A Zeitschrift fir Analysis
. . * und ihre Anwendungen
) R . . Bd. 8 (3) 1989, S, 237 260"
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Wir crhalten unter gewissen Voraussetzungen grobe Asymptotlk fir die Eigenwerte elliptischer
Operatorén; eine der Voraussetzungen bestcht darin, daB die Werte des’ Hauptsymbols nicht
die ganze komplexe Ebene ausfiillen. Wir betrachten auch eine Reihe von Beispielen nicht-
selbstadjungierter elliptischer Operatoren; insbesondere solche mit ungewshnlichen Formeln
fiir die Asymptotik der Eigenwerte; mit regulirer Asymptotik der Eigenwerte, aber ohne Voll-'
stindigkeit der verallgemeinerten - Elgenfunktlom,n mit vollstindigem Systcm von Eigen:-
funktionen, das keine Basis blldet

-
"BuiBOANTCA rpy6as acHMOTOTHKA COOCTBEHHBIX aHaqemm IJIA IINHIATHYECKNX onepaTopOB
‘TPt HCKOTOPLIX MNMPENMNOoJIOKEHUAX; OJHO M3 HUX COCTOMT B TOM, YTO 3HAYCHMA [JIABHOLO
CHMBOJIA He 3aMOJHAKT BCell KOMIUIEKCHON mockocT. PaccmoTped psAji npuMmepoBs me-
CaMOCONpPAEHHBIX JIIMNTHYECKAX ONEpPaTOPOB, B HYACTHOCTH: C HEOOLIMHLIMHU dopmynamu
AJIA  ACUMIITOTHKM COUCTBEeHHBIX 3HAYeHHil; C¢- MPABMJILHON ACHMNTOTHHON COOCTBEHHBIX
3HaYeHnil, Ho 63 MOJHOTH KOPHEBLIX (byrmuvm C MOJHOIt cHCTeMOit co6cmeunux PyHKumit,
He ABJALUENCA GasincoM. . .

We establish a rough asymptotlcs for eigenvalues of elliptic operators under some assumptions;

one of them is that the values of the principal symbol do not cover the whole complex plane. |

_We consider also a ¢ollection of some examples of non-self-adjoint elliptic operators: in partic-
ular, with unusual formulas for asymptotics of eigenvalues; with a regular asymptotlcs of

eigenvalues but without the completeness of root functlons with a complete system of eigen- _

functions which i is not a basis.

0. Intrbduction . .

Let M be an n-dimensional closed C*-manifold, p}ovided with a positive density dz,
and let A be a classical (i.e. polyhomogeneous) elliptic pseudo-differential operator

s

of order ¢ > 0 on M with the principal symbol ay(z, &). At first we suppose A tobea - -

scalar operator. Denote by H,(M) (s € R) the Sobolev-space of order son M ; Hy(M)

=L*M). Wemay regard A asa closed operatorin Hy(M) with the dense domain H(M). f
If its spectrum ¢(A4) does not cover the whole plane, 4 has the compact resolvent
Ry(2) =-(A — 2I)7t and o(A4) consists of eigenvalues of fmlte multnplncnt,y w1th the -

only possible limit point at infinity.

"By spectral properties of A we mean first of all asymptotlc propertles of the count-
ing function of modules of its eigenvalues and geometric properties of the system of
its root functions, i.e. generalized eigenfunctions (to be complete, to form the basis

etc.) in Hy(M). If ag(z, &) > 0 on non-zero cotangent vectors, .then A is near the self-"
adjoint pseudo-differential operator 4, = (4 4 4*)/2 -in ‘the following sense: the

order of A — A, is not greater than ¢ — 1. (Here and below we denote by A* the
~ pseudo-differential operator formally adjoint to 4, with respect to.the natural scalar
product (u,v) = [ u(z) v(z) dz on M, as well as the adjoint to 4 as an operator in
’ ' M ' T~ o ° .

. ) t
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L3 M).) The case Just indicated has been-well studied (see e.g. [2, 18] and references:

~ there). Inthis case, in particular, the eigenvalues 2,(4) of A are known'to be contained
in some ‘“parabolic” neighborhood of the half-axis R, and N()) = card {7 |2 (A)l
= /} has the regular asymptotlcs

\

N(/) = doi"’" + 0(/"‘ l’/‘) (/ —> oo) wnth do /dx d¢. (0. 1)~ )

a.(-l' HEL

.

. ,Moreover in this case one can construct-a complete minimal system of root functions
_.of A4, and this system is a good “basns w1th parentheses” if the order.of A — 4, is

small enough. - -

. The case when ay(z, &) has a non-conStant argument has been studied far less (be-
low we list the correspondmg papers known to us). It is just the case to be studied in

, the present paper.

" In Section 1 -we assume that the values of the principal symbol-do not cover the .

whole plane: |arg ay(z, £)| < 6 where 0 < = Our aim is to obtain some lower and
upper-bounds for lower and upper limitsI_ and I, of the function 2~ "N (;) as 2 — oo,
‘Let us introduce two quantities

, - "/ ’ . —.' ’ -
d= (2_‘" fdz f[aozE] tdS:, - . -

- 1¢=1 © 2)'
"6%?]4 ,fmwarmm= ”
) M 1§1= 1

(Here they are put down roughly, without usmg local coordmates “the exact expres- :

. sions are presented. below in (1. 30)—(1.33)7) If ay(x, &) > 0, we have d =4 =d,
The main results of Section 1 are as follows: = - - 7 -

>0 if d+0; L=4; dshSed. -(0.3)
When d=+ O we obtain from (0.3) the rough asymptotics _ o | B a

N(i) = ).”"‘,; _ie. C, <i-"N() < C, () = C';,) : _ (0.4)
.with posit;ive constants C,, C,, Cy. We do not know if the case I_ < 1, is possible (en
interesting questlon in our opinion). If Il = I, =.{, we obtain from (0. 3) that

|| <i<A. ’ (0.5)

The inequalities (0.3) with some corollarles are proved in Subsectlon 1.3. In Sub-
sections 1.1°and 1.2 some preliminary material is contained. In Subsection 1.1 we
~establish a certain Tauberian inequality. Namely we prove that if N(2) is a non-
decreasmg function on R, and if its Stieltjes transform of order ¢,

~
- oo

-

has:the rough asymptotlcs Sq(,u) X ,u 4-¢(0 < § < g), then N(4) has the rough asymp- - )

totics N(2) X 2% The last statement is analogous to the well-known Tauberian Hardy-
. Littlewood theorem (see Subsection 1.1). In Subsection 1.2 we establish.inequalities
analogous to . < 4, I, <.eA for compact operators in the abstract Hilbert space.

Note that-the constant e in the second inequality turns out to be exact. In Subsection
- . ! . . .

>
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1.4 the main results of Subsection 1.3 are extended to matrix elliptic pseudo-differen-
tial operators with the spectrum of the principal symbol lying in two closed sectors
A, and A; which have the unique common point 0..We investigate separately the
behaviour ‘of counting functions N;(1) and N,(2) for modules of eigenvalues of 4 in
slxghbly broader sectors A4, (&) and A,(&). Tn Subsection 1.5 we consider briefly opera-
tors corresponding to elliptic boundary problems with homogeneous boundary
conditions and outline the proofs of assertions analogous to the main results.

- .The quantity d is obviously non-zero if 6n < nt/2 (whenn > 1and M is connected,
it is true if On < 7¢/2). In this case one can see from:(0.4) that there are “sufficiently
many” eigenvalues. Anothér well-known indication of such situation is the complete-
ness of the system of root functions which has been established exactly under the
condition §n < nt/2 (cf. [1]). Such condition is only sufficient both for the completeness °

of root functions and for the presence of the rough asymptotics for N(2). Indeed these - "

two.properties of A are preserved when we pass to A* (with pGsitive integer k), while
“the sector free from values of the prmcnpal symbol can disappear. On'the other hand,
if the values of the principal symbol cover the whole plane, we cannot pomt out any
sufficient conditions for the completenegs or for the presence of the rough asymptotics’
for N(4) (and even conditions,under which the spectrum of 4 is non-empty or discrete).
We examine these problems in Section 2 on some examples. First of all we give very
simple examples of elliptic operators on the torus either with the empty spectrum or
with the spectrum filling the whole plane (each point is an eigenvalue). Then we
discuss in detail (in Subsections 2.2 and 2.3) the example of the elliptic differential
operator of first order on the circle. As it has turned out, this example has been con-
~ sidered by SEELEY before us. In his note [26] he indicates the conditions under which
- the spectrum of the operator is empty or covers the whole plane. He also points out
“that if neither of the two degenerate cases takes place, then N(2) has the regular
.asymptotics with somewhat unusually defined coefficient dg. We recall these calcula-
- tions, and in addition we obtain in Subsection 2.2 the exact condmon for the comple-
teness of eigenfunctions of this operator. (In the non- degenerate case all its root func-
tions are eigenfunctions.) This condition deals only with the prmcnpal symbol and is
non-local. The countmg function N(2) has the regular asymptotics in the non- degene-
rate case even if these is no completeness Assuming the completeness, we deduce in
Subsection 2.3 the exact condition, under which the system of eigenfunctions is a -
" basis, and obtain an example of an elliptic operator whose system of eigenfunctions -
is complete but is not a basis. We construct also such examples of operators on the
~ torus using the separation of variables. In Subsectxon 2.4 we congider anothér example
_of an elliptic differential operator on the torus, admitting the separation of variables,
"in order to demonstrate the possrbllnty in (0 5) of a,ll three cases .

W=l<d, ld<l=4, |¢§|<l<A._.‘A : (0.7)

In Subsection 2.5 we establish the existence of the regular asymptotics of N(4) for
elliptic differential operators on the unit circle whose coefficients admit ‘continuous
extentions in the unit disk holomorphlc in its mterlor '

Now we list the results known to us and more or less close’to the subject of thé present article.
In the paper [6] of BoJMATOV some abstract t,est for validity of (0.4) has been formulated. For
dnfferentla,l operators this test yields (0.4) if on < nt/4. KoZevNIKOV [14] has considered a
fnatrix elliptic pseudo-differential operator”"4 with spectrum of the principal symbol lyingon .
- several half-lines. He has obtained asymptotics of eigenvalues of 4 close to one-of the half-
lines. An extension of this result to the case when in addition to the half-line under considera-
"tion there is & sector covered by eigenvalues Ay(z, &) ((z, §) € T*M \ 0) of the prmcrpu.l symbol '
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. B _ . . _ ,
has been obtained by Acraxovice [3]. RosenBLooxm [21, 9] has obtained an asymptotic for-
mula for the modules of eigenvalues for normal elliptic operators and clliptic operators very.

. close to normal, in a sector, whose bounds may even contain the xalues of the principal symbol.

Thé- main results of this paper have been reported at the 10"‘ Session of the Petrow-
skii Seminar on -differential equations and mathematical problems of physics and

.. Moscow Mathematical Society in January of 1987 [4].

We wish to _express our sincere gratltude to V. I. Matsaev and F. L. brledlander
for valua.ble discussions and to V. I Matov for the help in translation.

1. Rough asymptotlcs for countmg functmns .

\
negative non-decreasing functlon on the non-negative half-axis R+, with N(0) = O
If q > 0and - . . . ‘ —

ja—de(;.) < o0, © - . (1.1)
: l . ° . * . ’ . . ° :

then the Stieltjes transform of order g of N(2) is defined by (0.6). We shall only need

the case when N(2) is the counting function for some non-decreasing sequence {o;},*

exceeding 2. In this case the condmon (1:1) means that 2, 0;79 <.c0 and we have

AN

Sylu) = 2(a,+y | B T ay

Let N, (A) and Nz()) be p051t1ve functlons for A = 2,. We shall write
N,(A) ~ Ny(?) if lim N,(A )N, (2) =1
: ‘. A—00 .

(th\e strong equivalence), and ) .
LN X N0 i lim N()N,(1) > 0; T Fm N (2)/Ny() < oo
A—c0 0 : A—00 L.

AN

(ihe‘wedk equivalence). Since the clz;,ssica.l works of Carleman, tﬁe follbwing Tau-

berian Hardy-Littlewood theorem ‘has been successfully applied in the study of
spectral asymptotics (see e.g. [29: Chapter V]):

Suppose (1 1) holds and Sq(,u) Ng/,td 7 (u—> oo) ‘for some 6 € (0,q). Then N(2)
~ bs,q07° (A~ oo) where . .

| b(,c:éft& l(1+z) th—éB(a q—é) ' ‘ (1.3)

We shall need an analogous result for the weak eqmvalence mstead of the strong

‘one:

Theorem 1.1: Let (1.1) hold and Sylp) X ,u" 7 (u — o0) for some 6 € (0 q9). Then

N(/) 28 (A — o0).
.Proof:_Smce oL : ‘ o

J 4+ predN@) = o+ w  No) + ¢ f (A + w)=9- N dd, . (1.4)
0 .- -~ o - .

i . i

<

11 An analogue of the Tauberian Hardy-thtle\\ood theorem. Let N(2) be a non-:

of positive numbers ¢; with g; ='co as j—> co: N(4) is the number of the ¢; not g
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from (1.1) it follows that

-f‘(z+,¢)—a—lz\;(x)dz<ob." _ ~(1.8)

Hence the limit of N (%) (4 +- u)"? as 2 — ?’o exlsts, and from (1.5) we see that it 1s '

equal to 0. So (1.4) implies

-

Sq(u) =g 0f G4m- NG .
By the assumption, \ | ‘ |
Colmes@se=0 o T
1‘1_510 u“"‘;Sq(#); 0 <oo. ’ o o . (1.8)
(jbvio-l-lsly | .- = o . |
[ (iNﬁ(LA)/A?:;I 2 [ o fﬁi 2% [ ‘+d;>"+* = 52(:))@ o
- » : .
From thls rela.tlon (1.6) and (1. 8) we have "
llm,u“’N(,u ) < 2002 L T I ,;.(;.9):
Py . .- ) o :
\Tow we'want to estlma.te lim u "N(,u) vadently for y > 0 ) oo -

N

f__(lL X f o f _Now'
L e (/+u)"“ = Mo (7+u)"“ NG

= (l 10)
: On the other hand, by (1 9) we have for any e >0, 1f yu is sufflclenbly large,
. ‘ i )
. f(iw)q1N(2)dﬂ<(ez+e2vfu+;c)vww
. -I" - ; vy - b4 4 —
\\ - ‘ ‘ : )
I szq(oz +e)f1" -1d} = 2°(oz + e) (q—é)-l (upP=e. - T (11D
. ~ 4 . . )

From (1.6), (1 10), (1. 11) ‘it follows that .
o= 6Sq(/‘ - q2"(ez +e)lg =07y = pNipw). g (1.12)

" Choose o SO lalgc that u9=9S,(u) > o, — & for u > uo (see (1.7)) and .y so large t,hat
_ the second term in the left- hand side of (1.12) isless than &. Then N (y/l.) (91 - 28)
(u > o), and therefore

hm) SN(2) 2)/“(91 — 25) . : . | . 1(1.13)

© A0 \

From (1.9) and (1.13) we obtain the conclusion of the theo;‘em- |

.
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. where bs.g s defined n (1.3).

;.

~

/
'

. Remark1.2:'In the proof of (1.9) only (1 8) has been uscd whereas in the proof of(l 13) )

we have used both (1.7) and (1.8): .

Rema.rk 1.3: We do not try to‘obtain the best estlmatcs for lim A-4N(4) and im AUN(4) in .

terms of p, and g,.. -
Remark 14: In the proof of Theorem 1.1 we have shown that (1. 7) and (1.9) imply
lim AN () > 0. ' . —

’

We shall need also the followmg statement whrch is inverse to Theorem 1.1 (Abehan :

theorem). It is valid in a sharper form, and the requirement that N(4) should have a

-1

_finite variation on each f]mte segment, mstead of monotonicityy is sufflclent

Let (1.1) hold. Then o . y .

lim ue=4S, (y)zbéqhm). N@y, . (1.14)
$—r00 . ha A .
lim pe~ "S () Sb,,,,hm} "N()) ' ¥ _ (1.15)

H—>00 ’

The proof is elementary ; see e.g. [29: Chapter V']"

1.2. Asynlptotlc estimates for ergenvalues of a compact operator by its singular valucs
_In this subsectlon K is a compact operator in a Hilbert space. Let {1,(K)},*® be
_the sequence of its eigenvalues, counted: -according - to* their multiplicities (i.c.

" the dimensions of the corfesponding root subspaces) and arranged so that {2,(K)| .

"2 |4(K)| = .... If K hasonly a finite number of non-zero eigenvalues, we complete the
sequence by zeros. The numbers s,(K) = 2,((K*K)V2) are called ‘the singular values

of K. The eigenvalues and the singular valies are connected by the well- known .
‘ Weyl znequalztzes (see e.g. [8 Chapter TI, § 3]): -

—

.]_7|)(K|g[7 J(K) - ‘(n.=1,2,...5. o T e

They have many- consequences in particular,
<

2"1(K|p<gs,»(1<).'.(7';=127-p>0) (1.17)
j=1. j= N .

Denote by n(t) (respectlvely by v(t)) the counting function for |4; 1(K i (respect,lvely-—
for s, 1(K)) As it is pomted ‘out ln [19],-(1.16) can be rewrltten in the form

Iy ) ] -

fz ln(l) dt <ft lv(t) dt - (2> 0). S . (1.18’);

Here we want to establlsh some connections between the asympbotrc behavrour of ‘
n(t) and that of v(2) followmg from (1 17) and- (1.18). ' :

Theorem 1.5: For any 6 > 0, ,
hm;. Sn(4) Shm). Oy(2). . e (L. 19)

Proof lf K has only a finite number of non-zero eigenvalues, then the left- hand
side of (1.19) is-equal to 0. Therefore we can assume that all the 2 2(K) (and by (1.16)
all the 8,(K)) are distinct from 0. Set Po = 1A~ Y(K )| and ¢, = 8a"Y(K). Obviously,

im'A-%(2) = lim o,,"n ’ . ’ o (1.20) -

i—00 n—»00

ot



{ . or S : ) V . - . : I ., ; ,. '\.

Spectral Properties of Elli}etic Pseudo-Diff. Op._ 243 .
a,qdfor'eache>0wehave ' S L k. -
C
hm Atn(d) = hm (o — e)‘ n = lim Moo _ (1 21)

© A—»00 n—>c0 n—»co

Suppose that {1.19) is false. Then (l 20) and (1. 21) 1mply hm Un” "n > hm a,,“’n and

'therefore, with some @ > 0, y,™% — 0,7% > an™! (n = n;). Hence Z Mo~ )__,' o,7%
n=n, n=ng
>a Z‘ %"t — co-as m — 00, which contradicts (1. 17) withp =61 -
. ‘n= n.

Theorem 1.6: For any 6 > 0, : '
hm; n(d) < e fm (). - | R ()

A—00

frooff It follows from (1.18) that for a.hy y >0
fz L) dt = fz n(t) dt 2[: ln(z) dt 2n(4) Iny. R ,' (1:23) - -

‘Let d, be the upper hmxt in the right- hand side of (1.22) (We assume 1t to be fxmte)
. and ¢ be’an arbitrary positive number Then ‘V(A) < (dy+ e) Py for A= )0, and there- ..
- fore we obtam from (1.23) .

1

n(,’.)g(ln.y)‘ﬂ (}f () dt + (d2+s).f’t”—1dt) ST -
-\ Ty ‘ i .

=Ry Const + (4 + ) d B,

--_aﬁ()) < (In p)? (l;" Conéf + (dp + %) 6"1)'/‘). oo B S

Setbmg here y.="el%, we obtain the inequality R o '
In(l) = 6() -4.Const + (d,- + €) 671 €), _

- from which (1.22) fol]ows (I _ - e i}

Remark 1.7: The constant e in (1.22) is the best possible. Indeed by Horn’s theorem [ll]
for any integers? and m (0 < ! < 'm) there exists an operator 4, ,, acting in a Hilbert space of _

finite dimension m*— .1, such that 4(4;,,) = (/m)Y™=D and s(4;,,) = L+ )1 (G =1, O~ -,‘

m — l). Choose an increasing sequence {m},* of positive integers such that m,/mg_, —-co and
denote the operator A,,,H mq by K, (g=1,2,...;mg = 0). Let K be the ort,hogona.l sum of
K,. Evidently, A; J(K) = (mg_ IV/mQ')h’(Ma-"'q-.) (mq_ <jSmy ¢=1,2,..)and s(K)-=j?
(7 =1,2,...). Hencev(t) = [t] and n((m g ')1/("'a—'"a--)) = m (g=1,2,...). Using Stirling’s
formu]a we obtain . .

1 ' mq-‘+|/2
Iim L (——9—m "!)'m‘-m"" = e]ipe (mJ—" Mo e’ _ g, . ' o
t>oo q—»oo mq! ) g0 ’mq T . _’ -
So Tim ¢- l'n,(t) 2 e=ce hm t(t) B . B

t—o0 . s
' .1 3. Theorems on rough asymptotics for modules of e}gehvalues of elliptic operators.
Let M be an n-dimensional C®-manifold provided with a positive C®-density "dz.’
We consider a classical (i.e. polyhomogeneous) scalar pseudo-differential operator 4 _
of order ¢ > 0. Let aq(z, 5) be its prmcnpal symbol It is a C~-function on T*M N\ 0,

N

7
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posmvely homogeneous of order ¢ in ¢ (see e.g. [27] ). The values of ay(z, &) ((x, 5)

€ T*M ) cover a sector with vertex at the origin. We assume that the sector does not
comcxde with the whole plane C. We may also suppose that its brsectrlx is R+, and
then our assumption is as follows:

arg ag(z, ) <6 -0 <m). - (1.24)
This condition.means that 4 is elliptic with a_parameter in any-sector ,
{Ailargi—alSa—0—¢ (O<e<an—0). >~ " (1.25)

It follows (see [23]) that 4 (asan operator in L3(M) = Hy(M) with the domain H,(M))
has the compact resolvent R4(4) = (4 — iI)~! and that in any sector (1.25) A may
have only a finite iumber of clgenvalues Moreoyer each half-line {i:arg.l = ¢}
lymg outside the sector {2: |arg A| < 6} is a ray of maximal decrease (by the termino-
logy in [1],a ray of minimal growth) of the resolvent, i.c. [|R4(2)]| = O(|4|7!) as A — o0
— along such a half-line. Replacing if necessary 1 by 4 — ¢ with an appropriate c, we
" assume (without loss of generality) that.all the points in some sector (1.25), including™
O, are regular for 4.-. . .
Let it > n (L e N); then [R4(2)])' belongs to the trace class, so we may ‘consider its
trace tr [RA())]‘ It is well known (see e.g. [14)) that

> s tr [RA(""/I')]‘ ~eowpttt o (uw— +°°), ) : - (1.26)
where Coq S . ' N

c, = (27:) "j' (a’o(x, 1) tdx d§ : : N : (1.27)
-t . T‘M '_ o

The coefficient c, may be expressed also, using a sufflclently small partition of umt,y
A@e(®)},™ on M and’ values ao"‘)(x &) of thc prmmpal symbol m (:orrespondmg local
coordmates in the form

~

e as (2_:)’:,‘. f 2 @) f oz, 8) "/'dSs dx, o es)

IEllz - ~

Here d§ ="z 1 do dSé, ¢ = |&| in local coordma.tes and by (ao(")(:c §)) ™ we mean
.the main value of the funcblon 2= for z.= ag®Nx, &) (f z =relY, —a <y < a,
~ thenz—#t.—= r—1lt e—“""‘) From (1. 27) to (1 28) one may pass applying the well-known
formula

o0

. —J ’ ° . - o
fﬁ = la" ""B(n/v u— n/V) 1= "< ‘%‘e& (—o0,0]) (1.29) ,_
! .
(see e.g. [9: p. 299]). Introduce two quantities - T '\» _ )
L d=bah ) [ (aolx, &) 1) dedE, . < o (130)
o AR T Ty . » : _ : o .
. A = bz} (2m) =" [ (laolx, £)| + 1) da dE. - (1.31)
. . e b 3 . . .
Using (1.29); we can rewrite (1.30), (1.31) in the form \
| * m \ . '
vd = ———— (k) —nfe. (1.
¢ = f Zn [ fatte, 0)-rras, dz, sy
, 1e1=1 L _ : . .
/ 0 —nlt g, | ’
A= f o) [ oz, o1 as, . | (133)
- 1&1=1 . S
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From thls we see that |d| S 4 and that d, 4 do not depend onl. Smce (1 24) 1mplles
' Re[(ao”"(x )" = |a0“"(x é)i-"" cos (Gn/t),
we obtain from (1 32), (1 33) also ’ \
1d] = 4 cos (Bnt). o o o (1.34) -

. Denote by N(2) the countmg function for modules ‘of eigenvalues of 4, i.e. the
. number of them in the circle {z:|z] < 2}. Recall thab each -eigenvalue is counted
according to its multiplicity. :

Theorem 1.8: Under the above assumption.s, ‘ o C T

1d|§.llmA"‘/‘N())SeA. B S (139

Proof Let; us verify that in the proof of the mequallty

s

|d;s1nmz "IN (2) : ' o o -(1.36)

¢t may be’ replaced by tp, where P lS an arbltrary positive integer. By this replacement
ao{z, £) turns into (ao(x, 5))1/” while d, as it issseen from (1.32), remains the same.
Further, if N®)(1) is the counting function for modules of new elgenvalues 2V, then
utN(u) = /"P/‘N“”(/) for y,= AP. Therefore the right-hand side of (1.36) also does
" not change. Hence we may assume that all the eigenvalues 2, of 4 lie in {2:larg i| < o}
wheré ¢ < 7/2. We shall first establish the inequality of the type (1.36) for the count-
ing functxon Ny(2) of the real parts of 2,:

Y E Lo ‘
|d| Sllm/“""NR(/) o _ o (1. 37),

It‘ls obvnous ‘that, for ,u. > O Z‘ Re) + ,u)' + p)
-and consequently _ . _ , .
hm /4‘ nlt Z (Re}. + ,u) > hm ul—nit Z (} + ,u) ‘ (1 38)

Smce tr [RA(—,u)] = 2 (2, + i)t by (1. 26) the rlght -hand 51de of (1.38) is equal

+ to |c,], and we.may rewrlte (L. 38) in the form L ; &

Iim p'- "/‘f (4 +'u)=H dNg( N lels
. o B—00
Now (1.15) and the equality ¢; = buid imply (1.37). Since larg 2,| < @(< 7/2), we
' ha.ve N(A) = Ny(2 cos ®), 80 from (1.37) it follows that |d| (cos )" < 11m )—""N(}.)

Replace here ¢ by ¢/p: (| (cos ((p/p))””/' = llm A= n[‘N(}‘) Evidently (cos cp/p))""/‘ —~1

as p — 00, so in the limit we obtain (1. 36)

" Now pass to the proof of the right inequality in (1. .35) Wlthout loss of generallty,
assume that 0 ¢ o(d). If K = A1, then 0bv1ously N(4) = n(4), where n(2) is the
counting function for modules of the characteristic values of the compact operator K.
vBy Theorem 1.6 ‘

fim 2-"ln(d) < e Tim A="/h(2). : (139 .

’—00,

~

"17 .Analysis' Bd. 8, Heft 3 (1989) ) T g - o
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It is easily seen that »(¢). coincides with the countmg function for eigenvalues of
= (A*A)'2. Tt is a positive elliptic operator of order ¢, and its prmcxpa.l symbol is
equal lao(z,.£)|. Thercfore . .

-

Y(A) ~ AR ) 00 : ' (1.40) .
(see e>g [27 '§ 15)). Thus (1.39) ylelds the right inequality in (1 35) 1
Usmg (1 .40) and Theorem 1.5, we obtain the followmg assertion.

Theorem 1.9: Under the above assumptz(ms, '

- B b L

lim A-"N(1) < 4. . L (14)

A—o00

Remark 1.10: As it is seen from the proofs, the right inequality in (1.34) and (1.41) are
both valid for each elliptic pseudo-differential operator with a discrete spectrum (the condmon -
(1.24) is not necessary). .

1

Theorem 1.11: Let d % 0. Then ) . 7
. LmA-"NG)>0. . - ,’/(1.42\) :

A—00

Proof: Since, according to our assumption, all the elgenvalues 4, lie-in some sector -
{A: larg 2] < 0, (0l . 7), we haveforp >0 - . g

A+ ult = 12, o a2 (2] 4 cosarg 2(I7|+#)2005202 a4 .
and hence

.§|M+m-’>02|a + ul '>0|,>:<4 )

where C'= (cos (6,/2))~'. From this we obtain

Z(l +u) ‘

v=1

Bt 3 (12 @) 2 € lim

By (1 26) the latter limit is equal to [¢;] = [b,,/, ,dl ‘So

lim pti f (A 4 w)' dNQ) > 0. . | S ‘ (1.44)‘
H—>o0 0 - . L
‘On the other hand, by Theorem 1.8 . ‘
' fim A- "N (2) <oo. ' o T sy
T e ' o/ ,
Accordmg to Remark 1.4, (l 44) and (1 45) 1mply (1 42) l
From Theorems 1.8 and 1:11 follows . . t- )
Corollary 1.12: If d % 0, then N(/I) < Amit,
Remark 1. 13 If ‘ _ )
nd < atf2, | " ' , C ~ (1 46)

" where 0 is the same as in (1. 24),\then d- =#= 0. This follows from (1.34). If Mis. connected and
-n > 1, the sign < in (1.46) may be replaced by =. Indeed, in this case the real part of the inte-
© grand in (1.32) is non-negative, and if d = 0, we have Re (a,¥Xz, &))" = 0 on U; = {(z, £):

a ’ . v
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(. N T ) RN

or(2) > 0, |l =1} (k =-1,...,m). But then, since M ‘and the unit sphere in R® (n > 1) is
connected, there exist a number kanda point (zy, &) € Uj such that Im {a®)(z,, &))" = 0,
80 that a,'¥)(z,, Eo) = 0, which contradicts the ellipticity of 4.

Remark 1.14: Corollary 1.12 shows that 4 has “many’ elgenva.lues if d & 0. As it has been
mentioned in the Introduction, the condxt,lon (r.46) assures the completeness of root functions
of the operator..

Theorems 1.8 and 1.9 imply -

. Corollary 1.15: If the lzmzt of A="N(2) as 2 — oo exists, it belongs to the segment»
[Idl 4]. «

" Remark 1.16: If |d| = A4, then the limit of 1—""N(2) as A - co cxnsts (a.nd obviously coin-
cides with |d| = 4). Indeed, from (1.32) and (1.33) it follows t}mt in this case arg ay(z, &) =
const. But then 4 = x(4, + B), where « € C, 4, is a selfa.d;omt; elliptic pseudo-differential
operator (with'the principal symbol a—ay(z, &) > 0), and B is a pseudo-differential operator of
order =<t — 1. Therefore for 4 the formula of the Lype (0.1) is valid w1bh or‘ao instead of a,
(see e.g. [18]).

v

1.4. Generalizations to matrix elliptic operators Let A be a’ (r X r)-matrix elllptlc
pseudo-differential operator of order ¢ > 0 with the principal symbol ay(z, £). Denote
by 4z, &) (j =1, ..., r) the exgenvalues of the matrix ay(z, £). Under the condition
larg 2(z, &) < 6 < 7 (7' = 1,...,7), Theorems 1.8, 1.9, 1.11 and Corollaries 1.12,
1.15 can be easily extended to t,he matrix case, with the replacement of (ay + 1)~!
and (lalo-+ 1)~! in (1,30) and (1.31) by tr(a, + E)! and tr ((ag*ao)!/? + E),

: respectxvely Assume now that the eigenvalues of ay(z, £) lie in two closed sectors Al

/

and A, with vertex at the origin and without any other common pomts For defini-
teness assume that .

A= ¢ lerg i <0, - Az‘={4‘:|al‘g{:|§0§}, T

{where 0=<6, <0, <a. For arbit-rary small ¢ > 0, A-is elliptic with a parameter in

={{:0, + ¢ < targl <6, — ¢} (s < (0, — 01)/2) and ‘these sectors can con-"’
tam only a finite number of eigenvalues 2,(4). Fixing ¢ > 0, denote by N,(2) the
counting function for modules of those 2,(4) which liein 4,(e) = {¢: |arg {| < 0, + ).
Generalizations we are going to obtain concern.N,(4) (instead of N(4)). Since N,(1)
< N(A), some upper bounds for N,(2) come from appropnate bounds for N(2), so
we shall deal only with lower bounds: Set

~

c,m— (2r)-" f 2 (A, &) + 1)~ dx de, dw =b;,},,c,<1),'. (1.47)

T*M .Aea,

S,.:(C)‘ X (A(4) —¢)"',' o LT (1.48)

A'EAI(E)

where Lis an arbltrary positive integer greater than n[t (one can verify easﬂy that d®
does not depend on 1). The desired generalizations will be derived from the following

Theorem 1 17: I/l —1<nft <l,then -

8.48) = ei(—0)" 4 (il (¢ - oo) S (149
uniformly in {: |arg ¢| = 6, + &).

Proof We begin with the known formula (see e.g. [14])
S

n—1
( (C)) (2m)—" ftr [ao(x &) — LE) ‘dx df +0 (|C| 7 ")’ |

. jT‘M

T17e. o .
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which: is va.lld in A, i Set,t,mg S2 ,( )= (RA(C)) S,.4(8), we pub down thlS for- -

" "mula in the form

Sl,x(C)+'Sz.:(C)=(2n)* f p (A,(x, 5)-@) U dzdE

T*M lea,

SN R E=In
e S Zumm—Qﬂa@+oQu.i
TOM jeds

~

Here the flrst integral makes sense if [arg Cl > 0, and we can tra.nsform it by setting
" &= plty for { = —pu < 0 and using the holomorphic extension in ¢. The second
‘ mtegra.l ‘makes sense if |arg {| < 0, and admits a similar transformation: we set
£ = plity for £ = 3 > 0 and then use the holomorphic extension in {. So we obtam for
C €A=x

. ,A . \ . B L. . "__1_1) ' L
8y, z(C) + 8p,4(8) = (=) g@rgnit=t 4 0'(|Cl Y - (1.50)
where ¢,V is defined by the first equallty in (1.47) and c,(z) by the analogous equallty
with 2;(z, £)-€ A,. -

Let us estimate the growth. ofS, (&) when |arg =6, + e.Sincelarg 4,] < 6, + ¢/2

" in each term in (1.48) w1th sufﬁcnently large’ i we have, by the inequality analogous
© to (1.43),

1S;. z(C)l < X 1h(4) —-CI ' G Z (1,(A)] + ICI)‘

Aye Ayl2) . Aye Ay(e)

" for sufficiently large |C| Since N(}) = 0() nlty (see (1 35)) we have |/ JHA) = O(v—'/")
and-therefore )

| ( | < Cl 2(”‘/" + |Cl - = C f ( t/n + |C| 01|C|"/‘ lf (Jl/n

. (we use the substltutlon x = | |"/‘ . Thus

T s = oty ¢ oo, argllZ0 ) - 7 (15D
. S—im:ilarly we can,verify that ) , .
Sz (8) =.0(L1M =) (L > o0, larg ] < 6, — &) ‘ T o(152)

The formula (1.49) we shall derive from (1.50) by “‘separating” the asymptotics of
7S;.4(¢). To do this, take the contour I" consisting of ‘two half-lines {¢: arg £ = +(0,
+ &)}, passing from oo to 0 on the lower and from 0to co on the upper ‘half-line. If
some 24,(A4) are found on I' (there is at. most a finite number of such 4,(4)); we sllghtlyA )
deform I' near such pomts so as to avoid them, but make this to that all the eigen- -
-values of 4, contained in the sector { 4‘ larg {| > 6, + &}, remain at the left of I" and
so that the origin remains the unique pomt common to. I" and R. Divide (1. 50) by
. 27i(¢ — 2) and integrate along I', assuming z Iles at the left of I': -

R Sul®) L &@) . o
L Gl La® [t 1 [0, s
= o f i) T2 % Y om | 1% (1:53)

S _ F _
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-

/

\where R(¢) is the remainder in.(1 00) (all the integrals converge a.bsolutely in virtue
of the condition n/t < I and relations (1.51) and (1.52)). In the first term of the right-
hand side we can replace I'" by a closed contour surrounding z and lying at, the left of
I'. From the Cauchy, mtegral formula it follows immediately that this term is-equal to,
¢ W(—2z)"*=} Analogously, in the second term of the rlght -hand side we can repla.ce .
I by a closed contour lying at the right of I'; so this term is equal to 0. Similar argu-

~ ments permit to calculate easily the terms in the left-hand side of (1.53). The first of

T them is equal to S, i(z), the second is equal to 0. It remains to estimate the third term
in the right-hand side of (1.53). Let 7 be so large that the part I""’ of I" lying outside

- <the disk {¢:.]¢] = r} consists of half-lines, and let J" be the part of I lymg inside the

disk. Then L .
. e : . -

[ B [ IREQ) f ) 4 S

2 < ; .

fg_zdc P ||c|+ |¢|+1|'C' | -

for larg z| = 0, + & (we-again apply the inequality analogous to (1.43)). The first term
on the rlght -hand s;de 0bv10usly has the order O(|z|~?). The second term is not greater
than .

~ - 1 ) ’ ’ :
n—1 - —1 .
o Ca |z|T_I( f v F " dy + T ‘ - (1 + 7)1 (lr)

lz]7* -

‘ (here we use the substltutlon [¢] =7 |2 and the mequahty (1 + 7)” 1 < 1fort € (0, 1)).

n—1
The order of this quanblt,y is0 (Izl ¢ ),,when (n —1)/t — l > —1, 0(|z| 1lnz), when
'(n — 1)/t — 1l =.—1, and 0(|z| 1), when (n — 1)t —1 < —1.8ince! — 1 < nft <,
- in all the cases we obtain the estimate o(|z|"/‘ ) for the third integral in the rlght hand
- snde of (1 33) 8 N A )

The main result of the present subsecmon is
. Theorem.l.‘18: 1fdM == 0, !hen ‘ ' )
' lim 2="tN,(2)> 0,  Tim - "N () = o). SN S (1.84)

A—>00. A—00

Proof: The proof of the first inequality is quite similar_ to that of Theorem 1.11. ’

~ To.prove the second inequality, it is convenient to change the notations and assume
that the bisectrix of one of the sectors separating 4, and /1,-coincides with R_. For .
this, 4 is'to.be replaced by el¥A with an appropriate y. Theorem 1.17 gives the asymp-
“totics of S, (¢) outside the angular nelghbourhood of A, in its new position and, in

. particular, along R_if n/¢ is not an integer. Now we note that it is sufficient to obtam
- the desired result for 4, = A4°* with an arbitrary « € (0, 1) (taking into account that
- the first formula in (1.47) can be rewritten in a form analogous to (1.32) with 3’ 2,/
instead of a,—"/*). Therefore we may assume that ¢ is irrational and that we have a

" formula of type (1.49) for 4'/» along R_. Now we can prove.the second inequality i in

(1.54) i in the same way as (1. ‘36) ] . : ‘

Note that if 6, = 0, i.e.if A, is reduced to R, one of the authors [3] has obtained the regular )
asymptotics N,(2) ~ dhini (/1 ~> 00). Here we have used the way of reasoning employed in {3].

1.5. Results for elliptic boundary value problems. Let G'be a bounded domain in R" o »

with.a 0®-boundary 0G. Consndel an elliptic boundary value problem

/

. A_u —.-:fAm G B}ulac =0 (7 = l ) T ' (].55)
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(see e. g [15] ) with. homogeneous boundary conditions. Here u, f are scalar (for sim-~
_plicity) functions, 4 is a differential operator of order ¢t = 2m, elliptic in G, "B; are
differential-operators of order-#; < ¢ and all the operators have C®-coefficients. De-
note by Ap the corresponding closed operator in L3@); its domain is the subspace in
"H,,(() defined by the boundary conditions Bjulse = 0 (j = 1, ..., m). Suppose the
problem obtained from (1.55) by replacing 4 w1th A4 —2,is elhpt,lc with a param-
eter in a (closed) sector-# with the bisectrix R_. Then the boundary opelators form
a normal system (see e.g. [24]), the resolvent R, () exists for 2 € ¥ with sufficiently
large |2| and satisfies the estimate ||R ()| = O(})] 1) (see [1] ). Asin Subsectlon 1. 3 .
we may assume that E, (1) exists for all i'¢ 7.
Define d and 4 by (0.2) (where ay(z, &) is the. principal symbol of 4 and t = 2m)
with @ instead of M. Let N(2) be the counting function for modules of eigenvalues
2 Ap). : . | e

THeorem 1.19: Under the above assumptzons, .
|d| < lim A‘"/‘N_(_).) <ed, lim )—"/‘N(l) < 4;

i—o0 =00

furthermore, if d == 0, then lim A="/tN(1) > 0. .

i—>o0 »

I

The proof is similar in the u:min to the proofs.of Theorems 1.8, 1.9, 1.11, and we restrict b.

ourselves to the following explanations. First of all, a-formula for 45 of the form (1.40) is valid.

It comes from- the fact that the composition Az*4, corresponds to the self-adjoint elliptic
. boundary value problem in G for the differential operator 4*4 with the principal symbol
- lag(z, §)|? (sec e.g. [10]). Secondly, one can define the powers Ag*of Ap, 0 < & < 1 [25]. Set
Ray(A) = (AB —AM)~e(geN). If 2maq >, this operator belongs to the trace class and the.
following lemma is valid.

- ..

Lemma 1.20: Under _the above t;ssump.tio.ns,
‘

n n—1 - -
54 o4
tr R,,q(}.\) = bnfomagd(— A2 T 4 .0(|}.|2’_"°‘ )‘«,(;'._) —00).
To prove this formula:one must ap.ply the‘eouality -
. { . S
Rugd) = o f (4% — =0 Ray() dp
o 7t
: ' r - S : i
and SEELEY’s formulas [24] for the parametrix, which approximates R, in £. Here I' is the
contour consisting of two half-lines {u:argu = 4y, [u| > &} and the arc {u: |u| =4, |arg y]

< 1p} 4 is a small positive number; 0 < y < 7 and y is sufficiently close to n; the direction of
passing is counter-clockwise on the arc. .

Onée can take a compact manifold with boundary instead of G and tonsider elliptic
boundary value problems for vector functions, including the case of two sectors of
ellipticity with a parameter But we shall not dwell on that.

- - ’ / -

.

- 2. Examples and counterexamples

2.1. Elliptic operators with empty spectrum and with spectrum filling the whole plane. -
Consider an elliptic differential operator of the form -

A = el#P(D) -

on the n-dimensional torus T". Here P( ) is a polynomial and § is a non-zero multi-
index. (We identify functions on T" with approprlate functionsof z = (zy, ..., x,,) € R",

-~

' .



i

* Spectral Properties of Elliptic Pseudo-Diff. Op. 251

2z-periodic in every z;.) Assume first that P(x) 0 foreach « € Z". Suppose Au = Au -

for some 2 € C and some function » € L¥T"). Substituting here the Fourier expansnon_ .

wz)= Y coewr T R AV
. agZn .. .
we obtain N '

Pla) o = Jewse o o ‘(22)'

CIf A= 0 from (2.2) it follows that c, = O for all'x, so that u(x) = 0. Now let RS 0/
If c., = 0.for some o, then by (2.2)- <

Cagrkp = AP (o) P(O‘o + ) ... Plag + (k—1) B)e,, (kEN),

" so that ca,+ 8 — 00 a8 k — oo. This contradncts the condition u € L*T"). Hence ¢, = 0
for all «, 1.e. u(z) = 0. Thus 4 has no elgenva.lues The same fact can be similarly
~ established for A*. So the spectrum of 4 is empty.

- Now consider the case when P(«,) = 0'for some &, € Z". Smce A'is elliptic, P(¢) =0
for sufficiently large |&|. Hence we may assume that P(x, —If) ) % O forl ¢ N. Foran
arbitrary 2 € €, set ¢,, = 1, Cagmtp = AH[P(xg — B) -+ Pla, — I8} I(le N)andc, = 0
for all other . Ev1dently Aw = Zu where u (6 L2(’I‘")) is given by (2.1). Thus in this
case the eigenvalues of 4 cover the whole plane. -

22 Elhptlc operator with an incomplete system of elgenfun(,tlons Con51der the

dlfferentlal operator L

A=ayz)D + a,@) (D= —idjdz) L (2.3)

- on the circle T with complex functions a, (k = 1, 2). For simplicity assume a, € C%;
“we identify functions on T with appropriate 2z-periodic functions on R. Assume also
that A is elliptic: ao(z) + 0 for all~x Each solution of Au = Ju has the form

u(x) C exp [ (1 f ag”l(t) dt — [ ay(t) ap™2(0) dt)] . . (2.4)_
. 0
For C = 0'this function is. 2n-per10dlc lf a.nd only if

2n

/lfao () dt — fa, )ag~Y(t) dt € 27zZ.

From this it follows that in the casée when

2

Cfarwde=0, - . .. (25)
. 0 : : . .
2n

the spectrum of 4 either covers the whole plane (if f a,(t) a,"1(t) dt € 27:Z) oris empty
(if the condition-is not fulfilled). In the case when® ’
. 2 .
- fao‘l t)dt + 0, - (2.6)

’

the spectrum of A consists of the elgenvalues Ak—a(k+c) (Jce Z), where
2n -1 25

1 1 - S .
a=|=— [ ac)dt} , e — [ ai(t) a*() dt. The 2, a.pproach the line z — at
. 27! 5 - 27[ : .
' 0 . 0 ) . : ' .
- (¢ € 'Ryas k — 400, and the counting function N(A) for their module’s‘h_t\ms the regular-

4
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asymp,toticsiN(_/‘.)‘= 2lal12 +0(1) (2 — o). By (2.4) the eigenfunction correspond-
ing to the eigenvalue A, has the form o S oo

oo =@ k@) keZ), © -« = @n
where . : )

g(x) =\.i-axp (iafao‘l(t) dt), - . . v

. 0 , _ . - .} . . . (28) .
h(x) ;.eip [i (acfao‘l(t) 'dt‘—fa,(t) ag~i(t) dt)]. ’ '
L 0. 0. ot

These assertions are contained-in [26). . : '

Let us now discuss the properties of the system of eigenfunctions (2.7) of 4 (we
assume that (2.6) holds unless otherwise is specified). One can easily deduce from-
(2.6) that the.equation Au — Z,u = ¢, has no 2z-periodic solutions. This means that
all the root, functions of 4 are eigenfunctions and that the multiplicity of each eigen-

- value is equal to 1. Denote by I the closed curve given by the equation z = g(z)
- 0=z < 2n). Since ¢'(z) =0, I is smooth. It does- not pass through the origin.

. x . - .

Since Re (a f ag~1(?) dt) 7is'a continuously depending on z value of arg g(z); I goes

N 0 ) . : ' . . ’

--around the origin once in the positive direction while x goes from 0 to 2z (the index.
-of g(x) is equal to 1). B : ’

"Proposition 2.1: The system (@)=, of eg’gen}uncti'ons of (,2.3) is cémpleté in L¥TY)
if and only if I has no points of self-intersection. If this condition is not satisfied, then -
the system has aninfinite defect. : - ~ :

__Pr/'o'd'f:, If g(x,) =+ g(z,) for O §‘z,\< x, < 27, then the function z = g(z) defines a
- mapping of the segment [0, 27] with identified endpoints.onto I" which is one-to-one .
~ and continuous and has continuous inverse. It generates the ‘mapping f(z) — f[g(z)] - .

.of L*(I') onto L*(T) which is a continuous (in both directions) isomorphism. Hence

the study of geometric properties of {g¥(x)}*,, (and by the inequality h(x).== 0'also - °

" of {g(2)}Z) in LAT) is reduced to the study of appropriate properties of {z5)=_ in
LXI’). In the case under consideration the system {z*} is complete’in C(I') (see e.g.
[28: Chapter II, Theorem 7}) and hence in LI"). Therefore {@r(x)} is complete in
LT, ‘ - . . :

Now assume I" to have at least one point of self-intersection. Since I" has no cusps -
-and goes around the origin exactly once, the set C \'I" has at least one bounded con-
nected component G not containing the origin. The functions 2* (k € Z) are holo-
morphic in (; and if some sequence of their linear combinations converges to a func-
tion f(z) in L¥I'), then evidently f(z) must belong to Smirnov’s class E2(G) (see e.g.

[20: Chapter 1II, Section 17.2]). Therefore {z*}, has an infinite defect in L2(I');. -
thus {¢;(x)}< has an infinite defect in LX(T) § o : .o

" Let us consider a particular exarr;ple.

Example 2.2: Let a4(z) = (1 + ibe'*) (b € R, b += 4-1). Then the function (2.8)
has the form g(z) = exp [i(z + b e!* — b)]. By Proposition 2.1, {g,(x)}®,, is complete
©~ - 2in LXT) if and only if for some k € Z ‘the system of equations z, — z, + b(cos x,

- — cos xp) = 2ka, sinz, = sin 2, has.a solution (,, z;) with 0 < 2 < xp < 27 It is

~.easily seen that, if |b| > =/2,.such a solution exists for k = —1 and, if |b| ¢ (1, =2},
fork = 0.If b € (—1, 1), then the function arg g(x) = x -+ b(cos'x — 1)is increasing,
so that g(z,) # g(x;) for 0 < 2, < x, < 2r. We see that the system {pela)} =, is

éo,mp]ete if and only if b € (—1; 1). In particular, in SEELEY’s [26] example (b = 2)
.- the system is incomplete. - . h o o . .o

-

\
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Remark-2.3: The ‘completcnes:‘s of {p3(2)} %% in L*T) yields its corhpleteness in Sobolev’s:
space H,(T) for each ¢ € R. Indeed, if 4, is a regular point of A, then B, = (4 — 1,I)-" maps
. LXT) onto H,,,(T) isomorphically and continuously (in_both direction). Therefore {B,,(p,,)k___oo
18 complete in (T), and it remains to note that B,,qz,, (A — A" ' P '

Remark 2.4: By means of Levy s t,heorem [16: §34] one can easxly show that I’ hasno-

Zy - T 2n
_ points of self- intersection if and only if the equality [ ag Mty dt = fao"‘(t)dt (zl, z, € R)
implies that z, — 2, = 27 L

/- Remark 2.5: If (2.5) holds and the spectrum’ of (2. 3) covers the whole plane, to any. 2 € C
- there corresponds the infinite chain of root functions u; «(z) = d*u,(z)/dA¥ (k=0,1,...), where
u;,o(x) = u;(x) is an cigenfunction. In accordance with (2.4), u,{z) can be put down in the form -

' vul(z) ; v(x)‘exp (i).é‘}'w(x)), 'w(:z) = (S'f.ao“‘(t) dt, ‘ e o T
. - T, ‘ 0. : . -

where 5 > 0 has been chosen so small that Re w(z)] < 7/2 (0 < z < 27). Then the cu;ve
= {z = exp (iw(z)): 0/< 2 < 2a} lies in the open right half-plane and the functions dkz?/¢/
: ‘d}J‘ (A€ C;k=0,1,...) are holomorphic (in z) in.each bounded component of the complement
of y. It follows xmmedm.te]y that the closed linear span of the root functions of 4 has an mfmxtc :
. defect in Lz(T) (cf. with the second part of the proof of Proposntlon 2.1).
Now we shall glve some examples of operators on a two- dlmensnonal ma,mfold w1th
-incomplete systems of eigenfunctions. - -
Exa,mple 2.6: Consider the elliptic differential operator A = ao(z) (D, + 1D,,) on’
T? (we write (z, %) mstea.d of (:z:,, Z,)). The C*- funct,lon ao{x) is noxmalwed so that

25 .

f ap~'(¢) dt = 2n: Let u(x, y) be an eigenfunction of 4. Expand it in Founer series in
oo

y w(z, y) = 3 vz) elly, Subst,lbutmg this into the equatxon Au = /u, we obtain

— oo

ao(x) (]) + ll) v,(x) = Jv(z) for every ! e Z, from which v,(x) = exp (1) fao“(t gt
+ Iz) (up to a numerlcal mulmphel) The. condmon of 2n-per10dlclty of this function

gives 21l + 27l _—2mlc,_so we obtain the set of elgenvalues A
ha=k—il (kleZ)- . L S (2.9)

and the set of elgenfunctlons

wit@9) =’ex‘p [i(k'__‘n) f ao-,1<t)dz+4(x+iy>]. e

0 .

One can easxly verify that {7, ,} is the set of all eigenvalues of A4* and that there ate
no root functions'of 4 except eigenfunctions. So the spectrum of A4 coincides with the
set (2.9) of its eigenvalues and all of them-are snmple. It is not difficult to verify also
that the system (2.10) of elgcnfunct:ons of 4 is complete in L¥(T?) if and only if the
system of eigenfunctions of ay(z) D, is complete in L¥T). Using Proposntlon 2.1, we,
obtain examples of two- dlmenswnal elliptic differential operators with incomplete
systems of eigenfunctions. Note that the modules of the eigenvalues (2.9) are equal
to (k? + 12)1/2 and coincide with the eigenvalues of the self-ad joint pseudo-differential ‘
opemtor (D,2 + D,2)12. They clearly have the regular asymptotlcs
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’
1

2 3. Elliptic operators . w1th complete systems of eigenfunctions which are not hases.

‘Proposition 2.7: Let the syséem of ezgen/umtzons of the operator (2.3) be complete
~in L¥(T). Thzs system is a basis m L”('I‘ ) if and only if arg ay(z) = const. .

) Prooff Forz € Iy |2| = exp [_—Im (af ay”1(t) dt)], hence F is a circle with tlie

center at-the omgm if and only if Im a f ao ~1(t) dt) = const, i.e. if Im (aao x)) = 0

.Whlch is eqmvalent to arg ao(x) = const So it remains to show that {zK}*  is a basxs .
in L¥I") if and only if I' is the circle with the center in the origin. The sufficiency is

obvious (and the basis in this case is orthogonal); we must verify the necessity. Let
_.x = x(z) be the function inverse to z = g(z). Then obv1ously the system -

(1 uk(z) = 12"‘“ (x(z) ( 7 g’ (2(z )])‘1 (k .E Z)

. is biorthogonal to {z%}®,. Set r = min {|2|: z € I'}, R = max {|2|: z € I'} and suppose

r < R. Fix numbers 7, Ro with. 7 < ro < By < R a,nd set B, = {z¢ I': 2| > Ry},
E, = {z € It |2| < ry}. Tt is easily seen that, for k.€ N, [z*|zx 2 Ro"éll/?, ||uk||,.(r,
> (2n) 17o—k=18,1/2, where 6, = mes F,,. Hence -

24l ecry gl zagry — 00 (k — +00). , - (2 11)

It follows (see e.g. [17: Chapter III, §6, p 170) bhat z"}_co is not a ba31s in L(I")

" (ahd no permutation can make it a basns)

Remark 2.8: It is easily seen that in case 'u'g ao(:z: = const the system {(pk}_oo is An un-

conditional ba.s:s in H/(T) for each ¢t € R.

" Remark 2 9:.In case arg ao(x) %= const the system {g} %, is also not a basts with parentheses

‘For suppose the contrary. Then {2%)%°,, is a basis with parentheses in L2(I'), i.e. there 0\1st
«mcrcasmg sequences {mk}l\ , {nk}l“’ of posmve mtegers such that

) . . -

—>0 . (k— oo) for any / € Lz(l;),

n—1

Z 6,2’ e /(Z)

j==my

v
]

L'(l')

where Cj are the Fourier coefficients of f(z) with respect to {zf}. Let l’ be the natural prolector' :

to the corresponding Smirnov’s space E*(G). Since it is bounded, we obtain

00, fg4~—1

PN

T >0, ie. [ewPE="flpr >0 (k> o).
i=k j=ng : .

M)

"Therefore the r[o'rms of the operators z"xP(z*"t -) in L¥(I') are uniformly bounded.. It follows that
' sup 1Py

) < oo, where L¥(TI', [z|2"k) is the L*-space with appropriate weight. By the Stein-

Welss theorem (see e.g. [5: Section 5.4]), we obtain sup {||P||zyr jztn: 7 = 7} < co. So we may

conclude that the norms of z7P(z=".) (n = ‘1) in L¥I") are uniformly bounded. Since ¢,z
= z"P(z~"f) — 2" 1P(z!7%f), we have |c,| [|2"]|yr) = ¢ ||/||L'(r) (n = 1) This contradicts (2. ll)
because of ¢, = ffz) un(2) |dz|. T . !

S

Remark 2.10: ‘Assume that |arg ay(z)| <6 < /2. Then, for any & > 0, the Fourier series

~ of u ¢ H(T) with respect to the clgcnfunctions of (2.3) is summable by Abel’s method of order

o if & is greater than 1 and close enough to 1 (see [2: § 35]). In the present case there is no need

of parenthesis, which generally one puts into the series with Abelian factors exp (—24.) for

convergence, since the series Y exp (—24,%) c;@p(x) converges for all ¢ > 0 (here ¢, are the
Fourier coefficients of u(z) with respect, to {q)k})
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Remark 2.11: Returnmg to Example 2.6, we can easily vcnfy t,hat the system of eigen-
functions of ay(z) (D, + iD,) on T? is complete bat'is not a basis in H,(T?) (¢ = 0) lfdnd only
if the same is true for the system of exgenfunctlons of ao(x) D on T

2.4. Examples for theorems on rough asymptotics from Subsectlon 1.3. Let A be an
elliptic pseudo-differential operator of order ¢ > 0 on the n-dimensional torus =, If
A is a.normal operator (i.e. A*4 = AA¥*; for example if 4 is a dlfferentlakoperator
with constant coefficients), then the modules of its engenvalues coincide with eigen-
values of the elliptic pseudo-differential operator (A"‘A)l/2 and in virtue of (1.40)

NG) ~dih (> 00), B . 212 '.

where 4 is defined by (1.33). ~ .
- Assume for simplicity that » = 2.and consider the followmg differential operator
on T2 whlch adinits the separation of variables: :

= [ao(x) D,J? + [bo(y) D,Y;. T @)

here the functions ay(x), bo(y) are C®, 2n- perlodlc and non-zero everywhere Assume
. that

larg ag(z)] < 0y, = larg bo(y)| = < 2y O+ 02 /2. - (2.14)
This provides the ellipticity of A and.even its ellipticity with a pa,:ameter in some
angular neighbourhood of R_. Hence the spectrum of A does not cover the w hole
plane.

Recall that the spectra of ag(x) D, and by(y) D, consist of eigenvalues ak. (k € 7) and

2n -1 . . 2n -1

. , » 1 :
bl (I € Z), respectively, ’where a = —1- f ay Y z)dx] ,b= '2 fbo‘l(y)’dy ,
. . . K

27

and that the systems {g (%)}, and {w/(y)}=,, of corrcsponding eigenfunctions are
. complete in L(T). This follows, for instance, from asserted in Subsection 2.2. Indeed,
by (2.14)Re ay~L(x) > 0 and Re by '(y) > 0, therefore ay(z) and by(y) satisfy (2.6). and'
the arguments of the corresponding functions’(2.8) are monotonic.

vadently A has the elgenvalues

a?kz~ +0 (kleZ), » : - 1 L. @as).

. corresponding to the eigenfunctions g,(z) y,(y). Since the system {g,(x) y,(y)} is com-
- plete in L¥(T?), the set of all eigenvalues of A (repeated according to their multiplici-
" ties) coincides with,(2.15). The normal differential operator a?D,?* -+ b2D,? has the
'same eigenvalues, and by (2.12) the counting function N(}) for modules of elgenvalucs '
of A has the asymptotlcs N2 ( 1) ~ doAm™t, where )

do = — f |a? 00320 + b2 sm20|-1 . - © o (2.16)

g

Write down the quantxtles d and 4 for (2.13). By (1 32)
N 2n 2 nl?

d = 27112 f dx f dy f (%2(x) cos2 0 + by (y) sm2 0) 1dp

fdxfdyf aoQ(x)-f-bo (y) 72) 1drf‘4nfao(x)‘ bo(y)

(2.17)

\
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Thus * - . , BN

-

ab
Comparmg (2.16) with (2.18), we see that |d| = d, if and only if arg ¢« = argh. Furthcr
comparmg the mltlal expression for d in (2. 17) with the- equallt,y ' ~

fdxfdyf]aoz(x cos? 0 + boz(J) sm2 0|~ 1d0 R

whlch fo]lows from (1.33), we conclude that |d| < A if at least one of the functions
ao(z), bo(y) has a non-constant argument. Take a,(z) with'a non-constant argument.
Setting by(x) = ay(x) we have |d| =dy < 4, while if by(z) = a,(z) e* we have (for
sufficiently small ¢ > 0) |d| <'d, < 4. Now take constant functions ay(x) = a and
bo(y) = b with arg a = arg b. Then |d| < dy = 47 -The last equality holds because in
this case 4 is normal. So we have shown that for (2. 1‘3) all the cases (0. 7) are possnblc

2 5. Another class of clhptlc operators with a. regular behavlour of elgenvalues C,on-.

" sider the dlffexmt]al operator

A= ZWwﬁD"k ' , .

on the cnrcle T. Assume t,hat, (&) belongs to C®(T) and admlt holomorphic extcnsmns

“into the dlsk {£: 121 < 1}, continuous up to the boun_dary, and that ao({) = 0 for

12l =1 , ‘
Propositiorl 2.12: TILc set’of ez‘genvalues:ol (2.19) coincides with the set '
¢ TN ‘ T
):a,,(o ymri—k  (m € Z); : o . (2.20) -
- k<o o - ) >y

- moreover, the multzplzczty of each eigenvalue 2, is equal to the nu'mber of such m E Z that
Ao can be written down in the form (2.20).

To prove this, we shall need two Iemmas '

-Lemma 2.13: Let the numbers a,, x (k=1,..,n;n=1,2,...) satisfy the recurrence
relations ' :

~

Uk = o+ (= b+ Dagasy (I<k<n) (221
. Lo . : DS . . -
and @,y = dq,q = 1. Then, for all o, = . . T
- z%ww—n w—n+)=" T (2:22) -
. k N -

Proof: We sha]l verify (2.22) by mductlon with respect to 7. Asa prehmmary, we

note that (z 22) is obviously valid for ¢ = 0, and that dividing both the sides by 0 and\

“nn+kannl+k(k_1)anu—2+ ';Tk'annk'—(_ 1)"_1 " (223)

On the other hand since both the s1des of (2.22) are polynomials of degree » in g,
(2.22) follows-from (2.23) with~k =0,...,n — 2. For n = 1 the equality (2.22)

sebtlng o=k+1(k=0,...,n — 1) we obtain, for these k, - .

N

=2 - —f (a2 cos? 6 -+ b2 sm2*0) 1d6 o (2.18) '

.' @19
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s - R ) vl -
obviously holds. Suppose now that it holds for ‘some positive integer'n,-and verify
that it remains true after replacmg n by n 4 1. From (2.21) it follows that for

k—O on — 1, i . -

\

Cpr1nea + kam n + k(e — 1) a..“ -1 + Y @nir,nr1-k

= Gpat K(@nn + 2n01) + Kk — 1) (@ajnet + B2npc2) F
+ B! @n sk + (6 + 1) G a) ' “
=k + 1) nn + (b + 1) kg oy + (k+ 1)k(k—1>a“-2+
A E D
— (£ 1) @+ Ry + RO = g + oo+ B )

§ r(k+1)(kf >",_'—<k+1)"_ )
(in the next to the last equality we have used (2.23) with k = 0, ..., » —= 1). Thus

- ’

we ‘have proved (2.23) with the replacement of » by n + 1 for k =0,...,n — 1.

This ylelds (2.22) w1th n -+ 1 ‘instead of n

Set d = o, = dfd¢. Conmde;' the equation - oo . ~
—," N . . : . -

. n—1 A ) o -
1oy + X tnt) 9y = 0. ' o ~(2.24)

Lemma 2.14: Let (L) be holomorphic in (¢ || < 1} (md contmuous in {C |C| £ }

If the equation (2 14) has a non—trwzal solutzon on {§ icl = 1}, then at least one root

of the equatzon ' ) - v oA _

) ) n-=1 N . V S
ele—1le—nt 1+ Zn@ele—1wlo—k+1)+7(0) =0

M

-, isan integer. - - : : : ‘ -

~ Proof: Let y(¢) ($ 0) be a solution of (2.24) on {¢: |£| = 1}. Since the-coefficients
of the equation are holomorphic for 0 < |¢| < 1 and continuous for 0 < [{| = 1,

" the function y({) can be extended on {{:0 < I£] < 1} as an analytlc solution there,
“continucus in {C: 0 < |¢] < 1}. (see e.g. [7: Chapter III]). This solution .is single-
.valued. Indeed, if y,(¢) and y,({) are-two branches of y({) in the doma.m {£:0 < |2

© < 1) with the cut along (0, 1], then. y,®({o) = #,*1(%) .(k = ,n— 1) for

each Z, with || = 1, and by the uniqueness theorem [7] (%) = yl(C) So (2.24) has -

the holomorphic solution in {£:0 < [¢| < 1}.
The equation (2.24) has a regular singular point at ¢'= 0, and (2.25) is called

* the indicial equation of (2.24). If g (k = 1,...,n) are all the roots of (2.25), then

(2.24) has the following fundamental system 'of solutions in {£:0 < |¢| < 1 } (see
e.g..[12: Chapter 1,’Section 18. 2]). If o is such a root that no difference g, — p;
(j == k) is an mteger then to g, there corresponds the solution y,,(C) = Lo, (L)-of
(2.24) where () is holomorphic for || < 1. Further, if g, ..., 01sm is & set of such
roots that all its differences are-integers and, moreover, g, — 0k+1 =0((k=1..,
"l + m — 1), then to this set there corresponds thc set of solutlons of the form -

1. . . -

7/[.(() Z h”lPk;(C) lnk_j C (k= l: .. "Al + 777') 3

N 7_

o

(2.25) -

.



258 M.S. AGRANOVICH and A. S. Markus

" Make the sdbé@itutibn ez = {. A simple induction shows that -

for some m E Z.

v ~

where q),,,(C) are holomorphlc for |£] < 1. It is easily seen that 1f no- root gr is an

integer, then the fundamental system of solutions of (2. 24) just indicated contains -

no function holomorphxc for 0 < |t} < 1; moreover, no non-trivial combination
of these solutions is holomorphic for 0°'< [{] <1 B L :

Proof of Proposition 2.12: Divide the equatlon Ay = iy by ao(e”) and set
@y} (e'F) = g(e'*), ay(€'7)ao(e'*) = G (k =1,....n): )

Sn—1 ‘.

Dy +k2 Pa-i(e'?) Dby = Jg(e®) y. : - (2.26)
=0 - . o - -

M B
- Z-ak ;C"‘j'“a k—j+1,

where a, ; satlsfy the conditions of Lemma 2.13. After the substltutlon the equatlon
(2.26) looks as follows (for convenience we set po(C) = 1) ’

' 3
'an_k(é“ ; gE~ ’“3 = ’“y + (P»(C) - 7Q(C)) y=20.
If 2 isan exgcnvalue of 4, the latter equation has anon- -trivial solution in the um(:
circle. By Lemma 2.14 at least one root of t,he equation ' N

- k
Zm—k(o § k;QQ_l) (0—k+ 1)+pn(0)—MI(0)—0

is an mteger By Lemma 2. 13 this equatlon may be rewrltten in the form N

n

N 2 Pn- k(O)Q +pn(0) _AQ(O) = 0.

. So eve_ry eigéhvalue 4 of (2.1‘9)- is given by the formula

ﬂ—q1<0).>:pn-k0>mk zan-k .

’

Since ao(Z) = 0 for {¢| < 1, weé can select a one-valued branch of its loganthm

"In other words, there exists a furction u(¢) holomorphlc for |{| <1, contmuous for

" conclude that these assertions are valid for A(‘> = A as.well I

|CI = 1, and such that a, = exp u. Set - -

a,(¢) = exp (tu(C) + (1 —7) u(0)), . o 4
a,(8) = Ta(l) + (1 — 7) a(0) (k > 0): .

A(r) — Z‘ak(x)(eiz) Dn I:
k=0

' By the result above the elgenvalues of A®, for each 7 € [0 1], are contamed in (2 20)

On the other hand, the set, of elgenvalues of theoperator A®) = Z a,(0) D"~* coinci-

des with- the set (2. 20), the multnphclty of éach elgenvalue )1, bemg equal to the
number of m € Z such that A, admits the representation (2.20). Applying the theorem -
about the stability of root multiplicity (seee.g. [13: Chapter IV, Theorem 3. 18]), we.

(o)

’

/

©
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.

Corollary2 15: The counting /wwtwn for modules of ezgenvalues of the operator
(2.19) has the regular asymptotzcs

N@i) =2 lao( )l—l/n pLLIER 0(1‘) (A = 00). ‘ ' . ) ‘ ,

P
. ~ .

REFERENCES .

s

{1] AaMoON, S.: On the elgenfunctlons and on“the eigenvalues of general elliptic boundary
value problems. Comm. Pure Appl. Math. 15 (1962), 119—147.
{2] ArpanoBuy, M. C.: CrniexTpanbuble cBOICTBA 3a/1a4 nud)pahumt Hononuneune k mmre

Bomoauq, H. H., Kaueunenenbaym, B. 3., u A. 1. Cunon: O600weHitHii MeTox coGCT-

BEHHBIX Rone6armn B TEOPHM JIUPPAKUMH. Mocmaa WUan-so Hayka 1977, 289 —416.
[3] Arpanosuy, M. C.: HekoTophle acuMroTnyeckine Gopmyabl mIf SJIMNTHYECKHX MCEB-
pomidPepeHUHATBHBIX ONEPATOPOB. (Dym(u aHaiu3 u ero nput. 21 (1987), 63—65.

[4] ArpanoBuu}M. C., n°A. C. MaPkyvc: 3amcuanua o crekrpe HECaMOCOMPMKEHHBIX

IIIMIITIYECKUX onepé’ropon. ¥Ycnexn mat. Hayk 42 (1987) 4, 142,
(5] BercH, J., and J. LOoFsTrRGM: Interpolation spaces. Bcrlin—Heidelberg—-New York:
Springer-Verlag.1976. ‘ - ) .
[6] Eomxuon K. ko ACHMOTOTHYECKOE I110BefleH e COGCTBCHHBIX 3HAYEHUI. HecaMoco-
. MpsKeHHbIX OnepaTopos. MyHKU. anajH3 K ero npun 11 (1977) 4, 74—175.

‘[7] CoppixngTON, E. A., and N. Levixson: Theory of ordinary dxfferentml equatlons \Tew

York —Toronto —London: McGraw-Hill Book Co. 1955. -

18] I‘oxsm’r M. L., u M. I'". Kpetin: Bejenne B Teopuio uecamoconpnmemlux onepaTopon .

MockBa: Vsn-so Hayka 1965.

- [9) Teamnreiiu, U. C., u U. M: Proxuk: Tabaunu Hmerpanos CYMM, PANOB H TNpPOH3-
Befienuii. MockBsa: (Duawa'rrua 1962. :

[10] GruBB, G.: Functional calculus of pseudo-differential boundary problems Boston—
-Basel —Stuttgart: Birkhiuser Verlag 1986. '

[11] Horv, A.: On the eigenvalues of a matrix w1th prescnbed singular values. Proc. Amer.
Math. Soc. 5 (1954), 4—7.

[12] KaMxkE, E.: Differentialgleichungen. ~Losungsmethoden und Losungen 1. Leipzig: Akad.
Verlagsges. Geest & Portig 1946.

[13] Karo, T.: Perturbation theory for linear operators Berlm Heldelberg New York

. Springer-Verlag 1966.

[14] Komxesnukos, A. H.: O6 acumnToTHKe cOGCTBEHHEIX BHAYEHMUIY DITHIITUYCCKMX CHCTEM.
®ynku. .ananns u ero npua. 11 (1977) 4, 84—85. :

{15] Lioxs, J.-L., et E. MaGENES: Problémes aux limites non homogénes et a.ppllcdtlons Vol.
I. Paris: Dunod 1968. ‘

[16] JTwocTEpHuK, JI. A.: Bunykasle dmrypmuMHororpamlmm Mocksa: I‘oc'rexua;la'r 1906

[17] JTwocrernuk, JI. A, n B. 1. Cosonm ONeMEeHTH (byrmuuonanbﬂoro aunanusa. Mocksa:

. Wan-Bo Hayka’ 1965

[18] Mwn\yc A. C.: BBegenne B cnek'rpanbuylo TEOPUIQ TOJMHOMHUAIbHBIX onepa'ropuux

. nyukoB. Kuuiunes: l/lan -Bo LTnuuua 1986. \

[19] Mapkyc, A. C., u B M. TTaracka: Q6 oueHke uicna COBCTRCHHBIX BHAUCHHMH THHEAHOTO
oneparopa. I/Iau Axan. Hayk MoanCCP (1965) 7,101—104.

[20] ITpusasoB, V. W.: 'panuynsie cBoicraa ananutTMuecknx yHruuit. Mocksa— .Heunu-
rpan: I‘oc*rexuaua'r 1950.

[21] Posenpaiom, I'. B.: CnpexrpaibHad aCUMIITOTHKA nop“aubuux onepaTopos. (Dymm
_aHaaua u ero npua. 16 (1982) 2, 82—83. . . —~

[22] Poseusaom, I'. B.: Yraosaa acnmmomxa CUEKTPA onepaTopos, GIAMBKUX K HOPMAJb-

HuIM; B kH.: JlunefiHble 1 HelMHeliHbIe KPaEBhIC 3a0a4H. Cnempanbuan Teopusn. JIeHHH-

rpazx WN3aj-8o Jlenuurp. yiu-ta 1986, 180—195.

j»[23] SEELEY R.T.: Complex powers of an elliptic operator. In: Smgular Integrals (Proc.

Symp. Pure Math. 10). Providence, R. I.: Amer. Math. Soc. 1967, 288 —307.
[24] SeELEY, R. T.: The resolvent of an elliptic boundary problem. Amer. J. Math. 91 (196())
889—920. ~ | .



260 M. S. AcraNovicH and A. S. MARKUS .

, [25] SEELEY, R. T.: Analytnc extension of the trace assocmted with elhptlc bounda.ry problems.
Amer. J. Math. 91 (1969), 963 — 983,
[26] SEELEY, R. T.: A simple example of spectral pathology for. dlffercnual operators Comm.
Part. Diff. Eq 11 (1986), 595—598.
[27] Nlyeun, M. A.: Hcenuonmb(bepeuuuanbuble onepa’ropm u cnempanl,uan .TeOpUA.
Mocwa Max-Bo Hayka 1978.
+[28] WaLsh, J. L.: Interpolation and approximation by rational functlons in the complex
.~ domain. Providence, R. I.: Amer. Math. Soc. 1960. - -
) [29] WIDDER D. V.: The La,place transform.-Princeton: Prmceton Unive Press 1946.

e ’\Ianusknptemgang 25. 03 1988 -

s

VERFASSER

ITpod.-M. C. AFPAHOBH‘[ .

~MOCKOBCKHI HHCTHTYT DAEKTPOHHOTO \1aumHoc1‘pocmm
B. BysoBckuit nep. 3/12° ’ s -
CCCP: 109028 Mocksa . - C .

_Cr.H.c.A.C. \'IApRyc = D e
Uncruryr Ma'rema'mku c BLI AH ‘v{o.rmascr(on CCP '
ya. Tpocyuna 5. g
CCCP 277028 Kuwunen -0

v



