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A. Symbol Calculus for the Algebra Generated by Shift Operators 

S. RocH and B. SILBERMA1N 

Dedicated to S. G. Mikhlin on the occasion of his 801h birthday 

Wir beschreiben die algebraische Struktur der durch den Verschiebungsoperator und einer 
seiner Linksinversen erzeugten Banaeh-Algebra und geben em Symbol für die Regularisierbar- 
keit eines Operators bezuglich des Quasikommutatorideals an. Die Beziehungen dieses Symbols 
zur Invertierbarkeit bzw. zu den Fredholrn-Eigensehaften der Elemente dieser Algebra werden 
untersucht. 

OnMcMsaeTcct aIre6pa1I4ecKan crpysTypa BauaxoeM a.are6pu, nopomçr eliitofi onepa'ropoM 
cjsnra II ojuioro ero iienoro o6paTnoro, 14 CTp0HTCH CIIMB0JI, C fl0M0llbl0 KOTOporo jaeTc. 
yconue o6paTuM0cTl1 onepaTopa oTuocIaTeJIhuo itgeana no.1yIoMMyTaTopoB. HccJeyloyTcFt 
COOTIIOIIJOIIHH ey 3TIIM CIIMBOJIOM It o6paTU1Nl0CTbI0 ItJIM ILCTCOBOCThIO OJIeMeHTOB 3TOfl 
aIre6pb1.	 ..	S 

We describe the algebraical structure of the algebra generated by the shift operator and by 
one of its left-inverses and construct a symbol for the invertibility of an operator modulo the 
quasicommutator ideal. The correspondence between this symbol and the invertibility and 
}'redholmness of elements,of' this algebra are studied. 

I. Introduction	 - 

In 1936, S. G. MICRLIN [2, 31 ws the first who created a. symbol concept for two-
dimensional singular integral operators. Sine that time the notion of symbols has 
gained an extraordinary significance in the theory of 'ihtegral oerators: It allows 
.to algebraize large classes of operators in such a manner that operations with opera-
tors can be transformed into operations with their symbols whicF leads, to essential 
simplifications in their treatment. Important classes of operators possessing a natural 
symbol calculus are pseudodifferential operators of Fourier and Mellin type as well as 
convolution operators. -Meanwhile one has recognized that even the numerical, 
solution of certin convolution equations (as; e.g. singular integral equations) by 
projection, methods corresponds to the invertibility of special matrix- or operator-' 
valued symbol functions on some compact.	 . . 

In the present paper the authors. raise a scheme due to 1. Z. 000HBERG and' I. A. 
FELDMAN [I] which refers to continuous functions of shift operators. By a shift Ave 
here mean an only one-sided' invertible operator V with the additional property that 
the spectrum of V and the spectrum of its one-sided inverse V_ 1 are both contained 
in the closed unit disk {z: IzI . To each'operator A belonging to the closed algebra 
generated by V-aiid V_ 1 Ave associate a complex-valued continuous function on the 
unit circle T - its symbol, and Ave examine the spectrum and the essential spectrum 
of the operator A in terms of the geometric behaviour of its symbol. Besides this we 
explain the algebraic structure of the algebra with generators V and V_ 1 and show 
that -in the best case - it decomposes into the direct sum of the lineal of all con- 
tinu9us functions of V'and V_ 1 and of a certain ideal consisting of quasicommutators. 
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2. Functions of shift operators 

Throughout this paper let X be a Banach space with identity operator I and let 
V denote a bounded linear operator on X which is only invertible from the left. We. 
fix one of its left inverses, say V_ 1 , and -put for brevity 

if n	0,.	. 
l(V_1)" if n<O.' 

• For a given polynomial R(t) =Eat on the unit circleT we define an operator 

R(V) by R(V) =_T aV, f and call R(V) a polynomial of V. Let LO(V) stand for the - 

set of all polynomials of V. Notice that there is a one-to-one correspondence between 

	

•	1 

the operators in L°( V) and the polynomials on T. Indeed, if 0 =_T a, V and a_ 40, 
n	-	 /	•n 

then EaV,V =0, and we find 0 4a_i = V(_. ' aV,+ . i ). This yields the right 
• .	j=—n	 S	 \j=-n+1	r / - 
invrtibility Of V, which contradicts our hypothesis. If R(V) is a polynomial with 
only positive powers Of V, then the proof is similar. 

Thefollowing hypothesis (H) will figure prominently in deriving invertibility cri-
teria for polynomials of V.:	 - 

(H) The spectra a(V) and a(V-1 ) of V and V_ 1 are c'on.tained in (z € C: Izi	1). 

Here a( . ) refer to the spectrum of a given operätor in the Banach algebra 1(X) of 
all bounded linear operators on X.	.	 .. 

Theorem 1 [1: Chap. I, § 1.3]: Let (H) be fulfilled. Then the following assertions 
hold.  

a) a(V) = c(V-1 ) = (z € C: .I z I = 1).	.	 '• 
b) An operator R( V) € L°( V) is at least one-sided invertible if. the /unction R(t) has 

no zeros on T..If R(t) 4 0 on T. then' the iñvertibility of R(V) corresponds to the index 
of R(t), i.e. R is invertible, invertible only from the left or, only from the right if the winding 
number of R(t), 

windR(t) := - [arg R(e)] 0 ,	 . 

is zero, positive, or negative, rspectively. • 
•	c) If R( V) is one-sided invertible, then there exists a one-sided inverse of R( V) in the 

algebra generated by V and V.1. 
d) . The spectral radius of R(V) equals max IR(t)j.. 

•	 .	 .	 g€T 
e) if RE L°(V) is a -operator and if x := codim (im V) < co, then mdR


	

x Wind R(t).	.	S 

f),If R(t0) = 0/or some t0 E T, then. R is neither a J- nor a 0--operator. 
This theorem justifies to speak about R(t) as the symbol of R(V).	• 
Let L(V) stand for the closure of L°(V).in 1(X). The elements of L(V) will, be 

called continuous functions of V.. To each Operator R in L(V) we can associate a 
continuous function R(t)	P — , its symbol. In fact, by Theorem l/d) we have 

max {lR(t)I :1 € T}	]jR(V)fl . .	 .	S	 (1) 
for each polynomial R(t). If {R,,} denotes a sequence of polynomials converging to 

- B € L(V), then, by (1), the sequence {R(1)} converges uniformly to a certain con-

1
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tinuous function R(t) which, moreover, does not depend on {R}. In Section 4 we - 
shall extend this definition of symbols to a larger class of operators. 

We emphasize once more that the symbol' concept for polynomials is distinguished 
by the following important aspects:' 

(i) An operator in Lo(V) is uniquely determined by its symbol. 
- (ii) The invertibility of an operator in L°(V) depends only on its symbol. 
One might enquire whether these properties are passedon to L(V). The following 
example which is due to A. Pomp (private communication) shows that , at least the 
first of them does not.  

Example: Let in denote the Banach spee of all bounded sequences of complex 
numbers and define  

E = { {Xk} = ak + Yk}-i with a E cc {Yk}.i Em.

Obviously,	 /	

0	 I 

x = 	lklle : = him -+ Pqp t ,, ' s_ fl lim
xi l

 
'S 	

S	
kbook	n	k.00k 

defines a norm on E which makes E into a Banach space. Let V and V_ 1 be the 
• operators on Ewhich are defined by  

	

- {Xk_1}k_1,	x0 - ,	an	_1{Xk)k_1 - 

Clearly, V_ 1 V - I and VV_ 1 + I. Moreover, it is easy to see that the operators V 
and V_1'are bounded on E and that fl V,,]l '= ln + 1 for all n E Z. Consequently, the 
operators V, V_ 1 . are subject of our hypothesis (H). 

•	Proposition 1: There exists an operator  E L(V) the syribol of u,'hichis identically •	zero but A	0.  
Proof: Given x = {Xfr} E E with xk/k--a we 'define the operator A by Ax


	

a{1,'1, 1,'.. .} E E. Evidently, A is bounded 'on •E and h A il	1. We claim 
that Il l /n. V,, - AlL 7*-0 as n* --o- oo: If x	{ak + Ilk) E E, then

 
•	11 1k + fl	Yk+n	 1	 S 

	

i — Va,, - Ajx.= -ç	a - - a .	=- ka ±'Yk+n}k—i• •	
1	I,	•	 Jk=1	 - 

Hence,  

V - A x = -- ( l a l + sup lYk+i\	-- llxfl .	 S 

\ fl	 /	 k	\/ 

Consequently, A is in L( V), A + 0, but the symbol of A is identically zero since the 
symbols of 1/n V_,, converge uniformly to zero l.  

In what follows, we shall only deal, with the problem of the invertibility of functions 
of shift operators. Concerning the unique determinationof an operator by its symbol 
we refer to [5], where, among other. things, the following is proved.' 

Theorem 2: A8süme that fl im V,, = {0}. I/ one of the conditions 
no	 ' 

a)closU ker V_, =X,'' b) SUP lI VV_ ]I < c  
nO	 ,	S 

is fulfilled, then every operator in L( V) is uniquely deterni,ined by itseymbol.. 

20* -	 I 
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3. V;dorninating algebras 

Our next concern is to extend the' assertions of Theorem  to a subset of L(V)as 
large as possible. Again, let V be an operator on X which is only invertible from the 
left and let V_ 1 be one of its left inverses. Wedo not assume the hypothesis (H) to be 
fulfilled. A commutative Banach algebra D with unit element e is called (V, V_ 1 )-
dominating . (or, shortly, V-dominating) if	 ,-

a) there is a  invertible element d in D which spans together with its inverse d- 1 a 
dense subalgebra of D, 

b) the spectra aD(d) and aD(d') of d and d' in D are contained in {z € C: IzI 5 1}, 
C) there exists a constant M > such that 

• JIP( V )iIzx	M IIP(d)IID	 (2) 

for any polynomial P(t) 
='	

t= 1. 

Proposition 2: It a• (V, V. 1 )-dominating algebra D exists, then V and V_ 1 are 
subject of the hypothesis (H). More general, if P is a polynomial on T, then we have for 
the spectral radii U%(x)(P(V)) and ?D(P(d)) that 

jf ( X)(P ( V))	&D()) 

Proof: It is sufficient to verify the estimation (3): 13y (2), P( V)III ( t)	M JjP(d)IID 
(nE Z). Thus, 1IP ( V)II"	M11 !IP(d)II", and passing throught the limit yields 

the assertion I 

Proposition 3: The maximal ideal space M(D) of D is homeornorphic to the unit 
circle T, and the Gelfand transform maps d into the /unction t i-* t (t € T) 

• Proof: We shall show that the spectrum of d equals T. The remaining assertions 
follow immediately from the general theory of commutative Banach, algebras. By 
b) ,the spectrum CD(d) of d in D belongs to T. Assume that aD(d) T. Then there is an 
inner point z of 'F\o(d), and we can find a continuous/ on T such that 0 ^f(t) !E:-^ 1 
(t E T), f(z) = 1 and f(t) = 0 for t E aD(d). Given e > 0 we choose a polynomial 
p € C(T) so that max If(t )	p(t) < E. Since I p(t)I < c for all t € .o(d), we obtain 

leT 
eD (p(d)) :5 r. On the other hand, by Theorem l/d) and by Proposition 2 we have 

y(x)(p(V)) >1 — e. These two inequalities contradict the hypothesis (2) for e suf-


	

"	ficiently small I	 . 

Since p(d) is uniquely determined by its Gelfand transform'p(t) (even in the case 

	

•	
.	 that D has a rion-trivial radical), the mapping p(d)	p( l) is well-defined, linear-,


and by (2) bounded: Hence, we can extend this mapping continuously to the whole 

	

•	•	algebra D and its image, abbreviated to Lf) (V), is contained in 11(V). For a E D let

a(V) .denote the, image element of a wider this mapping. Notice that 

IIa ( V) ( x ) 5 M JIallv	 .	 S •	

(4) 

for all a E D and that the symbol of a(V) coincides with the Gelfaiid transform of 
a € D. If the radical of D is trivial, then each element of LD ( V) is uniquely determined 
by its symbol even if this is unknown for arbitrary elements in L(V). 

	

•	Theorem .3: Let V be only invertible from the left and let the algebra D be (J', V_,)- 
dominating:	 •

0
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a) An operator R E L0(V) is at least one-sided invertible if R(t) 4 0 for all t E T. If 
the symbol R(t) of R does not vanish on T, them the invertibility .of R corresponds to the 
winding number of R(t). 

b) If R(t0) =0 for some t0 € T, them .R is neither a ,- nor a 0--operator. 

Proof: a)Let R € LD(V) and 11(t) 0 (t € T). Then there is an element a € D 
with a(V) = R, and a must be invertible since 11(1) is the Gelfand transform of a 

Thus, we can find a polynomial p(t) =Xa,t (t € T) such that r = p(d) is invertible 

*	and r'a = e + c with IlcilD < 11M. As in the proof of Theorem 1 (see Theorem 1.1 in 
[1: Chap. I, . 1.3]) there is a representation of r in the form r	r.dr, where r, and

r_ are polynomials in d and d' with only non-negative and non-positive exponents, 

•	respectively, and r(V) € L°(V) are invertible. Now write 

frd(e +c) r+	if x. 0, - 
a - lr(e'+ cdr.f	if x >0, 

Then
- I r_(V) V(I + C ( V)) r(V)	if x	0, 
- l-(')(1 + c(Vi) Vr+ (V)	if x >0. 

Since JIc ( V)II.< 1, the element I + (V) is invertible, and we are done. 
b) Assume R(t0) = 0, R is ø. Then there is a ô > 0 such that 11 11 - ni <ô implies 

that r is 0,, too. Now take r € L°(V) so that fiR - ni <âf2. Because ir(to)i < 5/2 
and 11 11 - (r - r(t0) ')II <' b the operator r - r(t0) 1€ L°(V) is ø. But this contra-
dicts Theorem 1/f), since r(t) - r(t0) vanishes at t = t0 . The case that B is & can 
be treated analogously I 

Now we are going to mention two examples of V-dominating algebras. 

Example 1 (cp. [1: Chap. I, § 3.2]): Let Y be a Banach space with identity opera-
tor I. Assume that there are given a bounded projection operator P on Y and an 
invertible operator U € .7'(Y) such that 

j(fl (U) ^s 1,	!(Y)(U')	1,	 (5) 

PUP = UP, 'PU LP = PU',	 (6) 
•

	

	UPhPU. 	(7)


LetD stand for the smallest closed subalgebra of 1'(Y) containing U and U'. 

TheOrem 4: a) D is a commutative Banach algebra with a maximal ideal space 
homeomorphic . to T. 

b) The operator PUP jmp is invertible only from the left and PU'PJ j p is one of 
its left inverses 

c) D is (PUPmp, PU'Pl imp)dOminating.	 - 

Proof: First we verify b). Obviously, PU'PUP = P:Assume that PUPAP = P 
•	with some  E Y (Y). By(6),UPAP =Pand PAP = U'P. Thus we get PUPU'P 

P. Again by (6) this leads to UPU' = P and UP = PU which contradicts (7). 
For a proof of c) note that if p(t) is a polynomial-on P, then, by'(6), p(PUP) = Pp(U) P 
whence 11(PUP )11	!iP1i 2 ]Lp ( J )Ji . Now part a) follows immediately from Propo-
sition 3 I	•	 . 

Notice that, given a shift V, one can always find operators P. and U given on a 
•	Banach space Y Xsuch that (5)—(7) hold and PU±'P = V 1 [1: Chap. I, §3.21.
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Examplo 2: A sequence! = {fk}	of positive real numbers is called a weight if


lim (8) 

and if f* = SUPk.n fn+I/ntk < oo. By W(f) we denote the collection of all complex-

va'ued functions a on T the Fourier coefficients ak of which satisfy E Iak I Ik < 00, 
and, Put	 k=-oo 

•	 jIa!Lww: = f*EIak I fk •	 -	•	( 

Theorem 5: a) The set W(f) forms a commutative Banach algebra under the norm 
(9) whose maximal ideal space is homeOmorphk to T. 

b) The operator d: a(t) i-* ta(t) spans together with its inverse a dense subaliebra. 
Of. W(f).  

c) If V is-a shift operator, then the algebra W({1IV]!),) is(V, V_1)-dominating. 

The proof follows from Proposition 3 if one takes into account (3) and the simple 
estimation Ildnall = 1Ita(t)1I	f Z lak i tk+n	(f*)2 fn X IQ Ik which leads, to 
B9I	f*/ • 

4. The algebra generated by V and V_1  

Our next objective is to study the smallest closed subalgebra of 1(X) containing V 
and V_ 1 . Denote by alg° (V, V 1) the(non-closed) subalgebra of 1(X) generated by 

• V and V_1 and by alg (V, V_ 1 ) its closure. Further we let refer QC°(V) to th'e smallest 
two-sidedideal of alg° (V, V_ 1 ) which contains all quasicommutator operators of the 
form. (R1 R2 ) ( V) - R1 (V) R2(V) where R1, R2 - are arbitrary polynomials on T. The 
closure QC(V) of QC°(V) in alg (V, V_ 1 ) is called the quasicommutator ideal of alg (V, 
V1 1 ). Henceforth; the quasicommutator I -. V,, V_,, of the operators V and V_, 
will be denoted by P, (n € Z), and we put Q, =' I - P,. Obviously, P,, and Q,, 
are projection o)erators on 1(X). In what follows we are mainly interested in the 
algebraic structure of alg (V; V_ 1 ) and in whether an invertible operator is invertible 
in this algebra. 

Proposition 4: The following conditions are equivalent for K € Mg (V, V_1): 
•	a)'K€QC(V).	 • 

b) K beloiags to the smallest closed ideal of alg (V, V_ 1 ) containing P1 .	. 
C ) If 5Un 1IQII =: M < co, then a) is equivalent-to each of the following: IIQ K fl -±0 - 

•	;and JlKQJI- * 0asn-*oo.	-	- 
Proof: a) =' b): The quasicommuttor ideal is generated by all operators (R1R2)(V) 

— R1 (V) R2(V) 'where R1 (V) and R2 (V) run through L°(V). Since Vi,j — VV, 

= PV, and Pi 	VP1 V_, the inclusion follows.	 - 

b) = a): P 1 is the quasicommutator of V and V_ 1 .	 - 
b)	c): We only prove that b) implies ]IQKfl -±0. First we show that 1lQ AP11I -*0 

as n -.* oo if A is in alg(V, V_ 1 ). Given s>0 write AA+(A 4e) with 
•	hA — A ]I < s and A. a finite sum of products of shifts. Because VP, = Pr+3Vs. 

for all r, s Z, we have -	 - 

•	-	 • QV 1 V, . . VP = Qn?i+i.±...±ikVVi, ... vi Ii	•
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(i 1 ,. i2 , •••, ik E Z) which is zero for i + +	+ i + 1 <n. This yields that, 
given e > 0, we can find an no- such that IQAP1 JI <s if only i?> n0 . Now let K 
E QC(V). Then we write K = K + (K - K e ) with IlK - Kill < s 'and. with K. 

= E B,P1CJ (where B,, C5 E Alg (V, V_ 1)). B what has already been proved each 

item of Qn Ke converges to zero, and we are done with the implication b)	c).' 
c)= ' a): If ILQ KIl —>0 as . n	oo,.then K i.s the uniform limit of the operators 


PK which are in QC(V) I 
Corollary 1:1/ codim (im V) < co, then , QC( V) consists only of compact operators. 

If, moreover, codim (im V) = 1 and if {F} and {P*} converge strongly- to the identity 
operator on X and X*, respectively, then QC( V) equals the ideal of all compact operators -
on X. 	 '. 

Proof: The first assertion is obvious from Proposition 4/b) since codim' (im V) <co 
implies dim (im P1 ) <co. Now let codim (im V) = 1'. Then'each operator P. — P,1 
has rank 1. Consequently, for each linear bounded operator A on X we can find con-
stants a,5 € . 0 so that 

PAP = . (P5 — P5_ 1 ) A(P1 — P1_ 1 ) = aij 	(10) 
S	 I	 1.5=1	 i.,1	- 

Hence, PAP belongs to QC(V) for each A € (X). In particular, if A =-K is* a 
compact operator, then IIPKP ' — Ku -->: 0 which implies that R€ QC(V) I 

The following construction will allow us to define a symbol calculus for the whole 
algebra alg (V, V_ 1): Let alg" (V, V..1 ) stand for the quotient algebra aig (V, V_1)/ 

,.QC( V) and denote by a the corresponding canonical homomorphism. Obviously, 
alg ( V., V_ i ) is a commutative Banach algebra generated br t( V) and by its inverse 
n(V1). 

Proposition 5: Assume that (H) is fulfilled. Then the spectrum a(r(V)) of V) 
coincides with -the unit circle T, and for each polynomial p(t), Itl = 1, we have 

max p(t)l	II p(n( V))II = Ik(p ( V ))II	I[i( V )ll .	.	 (11) 
IET

'-S 

Hence, the maximal ideal 'space -of 'aig" (V, V_ 1 ) is homeomorphic to T, and by (11) the 
symbol of an operator A . E L( V) coincides with the Gel/and transform of 'r(A). 

Proof: We have only to verify that a((V)) = T. The other assertions follow 
immediately from the general theory of Banch algebras. By (H) the spectra of a  
r(V) and ((V))- t = r(V_1 ) are contained in T. Assume that a(r(V)) == T and choose 

z0 E T \ c(i(V)). Then there are operators BE alg(V,. V_ 1 ) and K E QC(V) such that 
fl m 

imate B by B0 = ' fJB 17 , 'B) € L°(V), so that' B(V — z01)= I + K. Approx  
•	

0	

1=1 )1 

Il(B'— B0) ( V - zoI)Jl -< 1/2. Hence, 'B0(V - z01) ='I + K + C with JiCJl< 1/2. 

Further, approximate K by K0 = ' f[ K 5 , K1 € L°(V), so that IlK — K0jJ < 1/2.' 
1=15=1 

What results is, that B0(V — z01) =1 + K0 + Co' with IC0IF -< 1. Now we represent 

	

B0'E alg° (V, V_ 1 ) id the form B0 = R0 ± 8o with R0 E L°(V) and S0 E QC°(V). (This	-' 
- is always possible; moreover, the representation is unique.) Thus, R0 (V — z01) 

=1 + K0 ±C0 — 50(V'— z01). Since K0 - S0(V — z01) € QC°(V), we can find 
an n € Z such that (K0 — 50(V -, zoI)) V,, = 0 (cp.' the proof of Proposition 4): 
Finally, R(V — z01) V (I -I-' CO ) V,,, and the' right-hand side of this equation 
is invertible from the left. On the other hand, R0(V - z01) V € L°(V), and R0(t) 
X (t - z0) t" vanishes at z0 E T which is a contradiction to Theorem 1 I 

.5.
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If (H) is fulfilled, then the previous theorem enables us to assign to every operator 
A E aig (V, V_ 1) a continuous function smb A on T called its symbol, namely the 
Geffand transform of x(A). Obviously, the mapping A " smb A is a continuous 

• homomoiphism and its kernel includes the quasicomriiutator Meal. The kernel 
equals QC( V) if and only if aig" (V, V_ 1 ) has a trivial radical Proposition 5 implies 
that an operator A E alg (V, T'2,) is regularizable with respect to QC(V) (that is, 
there exists an operator B E alg (V, V. 1) such that both AB - I and BA - I be-
long to QC(V)) if and only if (smb A) (1) + 0 for all'S E T. So it is natural to ask 

'	whether an operator A E alg(V, V_,) being invertible in 1(X) must be invertible

An aig (V, V_,). This question will be answered positively by Theorem 6 below. 
• Proposition 6: If K E QC(V) and if I + K is at least' one-sided invertible -(in 

1(X)), then L+ K is two-sided invertible in aig (V, V_ 1 ), and (I + K)-' - I'E QC(V); 
Proof: Approximate K by operators K,, E QC°(V). As in the proof of Proposition 

4 there exists -a sequence {a}	Z 4 such that Q,,0 K,, = K,,Q,, = 0. Hence, I K, 
PK,,P,, ,, , and the. one-sided invertibility of I + K yields that I + K,, = I 

± Pan K,,P,, = Q0,, + Pa n(K, + I) P,, is one-sided invertible in 1(X) for n large enough. 
This shows that P,,. ± Pa, Kn P ,j jmp,, must be one-sided invertible for n large enough.. 
Now a little thought shows that the 'algebra of all operators P,,,RP,,,, IimPa with. 
arbitrary -R E aig (V, V_,) is isomorphic to the algebra Cx o (compare with the 
representation (10)). Thus, the one-sided invertibility of the operators P,,, 

,,	
- 

+ P,,Kj,Poj jm p gives their two-sided invertibility, and their inverses are in alg (V, 
V_ 1 ). So we find that the operators I + K,, = Q0 n + Pa(Kn + I) P,, must be two-sided 
invertible in alg (V, V_ 1 ). Now assume for definiteness that A = I + K is left-invertible 
and that A' is a left inverse for A. Then A'(I + K,,) tends in the norm to the identity 
operator. Thus, for n large enough, we get the invertibility of A'(I + K,,) and that - -	of (1 + K,,). Therefore, the operator A' must, be invertible and, consequently, A' is 

- invertible. Finally we note that (I + K,,)-' = I + R with R. E QC(V), and the 
cloedness of QC(V) gives A' - I = (I + K)- 1 - I E QC(V) I 

Theorem 6: Let (H) be fulfilled and assume that A .Ealg (V, V. 1 ) and let A- be 
invertible' in1(X). Then A-' E alg (V. V_ 1 ) and, moreover, smb A' = (stub A)-1 
and wind smbA =0.  

Proof: Approximate A by operators A,,'E alg° (V, V_ 1 ). If ] IA — All < 1/2 JJA-'II, then A,, is invertible and ]IA,,'jl< 2 ]A'fl. Thus, fOr large n,	- 

11-4- ' — A,,'Jl I , j'A n b '' 114 -1 I1  hA,, - A l! < 2 ]1A111' JJA,, - AJJ, 
nd this estimation shows that it suffices to verify the assertion for operators in 

alg° (V, V.. 1 ). Given A € alg° (V, V_ 1 ) we find operators BE L°(V) and K € QG°(V) - 
and a number 1€ Z' 

'
such that A =.B+ K and K y, = 0.Thus, AV, = BV,,.and 

the invertibility of-A implies the invertibility of-BV, from the left. Theorem 1 shows 
that -then B must be one-sided invertible and that its one-sided inverse belongs to 
alg (V, V.,). Assume, e.g., B to be invertible from the left and take C € alg (V, V_1) 
so that CB = I. Then	 • 

A=B4-K='B+KCB=(i-f--KC)B '	 (12)' 
• - with KG €QC(V). Since A is invertible; we conclude from (12) that 1 + ' KC must be 

invertible from the right, which leads by Proposition 6 to the two-sided invertibility 
of I + KG in alg(V, V..,). Put T := (1 + KC)' - I € QC(V). Then C(I ± T) A 

•	= C(1+ T)(I ± KG) B 1, i.e. C(I + T) is a left inverse for A. Hence, C(I + T) --
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is an inverse for A and we arrive at A' = C(I + T) € alg (V, V_,). Finally, the 
equation smb A-' = (smb A)-' is obvious and the index formula follows ifom (12) 
by invoking Theorem 1 I 

If the operator A € aig (V, V_,) is of a special structure, we can specify the pre-
ceding theorem as follows. 

'1.. 
Theorem 7 1 Let (H) be fulfilled and assume there is a V-dominating algebra D. 

1/A = B. + K (with B € LD ( V) and K € QC( V)). is an invertible operator, then. A and 
-. -	B are both invertible in lg (V, V_,). Moreover, there exist operators B' € L D(V) and


K'E QC(V)-such that A-' ==(B+K)-' =B' +K', and/or the symbols we have 
I .	 smb A-' = smb B- = (smb B)- l ' - (smb A)-' = smb B'. 

Proof: If A is invertible, than, by Theorem 6, A' € alg (V, V_J and wind smb A 
= 0. Because smb A = smb B and B E LD( V), we conclude via Theorem 3 that B is 
invertible and via Theoiem 6 that B-'E alg(V, V.,). Let B = a(V), a € D. The 
invertibility of B implies the invertibility of a in D. Put B' = (a') (V) E LD(V): 
Then B'(B + K) = (a') (V) (a(V) ± K) = I + K, with K, € QC(V). Again by 
Theorem 3, the operator B' is invertible. So the . .operator I + K, must be invertible, 
too, and Proposition 6 states that (I + K,)-' = I + K, with K, € QC(V). Finally_ 
the operator (I + K,) B' =: B' K' is an inverse for A. The symbol identity is 
obvious I	 0	 / 

S	 fl	 , 

The following theorem reifies Theorems 6 and 7 for the case when the operator V 
has ' a finite cokernel.  

'
Theorem 8: Let (H) be fulfilled and A € alg (V, V_,). 
a) If  is Por &, then (smb A) (t) 40 for all. t E T.  
b) If x = codim (im V) < oo, thenA is a aperator if and only-if (smb A) (t) r= 0 

for all t E T. If this condition is fulfilled, then. md A = —wind (smb A). 

We omit the proof since it follows from Theorem 1 by similar arguments as those 
in the proof of Theorem 6 and by the stability of md and wind under small pertur-
bations I 

5. Decomposing algebras 

Generally, all 'what we know about the relations between L( V), QC( V) and alg (V, V_,) 
Js that the algebraical sum L(V) + QC(V) is dense in aig (V, V_,). Under additional 
conditions one cangét essentially more information about the structure of aig (V, V_,). 

Theorem 9: Assume that (H) is fulfilled and that /or all polynomials R,(t) on  

II(.' I-fi R 1,) (V)II	.iW IlZi i-i, R17( V )]I	 .	( 13) 

with some M > 0. Then the algebra aig (V, V_,) decomposes into the direct sum 
alg(V, V. 1 ) L(V) + QC( V),i.e.thereisaprojection.S € 1(X) mapping alg(V, V_,) 
onto L(V) parallel to QC(V). Conversely, if alg (V, V_,) decomposes, then (13) holds . 
with M = BSII.	 .	

0 

P' roof: Define a linear mapping S on alg° (V. V_,) by 

5: Zi 175 R 5 (V)	(j[11 R 1 ). (V) €L0(V).	 0

/ 

O
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S is well-defined and bounded by (13). Since 8(R) = R for R € L°(V), the mappingS 
is a continuous projection operator mapping alg° (V, V_ 1) onto L°(V). Its continuous 
extnsion onto the whbI6 algebra aig (V. V_ 1 ) will again be denoted by S. Thus, aig (V, 
17 1 ) = im 8 4- kerR. Obviously, im 8 = L( V), and it only remains to show that kerS 
= QC(V). By definitidn,QC(V) C kerR. Now let A EkerS. Approximate  by A, 
A € alg° (V, V 1 ). Then II8(A )JI = IS(A) - S(A)II —0. Since 8(A) - 4, € QC°(V), 
we get that A is in QC(V) U 

Remarks: (i) It is easy to see that the following is sufficient for (13): There is a family 
{W}°.. 0 of left-invertible operators with left inverses W-' such that  

1. VW	W,,V, V_1 W-' 1 = W,. (-') V_, for all a € Z±, 
2. sup5 . 11 W511 -< o, sup1, II W5 1 II < co, 
3. II W "KW II - 0 as n --> oo for any K € QC(V). 

In particular, if SUPnEZ 1117.11 < oo, we may take (V1,}nz. as the family (W5}1,z+. 
(ii) Obviously, Ii, R . ) (V) - 11) R . ( V) € QC°( V). Since QC°( V) is dense in QC( V), we 

see that (13) is equivalent to the assertion IIR(V)II 5 M I7r(R(V))J( for each polynomial R, i.e 
alg" (V, V_ 1 ) is V-dominating. So we arrived at the following: 

The algebra alg (V, V_1 ) decomposes into L( V) 4- QC( V) if and only if air (V. V_ 1) s V- 
• dominating' . ,,Moreover, if D = aig" (V, V_1 ) is Vdominating, them L( V) = LD( V). 

(iii) By (ii) we can endow L(V) with an equivalent norm and by a multiplication owhich 
makes L( V) into a commutative Banach algebra, (L( V), o) which is isomorphic (and the iso-
morphism is continuous) to the quotient algebra alg" (V. V_,). Oh.riously, (L( V), o) is V-
dominating and L(L(V),o)(V) = L(V). 

6. Toeplitz operators on P'	 .	.	 * 

We conclude these remarks by the following concrete realization, which is thought as 
an illustration of the general statementsfrom the preceding sections. Let X = 
(p	1, y E R) be the Banach space of all sequences x = (, x 1 , ...) of complex

numbers with the norm 

i	 \IIp• 
-	JIxIlp.y = (E Ix	(k ± J) PY 

	

1	H 

and bonsider the operators V, and V on X given by. 

Vx	(0, x0 , x1 , . ..),	V.1x = (x 1 , x21....) 
For n€Z+,.	 - 

(I +	if y1O,	 f(1+n)Y	if 	0, 
ll	 .	if y<O,	II	 if 

• lnparticnlar, the operators V and V_ 1 are subject of the hypothesis'(H). The opera-
tors in L(V) are called Toeplitz operators. By Theorem 2, each Toeplitz operator is 
uniquely determined by its'\symbol. As- it is usual, if A € L(V) and if a is the symbol 

- of A, .we shall write T(a) instead of A. The Banach spaces l'" and 1P are isometrically 
isomorphic, and the isometry. is given by	 - S 

'A: jP.O 	(Xk)_o ,- (x,(", +	 .	S 

In the sequel we have to distinguish between Toeplitz operators on V ol and on 1P0, 
-	both generated by the same symbol ; Let us agree to designate the operators on the 

space l° (without weight y) by aprime. •	-	 •
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Proposition 7.: We have the inclusions, 

	

A-' V±,A - V, € QC(V'),	AV 1A- 1 - 17 1 , E QC('V).	••. 

Proof: We only demonstrate the first assertion. The matrix representation of 
A-'VA— V' in the canonical basis of 1P 0 is 

	

0	0'.	0...	 .	.	..	..-
2	

0	0 •..	 . 

	

o	1 0  

So the proof follows immediately from the characterizationi of the quasicommutator 
ideal given in Proposition 4/c) by invoking a simple norm estimation I 

Notice that for p rl= 1 the operator A 1 V 1A - V 1 are compact (this is due to 
Corollary 1). It is easy to see that this holds even for p = 1. 

	

As a consequence of Proposition 7 we find that A-'P(V) A = P(V') + T' with	. • 1 
T' € QC(V') for each polynomial"P. As in the proof of Proposition 4, there is an 
.m'€ Z such that, for each T' € QC°(V'); V..(P(V') + T') V = P(V'). Since the 
norms V,jj are equal to 1 form € Z, we conclude that  

	

' IIP( V ')lI	II P( V ') + T 'JI	for all ' E QC(V').	 .	(14) 

- Corollary: Let T(a) be a Toeplitz opera,tor'on	Then a is also a symbol of a 
Toeplitz operator on lP. Moreover, A'T(a) A - T'(a) E QC(V') and II T '(a)II	IIT(a)It.


The proof follows immediately from (14) • 
•	Theorem 10: Let T(a) be a Toeplitz operator on l u ". Them T(a) is at least one-sided 


invertible if and only if its synthot does not degenerate on T. If this condition is fulfilled, 
• then the one-sided invertibility of T(a) corresponds to the winding number of a. 

Proof outline: If T(a) is in'vertible, then, by TheOrem 6 1 its symbol a must b 
invertible. Now let aibe invertible. Consider the operator T'(a) defined on l° by 
the same symbol a. By Remark (ii) we conclude that T'(a) is at least one-sided inver-
tible. On the other hand, Theorem 8 yields that T(a) is a -operator with md T(a) = 
—wind a. To finish the proof it remains to show that the kernels of T(a) and of


	

T'(a) coincide I	 .	 . 

Now we turn our attention to the structure of the algebra alg (V, V_ 1 ) generated


	

by V and V_, on	 . 

Proposition 8: The aebraalg (V 1 V_ 1 ) decomposes into L(V)+ QC(V) if and 
• onlify=0. 

Proof: It is easy to see that 11 z ( V )Fl = 1 for all n, p and y (cp. [51) Comparing 
this with the norms of V,1 quoted above we find that the projection S defined in 

• Section . 5 is bounded if and only if y = 0 I	 . 

Now fix p = 1 and let y =$= 0. Since JIn ( V )]I = 1, the symbol algebra alg' (V,'V_,) 
contains a copy of the Wiener algebra consisting of all functions a(t) = EEza,t
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(t E T) , with Zi,z a,I <co. On the other hand, the matrix representation 
/ao •a 1 a_	... \	 - 

T(a)	
a,a0 a_ 

\ a2 a	o	
j	 . 0 

of the operator T(a) in the canonical basis of liv shows that the sequence (a0 , a, ...) ' 
must necessarily belong to lIy. Hence, there are symbols the corresponding operator 
of which is not the sum of a Toeplitz operator and 'an operator in QC( V) (which has 
the zero symbolby definiticcn). Such operators can be found among the operators of 
the form AT'(a)A' where T'(a) runs through the set L(V') of all Toeplitz operators 
on lP,0 as the following proposition indicates. 

Proposition 9: 'Let V and V' be the shift operators on 1 XY and l"° (p >. l,y € R), 
respectively. Then	 '	' 

a) aig (V, V_ 1) = alg (AV'A-', AV1A-'), 
b) the algebras alga (V, V 1) = alg (V, V. 1 )/QC(V) and (L(V'), o) (on iP O) are iso-

morphic.  
Proof: a) By Proposition 7, A V 1 A- 1 € aig (V,1 V 1 ), and so aig (A V'A', A V1A-1) 
alg(V, V_0. 4nalogously,alg(A 1 VA, A'V_ 1A) 9 .4ig(V', V 1 ), and since the 

'algebras alg (AV'A- 1 , i1V 1A') and alg (V', V 1 ) and the algebras alg (A-' VA, 
A- I V-1A) and alg (V, V_ 1 ) are obviously isomorphic we get a). 

b) Since I - AV'A- 1 AVL 1 A- 1 = P1 , the quasicommutator ideals QC(V, V_ 1 ) of 
alg (V, V_ 1 ) and QC(AV'A- 1 , A',A-') of alg (AV'A', zl VtA- 1 ) coincide. Thus, the 
following algebras are isomorphic to each other: 

•	
, alg(V, V1)/QC(V)alg(AV'A-',AVA-')/QC(AV'A') 

alg(V', V±1)/QC(V')	(L(V'),o), 

where the last isomorphy follows from the-fact that aig (V', VL 1 ) decomposes i 
- The somewhat unexpected result of Proposition 9 is that the symbol algebras do 

not depend on y (only on p). Hint: Proposition 9 does not mean that each symbol of 
a Toeplitz operator on 1P0 is again a symbol of a Toeplitz operator on l'! In case 
p = 2 we can complete this picture as follows.  

Proposition 10: Let p = 2, y € R. Then the algebra aig (V, V_ 1 )/QC(V) is aO* 
algebra which is isomorphic to the algebra C(T) of all'continuous functions on the unit 

• circle P.	 0	
0	 - 

•

	

	Proof: Denote by (., -) o the usual inner product on the Hubert space j20' The

Banach space 12Y (' == 0) can be made into a Hilbert space on defining an inner 
product by (x, y)y = (A-'x, A 1y) 0 . Since	

0 

• - '	(x, Vy)	(A'x, A 1 Vy)0 = (A-'xA 1 VAA 1y)o	 - 
- .	-	 = ( 1x,(V' + T') A'y) 0	(with T' € QC(V'))'	 • 

-	-	 = ((V11 + T)AOx, A 10 0	(withT" = (T')* € QC(V')) 

= (A-'A(Vl, + T") A_ 1x,A_ 1y) o	-	 0	 V 

-	 •	•	= (A-1(.V_ + T) x, Ay) 0	(with T€ QC(V)) 

-	 = ((V 1 + T) x, y)	,	
V



Symbol Calculusior an Algebra	305	- 

we see that V* - V... 1 E QC(V) and, analogously, we get V!. 1 - V EQC(V). Hence, 
alg (V, V_ 1 ) is a C*..algebra, and it remains to velify that the mapping 2'(12.0) A 

AAA' E Y'(12 ) is a .-isomorphism. This statement follows by similar conclusions 
as we have used above. In fact, we get B* = A_l(A_1BA)*A for BE aig (V, V_1) 
where the star on the left denotes the adjoint with respect to (., .)y and the star on 
the right refers to the usual adjoint on 12.0• Thus, the C* ..algebras aig' (V, V_ 1 ) and 
alg"(AV'A', AV' ..1 A') are stai isomorphic, and the proof is complete since the 
latter is isomorphic to C(T) by standard arguments (cp. Section 5) I 

Our final goal i the finite section method for operators in alg (V, V_ 1 ). PutP 
= I - V,, V_, and assume that P,, —* 1 strotigly. We say that the finite section 
method applies to A € alg (V, V_ 1 ) if there is an no such that the equation PnAPnXn 
= P,,y has a unique solution x,, € im P,, for each yE X and for each n no and if 
these solutions x,, converge in the norm of X to a solution of the equation Ax y. 
It is well known (Theorem 2.1 in [1: Chap. II, §2]) that the finite section method 
applies to Aif and only if the operator ' A is invertible and if the sequence {PAP} S 
stable, i.e. there must exist an n, such that the operators P,4 APIj,p, are invertible 
for n	no and sup ]j(PnAPn Ij m p)']I < co, or., equivalently, if A is invertible and 

nan.. 
the sequence {QAQ} is stable. 

Theorem 11: Let A € alg (V, V_ 1 ) C 1(l'). Then the finite section method applies 
to A if and only if the operator A is invertible on ip.: 

Proof: Let A be invertible. Then, by Theorem 6, A' € aig (V, V_ 1 ) = alg (AV'A-', 
A V , A-'). Hence, A -1A'A E alg (V', V11 ). Since the latter algebra decomposes we 
find that A- 1 AA = T'(a) + K' with T'(a) € L( V'), K' E QG( V') and a = (smb A). 
Hence,	 .	 ..	.	 - 

A = A'I"(a) A—' + K	 :	 (15) 

with some K € QC(A V'Al) QC(J'). Multiply (15) from both sides by Qn = l'nV_n 
= AVVA to find  

Qn 41Qn = AV'V'T'(a) J'n'V1 n '+ QKQ 

= AVn 'T'(a) VA-' + QKQ. 

The invertibility of A implies (Theorem 6) that wind a = 0. Since the algebra 
aig (V',. V. ,) decomposes, the operator T'(a) must be invertible (in alg ( V', V.,)). Con-
seqiiently, the operators AV'T'(a) V!.n/l'Ijmn are invertible, and the norms of their 
inverses A V'(T'(a))_' V.iA - ' I imQ,, are uniformly bounded. Moreover, by Proposition 
4, IIQn KQnII -. 0 as ii -- cc, and these two factslead to the stability of {QnA'Qn} as 
desired I 

Rdirk: We emphasize that our approach to the theo?y of Tocplitz opCrators withcon 
tinuous symbols on lf .Y also applies (with minor modifications) to \Viener. Hopf operators as 
well as to operators in finite differences on weighted LP-spaces.

C 
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