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Die Arbeit beschaftlgt, snch mit Charakterisierungen der Riume F? ¢ und B2, auf R" Ry" und
beschrinkten Gebicten durch lokale Oszillationen und Differenzen von Funktionen. AuBerdem:
werden Morrey-Campanato-Réume behandelt.

" B. paGore xapaKTepuayioTcn npocrpanctna Fy, u By, na R?, R." u or‘pajmqemmx ofna-
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1. Inirodhction ‘and historical comments e

CTAX JIOKQJILHBIMH OCUMIIALMAMI M Pa3HOCTAMMK (pymmuu Kpome -aToro paccmarpu-
BAIOTCA MPOCTPAHCTBA 'runa Moppeii-Kamnanaro. ) o

The paper deals with characterlzatlons of spaces Fj, and Bj, on R#, R," and bounded domams

“via local oscillations and differences of functions. Furthermore Morrey Campanato spaces.are
. treated.

1
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Where x € and t > 0. Then

-~ . -

Let Q be a smooth bounded- domam in R" and let B(x, )_ ‘{y'| yeQ, |z _ yl <t} -

“0se,™ f(z, 1) —\mf( £ liy) — P(y)|1’ dy)‘/’{ € Q, - ('1.1)"_-

B(z.t)

denotes local»osc:llatlons of fe L,(2) where the infimum is taken over all poly-
nomials P of degree less than or-equal to M with- M € N,. Furthermore 0 < p < Y

and f.;(y dy = |V|" 1fg(y) dy denotes the' mean value We. complement (1.1) by :

osc,,'lf(a:, t) = ( f |f(y I dJ)‘/P Smce the early srxtres oscillations of this type have .

N

B(z.t)

" been systema.tlcally used in order to descrlbe, smoothness propertxes ‘of funct,lons.
Let L,2(Q) with '

ISp<oo ' M——1012,... and - —n/pSs<M+1 (1.2)

" be the collection of all f € L,(2) such that /,,Mv € Loo(9), where

-

', “"(z) = sup ¢ 05, f(z, 1 : S ey

o<t . . \
is a,—so-called sharp mammal functlon ‘Naturally normed L,%(2) coincides with the
well known Morrey -Campanato spaces. The case M = —1 and hence —n/p < s < 0

goes back to C.B. MoRrrEY [22). Recall L »~"P(2) = L,(2): Furthermore L(82)

= BMO(Q)is essenblally the John-Nirenberg space of all functions with bounded mean ,
‘oscillation, see [16]; and L *(2) = &%(2) if s > 0, where the latter stands for the

Holder-Zygmund spaces. The theory of these spaces has been’ systematically develop-
ed in the middle of the sixties by several authors, we méntion especially S. CaMra-
NATO [6—9], G. N. MEYERS [21], S. SPANNE (25] and G. Stampacchia [26]). We refer
also to the surveys [23] and [20 Chapter 4,in pamcular 4. 10] In [27] G. Stampac-
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" cH1A replaced the sup-norm in (1.3) by an L,-norm. This idea was extended by V. P.

IL'1y who described on that way the classical Besov spaces B3 (2) via oscillations
-and who introduced large classes of new spaces in a Besov space setting, we refer to

-the_suivey of his results given in [1: §28], see also the paper by Ju. A. BRUDNYJ.

[3]. In this connection it should be mentioned that the idea of approximation of

functions by best polynomials can also be used to study- spaces of Besov type in -

rather general non-smooth domains, see the surveys [17, 33] and the papers mentioned
there. In the last few years oscillations and sharp maximal functions of type (1.1)
‘and (1.3) attracted new attention. Apparently.this new development began with the
~work- by A.P.CALDERON and R.ScoTT, sée [4, 5], who connected sharp maximal

-functions of type (1.3) with the-theory of Sobolev spaces In partlcular A.P. CaL DE- :

RON proved-in [4]

\

W*( lflfeLp(!?)fu“‘keLp(Q)} ot (14>

with &k € \*0', 1 S u < p, where W, Q) stands for the classical Sobolev spaces, see
“also [5, 10, 11]. Formula (1.4) w1th k = 0 is essentially the Hardy-Littlewood maxi-

mal inequality. These -ideas were modlfled by R. A. DEVoRE and R. C. SHARPLEY
« who.introduced spaces of the type . -

—

CAQ) = (/11 € Lp(@), 1, € L,(2), - . ().

where §>0,0< p < coand P = max (1, p), see [11 §§b and 12] (these authors
deal mostly with the case p = 1). Independently B. BoJarsk1 defined in [2]- spaces

_which cover more or less both the Morrey-Campanato spaces L,* and the above. -
. Spaces C,® (with p = 1), see also [10]. Furthermore it was noted byJ R. DORRONSORO
©in [12] t,hat oscillations- of type (1.1) can’be used in order to characterize Bessel-

* potential spaces in the sense of Paley-Littlewood characterizations. The extension of

‘this observation.to somé spaces of type Fj,(2) is due to A. SEEGER [24], see also-

_[13]. (Recall-that the Besov space counterpart of this part of the theory is more or
less covered by I’in’s work, p = 1, see also [3, 14,17, 33].) The theory of the spaces

. and F3.in its full extent; i.e. —00 < § < 00,0 < p < o0 (p < oo in the case of
the F- spaces), 0 <.¢.< oo; has been developed in [28]. These two scales cover many

. well-known spaces: classmal Besov spaces, Holder-Zygmund spaces, (fractlona.l) ,
. Sobolev spaces and inhomogeneous (Sobolev-) Hardy, spaces One of the main results :
of the present paper reads ag follows: Let ) ~ :

/s .
-

< 1 1
0<p<o¢; 0<qSoo ISrSOO s>n.(—_,‘——),,
. =" +

P
B - (1 1)_ , : B )
s > ‘n —_ 1, ) . N B
g r)]s - SR ' .

et 0<u <r and M = [s], then F",,(Q) is the collectlon of all fE Lmax(pn(Q)
such that . 5 . _ .
- 1 o d l/q o » .
. 2 c -
1z + || f eose fe 00 S L@ < -0

- ' 0
: s N

" in the sénse of equivalellt'quasi-horins (modification if ¢ = o0). With u = r-this_
assertion is essentially covered by A.SEEGER [24: Corollary 1]. The extension to
“u < r is useful for several reasons, in particular it follows immeédiately

~

. +
A
/

1.6)

G =F(@), 0<p< oo,s>n'(;f-—~1), : . (8 -

s
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~

where C,%(2) are the spaces from (1 .B). Osc;llatlons are closely connected with dif-

. ferences of functions

- M
1) = % (—1)" d (”f)/(x +jh), zcRm heRe . (9
i=0 . .
Characteruatlons of function spaces via dlfferences are much better. known than
~characterizations via oscillations. Descriptions of function spaces with the help of
differences have a long history. In the theory of the Hélder-Zygmund spaces &8
with s > 0 and the classical Besov spaces By ;8 > 0,1 <p < 00,1 = ¢ < o0, they -
played a decisive role from the very beginning. The extension of this part- of the .
theory to more general spaces B}, including those ones with p <1, and correspond-
ing spaces F5, may be found in [28], where we gave also detailed references, see also™

..[29] for a more recent and systematic approach.” In [28] we mentioned the problem

to find intrinsic descriptions of the spaces F5,(82) via deferences under reasonable
restrictions for the involved parameters. This ploblem was solved by G. A. KALJABIN |
* [18}ina satlsfactory way for the spaces F5,(2) with s > 0,1 < p < 00,1 < g <'c0.
It is the second-main aim of the present paper to extend Kaljabin’s charactcn/atlon
to spaces F?, o(2)_with (1.6) (r = 1). We add a technical but 1mportant remark: If
one takes one of the two characterizations of function spaces’in questlon 1.e. via
oscillations or via differences, as granted, then such an.assumption is of great help
to derive the other one. Sincé characterizations via differences are known, it was
quite natural to use them in order to treat characterizations via Oscillations, see [24]
Our intention in the present paper is differerit, We start from scratch, what means in
-our context that.we begin with characterizations of -F(R") via local means in the:
sense of [29] and [31]. Then we derive inequalities for oscxllatlons for their own sake .
« which can be used both for F3, spaces and Morrey-Campanato spaces. Then we give
a new and’ almost-trivial proof of the extension property for the spaces F? (R "yand
arrive finally at characterizations of type (1. 7). On this basis and the dlstlngmshed
local means from [31] we.deal afterwards with ‘characterizations via differences.

The plan of the paper is the following. Definitions and main-results are collcctcd in
Section 2."Proofs and more technical assertions are presented in.Seéction 3. As usual

" unimportant.positive constants are denoted by c, occasionally with additional marks.

They may differ from formula to formula (but not within the same formula or in-
equaht,y) ’ _ w .

2 Defmmons and main results : : =

\

2.1. Dchmtlons

-2.1.1. Let N be the collectlon of al]l natural numbers No =Nu {0} be the collection - -.
of all non- ncgatlve integersand N_; = Ny u {—1}: Let R" with'n € N be the Euclidean
n-space. Then'S and § stand for the Schwartz space of all infinitely dlffcrentxablc.-
rapidly decreasing complex- valued functions on I” and the collection of all gdmplex--

valued tempered distributions on R~ respectlvely 'For sdke of brevity we adopt, -~ -

here the f0110wmg convention: for spaces and quasi-norms which are defined on R»
we omit “R*”.in the respective notations, otherwise the underlymg domain will be
'mentioned explicitly (mostly R.” or bounded.smooth domains in R?). Similarly
= f otherw1se the region of integration will be specmed explncltly Let 0 < p < oo,

-

W= T e

bhen

18* |
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(usual modification if p =o0).Let k € S, then we introduce the means

k(t, f) () = ff»(y/(x+ty)dy,_ zeRY, >0, | (2.2),‘

w’hich make sense for any f € S’ (appropriate interp}‘etation). Let ko € S with

N

suppho =yl fyl <1, RO 0, L (2.3)

~where Eo denotes the Fourier transform of k,. Let a, = max (a, 0) where a is a real

n 2 \!
number. Let 4! = ( : —) with 7€ N. -
| iél‘ oz -

9.1:2. Definition. Let —oo <s<ooa.nd0<q<oo . o
(i) Let 0 < p < co. Let ¢ > 0 be small and.l € N with 2/ > max (s n(l/p — 1)+)
Let k = A'ky,-where ko is the above function. Then .

N

Fpq = {flfeS',‘n/lF’qll = “ko<€f LI

+ || 22]~4| 2, ) )I“) “IL

. ,

. (modlﬁca,txon if ¢ = o0).

(ii) Let 0 <p < co. Let; 1 be the same number and k be the same funct,lon asin

(1) Then - § _ . .

B= {f €817 Bl = Vhele, ) Lyl

~

‘ ,+(Z2f"’llk(2’ /)leuq) <_oc1} @)

j=1

'(modxflcamon if q = oo)

@ e - .

© 2., 3. Remark. The omgmal’ Foumer analytmal def:anon of Fs, and B;, looks -
somewhat different, -see [28: 2.3.1]. The above. version is covered by [29],- see also’

[30:_.Remark. 1] for more detailed references. Of course k271, )-isgiven by (2.2).

We shall ndt distinguish between equivalent quasi-norms ina given space. This .

justifies the above abuse of notations to write simply |If | Fjll-although it is quite
. clear that the above [|f | F$,| depends on &, I and the chosen function k,. We recall

that these two scales B}, and F3, .of quasi-Banach spaces-cover many well-known
_spaces: By, "with s >0, 1 <p < 00, 1 < ¢ < oo, are the classical Besov spaces;.

B oo = 8" w1th s >0 are the Holder-Zygmund spaces; H,* = Fj3 with, —co < s
- < 00,1 < p < oo are the. Bessel -potential spaces with the Sobolev spaces as a sub-
case; H, = F3, with 0, < p < oo are mhomogeneous Hardy spaces The theory of
- these spaces has been systematlcally developed in [28] -

b 2 1. 4 Dlstnnguxshed kernels. We need some results proved in [31] which we

deseribe in this subsection arid the next one. There exist two c> funétions g and y on

the real lme with supp ¢ = (O, 1) suppy — (0, 1) and

~/
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where M € N is a given number. Let

O) = [Tola), 2= (@) € RY, e
o _1\M MM YM\ (M
ko(x) ( 1) +1 § 2=:, r+m ( , ) (77?,) ,.r—umM'-n(p (%), ro. (28)
“and . . A ;
" k(z) = ko(x) — 2'""’0(95/2)- o T o (2.9)

These are the olsbmgulshcd kernels introduced in [31]. Constructions of type (2.8)
. play a crucial role in the Russian school of the theory of function spaces. The partic-
ular structure of (2.8) with a double .sum goes back to G. A. KALJaBIN [18], see also
© [19]) ‘and L1zoRrRkiN’s appendlx D.2.3 in the Russnan edition of [28: p. 411] Let
" fe S, then” -

k(21, f) (=) ifjeN,
: 2.1
i) = {l(zif(x) if —j€N,. ( O)
Furthermore, any f€ 8’ can be represented as .
/ =~Z f; (convergence in S"). - . . CL (211
j=0 . ' - . - ‘ . .
bor proofs’ and details we refer to [31]. . ’ ] -

2.1.5. Equxvalent quasi-norms. Let K and k-be the functions from (2 8) and
(2.9), respectively, and let k(t, f) and ko(t, f) be the corresponding means, see (2.2).
Let—oo <5< 00,0 <p £ 00 (w1thp < oo in the case of F-spaces)and 0 < ¢ < oo. .
Let M €N be the same number as in 2.1.4 with M > max {s, n(1/p — 1),). Then
there exists a number K ¢ N, such that . o
g - . -
%;%m&lzwvﬂ|h<w} . a2

j=—k

and:

N

S By = {/I/éS' (.‘“2"“III,IL,,II"). <oo} ' ‘ - (213)

j=—k

in the sense of equivalent quasi-norms (modification if ¢ = o). The fﬁnctions fi
have the same meaning as in (2.10). A proof of thls assertlon may be found in [31:
Theorem 2.2.4].

2.1.6. Spaces on domains. Let Q be either R,® = {z | x = (21, .-+, ;) € R® with
- 2, > O} or‘a bounded ¢® domain in R". Then FW(.Q) is the restrlctlon of F}, on Q
quasi-normed by-

”~

ll/qu(Qll—lnfllglFqll,- ' T (2.14)

. :where the infimum is taken over all g € F?, wnth g Q= f (in the sense of D'(Q)).
.Slmllarly one defines B, +(£22). The parameters P54 have the same meaning as above.

N

2.2, Characterizations via oscillations

2.2.1. Oscxllatlons and sharp max1ma1 functions. Let !2 be an arbltra.ry
domain in R". Let * : -

B, t)=1{ylle —yl <ynQ, =2€Q4>0."_ , °*  -.(215)

N . . -
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“For sakc of brevnty we write

- fe@)dy = |B@ 0" [g@)d

B(z.0) ) B(z,0)

Let M eN_and 0 < u < oo, let Py, be the collection of all polynomials (with com-
plex coefficients) of ,dcgree‘less than or equa-l to M, where we put P_, = {0}. Then *

osc,™ f(z,t) —mf( f|/(y) P(y)l'fdy)!/", z€Q,t>0,  (216)

B(z.0)

-

'denotes the local oscillation where the 1nf1mum is taken over all' P € Py, (usual modi- ~
fication if u = c0).- Of course the notation osc,* f depends on 2, but in general we -

t.shall not indicate this dependence. Furthermore it is tacitly assumed that If|¥ is
mtegnable in B(z, t). We introduce the sharp maxnmal functions

futta(x)'="sup ¢ ose, f(z;1), zeQ, .- _ : (217) ¢

o<t

where s is a.'real number, M € N_, a,nd 0){% < oo. Let a, = max ‘(a, 0) where « is
a real number. v

2.2.2, Theorem. Let Q be either R®, R,» or a bounded C°° domazn in R"
(i) Let 0 < p < oo, 0<q£oo 1=r < oc0and

s> (l—i) and s>°n<—l-;—) . C L (218) -
AV , q S A . .

Lt 0 <u <rand M €N, with Mz fs), then

. ‘F;q(g) {/ I f € Lmax(pr)('Q) ”/! p( )”

e H(z2mosc o) )"’|L,,{Q) <oo} o (219)

(modification if ¢ = oo) in the sense of equzz,alent quasz norms. -

(i) Let0 <p <00,0<g=00,1 <7< ooand > //

s>n(i-'-1-). T T @20)

S p ot R _
Let 0 < u'< r and M € No with M Z [s). Then p

- B@ = {me L), I 1L '

ST (22”« ||osc.." 20| I (9>u°) T < o'é} _ (2.21). -

Lo~

':(modz/zcatzon if g = o0) in the sense of equwalent quasi- norms

’

2.3. Remark. As we said in thé introduction there exists some characteuzatlons .of
type (2.19) in the literature. As far as fractional Sobolev spaces 1, = F3, with
8> 0and 1 < p < oo are concerned we refer to J. R. DoRRONSORO [12] Extensnons .
to more general spaces £}, are due to J. R. DORRO\SORO [13] and A. SEEGER [24],
where the latter paper covers more or less (2.19) with u = 7. Characterizations of -
. type (2.21) r’nay be found in a somewhat hidden form in the work of V. P. Ir’ IN, see
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[1:§28], we refer alsoit(\) ‘Ju. A. BRupNyJ [3], H. WaLLiy [33: Theorem 7] and the
references given in the latter paper to further papers by Ju. A. Brudnyj, J. R. Dorron-
soro, F. Ricci, M. Taibleson, A. Jonsson, H. Wallin, R. A. DeVore and V. Popov in -
this connection. We concentrate ourselves on the more complicated F-spaces, and
formulate the corresponding results for the B-spaces only for sake of completeness.

We prefered in (2.19) and (2.21) a discrete version, But it follows immediately from
(2.16) that one can replace the sum over j by an integral: For example,”

S L@l + f - ose, 0 E\ [ Lo \

¢ -(2'.22) '
0 - .

is an cqunvalent quasx norm in, F},(£2) under the same conditions for s, p, g as in the
theorem. o

2.2.4. Definition. Let Qbea bounded C% dea—-in._ ~

(i) Let'1 Sp < 00,8 = —nfp, and M = max (—1, [s]). '.-I‘hcnl o /
LAY = (L@ Lo _
ST W I T@ A sup ) S ool e
(ii) Let s > 0,0 < p < oo and p = r.na‘x<(1,. p). Then |
@) = {11 € L(@), I | G o o
= WL+ 14 L@ <ooh. (2.24> |

2.2.5. Remark. The spaces L,{) are the Morrey Campanato spaces. The case
—n/p <'s < 0, and hence M = —1, goes back to C. B. MorrEY [22]. Furthermore -
L,%2) = BMO(.Q) is essentially the John-Nirenberg space of all functions with
bounded mean oscillation, see [16]. (If one extends the case M = —1-to § =0, in
contrast to our definition, then one obtains L (2), and it is well known that BMO is
stnctly larger than L.) The extension of the spaces L,%(£2) to s > 0 has been done
in the sixties by S. CampanaTo [6—9], G. N. MEYERs [21], S. SPANNE [25] and G.

" StampaccHIA [26, 27] The original notations are different. The above notations are

adapted to the main subject of this paper, the spaces F3,. Further details and refer-
ences may be found in [23] and [20: Chaptm 4,in partlcular 4.10]. The spaces C 3(£2)

" have been introduced by R. A. DEVORE and R. C. SHARPLEY in (11] and M. CHRIST
: [10] The difference between (2.23) and (2:24) is obvious: One replaces the sup-norm

in (2.23) by the L,-quasi-norm. The idea.to replace the sup-norm by some Ly,-norms
is not new, see G Srampacciia [27] and V. P. I’ 1IN [1: §28]. A—dnscussmn of this
pomt, and further references may also be found in [2]. In order.to define L,%£) a,nd(

C,%(f) it is not necessary that the underlying domain 2’is bounded or smooth. 1t is

.'sxmply convenient for us. However if 2 is unbounded, then it seems to be desirable to

replace |[f | L,(2)| in (2.23) by sup |1 Lp(Blz, 1))||, see (2.15). As we shall see one

can prove well-known classical results for the spaces L,*(£2) more or less as a by-
product of the technique which we develop in order to handle the spaces F3,.-Maybe

-this justifies to mcorporate these results_in Theorem 2.2.7 below
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© 2.2.6. Holder- Zygmund and Sobolev spaces, Let.Qbeabounded c> domam

in R"/let1<p<ooandlc6\o Then

-~

W Q) = {/-lfeLp(Q), U1 WH = £ W0 | L@ < oo} T asy

" are t,he_ well-known Sofbolev spaces.‘Let; MeN, t> 0 énd x € ,Q,: then
' VM@, = (h|he Rz +he Qb <t,0ST<M) . (2.26)

" is a maximal subset of a ball of radius ¢ and with' its centre at the origin such that
& + MVM(z,t) — Q./Again we omit to indicate the dependence of V¥(z, t) on Q. Let
8> 0 and let M € N be the smallest number with M > s,-then

B4(Q) = {f | f € Lo(9), lIf-] 84(2)] ' |
' llfILm(Q)lI+SUP'IhI‘ lAMf@@) < oo} (2.27)

e

are the Holder-Zygmund spaces, Where the supremum is takcn over all z € Q,

0<t<1andh€ VM(z, 1), and

_AnM/<x>=‘Z<~1)M-f(.)f<x+¢h> e

are the usual d1ffe1 ences. It is known that both spaces W K — = F% and §* = B, are .

covered by the spaces 1ntroduccd above, see [28: 2.5.6 and 2.5.7], but thls is un-
1mportant at the moment. Furthérmore one can replace the smallest M ¢ N with
M > sin (2.27) by an arbltrary M € N with M > s (equnvalent norms)

g 2 7. Thcorem Lel bea bounded C*® domain in R".

(i) Let 1 < p < oo and s > 0. Then ' " | _ 4\ ,
L@ =L@ and  LAQ) = 64Q). L 2.29)
‘(ivvi)lL?t 1=sp<oo,MeN_and —njp < s < M + 1. Then
IO = W L@+ sup f*o) . (@30)
is an eqz'u:valent norm on L5(£).- »
_ (iii) Let 0/<_ p =< ooand 8> n(l/p — 1),. Then .
0N = Feu@ - (2.31)
and for any M €'N, with M g [s] - -
| IF 1 Co* (MM = IIf | Ly(@)ll + I, | Lo(Q)] (239

is an equivalent quasi-norm in C8(2). -~
(iv) Let k € Ngand 1 S u < p < oo.Then .
WD) = {111 € L@, If | L@ + 15| (@) < oo} - (239
(equivalent 'norms) ' ' - '
- 2.2.8. Remark As we said we consxder the above theorem as a complement of Theo-

rem 2.2.2. For this reason we did not try to give most general formulations. One has
correspondmg assertlons if one replaces 2 by R" or R.? (w1th the modifications indi-

)
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cated in Remark 2.2.5). Furthermore Q need not be C*. Almost all assertions of the -

above theorem are known: (i) and (ii) are known since the sixties in the framework of

the theory of the Morrey-Campanato spaces, see the references glven in'2.2.5. Further-

more (iv) and also the assertion about the equivalent quasn norms in (iii) are covered

by [11], including some generalizations, whereas (2.33) is essentially due to A.'P.

CALDERGN [4], however see also [5, 10]). Formula (2.31) seems to be new, but it is -~

more or less a consequence of [24: Corollary'1]. : .
Lo /

2.3. Extens;ons and characterizations via differences : -

2.3.1. The extensmn problem Let 2 be elther R." or a bounded C°° domain in -
R* Let —o0 <8 < 00,0 < P < oo, 0 < ¢ = oo and let re be the restriction _opera-
tor from F (R") onto F’,,(Q) in the sense of 2.1.6. Of course re islinear and bounded.
We are looking for a linear and bounded operator ext from F? q(.Q) into F'5,(R") with

reoext =id - (1dent1ty in F3(Q)). . (2.34)

This extension property is well known for the classical spaces (Sobolev, fractional
Sobolev, Besov, Hélder-Zygmund). For general spaces F3, (and also B?,) including in
part,lcula.r smoothness parameters s < 0 and values p < 1 this property has been
studied in [32: 2.9.3] and [28: 2.9]). However there remained some gaps. The first
full proof is due to J. FRaNkE [15]. In [31] we gave a new proof of this assertion which
was based on the kernels and the quasi:norms in 2.1.4 and 2.1.5, respectively. In the
. present paper we give a new and almost trivial proof of the extension property for
the spaces F4, under the same restrictions for p, q and s as in Theorem 2.2.2 which is
not only of mterest for its own sake but which is crucial for our method: First we .
prove all assertions on R?, for example those ones from Theorem 2.2.2, then we prove
the cxtension property and obtain on this way corresponding assertions on R," and
transfer finally these assertrons to bounded C* domams with the help of diffeo-
morphic maps. - > \

2.3.2. The’orem. Let
. . 1 i : .
0<p<oo, 0<q £ oo, s>n(—-—1), _s>n(—l——1),
. : S 2 \g
~ (2.35)

Let L € Ny wzth LZ=[s]lLet0 <iyp< i < 4. < Ay and let @y, ..., a;, be real numbers
with. ‘ : '

L ' R oo
ké:)a,‘(—&k)‘ =1 - where l=0,...,L. . -.(2.36)
- Vo N N . .
Then exty with _ _
f@ if z € R, < .
exty f(x) = 4. L C(237)

2 mf(x’, —Xx,) | if x = (2, x,) with, <0
k=0 .

is an exten'sion operator from F3 (R, into F’ (R,

2.3.3, Remark. Extension’ operators of type (2.37) are not new, they go back to
F 1chtengol’z and we used them several times, see [32 2.9.1 and 2.9.3), [28 2.9] and -
[31], in an extended form which covers also values s < 0. The theorem in the-above

v
a
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: foun can be extended 1mmed|ately to the spaces B, with‘0.<,p <00,0<gs 00

a,nd s > n(l/p — 1)+

5

2.3.4. Corollary. F’or any e > Oand allp, g, swzth Co- )
e<p<oo, e<g=o0,’ fs| < &1 (2.38)
there ‘exists a comimon ext_ensionlopemtor exts /rom F? Q(R ") into F? sa(R7).

" What is meant by this a little sloppy formulation is that there is a linear operator
exts defined on the union. of all spaces in question such that its restriction to a partic-
ular space F5(R.") has the ~desired - property. We incorporated this corollary be-
cause it follows rather simply from Theorem 2.3.2 and some techhiques used in [28:-
2.9]: duality and complex interpolation. Hence one has a new proof of the full theo-
rem (without any restrictions of the parameters). The sameé-operator ext¢ is also an
extension operator Vfrom pe(R.") into B (R") if | -

e<p=oo, 0<_qSoo |s|<s'1. o L (2.39)

2.3.6. Means of differences. Let © be either R” or R,® ora bounded C* domain in -
R". Let V¥(x, t) and 4,f(z) be given by (2.26) and (2. 28) respectively. Let f € F3,(£)
with the same restrictions for s, p, g asin Theorem 2.2. 2(1) with r = 1. Then / € L,,(Q)
where’p = max (p, 1). In particular, .

A = § 140 @) ak, xe.o,e'>o,, R (240)

VM(z, i)

makes sense where agam we omit to indicate the dependence of d,¥f on the given
domain Q. Furthermore § stands for the mean value, see 2.2.1. This is the counter-
part of osc,™ f(x, t) from (2.16) with » = 1. There is no problem to replace the L,--

,means in (2.40) by L, -means\and to-generalize the theorem below to this-case. But
for sake of sxmphuty we restrlct ourselves to the a.bove means.

2.3.6. Theorem Let Q2 be either R*, or R % ora bounded C°° domain in R

' (1)LetO<7J<oo O<q£ooand

~ 1 = ) . . . . e
s>n(l — 1) , s>(n(— — 1) . . . (2.41)
. P + 4 o _ o .

Let M € N with M > s. Then
(@) \{f 1€ L@, 1 | @)

+ "( 5 ginat % )"

j=0

L,,(Q)” < oo} : L (249)

. (modification if ¢ = o0) in the sense of equivalent quasz-‘norms . ‘ .

(1) Let O<p = oo, O<q < o and s>n(1/p— 1), Let~M€ N with M > s.
Then -

S

. :
B (Q) = {f [/ €.L5(Q), IIf'l Lp('Q.)” + (Z 2i% [a4f | p('Q II") < 00}

(243)

N

(modification if g = o0) in the sense of equivalent quasi-norms.

-
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2 3 Remark We prefered again the dlscrete version. But there is no problem to

replace the sum over j in (2. 42) and (2.43) by corresponding mtegrals For example

1 d t/q

) . A . . .
wzen's | [ ) | o) e

~ N |

\

X]

-. is an equivalent qua51 -norm in Fp (Q ) under the same conditions for s, p, ¢ as in the
theorem i .

2.3. 8 Remark. Characterizations of function spaces via differences have beenstudied
extensively. This is well known for the Holder-Zygmund spaces £ with s > 0 and

' .- the classical Besov spaces B, Wlth §>0,1<p<oo,1=q= oco. Corresponding ~ - -

results for fractional Sobolev _spaces have been proved in the late sixties and early

seventies by R.S. StriciarTz and P. I. LIZORKIN, see [28: 2.5.10, Remark 3] for

further references. Extensions to ‘F"q are due to G. A. Kavsasix and the author. An’

" extensive treatment has been given in {28:2.5.9 —2.5.12], where we gave many refer-
ences, see also [29] for a more recent systemat,xc study. The characterization (2.42) -

- with 2 = R” coincides with the corollary in [28: 2.5.11}. However the extension of
characterizations of this type to R, or to bounded domains £ cdaused some trouble.
In [18] G. A. KarLiaBiN proved the characterization (2.42) for bounded domains Q
(even more general than C* domains) for the spaces F3,(2) with s > 0,1 < p < oo,
1. < ¢ < oo. In other words: (2.42) extends Kaljabm s result to 0 < p <oo,0<gq-
<. o0 a,nd s with (2.41). .

2.3, 9 Remark. Our study of the spaces F“’ (Q ) where  is a bounded C°° domam in
R" and p, ¢, s obey (2.35) is based on the resu]ts for the spaces F3, (on R"y and the
extension property from Theorem 2.3.2. In particular we obtain as a by-product that
all the spaces F3,(2), and also B, (2), have the extension property (from 2 to R") '

—If Qisa non-smoobh bounded domain, the situation is different and the extension
problem from @ to R” cannot be reduced to. Theorem 2.3.2. This question attracted

*.. some attention in recent.times. We refer to [18, 24] as far-as Fj,-spaces are concerned
" and to [10, 11]in connection with C*-spaces. ‘

3. Proofs and further inequalitiés o

)

3.1. Ineqnalmes for osclllatlons

3.1.1. The aim of Section 3 it twofold. First of all.we prove the main assermons of
this paper formulated in the Theorems 2.2.2, 2.2.7, 2.3.2, 2.3.6 and in Corollary 2.3.4.
Secondly we derive several inequalities for oscnllatlons whicli‘are (as we hope). of
"" some interest for their own sake. :

. 3 1.2. Preliminaries. Let £ be either R”, or R," or a bounded C°° domain in R". In
the latter case we assume without restriction of generality 0 € 982 and that 952 can be
1ep1esented near the ofigin as z, = y(z’), 2’ € R"™"1, where p is-a C® function.near
. the origin in R"~1 Let ko and k be the kernels from (2.8) and (2.9), then ’

suppkocR and . supp k = R,". o ‘ (3.1)

Let f € Ly(2) with 1 < p < oo. Then k(t, f) () from (2.2) and similarly ko(t 1) (z)
make sense at least for z € Q near the origin and t > 0 small. We may assume that

N - ~
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these means make sense for all z € Q near the ongm and 0 <t < 1. Let /, with
j € No be given by (2.10). Let

H@) = 3 fua),.  wherej € Ny . E (3.2)
k=0 i
3.1.3. Proposition (Optimal polyrloml.alé) Let Q be cither R*, or R," or the bounded

C® domain from 3.1.2. Let 1 < p < o and M € N, then there exist posztwe numbers c
and.c’ such that

\Vp

dy) :

" ose, M1, 2-f>§-( f
B2 ' '
- 4 osc, MV f(z, c21) ' - (3.3)

{

fy) = Z (D’f’) (@) (y — 2

=M- 10"

for all J€L (Q), 7 € No and all €D (ne(br the origin).

3. l 4. Proof. The left- hand side of (3.3) is obvxous We prove the right-hand side.
By (2.2) and (2 9) we have

fko (x+y)dyTZZ"'fk2’y)/ +y)dy

, —fko fw + 2-1y) dy. ¢ XY
By (2.8), see also [31: (3.12) and (‘3 8)] it follows v ' :

M+1 y . .
o e~ e = (f,f)mM—" \
g x ( 2(—1 (M a4 r2hy) d - (3.5)
mfi= r . yr ey o

L . ~A —fk(y A3, f(x) dy, »
where &is a compactly supported C® function with supp & = R,”. We can replace /
on the nght -hand side of (3.5) by f— P with P ¢ P‘, 1- Then it follows

Cf@) = fi) < ¢ f@) — P(x W +c £ iy P(y)l dy - (3.6)
, B(z,c2-7) ~ ) ¢
for all P € Py_, and some ¢ > 0 and ¢ > 0. Hence we have ' ,
. ( f @ — Fyr dy)”" < ¢’ osc,M 1 f(z, c27F) o (3.7
B(z,27°1) -

_ for some ¢ > Oand ¢ > 0. On the other hand the polynomial in (3 3) is the Taylor
expansion of fi. Let y €- B(:z: "2-7) then we have

o) = I (D) @) g — | S 2 sup T DG (38) -

lalsM—1 Z€B(z.27) la|=M
By (3.4) it follows . - . o )
Defi(z) = 2! [ . Doko(y) fla + 2y dy, x| =M. (39
Hentce one can agam replace f on the right-hand side of (3.9) by f Pwith PePy,
and we obtain by the same arguments as above )
|D*fi(y)| < 2 osc, M1 f(z, @), '€ B(x, 277), - (3.10).

_ for some ¢ > 0and ¢’ > 0. \Iow 3.7) and (3.8), (‘3 10) prove the right- hand side of
(3.3).
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3.1.5. Pro'position. Let Q2 be either R™, or R, or a bounded C* domain in R". Let
1Ep £ oc0cand M € N, then ihere exist positive numbers ¢ and ¢’ such that

osc,7! f(zx, 2- ’) < Z‘ 2-G=h¥ osc,M f(z, c27!) + c'2-iM f f(y) dy (3.11)
(=0 - B(zc)

/or all / € Ly(2),7€Nyand all x € L.

3.1. 6 Proof. We may assume that 2 has thé properties described in 3.1. 2 and that
"z € £ is a point near the origin. Then we can apply (3.3) and obtain

0sc,M 7t f(z, 27 h<e osc,,M /(:z:, c2- ’) + ¢27iM 37 ID“/’(x)[ , "(3.12) .
o . [t = I
By (34) and [31: (3 14)] we have . =
’ D“f‘(x) =2 [ K(y) Ay f2) dy, - ol = M, - (3.13)

- .
and lE h S ‘where k' is a compactly supported C® function with supp &’-— R,", a
. lmear combination of D*®(y/m) similar as in (3. 5) (obv1ous modification if M = 0).
Let L € Ny, then we have e .

Deftei(z) — Dofi(a) = 2040 [ k(y) (Ao ). — 2-MAL Jady. (3.14)
Next we use the formula .

: . : M—1 - o oo
At f(x) — 27MAN, f(2) = Za,Az_‘ ,,,/(x + r2-t- ly) . . (3 15) -
“where a, ‘are' some_constants, see [28: 2.5. 9 formula (45)]. ThlS formula makes clea.r
" ‘that one-can 1eplace f on the rlght -hand side of (3.14) by f — P thh Py 6 P We
: Obtam . . : .
|Dof1 @) — Dofl()] = ¢ 120 [ lf(y) — P(y jdy L (3 16)
. B(zc2") ' -

for somec > Oand ¢’ > O where we used the structure of &/ (y), in part,lcularf k'(y) dyu '

"= 0if M € N.Hence we can repla,(,c the rlght -hand 51de of(‘3 16) by ¢'2'¥M osc,,“ /(x 27h).

1‘mally we arrive at . ) -

1271 | Dafil)| 'S 27 Z D /‘“(x Dsf'(a)| oo ID°/o(x)l

‘ ) ‘ . : R
o <c 22 G- ‘)"oscp“/(x c2- ') + 2" ’Mfll(yldy (3.17)
) TS R T B(z.1) -7

Now: (3 12).and (3. 17) prove (3 11).

" 3.1.7. Proposntlon Let £ be either- R? or. RJ ora bounded c= domam n R" Let
- Mce N_,, .

A - Ng ‘ 1—0
O<u<1<r$oo and 1=

0 .o
= o (3.18)
There cxist posztwe numbers ¢ and ¢ such that . h ‘
_ - .78 .
ose, f(z, 27) < ¢ [ > ose,” f(a, cz-f-'>] [sup osc,H f(z, 2y
o 1=0 : 1

+ sup ( " f  osc,M. /(x + w, 27t dw)‘/" 16
leN {w|z+we 8(2:02-1)}

. : : | (3:19).

forall f € L (£2),7€ Ny and all z € Q. :

I
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. 3.1.8. Proof. We assume that Q satisfies the hypotheses of 3.1.2 and that z is ncar

the origin, in particular (3.3) (now with M mstead of M — 1) is at.our disposal. Then

all the calculations below are justified. We may assume M € N, because the case -

M= —1 lS 0bv10us by Hélder’s inequality. We use the same technique as above, i.e.
0%1“ fw, 271) < f 11w — i)l dy ,
Bz2-) ‘
- -l/"(y) X = D“/f( ) (v — x)"‘ dy. - (3.20)
- lelsHM ol o

- Blz, 2-’)

~

ES

. In order to esbmnte the. second term we nced the mtegral versnon of Taylor s expres- .

sion, ) 4
L Py - X —,-Da/«x) —2r L
lalsM &: : ) . _ . .
= L1 . . ) ’ .
= 2' M+ T (J—x) f’(1 — M Di(a + ety — ) dr. S @3.21) -
1B|l=M+1 13' . - s .

-

‘We may assume that x + t(y —x) € B(z, 2- 7) for all 0- < v < 1. Then we have-

f Dz + (y,—2) dy = § |DFfi(y)| dy. S T 322
. * B(z.27) B2 ) .
. On the other hand (3 13) with D8, Bl =M -1, instead of D=, |o] ='M, yields
2D Dfiy)| , ' -
§ (f lk’(z),u Ab{’tl y)lu dz)“"‘wuv(f‘ |k’(z)|f ]AM rl/(y | dz)o/' —
s (I/ v =P+ § 1fe) = Pl(z)ludz)“__ ot 5
. ~ By, ca-’) o A . . .
(l/(/) =Py + f | Py(z )I'dz)o" T e (3 23).
B(yc"") ' . .

_ where the polynomlals P, 13 P and P, E Py are at our dlsposal By (‘3 18) a.nd Hol-- -
’ der’s mequahty it follows S , _

% -
| 2ern £ Do) dy ' / :
' T B :2—:; . . _ - .
é[ Flfw) — Pipltdy - f l/(y+w) —P( +,w)|udydw]u—ow
. B(z,t2-9). {w|z+wemz c2-9)}  B(z,127) - |
x‘,[ f i) — Poy)"dy + f l/(z)—Pz(z)I'dzdy]”/’. T (3.24)
B(z,r277) B(z,1279) B(y.c2-) : .

" The two factors will be treated differently. As for ‘the second factor we choose P,

as the optimal polynomlal in the sense of (3.3) (with M instead of M — 1). Then the -

" second summand in the second factor can be estimated from aboveby ¢’ 0sc, M f(z,c2-7)

with a new constant ¢ > 0. We may assume v ='2! with [ € N, in the first summand

. of the second factor. By our choice of P, and by (‘% 3) with j. + l and M instead of;
and M — 1, respectively, we have ‘

( A Iy) — Pa(y)l' dy)"'

B(z,12°7) - . . -
T 1 : .
< ¢ osc, M fe, 2 1- 7c) te XN xe- (40} |D“/ +k(:z;)| : (3.25)

k=0 |ajSM

- ; B -, .
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where we used (3.2). We may assume that' '
A

Dfj () = 20+biel [ 57 Dﬁka,,(y)dgi,f.‘, fw)dy . L (3.26)

1Bl=M+1

holds for-jx| = 0 and |«| = M + 1, whexe the kernels k,gare compactly supported -

C* functions in R* with supperts in R », This claim is covered by [31: (2.23), (2.24)]. .
We can replace f in (3.26) by f — P with P € PM Because-the mtegral over the.
kernels va,mshes we obtain -

~

1Dl )ISc2"+"”°' oseM f(z, c271" by - S : (3 27)

for |¢] = 0 and |x| = M + 1. It is not hard to see that this estimate can be exten-

ded afterwards to all x with .0 < |x| £ M-+ 1. Hence, (3.23) with (3.27) has-the
desired -form, the second factor in (3 24) can be éstimated from above by the factor
in (3:19). If we choose P, in the first factor in (3.24) in an optimal way, then the
first factor in (3.24) has'also the desired form. By (3.21), (3.22) and (3.24) it follows

" now that the second summand in (3.20) can be estimated from-above by the right-

hand side of (3.19). In order to estimate the- first summand in (3.20) we. use (3. 5)
with' M + 1 instead of M. Then we are in the same position as in the right-hand
sides of (3. 23) and (3 24), now w1th T = 1 Hence we have again the desn'ed esti-

’ mate

3.2;. Proof of ’I‘hedreni 2.2.2, thc case'2 = R»

- 3.2. 1 We prove the theorem for the F spaces The proof for the B; spaces is similar.,

but technically snmpler Let k(21 f) ( ) ‘be the same means as m Defnntlon 2.1.2
and let s be restricted by (2.18). Then we can 1eplace (2.4) by :
F;q = {f | j € Lmex(ﬂﬁ_)’ ”/ , Lp“

-

L, '<oo}' L By -

( 5 o k(2 f) <i)w)”q.
i=1 . / .

(eqﬁivalen‘t, quasi-norms) where we again omit to indicate R" as'the 'underlying do-
main. We refer.to [29: Theorem 1] for the’ replacement of [|ko(e, 1) | L,,|| in (2.4) by
If{ Ly|| and to the embeddmg bheomms in[28:2.7.1] asfar as f€ Lyaxp.r) 18 concerned -

3.2.2. Let the numbers p, ¢,.7, s and M be the same as in Theorem 2.2.2(i) and let

41 Lu=sr.Let f€ Lyaxipn such that the quasi-norm in (2.19)-isfinite. Recall k = Atk

" in the sense of Definition 2.1.2 where [ is as large as we want. Then we haye -

. (3.28), f € Fy

-

C k@, f) @) = | [ k@) (f — P) (z + 27%y) dy| < ¢ ose, f(z, 27) (3.29)

7 € N, where we used that the first equality holds for any Pe I'M Then 1t follows by

e and ;

WS U Bl L "'(3.30) .'

oll*

(_ 3 P ose,™ f(. 2-f>7)”"

3. 2 3. We wish to prove the converse 1nequallty under the same restrictions for the‘

’ parameters as in-3.2.2, in paltlcnlal l1Su=sr. Let / € Fi. We use the same tech-
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nique as in 3.1.3 and 3.1.4 and obtam S A o ' ’
ose,™ f(z, 27%) < ( fv-—ﬂwwwy” )
oo B(z.2) - . ’
) . U Hu -
S +« flmw—zrﬁuwmww—wadﬁ
. . . le|ls=M [+ 2N - .
B(z.2-)
) Z(meMWW“*HWUD%wm+2W@I
. : =L \gz2-n -
: ot (3.31)

where the supremum is taken over z € B(x, c277) and ]ocj' M + 1; We used (2.11),
(3.2) for the first term and (3.8); (‘3 9) (with M + 1 instead of M) for the second term.
However the last term in (3.31) is a maximal function which fits in the scheme of -

[29: Corollary 1] because of M + 1> s, which we dendte temporarlly by f;- In other
words = -

\

ScWIWm ' 3 (3.32)

. (Eziaq}(.)q) L,

j=1

- In order to handle the first terms in (‘3 31) we need more maximal functlons Let g
‘ be the usual Hardy-Littlewood maXImal function of g and let

1+l . n
S(z) = sup ———"—
P =k |27y} 7 min(p,q) ‘
‘VBecause Qf ; > m — % \'ve fin51 a i‘eel number -x with % < 1 angd
) %mm(p,q)>,¢> 1—%mm(p,q) dflgugr. T (3.34)
Then we have : ' ‘ 0_\. .
( iMMUV@y“<cW“”PT) gl @y.. o (3.35)
o Blz2) . L "
© Now (3.31), (3.32) and (3.35) yield o . T

'LIZ

.( 2.21'00 osc, M /(’ 2-7')(1) <cf] Faq” +¢ Z‘ 9=+ a)IZla(l x)
j=1 ) ' - ) )

X (2 2uthsafa, (')Q(l_”)(lfi+zl““5;qlu (-)) L,

i=1

where ¢is an arbitrery positive number. We may choose @ in (3.33), = in (3.34) and
¢ > 0 in such a way that s — ¢ > a(l — x). Then the left-hand side of (3.36) can be

[

clif | Bqll + ¢ L

=

P

(5 )"

j=1

L,|l

(E%MMWWQ

-The first factor of the second summand can be estimated from above by c|If| F ll *
see agam [29: Corollary 1] Because both ¢ > »u and p > »xu, see (3 34), we can

’ ~
/

L .. (3.36)

with a>-—"—— -~ (333 " °

(3.37) ,
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. il | 4
apply the vector-valued maximal mequahty due to-C. Fefferman and E. M. Stein, see
[28: 1.2.3] for references (which works-also if ¢ = c0). Then it follows that the second -
factor of the second summand in (3. 37) can be estnmated from above by c |]/ | Fo
We arrive at . :

Hf | L,Il + ”( 2nq osc M /( 2 i)q)

Scll/quH. . (3.38) :

Now (3. 38) and 3.2.2 prove Theorem 2 2. 2(i) with- Q = R" under the additional
restrlctxon lsu=r. . .

3.2 4 The extension of (3.38) to 0 <u<lis almost obvnous because we have'by
Holder’s mequahty

oseM flz, 1) < ose flz, 1), = 0<u<v=oo,t>0. (3.39)

" It remains to prove (3.30) under the nypotheses that the right-hand. side of k3 30) is

_ finite and fe L, We begin with some preparations. If (2.18) is satisfied for r.= 1,
" then it is also sablsfled for some 7, > 1. Furthermore again by (3.39) it is sufficient to'
prove (3.30) for small values of U > 0. Hence we may assume wwhout restriction of
generahty ‘ .

0<u<1<r£oo and 0<u<mm(p, q): " - o (3.40) }

Temporanly wt take it for granted tHat under these hypotheses f belongs to F’ we

Pe
return to this questlon in 3.2. 5 We.use (3. 19) and obtain

oscl“ ez, 2 7) ( 37 20 ose, M /(x, c2-1- ’)")

/ : )
+ Ce (Z |OSCuM /(x c2-i- l)ultq/u) q’ , o (341)

where agam the star indicates the. Hardy Littlewood maximal functlon The posmve'
numbers ¢ and 7 may be chosen arbitrarily small, in particular 0 < 7 < s. We multi-
ply (3. 41) with 27 and take the /,-quasi-norm with respect to 5. Then we obta.m

N

oo - g ..
22"‘1 osc, ¥ /(x 2- j)‘7) - . -

/\

. 1=1
i ST S S (349

Next we a.pply the L,, quasi-norm. to (3 42) and- add on both sides ||/ [ Lp|| Then we
obtain by the: above results

Y/ oo 1/q- .0 1/q
Se¢ ( D) 2iea osc,‘“ f(z, c2")°) + ¢’ ('Z 2180 |osc,M f(x, c2‘f)"]"1/“)
. "=1 - ' ] . -

~ 3l é ellf ] Fogll + ¢ Il/ l LpII’
1 ] - . / - .o .
~ + &, (, §1 2feq |osc M /( cz-f)ultq/u)lq L, o (3.43).

“where ¢ > 0is at our disposal. Because u < min (p, g) we can again apply the vector-

- valued Hardy-Littlewood ma,xnmal mequahty to the last summand in (3.43). We
obtain: (3.30). }

19 Analysis Bd. 8, Heft 3 (1080)
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v

'3.2.5. It remains to prove the followmg assertion: Let f € L, and fet the right-hand .
side of (3:30) be finite. Then f € FS,. We begin with two preliminaries. Let K €N
with K = [s] and let ¢ be'a C°° functlon in R® with . .

]DI(p(x)]SI “if |y <K+1 and zec Re. » o , (3.,44)
Then we have ' - l '

b oscu’fjf" (®f) (x, 27

_ . » N 1 ) ") l./u .
= ( JC ‘w(_z_/) fy)— 2 =5 Do) (y — =) _P(y)} dy,) ,
\si) < elSk 6 : - ) ]
where P € Py is an'arbitrary polynomial. It follows
. . E N )
osc, X+ ¥ (pf) (z, 277) -
< cose,M f(z, 279) 4 c@-itk+D (, £ e dy)”"- . <3.45)» |

B(x,2)

The last mtegral can be estimated from above by (|f{*)*!/%, where agam the star indi-
cates the Hardy thtlewood maxnmal function. We have

R
< o (1) | L,,Il -+ L, (3:46) o

. M "
\( X 2 ose,™ (-, 2-7')0)

We estimate the first summand on the right- -hand side of (3 46) by ¢ ||/| L,|l, this
follows from the Hardy-Littlewood maximal inequality and p > u, see (3.40). Hence
the left-hand side of (3.46) can be estimated from above by a constant -which is in-
" dependent of ¢ with (3.43). We need a seccond preparation. Let y be a compactly
sipported C* function in R* with ftp yydy =1 and let f be the above function; i.e. -
, }€ L, such that the right-hand side of (3.30) 1s fmlte Then p(,’f) in the sense of
(2.2) is a mollrflcatlon We have

(&, ) (x) = f(z). - almost everywhere in R#? (3.47)
at least for some sequence ¢, — 0. F urthermore, .
Lo osetylt, f) (z, 27) < ( £ hwle, f — P) (y>l“dy)"" R X))
L . : Bz.2) ’ . .

for any P €' P, because y(t, P) € P,. Now we combme these two preparations. Let
f € L, such that the right-hand side of (3.30) is finite. Let ¢ be a cut-off function with
(3.44) and @(y) = 1 if |y| =< R. Then y(¢, ¢f) is a compactly supported C® function
and belongs to F},,. We can apply the arguments from 3.2.4 to y(¢, ¢f) instead of f -
and obtain ' . '

(e, of) | Fogll . , | ’ ' 1/p
o = wtef | Lyl + H( 2 27 osc, XM y(t, of) () 2”')")_ ’

LI

g (3.49) '

P

AN

We .use (3.48) with L = K + M and ¢f instead of f, choose P = 0 and estlmate
osc, K+ (t of) by( ¥ @I dy)l/' Hence by Lebesgue’s bounded convergence

B(z 2-%)

N : !



¢

Local Approximation Spaces 279

\

,t-}ieorellll and (3.47) we have for any bounded domain w and some se(iuence t, —>0

N

. - 1/q
( £ 919 osc, K+ ¢/>(~,2-'>q)

ji= l

Lp‘(w)

J ) . 1/q N .
'( 5 99 o6, K+ M (gf) (-, 2-0«) Ly(w) ”
. ] N

—
“~

=1Ll + L

P b

00 N g
(kZ' Qksq OSC"’M /( . 2—k)0)
=1 R

‘where we used (3.46) and the subsequent argumerits, J € N. Now by Fatou’s lemma
we can replace J on the left-hand side of (3.50) by co and w by R". By the definition

of ||--] F3,ll in (2.4), (3.49), (3.50) and Fatou’s lemma follows now f € Fj,

AN -~ -

3.3. Spaces on R."

3.3.1. In this section we prove Theorem 2.3.2, Theorem 2.2. 2 with .Q R.” and we -

add remarks about Corollary 2.3.4.

3.3.2. Let p, q a.nd s be given by (2.35). Then we have (2.19) with £ = R". In particu- ‘

lar F5(R.") — Lmaxpn(R.") for some r = 1and ext,, f(z) from (2. 37) makes sense for
any f € F3,(R."). In order to prove the extension property from Theorem 2.3.2 we
have to dlstmgulsh betwéen oscillations based on R”, denoted by osc,™ f; and oscilla-

tions based on R,", which we denote temporarlly by Osc Mf Let P¢ PL, then we .

have by (2.36)

B

ext; P(z) =P(x) < if ze R". . : B : (‘3 51) .

In particular ext; f(z) — P(x) = ext, (f — -P) (z) for any / € Fy q(R. ") and PcP,.
Let z = (', z,) with 2’ € R" 1. We have:
" ose,r (exty f) (x, 277) = Osc,* f(=, 2") o ' (3.52)
1fx€l{."x,.>2’a,nd o ‘ o
osci¥ (exty f) (z, 27) < ckio Ose (@) —han)ic2)  © 7/  (353)

if z € R, 2, < —2-1, for some ¢ > 0. Finally if z = (2, 2,) \ﬁth |z, <279, then'it-
follows ) ' ' ’

oselt (exty f) (z, 29) < ¢ Ose, f((a, Jzal); c27) . (354
for some ¢>0. Let now L = [s] and f € F? (R.",/then we claim . ' '
U1 PR < flexty f | Fol '
R 1< ¢ | LR + €

. .

Ly(R,

oo. .. 1/q
( £ 2 0sest -, i)
1=1 3 X
< ¢ If | Fy(R7)) - T e

for some positive numbers ¢, ¢’ and ¢’ whlch are independent of f. Furthermore we

assume that p, ¢, s and also 7 and u are the same numbers as in Theorem 2.2.2(i).
By (3.52)—(3.54) and Theorem 2.2.2(i) with 2 = R" it follows both ext, f € F},

and the second inequality in (‘3 55). The first inequality is obvious and .the last m-
equahty in (3.55) follows again from Theorem 2.2.2(i) with £ = R". In particular
ext, is an extension operator and Theorem 2.3.2 is proved. \

19* o v -

(3.50) -
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3.3.3. We prove Theorem 2.2.2(i) with @ = R,™ If f¢ F} (R,"), then we have °
f € Lmaxpr(R.?) and the right-hand side of (3.55)." If /€ me(,, »(R.") such-that the
third term in (3.55) is finite,.then it follows by the above arguments and by Theorem
2.2.2(1) with 2 = R" that ext, f € F}, and hence f ¢ F q(R "). Now (2.19) with @Q
=R,"isa consequence of (3. 55) ‘

3.3.4. We add some remarks about the proof of Corollary 2.3.4. By duahty arguments.

and on the basis of Theorem 2.3.2 one can prove the éxtension property for the spaces
F5, with —00 < s <00, 1 < p < 00,1 < g < oo, see [28: 2.9.2] for details. After- -
wards one can use complex mterpolatlon which proves the extension property for all
spaces F} -with '—oo <<s <00, 0 <p < 00 and 0-< g < oo, see [28: 2.9.4] for’
_ details. Slmllarly one can prove the .extension property for _the, spaces B3, for-all
<00 <§<00,0<p=Eo00, 0<qg= oo Now complex interpolation between the
Spaces F, 8o > 2(1/p — 1),, covered by Theorem 2.3.2 and BS,, = F,, covers also "
thecaseF ) : o < -

3.4. Pro_of of The'qrex'n 2.2.2

N ‘\ ) - .

-

3.4.1. The aim of this section is to prove Theorem 2.2.2 for bounded C* domains
Q. Recall that we proved Theorem 2.2.2(i) if the underlying domain' is either R® or
R.", see. 3.2 and 3.3.3. In the same way one proves corresponding a.ssertlons with B, .
"instead of F5,. Now: we concentrate ourselves again to the spaces F3 (), the’ proof -

© - for the spaces”B},(2) is- snmllar but easier. - \

3.4.2. Let Obea bounded C* domam Let p,q, s be the same numbers as in- Theorem
2.2.2(i). We have to distinguish between oscillations based on R, which we denote
by osc, f,and oscillations based on 2, which ‘we denote temporarily by Osc,* f (not -
‘ to be mixed with the correspondmg notation used temporarlly in connection with
R.%). Let ext be an extension operator from ¥4 () into F3, obtained in the usual way-

via a resolution of unity, local d:ffeomorphlsms and the operator ext; from (2.37)
(we refer for details about this procedure to.[28: 3.3.4], see also the considerations
. below). We begm with a local consideration and assume that the hypotheses of 3.1.2 °
are satisfied and that. feF *q(£2).has a support near the origin. Let y be a diffeo-
- morphic map of, say, the unit ball B in R" into itself such that 7(B n) = B n R n
“and %(0) = 0. Then ext can be described locally as .

extf(x)-ext,,/o/-l(m) ’ N c R0

where ext,, has the meaning of Theorem 2.3.2. Let 1 < %’ < r in the sense of Theorem
2.2.2. Then we:_can use Proposition 3.1.3 both for osc“L ext f and Osc,” f. We deal
only: with the most critical case which corresponds to (3.34) in"the case of R,*: The
transform A(x) = (z’, |z,|) in this case must be replaced now by u(z) = y ' o 20 y().
We have . - . .

osc,t extf (y7Y(z), 277) ] ' .
= ( f lextyfo z“(z(y)) — X a.(x) (y — Z_l(x))°|" dy)‘/". . (3-57)

{wllx="(z)— ul<?") . lelsL

N

Wc wish to apply (3.3) with Osc instead of osc at the pomt no [l(x) instead of z.
We substitute y = ¥ Y(2) in (3 5’7) and may assume

(e ) — 2 l(z>)ﬂ = (@) (z — @) + ... + Olz— leﬁ) . {3.58) . -
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"+ with c,(#) # 0 where + .:. indicates explicitly calculated terms of order between
l«| + Irand L orof type (z — z)? with 8] = || and 8, < x,. Now we determine the
coefficients a,(z) by induction with respect to || and &g such that - )

I,|>:a<ac ( -1<z) — 1! )°— 2 D“/’(/w/ 1<x>) (z—x)°+0(lz—x|'+'>-
) - : (3.59)

The coefflclents a,(x) are umquely determlned “they are linear combmatxons of
Dﬂ/’(,u o 7"1(:;)) ‘with || ¥ L, multiplied with harmless C® functions. Now we choose
L large, for example L = 2M with M € N-and M = [s]. Then we have L + 1 — M

">"M and by (3.9) (with [8]. = ‘M instead of |x| = M) - -
99— ;(L+n lDﬂ/f(/‘ ° 7’1(x | = 2~ )(M+l)2 Mj IDﬂ/'(r“ ° / 1(x))| o=
: LS e e i), =M, -(360)

where the star mdxcates again the Hardy -Littlewood matlmal function restrrcted to
R.". If M < |B] < L, then we estimate Dﬂﬂ(/t oy 1(:::)) by (3.10) (now with Osc.
mstead of osc) Recall that we are only interested in the counterpart of (3.54). Now
we use (3.51) in the same way as in the case of R,” the optimal polynomial in (3: 59),
.see (3.3), and obtam the counterpart of (3 54) : A

- osc,Lext f(/ x) 29 : . -
=c Z Osc kf(# °x” (x) 02'i) + ¢'2-1+D /*(/ll°'7_1(5”))- ‘ (3.61) |

Slmllarly but ‘simpler one obtains the counterparts of (3.52) and 3. 53) We replace

2 Yz) in (3. 61) by z, multiply- (3.61) and the just mentioned counterparts of. (3.52) . -

and (3 53) with 2%, take thel,- quasi-norm and then the L,-quasi-norm and obtam

LP

(oo o)

=1

4 - A ~L
sc- )

k=M

( 2% Osct /( ,c2” ’)")

j=1

L@ N T L,,m)u, (3.62) -

where now f* stands for the Hardy -Littlewood max1mal functlon with respect to Q
- We may assume r > 1in the sense of Theorem 2.2.2. Let t = max (p, 7). By ourassump- -
tions: we can replace L,(£) in the last term in (‘3 62) by L,(2) (Holder’s inequality).
‘Hence by the maximal inequality the last term on the right-hand side of (3.62) can be:
- estimated from above by c |If | L(£2)|l. Next we use (3.11) wrth k instead of M — 1.
Because E+1'> s we obtam

- r

1/q
C ‘ ( 3 210 oscu" ext f( 2‘7)°) L

; l

p

(22m0sc.ﬁ/( o f>a) (QSHH' L@ - (3.63)

Agam by Holder’s mequahty and known embeddmg theorems see [28 2 7. 1], we
have

_IIext/lLAI§6Ilext/lFqH+C.H/|Lp(Q)II, - a6y
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where £ > 0 is at our disposal. Now by Theorem 2.2.2 with R” it follows ‘
IF-| Foo(l = llext f | Fol

= IF1 L)) + H(ZW’"OSCLf( c2-1) )lq
S lf | Fo @l ,' T (3.65)

In other words the last but one term is an equwalent quasi-norm on F%,(£2) provided
that L = 2M with M = [s] and 1' <u < r in the senseof Theorem 2.2.2. How-
ever we can extend this assertion immediately to all L € Ny with L: = [s]. This follows
again from (3.11).-Finally we assume f € L,(£2) (with a support near the origin) such -
that the quasi-norm in (2.19) is finite. Then we have (3.63) by the above arguments.
Hence ext f € qu’ again by Theorem 2.2.2, and consequently f¢€ £} (2). Hence -
Theorem 2.2.2 is proved provided that the hypotheses of 3.1.2 are satisfied, f has a .-
support near the origin and 1 S u=r.

L)

3.4.3. Now let f'€ F5 () and let 1 = Z(p"(x) if-x € ( be an approprlate resolution of

umty If supp ¢* n 082 == O, then we may assume that we can apply the middle part
of (3.65) to ¢*f instead of f We choose L large and apply the counterpart of (3.45).
By the same technique as above we estimate

II(I/I“)‘”" | L@ < ¢ li(f14*7 | L@ < If | r(Q I (3.66).

by the Ha.rdy Littlewood maximal inequality, where we assumed 1 Su <7 < o0

without restriction of generality (the case w = r = oo fits also in this scheme) We
use (3.64) with L, instead of L, and obtam the deswcd estnmate Let supp q; noR =4,

. then we have

ose,” gf(z, c21) = Osc,” ¢¥f(z, c2-t)

at least for'j = J. The terms with 1 < j < J can be treated in the above way. This .
proves the middle part of (3.65) provided that f € F(2), Lislargeand 1 < u < 7.
-This inequality can be extended to all L € N, with L = [s] by the same arguments as”
in 3.4:2. Furthermore the first inequality in (3.65) is obvious and the last inequality
follows from Theorem 2.2.2 with R". Hence the last but one quasi-norm in (3.65) is
an equivalent quasi-norm on~F; (Q) for'all L € No with L = [s]and 1 S u =< r. If

- f € Ly(2) with ¢ = max (p, ), then we argue in the same way as at the end of 3.4.2,
This complete the proof of Theorem 2.2.2 provided that « = 1 . :

’

\

3.44.Let 0 < u < 1. By the same arguments as in 3.2.4 it follows that the last but
one term in (3.65) is an equivalent quasi-norm in F%, +(£2), now for all 0 < u = 7. Now
let f € L,(R2) such that the corresponding quasi- norm in (3.65) is finite. By ‘the same
arguments as at the begmnmg of 3.2.5 we may assume that the hypotheses of 3.1.2
are satisfied and that f has a support near the origin. Now we combine the mollifi-
cation 3.2.5 with an additional translation f(x) — f(z', z, + &) for some ¢ > 0 and
g — 0. The rest is the same as in 3.2:5. The proof is complete.

3.5. Proof of 'l‘hwrem 2.2.7 :

3.5.1. Part (iii) of the theorem follows from (2. 24) and (2.19), see also (2.22) and (2.17). )

3.5.2. We prove palt (ii). We compare (2. 2‘3) and. (2 30). Then it is clear that the proof
is reduced to - :

lI/ IL ’(Q)II“’ Sc ll/l L ’(Q)II"”1 - (3.67)

\
TS
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for some ¢ > 0 a,nd all f € L,%(Q),. provnded that M e N, and —nlp S s< M+ 1
However (3.67) fol]ows from (3.11).

3.5.3. We prove part (i). Let s = —n/p, then we have
L Pres ) = o f @ )= e f 1 ) o)
. ’ Bzt ' Bz.h) .\ )
Now by (2.17) and (2 23) it, follows L,(Q) = L, "?(2). Let s > 0 and fe 8”(!2) see

(2.27). In order to prove the second equallty in (2 29) we have to calculate osc,™ f(2, ¢)
where 1 < p < o0 and M = [s]..We assume without xestrlctlon of generality that *
" the hypotheses of 3.1.2 are > satisfied and .that"all calculations take place near the

origin. We use the same technique as in 3.1.4, in particular (3 5), (3.8) and (3.13)
(with M +1 mstead of M). We obt,am :

oscy, M /(x 2-H<e¢ sup § 14, M“/(z)l dy - - (3.68)
" z€B(z,279) VM¥(z,c29) ’ >~

Now it follows
H/I LN < IIf | LRI + sup gis Oscp” Kz, 27 ) N . }
< cllf | Lol + sup [A|™ |43 )l = Iif 1 &, - (3.69)

“where the first supremum is taken over all z € 2 and j € N, whereas the second sup-

- remum is.taken over x € 2, 0 < t < 1 and h € Y¥*i(x, ¢t), see (2.27). In particular
f € L2(R2). We prove the converse inequality to (3.69), temporarily under the assump-
tion f € 62(2). By (2.11), (2.10) and the propertues of the kernel k(x) 1t follows

°J
Ve

)

@) = ): ()

< If ko(y) fl + y) dy| + Z If k(y) (/ = ) (z + 2 ’y) dy| (3.70).

" with P; € Py In pantlcular
£ Loe(Q)” sclf | L Q)II + SUP 27 OSCp“ /(Z, 62 1)
S L@, - S @)

where 0 <& < s'is at our disposal.. 1 Next we estimate A"""/(x) with M %[s] and
|| ~ 271, We use (2.11) and (3 2) and obtain '

a1 f@) = 4 ) + 5 A i narla), | )

where R € N, will be determined later on. By (3.4) we have -
' ARy = Al | k o2 Ry — 2%E) f(y) dy '

= [ A k() flo + 2 Ry) dy. | (373)
We can replace f on the rlght -hand side of (3.73) by f—P with P € Py It follow
-1 M R(Z)] < c ose, T f(z, 277, - . ‘ (% 74)

where c depends on R. Similar as in (3.33) we mt;roduce the maximal function

fo@) = sup lfiz + I + 12%9*) witha >0, (3.75)

‘- \
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where k= j + R —}—.r with 7€ N-and the supremum is taken over y with « 4 y
€ B(z, c277) for sorie ¢ > 0. Then we have S ‘ -

| P4 i1 a2 S 24000, o () A - 3.76)
" . and : . ' ’ ' '

IR~ 1402 s o @) S €2-RADGZ0) 2+ REDS 1o () @I

and finally

X whf‘_"ﬂ/jm.i,(x)l_-gz_sigykw(x); . (38

" where e > 0is at our disposal (if 0 < a < s and if R is chosen large enough): We may
- ‘assume that f € £%(Q) is the restriction of g € & = £*(R"). However £* = BS,,,, see
[28: 2.5.7] and we can-use the theory of these spaces developed in [28] and [29]. In .~
particular by [29: Corollary 7] and .the extension property for -€*-spaces it follows
"that the right-hand side of (3.78) can be estimated from above by &(|f-|85(2)ll. Now"
§l3-71), (3.72), (3.74) ;and (3.78) yield |If | 84Q)l < ¢ |If | L Q)| + ¢ If1 &)l and
ence . o - .

N 1E@N S e lif LI e
Let f € L,*2). Then we usé_‘bhe'approximation procédiire from 3.2.5 and 3.44: trans-
lations and mollifications. For the approximating functions we have (3.79). Now by
the same limiting arguments as in 3.2.5 and 3.4.4 we can extend (3:79) to the given
function f € L,*(Q). The proof of (2.29) is complete. : ) .o

3.5.4. We prove part (iv). The case k-= 0 follows from the Hardy-Littlewood maxi-

mal inequality. Let f € W, () with k ¢ N and 1 <p<oo Letl<u<p Weuse
- again the abové technique, in particular : S

| ost (e, 2) < 5 (F frtor Ay ek sup 5 DG,

T=1 \Biz2" | 2€B(2.27) Jaj=k N
S . _ - (3.80)
see(3.8), (2.11) and (3.2). By (3.4) we have - _ o . :
D1 = | koly) D1z + 271y) dy| < e(Do})* (2), . sy
- where again the star indicates the_Hardy;Libtrlewood maximal function, z € B(z, 271).
Then (3.80) yields . A » : ' : el
2% 0se, 41 f(z, 271) S ¢ T(Df)* (z) = ¢ (2™ i)t @, (382)
2 lel=k . . :

. . : ¢ T
We take the supremum with respect to § on the left-hand side of (3.82) and obtain
. ”fwk_l'k l .Lp('Q)” o : \

= ¢ 2 (Dofy* ,‘Lp('.Q)” + ~C”(SUPA 2;““,1/,1“)‘*"'; Lp(‘Q)”' o .. 383
lal=k . ~ . T . . .

“Recall 1 §-u < p < oco. By the Hardy-Littlewood maximal inéqualitff we have

4 LLy(@) S ¢ 2 1| Ly(@)] + e |[sup 214 L@ . @81y

As we mentioned in 3.5.3 we may apply the F ouriér-analytical characterization of
the spaces' Fy,. In particular the last term on the right-hand side of (3.84) equals

L
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I | Féosl,s whlch is less than H/] W) Consequently, ‘ S
i l L@l + U514 | L@ < c lIf | Wkl - .- - (3.85)

Next we prove the converse inequality. Let f € L,(£2) such. that the left-hand side
of (3.85) is finite. We assume temporarily that (2 11) with Dsf instead. of f holds
pointwise almost everywhere, |a| = k. Then we have by (3.2) and (3.4)

D*f(z) = hm Dofi(z) = hm f ko(y) D"/(x + 2 y) dy

lim 2w / Dkl (f — P ) (@ -+ 8 fy) dy © T (3.86)
~j—oo - ~ .

w1th l] = - ¥ and P;e P, 1- We obtain . - . ,
D) S ofkT M), el =, L 387

and consequentlyf € W, k(Q), mcludmg the converse inequality to (3.85). If f € L 2(R2)

such that the left- hand side of (3.85) is finite, then we use the same limiting argu-

. ments as in 3.2.5 and 3.4.4, see also.the. end of 3.5.3. We obtain (3.87) and hence
fe€ W "(.Q) The proof is complete .

3. 6 Proof of Theorem 2.3.6 - . ~

AN

3.6.1. There is no deference in the proof ihether Q is R" R." or a boundéd C* domain
in'R". So we' may assume that Q is a bounded €% domain. All considerations are local |

and we may assume that the hypotheses of 3.1.2 are satisfied and that the points -

x € Q of interest are near the origin. Recall that the supports of the kernels-of all
-involved means are located. in R,". This justifiesall the considerations below. Fur-

thermore wé restrict ourselves to the proof of (2.42). The proof of (2.43) is the same
_but’simpler. ‘

3.6.2. Let 0 < p < 00,0 < g < oo, let s be restrlcted by (2. 41) and let M € N, with
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M = [s]. Then e have to prove (2. 42) with M + 1 instead of M. Let f € F? 3a(2). We -

use the same splitting technique as in (3.31)-with.« = 1. Then (2 40) yields

B S S A ) dh - F 1A — P) (@) dh,

I=1 VYM+(z2-)) Moz 979)

= . : i (3.88)-
. where we choose the same polynomial P € Py as in (3.31). We obtain - :
&3 f(w SCZWMM+fmmw@wap S (389)
B(x,c27)

where sup is the same supremum as in (3.31). By the same arguments as in 3.2.3
" we arrive at (3 38) with 43" !f(x) instead of osc,™ f(-, 2-1).

3.6.3. Next we prove the converse mequahby again under the assumptlon feF q(.Q)
Let 0 < % < min (p,.q, 1), then we wish to estimate osc,M f(z, 2° ’), where we assume
that we can apply (3. ‘3) We have by (3 5) and (3.21) . . -

'l
|-z mwmmw—w

‘

- = fy) f‘ f’(y)l“ '/’(y) _|a|?,' D“/’) () (y — ) g c'dfé-“/(y

: \ ; »
4 c'giMe 3 ( [1D?f(z + ©(y — x))|* dr) sup | Drfi(z)|a-wm
) Bl=M+1 \ o . " " , o ) .

&

(3.90)

.
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where the last supremum is taken over |y| = M + 1 and z € B(z, c27%). However
multiplied with 2-i(M+1s0~) it js the same supremum as in (3. 31) w thh fits in our
scheme, see also (3.9) with M + 1 instead of M. We obtain

oscg™ f(z, 271) S ¢ ( f. dé‘é-,‘/(y dy)"“ + €27 "M“’SUP |D7fi(2)|

B(z2),
, | - e
. ) . +e, A/Z 2—]‘(M+1)( f f |])f3f1(x + T y — x))l"’ dy dl’) KN
Coa _ S BI=M 0 B(z.27) } .
: ' -(3.91)

where the supremum is the same as in (3.90)-and & > 0 is at our disf)osal As for the
inner integral we have (3. 22) with.|-|* instead of |-|. We use (3.13) with |5] = M +1
instead of |x| = M and arrive at !

08, fz, 2 J < (A5 (2)  e2-R0r D sup |Drfia), (3. 92)

where the supremum has the ‘same meaning as in. (3.91) and the star indicates the
Hardy-Littlewood maximal function restricted to 2. We multiply (3.92) with 2%,
take the /,-quasi-norm with respect to j and the L,(£2)-quasi-norm. By Theorem 2.2.2
and the\remarks after (3.31) we obtain

171 F3@) H <cIif | L)) + & 1If | Foq(Q)

(mfww"** o )
1=

-

L,,(Q) . (3_._93) .'

Because u < min (p, q) we - can apply the vector-valued maxnmal mequallty and
" arrive at, :

ll/l F; q(-Q)ll = ¢ NI | Ly + ¢ (22”"01"— (e )) ! Ly,Q)|.

1=1

: (3.94)

The terms dff-;‘ in (‘3 94) with ¢2- ’> 1/2 can be estimated from above ecither by
c If L,,(Q lifp=1lorbyc |f|L (Q )| if p < 1, which in turn can be estimated by -
¢ lIf | L) + € lIf | F5,(2)l| where & > 0 is at our disposal. ‘Hence we may assume
¢ = 11in (3.94) Wthh ylelds the desired estimate. ‘ . .

3.6.4. Let / E L3(£2) such that. the quasi-norm in (2.42) with M + 1 instead of M is
finite. We use the same approximation scheme as in 3.4.4 and 3.2.5, translation and
mollification, and apply (3.94) to the approximating functions. Then by the above
limiting arguments (3.94) with ¢ = 1 can be extended to all functlons fe€ L,,( 2) w1th
a finite quasi-norm. The proof is complete.

-~

S - : -
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