this into the equation Au = u, we obtain 
•	'	a(x) (D ± il)v,(x) = Av() for every £ EZ, from whichv1 (x) = exp (i27a0-'(t)dt 

•	,. + ix) (up to a numerical multiplier). The condition of 2-periodieityof this function 

gives 2762 ± 2ri =-2irik,so we obtain the set of eigenvalues	•	- 

43	k — ii	(k, 1 E Z) -	 '	'	 •	(2.9)


and the set of eigenfunetions  

Uk ,(x y) = exp [i(k - 1)f a0 1(l) dl + 1(x + IY)]	 (2.10) 

One can- easily verify that {2k.,} is the set of all eigenvalues of A* and thae there are 
no root functions of A except eigenfunctions. So the spectrum of A coincides with the 
set (2.9) of its eigenvalues and all of them are simple. It is not difficult to verify also 
that the sstem (2.10) of eigenfunctions of A is complete in L2 (T2 ) if and only if the 
system of eigenfunctions of ao(x)D is complete in D(T). Using Proposition 2.1, we - 

• -

	

	obtain examples of two-dimensional elliptic differential operators with incomplete 

systems of eigenfunctions. Note that the modules of the eigenvahies (2.9) are equal - 
to (k2 + 12 ) 1 /2 and coincide with the eigenvalues of the self-adjoint pseudo-differential 
operator (D 2 + D 2 )112 . They clearly have the regular asymptotics.	 - •
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2 !3. Elliptic operators, with complete systems of cigenfunctions which are, not bases. 

'Proposition 2.7: Let the system o/'eigen/undions of the operator (2.3) be complete 
in L2(T). This systeni is a basis in L2(T) 'if and only if arg aô(x)	const.	••	-. 

• Proof: Forz E r,zI = exp [_Im (:!ao(t)dt)] hence f'isa circle with tI 

center at the origin if and only if Tm (a f a1(t) dt) = const, i.e. if Tm (aaol(x)) 
0 

which is equivalent to arg a 0(x) = 'cpnst. So it remains to show that JzkJ OO  is a basis -. 
in L2(r) if and only if I' is the circle with the center in the origin. The sufficiency is 
obvious (and the basis in this case is orthogonal); we must verify the.necssity. Let 

_x = x(z) be the function inverse to z = g(x). Then obviously the system -	- 

U,(Z) = i' — ' j'(x(z)) (2r g'(x(z))I)"	(k E Z) 

is biorthogonal to {zk}. Set r ='min ( I z i : z E P}, 1? = max { I z I : z E P} and suppose 
: r < B. Fix numbeIs r0 , RO with r < r0 < B0 < R and set E1 = {z'E F: Iz > R0},,'


E2 = {z € I': JzJ < r0}. It is easily seen that, -for k  N, IIzk IJ L r ^ R01611/2, IIUklIv(r) 
ro ô2 1 1 2 , where ôk = mes Ek. Hence  

IIzkIIvcr IIUkIIL'(r)	oo	(k '- ±no).	 (2.11) 
• •
	It follows (see e.g. [17: Chapter III, §6, p. 170]) that fZkJ1 is not a basis in L2 (P) - 

•	(and no permutation can make it a basis) I 

	

Remark 2.8: It is easily seen that in case arg a 0(x) = const the system (}	is an un-




conditional basis in Hg(T) for each t € R. 

Remark 2.9: In case arg a0(x) - const the system (opkj'00 is also not abasis with parentheses. 
,For, suppose the contrary. Then (ikl oo 00 is a basis with parentheses in L2 (['), i.e. there exist 
increasing sequences (mfr} 1 , {n} 1

00
of positive integers such that 

k1  
X c1z' - /(z)

	

	-+ 0	(k -+ no) for any / € L2(F), 
v(r) 

where ci are the Fourier coefficients of f(z) with iespect to {z i}. Let P be the natural projector 
to the corresponding Smirnov's space E2 (0). Since it is bounded, we obtain 

00•  

'	c1zl	0, i.e. IlzflkP(z1ktIIL1(r)	0	(k -# no). 
i=k jfl	L(F)	- 

Therefore the norms of the operators z flkP(z–t.) in L2(I") are uniformly bounded. It follows that 
sup ] 1 P I I Lt(l z12nk) < no, where L2(I', jz2nk)is the LS.space with appropriate weight. By the Stein-

Weiss theorem (see , e.g. [5: Section 5.4]), we obtain sup {II PlIv(r,IZI' : a	n 1 } < no. So we may, 
conclude that the norms of zIP(ztl.) (n	1) in L2 (1") are uniformly bounded. Since c,zfl

= zP(z/— z"'P(z"/), we have Ic,,I IIz IILs(f) ' c I/IIL'(r) (n ^! 1). This contradicts (2A1) 
because of c,, =f /(z) u(z) dzl.  

Remark 2.10: Assume that Jarg a 0(x)I Q < /2. Then, for any a > 0, the Fourier series 
of a C H(T) with respect to the eigcnfunctions of (2.3) is summable by Abel's method of order 
s if a-is greater than 1 and close enough to 1 (see [2: § 35]). In the present case there is no need 
of parenthesis, which generally one puts' into the series with Abelian factors exp ( —) k"t ) for 
convergence, since the series L' exp (--).kt) COP(x) converges for all t > 0 (here ck are the 
Fourier coefficients of u(x) with respect to ((p}). 

-.	 )
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• Remark 2.11: Returning to Exathple 2.6, we can easily verify that the system of eigen- 
functions of a 0(x) (D + W) on T2 is complete bat is not a basis in Jig(T 2) (t ^ 0) if and only 
if the same is true for the system of eigenfunctions of a0(x).D on T. 

2.4 Examples for theorems on rough asytnptoties from Subsection 1.3. L'et A be an 
elliptic pseudo-differential operator of order t > 0 on the ?t-dimensional torus T'. If 
A is a normal operator (i.e. A*A = AA*; for example d A is a differential-operator 
with constant coefficients), then the modules of its eigenvalues coincide with eigen- 
values of the elliptic pseudo-differential operator (A*A) h 1 2 , and in virtue of (1.40) 

N(A) 	co), -	 -	 -	(2.12) 

where zl is defined by (1.33). 
- Assume for simplicity that n = 2 and consider the following differential operatof 
on T2 which admits .the separation of variables:	 --	- 

A = [a0 (x) DX]2 + [bo(y) D]2 ;	-	 (2.13) 

here the functions a0(x), b0(y) are C, 2r-periodic and non-zero everywhere. -Assume 
that

argao(x)I	 Iargbo(y)!	02,	01+02 <42.	-	(2.14) 

This provides the ellipticity of A and even its ellipticity with a parameter in some 
angular neighbourhood of R._. Hence the spectrum of A does not cover the whole 
plane.	 T 

Recall that the spectra of a0(x) D and b0(y) D consist of eigenvalues a/c. (k E Z) and 

bi (1 € z), respectively, vre a 
= (	f a0'(x) dx) b = (	fbo 1(Y)dY) , 

and that the systems {pk())c, and {,(y)} 00 of corresponding eigenfunctions are 
- completein L2 (T). This follows, for instance, from asserted in Subsection 2.2. Indeed, - 

by (2.14)'Re a0 1(x) > 0 and Re b0 (y) > 0, therefore a0 (x) and b0 (y) satisfy (2.6) and 
the aguments of the corresponding funcions(2.8) are monotonic. 

Evidently A has the eigenvalues	S 

a2k2 + b 21 2	(k,l € Z),	•	 -	 (2.15). 

corresponding to the eigenfunctions q(X) zp(y). SiOce the system {9k(X) (y)} is com-

plete in L2 (T2 ), the set of all eigenvalues of A (repeated according to their multiplici- 
ties) coincides with(2.15). The normal differential operator a2D 2 + b2D 2 has the 
same eigenvalues, and by (2.12) the counting function No.) for modules of eigenvahics 
of A has the asymptotics N(2)	d0),It , where 

21, •	 f d0 =-
	

a2 cos2 0 + b2 sin2 01 1 dO. •	 :.	
•	 (2.16) 

Write down the quantities d and zJ for (2.13). By (1.32) 
2t	2a	n/2 

d.= --- f dx 
f 

dyf (a02(x) c082 0 + b02 (y) Sin2 o)' dO	- - 

-	

= fdxfciyf(ao2(x) + b02(y) r2) d	
- f)f;• 

(2.17)
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Thus	 S 

d =	= f(a2 c082 0 + b2 sin 2 0)' dO	 (2.18) 

Comparing (2.16) with (2.18), we see that Idl = d0 if and only if arg a = argb. Further, 
comparing the initial expression for d in (2.17) with the equality 

'A =	f dxf 
dyf 

ja0 2 (x) cos2 0 + b0 2(y) sin 2 0 1' do, 

which follows from (1.33), we conclude, that Idi < A if at least one of the functions 
a0(x), b0(y) has a non-constant argument. Take a 0(x) with-a non-constant arguñient. 
Setting b0(x) = a0(x) we have dj = d0 < 4, while if 0 (x) = a0 (x) e t ' we have (for 
sufficientlr sall e > 0) Idl <'d0 < A. Now take constant functions a0 (x)	aand 

•	b0 (y) - b with arg a arg b. Then Idl <d0	zI The last equality holds because in 

this case A is' normal. So we hive shown that fr (2.13) all the cases (0.7) are posible. 

	

2.5. Another class of elliptic ' operators with a regular behaviour of eigenvalues. Con-.	- - 
, - sider the differential operator	 - 

A

	

	 uk(e') D11_k 	 (2.19)

k=0. 

on the circI6 T. Assume that O'k() belongs to C(T) and admit holomorphic extensions - 
•	into the disk {:	< 1}, continuous up to the bouiidary, and that	=- 0 for 

ll1.	 -	•	.-	 - 

	

Proposition 2.12: The set - of eigenvalues'of (2.19) coincides with the set	- 

9n_k	(m E Z)	 -	 (2.20)

k-0  

moreover, the multiplicity of each eigenalue ).o is equal to the number of such in E Z that - 
A0 can he written down in the jorm (2.20).	 - 

To prove this, we shall need two lemmas.  
- Lemma 2.13: Let the numbers afl k (k = 1, ..., n; it = 1, 2, ...) satisfy the recurrence 

relations  
Unk = afl lk + (n—k + 1)afl1k1	(1 <-k< n)	 (2.21) 

- S	 ,	 •	 . 

and a ,1 =	= 1. Then-, for all  

• a.,kP(P 	-	-'	.	 ( 2;22) 

	

Próof:'We shall verify (2.22) by induction with respect to. n. Asa preliminary, we	-- - 
note that (2.22) is obviously valid for e = 0, and thtdividing both the sides by 0 and, 
setting e	k + 1 (k = 0, ..., n - 1) we-obtain, for these  

•	-	a, +ki , _ 1 ± k(k - 1-)a , _2 + ..;± !a fl , fl_k = (k, + I YI -1 -	(2.23) 
•	-	• On the other hand, since both the sides of (2.22) iire polynomials of degree n in Q , - 

(2.22)' follows -from (2.23) with k =0, ..., n - 2. For ii	1 the equality (2.22)
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obviously hold. Suppose now that' it holds for - soniL6 positive integern,aud verify 
that it remains true after replacing n by n + -I. From (2.21) it follows that, for 

a 1+1 .+ ka j + k(k - 1 )n+I.n-1 +... + k!afl+l,fl+l_k 

a.= + k(a + 2a , _ 1 ) ± k(k - 1)(a_1 ± 3a,',,-2)  

•	+k!(fl,fl+ik+(k± 1) an . fl k)	.	.	 . 

•	 s =:(k+1)an.p±(k+1)kan.ni+(±1)-k(k1)an.n2±...	- 

±(k+1)!afl,flk	 S 

•	
-	 (k	1) (a. -.n +	± k(k	1)a_2 + ... + k! afl.fl_k) 

( + 1) (k + 1)T' = (k + 1)n--

(in the next to thelast equality we have.used (2.23) with k = 0, ..., ii 1). Thus

we have proved (2.23) with the replacement of n by n + 1, for k = 0, ..., n - 1. 
This yields (2.22) with n -3-- 1 instead of n I	. 

Set a =	dl d. Consider the equation	 .	
S 

-	 .,	

S..	 •	
.	 -S	 - 

n-i 
,""y + E Ckrk(c) eky = 0.	 .	(2.24) 

kO. •	 -. 

Lemma 2.14: Let rk() be holamarphic in {: Ri < 1} and continuous in {  
1/ the equation(2.14) has a non-trivial solution on {: ICI = 11, thëii at least one root 
of the equation	••	

.5	

.	

-	 .	 .	 -	
. . S	 -. 

-	 k=i
(2.25) 

is an integer.  

Proof: Let y() ( 0)be a solution of (2.24) on {: ICI = 11. Since the coefficients - 
of the equation are' holomorphic for 0 <	< 1 and continuous for 0 < RI ^ 1,

the function y(C) can be extended on {:-O < 3453 < 1) as an analytic solution there, 

	

continuous in 345:0 < 1 451 g; 1). (see e.g. [7: Chapter III]). This solution is single-	- 

	

valued, indeed, -if Y(45) and y(45) are-two branches of y(45) in the domain (45:0 < 453	5 

1) with the cut along (0, 11, bhen .y0 (k)(450 )	y1(k)(450) • (k	0, 1, . .., n - I) for	'-

each 45 with I450I = 1, and by the uniqueness theorem [7] YoR) = y(45). So (2.24) has 
the holomorphic solution in {45: ..0 < I CI < 13.  

The equation (2.24) has a regular singular point at = 0, and (2.25) is called 
the indicial equation of (2.24). If gk (k = 1, ..., n) are all the roots of (2.25), then 
(2.24) has the following fundamental system of solutions in 345: 0 < 451< 11 (see 
e.g. [12: Chapter 1,Section 18.2]). If ek is. such a root that no difference ek - 

(1 == k) is, ai integer, then to Ok there corresponds the solution Yk(45) =	k(45) of 
(2.24) where q,(45) is holomOrphic for I CI < 1. Further, if , ...,	,,, is a set of such 

•	roots that all its differences are 'integers and, moreover, Ok - Ok+1 ^ 0 (k = I,...,


1 + in - 1), then to this set there corresponds the set of solutions of the form 
•	 ,	 -'-	 S	 •	

S	 I 

k	-	-	 -	-	 - 
• !/t.-(45) = E 45'q'kj(C) ln" 1 45 -	(k = I, . . .l + in),	-	•	•	S 

•	

-	 i='	
-	S	 - 

•	 -	 0	 ,	•	 5	 .
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where	are holomorphic for	< 1. It is easily seen that if no root Ok is an

integer, then the fundamental system of solutions of (2.24) just indicated contains 

•	no function holomorphic for 0 <	< 1; moreover, no non-trivial combination 
• of these solutions is holomorphic for 0< 4j < 1 I 

PrOof of Proposition 2.12: Divide the equation Ay = y by a0 (e) and set 
a0 - 1(e) = q(etx) , ak( 1)1ao (e1x) = pk(e ) (k= 1, ..., n): 

sn__I	 S 

	

•	 D'y + E p.-k(e x) Dky = Aq(eIz)y.	 (2.26) 
k=O -	 •	 —, 

- Make the substitution e lx = . A simple induction shows that 
k	 - 

Di" = 
S	

-	

j=1	 -	S	 S 

where ak . j satisfy the conditions of Lemma- 2.13. After the substitution the equation 
(2.26) looks as follows (for convenience we set Po()	1): 

Xpflk()Eak ,k-)+la k_)+Iy + (p,. (C) - q()) y = 0 - 

If 2 is an eigenvalue of A, the latter equation has anon-trivial solution in the unit 
circle. By Lemma 2.14 at least one root of the equation	 •-

-	 k	-	 -	- 

EPn-k(0) L'ak.(O —.1)... ( - k + 1) + p (0) - Aq(0) = 0 
S	

k1	 j-=1	-	 - 

• is an integer. By Lemma 2.13 this equation may be rewritten in the form 

• E p -k(0) o+ p(0) —Aq(0)	0.	•-	 - 

So every eigenvalue A of (2.19) is given by the formula 

2= q'(0) Z P.-O) Mk = Xafl_k(0) nik  

for somem E Z. 

	

•	Since a0() r= 0' for -	1, we can select 'a one-valued branch of its logarithm. 

	

•	In other words, there exists a function u() holomorphic for ICI < 1, continuous for 
^ 1, and such that a 0 = exp u. Set	 -	

n 

a0()() = exp (tu() + (1 - -r) u(0)),

•	a(')() = 1 ak() + (1 - ) a(0)	(k> 0), 

A(') = Ek(')(e'i Dn_k 

By the result above the eigenvalues of A(T), for each r E [0, 1], are contained in (2.20). 

On 'the other hand, the set of eigenvalues of the operator A(°)	ak(0) D	coinci-

des with' the set (2.20); the multiplicity of 6ach eigenvalue ) 0 being equal to the 
number of m € Z such that AO admits the representation (2.20). Applying the theorem 
about the stability of root multiplicity (see e.g. [13: Chapter IV, Theorem 3.18]), we. 
conclude that these assertions are valid for A(') = A as.well I -	

S 

	

•	 C
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Corollary 2.15: The counting function for modules of eigenvalues of the operator 
(2.19) has the regular asymptotics 

N(2)	2 Iao(0)I" 1 ± 0(1)	(2 —* co). 
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