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. Wir beschreiben die algebraische Struktur der durch den Verschlebungsoperator und einer
seiner Linksinversen erzeugten Banach-Algebra und geben cin Symbol fiir die Regularisierbar-
keit eines Operators beziiglich des Quasikommutatorideals an. Die Beziehungen dieses Symbols
zur Invertierbarkeit bzw. zu den Fredholm- Exgenschaften der Elemerite dieser Algebra werden
untcraucht

Onncuaae'rcn aarebpanyeckana crpykrypa BawaxoBsl anredpsi, TMOPOHKEHIOl 0mMepaTopox
CHOBHra M OXHOFO €rg JIEeBOro o6pamoro M CTPOHTCA CHMBOJI, C OMOWIBIO KOTOpPOTO JAeTCA -

ycaoBue 06pa'rumoc1~u OmepaTopa OTHOCHTEBHO Heasa ModykommyTaroposn. Mccnenywoyrea

COOTHOMICHHA MEHIY ITHM (CHMBOJIONM H oupa'nmoc'rblo WK HETePOBOCTbLIO aneuemon aToit
nrcﬁpu

We describe the nlgebmlcal structure of the algebra generat,ed by the shift operator and- by
one of its left-inverses and construct a symbol for the invertibility of an operator modulo the
quasicommutator ideal. The correspondence between this symbol and the mvert,lblllt,y a.nd
Fredholmness of elements, of this algebra are studied. .

) . -
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L Introduction

In 1936, S. G. MrcHLIN [2, 3] was the first who created a. symbol concept for two- -
dimensiona] singular integral operators. Since that time the-notion of symbols has -
gained an extraordinary significance in the theory of integral operators: It allows
Yo algebraize large classes of operators in such' a manner that operations with opera-
tors can be transformed into operations with their symbols which leads to essential
simplifications in their treatment. Important classes of operators possessing a natural
symbol calculus are pseudodifferential operators of Fourier and Mellin type as well as
convolution operators. -Meanwhile one has recogm/ed that even the numerical,
‘solution of certain. convolution equations (as, e.g. singular integral equations) by
projection- methods corresporids to the invertibility of speua,l matrix- or operator- :
valued symbol functions on some compact. . :
In the pxesenb paper the authors. raise a scheme due to I Z. GocHBErG and'I. A.
FELDMAN [1] which refers to-continuous functions of shift operators. By a shift we
here mean an only one-sided: invertible operator V with the additional property that
the spectrum of ¥ and the spectrum of its one-sided inverse V_, are both contained
in the closed unit disk {z: |2]| < 1}. To each'operator 4 belongmg to the closed algebra
.generated by V.and V_; we associate a comple\ valued continuous function on the
- unit circle T — its symbol, and we examine the spectrum and the essential spectrum
of thé operator 4 in terms of the geometric behaviour of its symbol. Besides this we
explain the algebraic structure of the algebra with generators ¥ and V_, and show
that — in the best case — it decomposes irito the direct sum of the lineal of all con-
tmuous fun(,tlons of V'and V_, and of a certain ideal consisting of quasncommutators
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‘2. Functions of shift operators

. Throughout this paper let X be’ a Banach space with identity operator I and let .
- ¥ denote a bounded linear operator on X which is only invertible from the left. We. .
fix one of its left i inverses, say V_,, and -put for brevity :

V;V" ifnzo0,. - S
" (V)"'lfn<0’

- For a given po]ynomlal E(t) = Z’ a;tf on the unit cnrc]e T we define an opera,tor '

j=—n

R(V) by R(V) = Z‘ a;V ;. and ca.ll R(V) a polynomlal of V Let LO(V) sta.nd for the

=—n

i

set of all polynomlals of V. Notice that there is a one-to-one correspondence between'
the opera.tors in LO(V) and the polynomials on 'I‘ Indeed lf 0= Z‘ a, V, and a_,, %0,
then Z‘ a;V; V ‘=0, and we findO+a J=V|— Z o;V raoa ) Thls ylelds the right

. j=-—n ——n+l
mvertlblllty of 7, which- contradicts our hypothesrs If R(V) is a polynomlal with
only positive powers 6f ¥, then the proof is similar..
The following hypothesis (H) will flgure prommently in derlvmg invertibility cri-
teria for polynomlals of V.

(H) The spectm a(V) and, a(V_y) of V.and V_, are cbntained in{ze C:lz| £ 1).

Here of:) refers to the spectrum of a glven opera.tor in the Banach algebra £(X) of
" all bounded linear operators on X

. Theorem 111 Chap I, § 1 ‘3] Let (H) be fulfilled. ’I‘hen the followzng assertions *
kold. " | )
)U(V)ﬂa(Vl)—{ZECIZI—l} - ’

b) An operator R(VYe LOV) is at least one-sided znvertzble if the /urwtwn R(t) kas
10 2€T0S ON T..If R(t) % 0 on T, then'the zm;ertzbzlzty of R(V) corresponds to the index
of R(¢), i.e. R is invertible, mvertzble only from:the left or. only /rom the right if the wzndmg .
number of R(!), .7

(- wind R(t) ——. = [arg R(e“)]z-o:

s zero, posztwe, or negalive, respectzvely -
c) If R(V) is one-sided invertible, then there exists a oeze-szded inverse of R(V) in the
algebra generated by V and V_,.
d): The spectral radius of R(V) equals max | R(t)].

e) If Re L°(V) is a P-operator and if % 1= codim (im V) < oo, then md R =—x
X wmd R(t). .
f) If R(t,) = 0 for some to € T, then R is nezther aD,-norad_ ~operator

This theorem Justlfles to speak about R(t) as the symboz of R(V).
Let L(V) stand for the closure of L(V).in #(X). The elements of L( V) wnll be
called continuous functions of V. To each operator R in L(V) we can- associate a
- continuous function R(¢) on T — its symbol. In fact, by Theorem 1/d) we have -

,  max (IR0 t€T) < BV : SRV
for each polynomla.l R,t). If {R y denotes a sequence of polynomials converging to
R € L(V), then, by (1), the sequence {E,(¢)} converges uniformly to a:certain con- .

AN



" first of them does not.

/
’ -

Symbol Calculus for an Algebra 295

- , - . (s

tinuous functlon R(¢) which, moreover, does not depend on {R;}. In Sectlon 4 we
shall extend this definition of symbols to a larger class of operators. -

We emphasize once more that the symbol concept for polynomials is dlstmgulshed
by-the following important aspects:

(i) An operator in Lo(V) is umquely determined by its symbol.

(i) The invertibility of an operator in L°(¥) depends only on its symbol.
One might enquire whether these properties are passed on to L(V). The following
example which is due to A. Pomp (private communication) shows that at least the

\.
. . . . >

7

' numbers and define o

E = {{zk {ak + Y2, with a € €, {y)2, € m}
Obwously, ‘

Exa.mple Let m denote the Banach spa.ce of a.ll bounded sequences of complex_ .

. \ )
NPT
E Sz = {xk}i".l g Hx1|33= Z, — n lim 7" ;
k—oo

+ sup.

llm —

defmes a norm on E which makes E into & Banach space. Let V and V., be the .

operators on E which are defined by ’

s Vimdel, = @y, T m = 0, " and V;l{xk}zo-ll = {Tenliz -
Clearly, V_,V-=1I and VV_, & I. Moreover, it is easy to see that the operators V

and V_; are bounded on E and that |V,||'= |n| + 1 for all n€ 7. Consequent,ly, the
operators V, V., are subject of our hypothesis (H).

Propos1tlon 1: There exists an operator A € L(V) the symbol of whzch is zdentzcally
zero but A + 0. ' N

Proof: leen z = {x;} € E with :r,/k-—->a we ‘define the opera.t,or A by Az
=a{l,'1, 1,...} € E. Evidently, 4 is bounded ‘on -E and ||4] =1 We clalm'
that lll/n V_,, — Al —>O asn—+oo: If x = {ak + y,} € E, then

[T k w1 :
(—. Vo A) { +n ot Yen a} I T

7

n k=1

Hence, -

(l V., — A) z
o .

Consequently, Aisin L(V), A % 0, but the symbol of A is xdentlcally 2610 smce the 4
symbols of 1 [n V_, converge uniformly to zero B

. "1 . : ’ . 1 h . .
== (Ial + sup Iyml) = - lalle-

In what follows,we shall only deal\wnth the problem of the mvertlblhty of functions
of shift operators. Concerning the unique determination of an operator by its symbol
we refer to [5], where, among other. things, the following is proved.’

" Theorem 2: Assume that n im V, = {0}. I/ one of the condmgns -

2 , . )
a)clos\UkerV_, = X Y b)sup ||V, V || < oo
n=0 \

is /ul/z’lled, then every opemtor in L(V) is uniquely determined bg usAsymbo.l..

20% o ' ¥ - 2
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3. V-dommatmg algebras

' Our next concern is to extend the/ assertions of Theorem 1 to a subset of L(V) as

large as possible.-Again, lét ¥ be an operator on X which is only invertible from the
left and let V_, be one of its.left inverses. We_do not assume the hypothesis (H) to be
fulfilled. A commuta.trve Banach algebra D with unit element e is called (V, V_,)-
dominating (or, shortly, V-dominating) if -

a) there is an invertible element d in D which spans together Wrth its inverse d~' a
dense subalgebra of D, -
b) the spectra op(d) and O'g(d Yofd and d-! in D are contamed n {z € C !z| S

. ¢) there exists a constant M > 0 such that

”P(V)llx(x><Ml]P(d)lln | - [ ;)

’

j=-n

for any polynomral P@) = X aitl, |t =1.

Proposition 2: If a (V, V. )domzmtzng algebra D exasté', then V and V_ 1A are’
subject of the hypothesis (H). More general, if P is a polz/nom‘tal on ’I‘ then we kave for .
the spectral radii Qy(x)(P( V) and nD(P(d ) that ' .

Proof: It issufficient to verify the estimation (3): By (2), PV lzon < M IPEY >
(n € Z*). Thus, ||P( V)"]P/" < Min ||P(d)"]|‘/", and passmg throught the lrmrt yields
the assertion 1 .

Proposition 3: The mazimal ideal .sj)ace M (D of D is homeomorphz‘c to the wnit
circle T, and the Gelfand transform maps d into the function t >t (t € T)

Proof: We shall show that the spectrum of d equals T. The remaining assertions
follow immediately from the general theory of commutative Banach, algebras. By

‘ ,b) the spectrum op(d) of d in D belongs to T. Assume that o,(d) 3 T. Then there is an

inner point z of T\ gp(d), and we can find a continuous f on T such that 0 < f(¢) = 1 ’
(teT), f(z) =1 and f(¢) —0 for t € oy(d). Given ¢ > 0 we choose a polynomral
PpE ("('I‘) so that max |fie) — p(t)} < &. Since |p(t ) < e forall L€ op(d), we obtain

Qp(p(d) <e& On the other ha.nd by Theorem 1/d) and by Proposrtlon 2 we have
gg(X,(p(V)) >1 — &. These two mequa,lrtres contradict the hypothesis (2) for ¢ suf-
frcrently small @ , .

Since p(d) is uniquely determined by its Gelfand transform’p(¢) (even in the case
that D has a non-trivial radical), the mapping p(d) r—>p( V) is well-defined, linear,
and by (2) bounded Hence, we can extend this mappmg contmuously to the whole
algebra D and its image, abbreviated to Ly(V), is contained in. L(V). For u € D let
a(V) denote the i image element of « under this mapping. Notice that :

Ta(Plleco S M lollo S @

for all a € D and that the symbol of a(V) comcrdes with the Gelfand tlansform of
« € D. If the radical of D is trivial, then each element of Ly(1)is uniquely determlned '
by its symbol even if this is unknown for arbitrary elements in L(¥).

Theorem 3:Let V be omly invertible from the left and let the algebra D be (V, V_,)-

R domzmztzng

o ’ . . 1
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a) An operator R € Ly(V) is at least one-sided invertible if R(t) 4 0 for all t € T. If
the symbol R(t) of R does not vanish on T, then the m‘verubdzty o/ R correspomls to the .
winding number of R(t).

b) If R(t,) = O for some ty € T, then R is neither a ®@,- nor a ®_ -operator

Proof: a)'Let R € Ly(V) and R(¢) +0 (t € T). Then there is an element a € D
- with (V) = R, and a must be mvertlble since R(t) is the Gelfand tra.nsform of a.

Thus, we can find a polynomial p(t) = Z a;t! (t € T) such tha,t r = p(d) is invertible
andrlg =e + ¢ with Jlellp < 1/M. As :n_the proof of Theorem 1 (see Theorem 1.1 in
[1: Chap. I, § 1.3]) there is a representation of 7 in the form r = r_ d*r, where 7, and
r_ are polynomials in d and d-! with only non-negative and non- positive exponents,
.respectlvely, and r (V) € LYV) are invertible. Now write . '

rd"(e—{-c)n ifx<0, -
_ {r_(e +eoydr, x>0, '
Then . ' ) .
V) — MVl + (V) r(V)y 20, BN

A _{r (DI +e(V)) VarV) i x> 0.

~ Since Jlc(V)|.< 1, the element 1 + ¢(V) is invertible, and we are done.

b) Assume R(to) =0, Ris @,. Then there isa 6 > O-such that |R — 7| < 1mplles
that r is @,, too. Now take » ¢ LY V) so that [|[R — 7| < 6/2 Because |r(t,)| < 6/2
and ||R — (r — 7(¢) I)|| < & the operator r — r(t)) I'€ LO(V) is @,. But this contra-
dicts Theorem 1/f), since r(t) — r(to) vanishes at ¢ = £,. The case that R is &_ can
be treated analogously #§ ; '

Now we are going t6 mention two exa,mples of V- dommatmg algebras

Example 1 (cp. [1: Chap. I, §3.2]): Let Y be a Banach space with identity opera- i
tor 7. Assume that there are given a bounded projection opera.tor P on Y and an
‘invertible opera.tor U € ¥(Y) such tha,t

Qr(Y_)(.U) =1, erw(U- l) =1, o (B

PUP = UP, ‘ PU-*P = PU-!, . (6)
‘UP+PU. : : - )

Let' D stand for the smallest closed subalgebré, of ¥(Y) Eontaining Uand U1

Thedrem 4: a8) D is a commutatwe Banach algebra uzth a mazimal zdeal space
komeomorpkw toT. .

b) The operator PUP|1mp 18 invertible only from tke left and PU-P|imp s one of
its lefl inverses. i
. ¢) D is (PUPI,mp, PU- 1P|,mp)-dommatmg . -

"Proof: First we verify b). Obviously, PU-'PUP = P. Assume that PUPAP =P
w1th some 4 ¢ £(Y). By (6), UPAP = P and PAP = U-'P. Thus we get PUPU-1P
= P. Again by (6) this leads to UPU 1 = P and UP = PU which contradicts (7).
For a proof of ¢) note that if p(t) is a polynomial on T, then, by (6), p(PUP) = Pp(U) P
whence ]|p(PUP)]l = [|P]| ][p(U)” Now part a) follows lmmcdlately from Propq-

‘smon 30 B

Notice that, given a shlft V, one can always find operators P.and U glven ona
Banach space Y oX such tha.t (5)—(7) hold and PU#'P = V3, [1: Chap. I, §3.2].

-
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: Examplo 2: A sequence f = {f,}2._, of positive real numbers is called a weight if

; um'i/—=um'i/};—=~1"' : : L, (8)

. ' aind vifv' j* sup,, ,, /,M//,,f,‘ < oo. By W(f) We denote the collectlon of all complex-

AEA

valued functions a on T the Fouuer coefflclents a,, of which satlsfy Z |ak| fr < o0,

~and put _ : , ks—oo

'

llallwm =/*Z Iakl/k o e ‘(9){"

Theorem 5: a) The set W(f) forms a commutative Banack algebm under tke norm

' (9) whose mazximal ideal space is homeomorphic to T.

b) “The operator d a(t) > ta(t) spans together with its inverse a dense subalgebm"

_of W(p.

c) IfV is. @ shz/t operator, then the algebra W{ll V,,” ,,__m) is(V, V- 1)-dommatmg

The prooof follows from Proposntlon 3 if one takes into account (3) and the SAmple -
cstimation _|d"a]l = [0 = /* 3 led feon S (o & loil fe which -leads.

v

L ) e o ‘ v \
4. 'l‘he a]gebra generated by V and V_1

" Our next objectwe is to study the smallest closed subalgebra of £(X ) conta,mmg V.

~and V_,. Denote by alg® (V, V_,) the (non- -closed). subalgebra of #(X) generated by

~

-V and V_l and by alg (V, V_,) its closure. Further we let refer QC(V) to the smallest

two-sided-ideal of alg?® (V, V_,) which contains all quasicommutator operators of the
form. (R,Rz) (V) — By(V) Ry(V) where R,, R, are arbitrary polynomials on T. The

. closure QO(V) of QC*(V) in alg (V, V_,) is called the quasicommutator ideal of alg (V,

V_,). Henceforth; the qua,swommutator I —V,V_, of the operators V, and V_,
will be denoted by P, (n € Z*%), and we put Q,, = I — P,. Obviously, Pn and Q,,-‘v
are projection operators on ¥ (X In what follows we are mainly interested in-the
algebralc structure of alg (V _1) and In Whether an invertible opera,tor is invertible
in this algebra. co :

Prop031t10n 4: The /ollowzng condztzcms are. equzvalent for K € alg (V, V_,):
a) K € QC(V).

b) K belongs to the smallest, closed ideal of alg (V V_,) containing P,. . :
¢) If sup, ||Q.]l =: M < oo, then a) is equzvalent to each 'of the followzng ||Q”K][ -0

Jand ||KQ,|| - 0-as n — cc.

Proof: a) =5 b): The quasicommutator ideal is genera,ted by all operators (B, Ey)(V)

— R(V) Ry(V) where R(V) and R,(V) run through L°(V). Since V,+, ~ V.V,

=P,V and P, = 2 VP,V T the inclusion follows. v

b) => a,) Py is the quasxcommutator of Vand V_,. ) .

‘b) = c): Weonly prove that b) implies ||Q, K|} — 0. First we show that ||Q, 4P| = 0 B
as n—>oo if A is.in alg(V,V_,). Given ¢ >0 write 4"=4, + (4 — A,) with -
]IA A4 <e and 4, a finite sum of products of shifts. Because VP, = P, ,V,

. for all7, s € Z we have

A Qn i| i - Yig 1= Q;lPi;‘Fii'.‘b""‘-'ikVixVi: Vit
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(1. oy ooy iy € Z) whlch is zero for .4, + i+ - + W+ 1<n. This yields that,

given ¢ > 0, we can find an n, such that [[Q"APlji < ¢ if only -n > n,. Now let K"

EQC(V) Then we write K = K, + (K — K,) with IK — K| < ¢ and.with K,
= Z B;P,C; (Where C, €alg(V, V. " By what has alrea,dy been proved each

. i=
1tem of Q,,K converges to zero, and we are done with the 1mphcatlon b) =<c).’

. ey=>a)r I[Q,,K“ —- 0 as.n — o0, . then K is the umform limit of the operators
P, K which are in QC(V) § : .

Corollary 1: If codim (im V) < oo, then QC( V) consists tmly of compact operators
If, moreover, codim (im V) = 1 and if {P,} and {P,*} converge strongly-to the identity

opemtor on X and X*, respectwely, then QC(V) equals the ideal of ‘all co'm/powt operators_

cmX
7

" Proof: The first assertlon is obvrous from Proposmon 4/b) since codlm (1m V) <00
implies dim (im P,) < oo. Now let codim (im V) =1. Then-each operator P, — P, ,
has rank 1. Consequently, for each linear bounded operator A on X we can find con-

" stants'a;; € .C so that \

. P AP - Z (P - P]—l) A( - x—l) = ZaqV; IP V—H—l . (10)

J $j= _hi=1

Hence, P,AP, belongs to QC(V) for each A ¢ Z(X). In partlcular if A= K is a'
compact opera.tor then ||P,KP, — K| - 0 which lmplles that K¢ QC(V) 1

The following construction will allow us to define a symbol calculus for the whole -
algebra alg (V, V_,): Let alg™ (V, V_,) stand for the quotient algebra alg (V, V_))/ |

_\.QC( V) and denote by = the correspondmg canonical homomorphisi. Obvnously,

RN

alg”(V, V., is a commuta,tlve Banach algebra generated by. #(V) and by its inverse

(V).

Proposition 5: Assume that (H) is /ul/zlled Then the spectrum a(n(V) of a(V)
coincides wzth‘the unit circle T, and for each polynomial p(t), |t| = 1, we have

/.'maxlp(t)|SI|p(n(V))ll (M)l < la(V)- , . -(n'),_

\
(

" Hence, the maximal ideal space: of alg® (V, V_,) is homeomorphzc toT, and by (11) the

\‘1mmed1ately from the general ‘theory of Banach algebras. By (H) the spectra of -

symbol of an operator A € L(V) coincides with the Gelfand transform of n( (4).
Proof: We have only to verlfy that or(n(V)) =T. The other assertions follow

(V) and (:rz(V) =a(V_,) are contained in T. Assume that a(n(V)) =% T and choose

2 €T\ o(n( V)) Then there are operators B € a.lg(V V_ 1) and K ¢ QC’( V) such that
. B(V —zl)y=1 4+ K. Approxnmate B by B0 Z HB,,, B‘, € LYV), so “that-

]|(B - By) (V — zI)|| < 1/2. Hence, BO(V - zol) = I + K + C ‘with IOl < 1/2.

'bunher, approximate K by Ko 2 r[ Ky, K;j € LY V), so tha.t IK = K| < 1/2.-

i=1j=1

What results is.that By(V — z,/) =1 + Ko+ C; with |Gyl < 1. Now we represent

By alg® (V, V_,) ini the form By = Ry + S, with B; € L*(V) and S, € QC°(V). (This

is always possible; moreover, the representation is unique.) Thus, Ry(V — z,I)
=14 K, + Lo — So(V — zI). :Since K, — So(V — zoI) € QC%(V), we can find

-an n € Z* such that (K — SV —~ zol)) V. =0 (cp.-the proof of Proposition 4):
: Fma]ly, RyV — 2zl) V, = (I + Cy) Vy, and the right-hand side of this equation

_is invertible from the left. On the other hand, Ry(V —.z,I) V, € L¥(V), and Ro( )
>< (t— z) t" va.mshes at 2, € T Wthh isa contradxctlon to Theorem 11
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o If (H) is fulfilled, then the previous theorem enables us to assign to every operator

‘A € alg (V, V_,) a continuous function smb 4 on T called its symbol, namely the o

Gelfand transform of 7(4). Obviously, the mapping A +> smb 4 is a continuous

homomorphism and its kernel includes the quasicommutator fdeal. The kernel
- equals QC(V) if and only if alg™ (V, V_,) has a trivial radical: Proposition 5 implies

that an operator 4 € alg (V, V) is regulanzable with respect to QC(V) (that is,

there exists an operator B € alg (V, V_,) such that both AB — I and BA — I be-
o long to QC(V)) if and only if (smb A4) (¢) &= 0 for all-¢ € T. So it is natural to. ask

7 whether an operator 4 € alg(V, V_,) being invertible in #(X) must be invertible
. ~inalg(V, V. l) This question will be a.nswered pos1t1vely by Theorem 6 below.

Prop081t10n 6: If K c QC(V) ‘and if I + K i3 at least one- szded invertible (in o

X(X)), then 1"+ K is two-sided invertible in alg (V, Vo), and (I + Kyt — I'e QC(V):

Proof: Approxxmate K by operators K, € QC"(V) As in the proof of Proposition

- 4 there exists -a sequencé  {a,} < Z* such that @, K, = K,Q,, = 0. Hence, K,
o= =P, K,B;,, and the one-sided mvertlblhty of I 4+ K yields that I + K, =1
4+ Pa,,K P, =Q,, + P,,”(K + I) P, is one-sided invertible in £ (X) for n large enough

“This shows that P,, + P, K,P; |imp, must beone-sided invertible for» large enough. -

Now a httle thought shows that the algebra. of all operators P, RP,, [imp, with:
arbltrary ‘Realg(V,V_,)is 1somorphlc to the algebra (2-Xd» (compare with the
representation (10)) Thus, the one-sided invertibility of the operators P,
+ Py K, P, limp, nges thelr two-sided invertibility, and their inverses are in alg ( v,

V_). So we find that the operators I + K, =Q, + P, (K, + 1) P,, must be two- snded’ .
invertible in alg (V,V_,). Now assume for definiteness that 4 = I + K is left-invertible

and that 4’ is a left inverse for 4. Then 4'(I + K,) tends in the norm to the identity
operator. Thus, for n- large enough, we get the invertibility of 4’( 4+ K,) and that "

of (I + K,). Therefore, the operator 4’ must. be invertible and, consequently, A4 is

- invertible. Finally* we note that (I 4 K,)"* =7 4 R, with R, € QC(V), and the

clogedness of QC‘(V) gives A’ — I= (I +K)y*—1Ic¢ QC( V) B

Theorem 6 Let (H) be /ul/zlled and assume that Acalg(V,V.) and let A- be

invertible in , £ (X). Then A-* € alg(V, V_)) and, moreover smb 4-! = (smb A) 1

and wind smbA =0. -

Proof: Approximate 4 by operators A € alg® (V, V_y). If 4, — A” <1/2]4- 1||,
_ then 4, 18 mvertlble and ||4,"-< 2|4~ 1]| Thus, for large n,

AT = A7 s ALY A 4, — A < 24P 4, — A},

and thls estimation shows that it suffices to.verify the assertion-for operators in -
. alg® (¥, V_,). Given 4 € alg® (V, V_,) we find operators B ¢ Lo(V) and K € QC%(V) .
and a number ! € Z* such that A = B'4+ K and KV, = 0. Thus, 4V, = BV,, and
the invertibility of A 1mphes the invertibility of BV, from the left. Theorem 1 shows
that then B must be one-sided invertible and that its one-sided inverse belongs to
alg (V, V_,). Assume, e.g., B to be invertible from the left and take C € alg (V V_)

- so that CB = I. Then _
 A=B+K=B+KCB= “(I +-KC) B , (12y
“with KC € QC(V). Since A4 ;s‘mvertlble,‘ we conclude from (12) that I + KC must be
Jinvertible from the right, which leads by Proposition 6 to the two-sided invertibility
of I + KCin alg(V,V_)). Put T: = + KC)y* —IeQC(V). Then C(I +-T) 4
=CI + T) I+ KC)B=1,ie. C(I + T) 13 a left mverse for 4. Hence, O(I + T)
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is an inverse for 4 and we arrive at 4-1 = C(I + T) €alg(V, V. l) Fmally, the
equation smb 4-1 = (smb 4)-! is obvious and the index formula follows from (12) -
by invoking Theorem 1 1

If the operator 4 € alg (V, V. l) 18 of a special structure, we can spemfy the pre-
cedmg theorem as follows. . .

Theorem 7 Let (H) be /ulleled and assume there is a V-dominating algebra D.- -
IfA=B+K (with B € Lp(V) and K € QC(V)).is an invertible operator, then A and
© B are both invertible in alg (V, V_,). Moreover, there exist operators B’ € Lp(V) and
K’ € QC(V) such that A-! = (B 4+ K)-! = B’ + K’, and/or the symbols we have \

smb 4-! = smb B-? —(smbB) l—(ssmbA) 1 = smb B’.

Proof: If 4 is invertible, then, by Theorem 6, A~! € alg (V V. ) and wind smb 4
= 0. Because smb 4 = smb Band B¢ Ly(V), we conclude via Theorem 3 that B is
invertible and via Theorem 6 that B-1¢ alg (V V_,)). Let B =a(V), a€ D. The
_ invertibility of B lmphes the invertibility of @ in D. Put B’ = (a~1) (V) € Ly(V):
. Then B'(B + K) = (a™) (V) (a(V) + K) =1 + K, with K, € QC(V). Again by

Theorem 3, the operator B' is invertible. So the.operator I + K, must be inyertible,
too, and Proposition 6 states that (I + K,)"! =1 + K, with K2 € QC(V). Fma,lly,,
the operator (I + K,) B’ =: B’ 4+ K’ is an inverse for 4. The symbol identity is
obvi?us T - : ’ .

The fr)llowing theorem reifies Theorems 6 and 7 for the case when the operator 14
has a finite cokernel. -

Theorem 8: Let (H) be fulfilled and A € alg (V, V_,).

a) If A is @,.or P_, then (smb 4) (¢) + 0 forallt€T.

" b) If x = codim (im V) < oo, then"A is a P-operator if and only if (smb A) (t) # 0
for all t € T. If this condition is /ulleled then ind 4 = —wind (smb A)

We omit the proof since it follows from Theorem 1.by similar arguments as those
in the proof of Theorem 6- and by the stablllty of ind and wind under small pertur-
bations 8- .

~

5. Decomposing algebras

Generally, all what we know about the relations between L(V), QC(V) and alg (V,V_)
: .18 that the algebralcal sum L(V) + QC(V) is dense in alg (V, V_,). Under additional
conditions one can,get essentla,lly more information about the structure of alg (V, V).

. Theorem 9: Assume that (H) is fulleled and that for all polynomials Ri;(t) on T

NZ: T B) DIl = M IIZ [T; B(V)ll . ; (13)

with some M > 0. Then the ulgebm alg (V, V. 1) decomposes mto the direct sum
alg(V, V_y) = L(V) + QC(V), i.e. there is a projection S € ¥(X) mapping alg (V, V_,)
“onto L(V) parallel to QC(V). Conversely, if alg (V, V 1) decowposes, then (13) holds \
with M = |3

- an ,,V)H(Zn, ,,)(V)eLé(V). S B

~

Proof Define a linear mapping S on alg° (v, V 1) by
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S is well-defined and bounded by (13). Smce S(R) = R for R ¢ V), the mappmg S
is a continuous projection operator mapping alg® (¥, V_;).onto L(V). Its continuous
. extens1on onto the whole algebra alg (V, V_,) will again bedenoted by S. Thus, alg (V, .
V:)=im S J: kerS.-Obviously, im § = L(V), and it only remains to show that kerS
= QC(V). By definition, QC(V) C ker 8. Now let A ¢ ker S. Approximate 4 by 4;,
4, € alg® (V, V_,). Then ||S( Dl =18(4,) — S(A)ll —0. SmceS(A,,) — 4, € QC%V), -
we get that, A is in QO( V) s . ' :

Remarks: (1) It is easy to see t,ha.t the following is sufflclent for (13): There is a fa,mlly )

AWalono of left invertible operators with léft inverses W, such that , ) ~T

VW, = WV, VW, = W,-IV_ for all n € Z+,
"2 8up, || Wyll < oo, 8upy, Wy )| < oo,

||W")KW"||-—>Oasn—>oofornnyKEQC(V) , , ot

In particular, if supgez ||Vl < oo, we may take {V,}ncz+ as the famlly {Wabnezs

(ii) Obviously, (X; IT; B;) (V) — X, IT; Rij(V) € QC*(V). Since QCO(V) is dense in QC’( V), we
see that (13) is equivalent to the assertion ||R( V)|| =M ”n(R(V))” for. each polynomial R, i. e
alg™ (V, V_,) is V-dominating. So we drrived at the. following: ’

The algebm alg (V, V_,) decomposes into L(V) 4 QC(V) if and only t/ alg® (V, V) s V-
dominating.. Moreover, if D = alg™ (V, V_,) is V-dominating, then L(V) = Lp(V).

T (iii) By (11) we can endow L(V) with an equlvalent norm and by a multiplication o, whnch
makes L(V) into a commutative Banach algebra, (L(V), o) which is 1somorph1c (and the iso-
morphism is continuous) to the quotient algebm alg® (V V_l) Obvxously, (L(V),0) is V-
dominating and . Ly, o (V) = L( V).. . -

6. 'I‘oephtzoperatorsonl"" B o S

We conclude these remarks by the followmg concrete realization, which is thought as
an illustration of the general statements from the preceding sections. Let X = 7~
(p =1,y € R) be the Banach space of all sequences z = (xo, Z, ...) of complex
numbers with the norm .

v

‘ . /
II=llp.y = (Z [P (’» +. 1)"”) ’

and consider the operators V and V_, on X given' by Loor
B (0, Ty Ty --2), . Ve = (4, Zay-...). B
For n € Z*, . ' '

VAl =

{(1+n)’ if y=0, na ”_

(1+n> ify <0,
if y<o,

ify>0.

“Int partlcular the opera.tors V and V_, are subject of the hypothesis'(H). The opera- -
tors in L(V) are called Toephtn operators. By Theorem 2, each Toeplitz operator is ‘
uniquely determined by its\symbol. As it is usual, if 4 € L(V) and if a is the symbol
of A4, we shall write T(a) instead of 4. The Banach spaces 77 and 70 are isometrically.

1somorphlc and the isometry. is given by -
P

A lpo -y, (zx)k-o ing (xk(k + 1)- ’)

In the sequel we have to distinguish between Toeplltz operators on [P and on [P,
. both generated by the same symbol Let us agree to desxgnate the opera.’u)rs on the
. space l"0 (without wexght y) by a’ prlme . N .
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0
r .

. 'Pljoposition 7: We have the inclusions,
AW A Vi€ QC‘(V'), L AVLAT = Ve QC’('V).

Proof: We only demonstrate the first a.ssertlon The ma.tnx representatlon of
A VA — V' in the canonical basns of 170 is :

0 o» 0 ...'W . ,
2 . o . !
—17—1 . 0 0o . ‘ L .
0 5—1 o | |
. . N i -,

~So the proof follows immediately from the characteriza,tioh»of the quasicbmruutatbr
ideal given in Proposition 4/c) by mvokmg a simple norm estimation 1

- Notice that, for p == 1 the operators A-1V 4 — V’, are compa,ct (thxs is due to
Corollary 1). It is easy to see that this holds even for p = 1.

Asa consequence .of Proposition 7 we find that A'P(V) A = P(V') + T’ with
T € QC(V’) for each polynomial 'P. As in the proof of Proposition 4, there is an

n '€ Z* such that, for each 1" € QC(V’), (P(V )+ T’) V, = P(V) Smce the

norms ||V, ,,]] are equal to 1 for n € Z*, we conclude that ‘
||P(V N = 12V + T for all T’ € QC( vy, - A (14)

"Corollary: Let T(a) be a Toeplztz opemtor on [P, Then a is also a sy mbol of a
Toeplitz operator on I?2. Moreover, A~'T(a) A — T" (a) € QC(V’) and ||T’(a)|| < ||T(a)[|
The proof follows immediately from (14) | )

Theorem 10: Let T(a) be a Toeplitz operator on 1P, Then T(a) s at least one-sided
- invertible if and only if its symbol does not.degenerate on T. If this condition is ful/zlled
. then the one-sided invertibility of T(a) corresponds to the winding number o/ a.

Proof outline: If T(a) is mvertlble, then, by Theorem 6, its symbol a must be

invertible. Now let a,be invertible. Consider the opera,tor T"(a) defined on P by

the same symbol a. By Remark (ii) we conclude that '1"(0,) is at least one-sided inver-
tible. On the other hand, Theorem 8 ylelds that T'(a) is a P-operator with ind T'(a) =
—wind a. To. flmsh the proof it remains to show that the kernels of T'(a) and of
T'(a) comcnde 1 .

Now we turn our attention to the structure of the algebra alg (V V_) generated :

by V and V_, on (77,

Proposntlon 8: The algebm alg (V V_) decomposes into L(V) + QC(V) if and
only if y = 0.

Proof: It is easy to see that 1[n(V )H = 1 for all n, p and y (cp. [5]) Comparing
this with the norms of V, quoted above we find that the pro;ecblon S defined in
Section 5 is bounded if and only if y = 0 |

'Now fixp =1 ‘and let y = 0. Since ||n(V,)|| = 1, the symbol algebra, alg™ (V,'V_ 1)
.- contains a copy of the Wlener algebra consisting of all functions a(t) = Y iza:tf

’
Lot '
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(¢ €. T) with Z‘,gz |a | < oo. On the other hand the matrix representation

ao a_y a_z
a, a, a.y ... : o , ’ :
T(a,) ~ . 0. ! - N e Y
ay, a; ‘ag .
. . '

of the operator 7'(a) in the canonical basis of I''» shows that the sequence (ay, a;, --.)

must necessarlly belong to 11.7. Hence, there are symbols the correspondmg operator

* of which i8 not thé sum of a Toeplitz operator and an operator in QC(V) (which hss

_the zero symbol by definition). Such operators can be found among the operators of
the form AT"(a) A~! where T"(a) runs through the set L(V’) of all Toephtz operators
on 179 as the following proposmon indicates.

Propos:txon 9: Let V and V' be the shzﬂ operators on 1P and PO (p =1,y € R),
respectively. Then Y . :
.a)alg(V, V_,) = alg (AVA LAV A7Y),

RS

R

‘b) the algebras alg (V,V_,)) = alg (V | ,)/QC(V) and (L(V' o) (on 1P0) are. iso-

~ morphic.

Proof: a) By Proposmon 7, AV A l¢alg (V{V 1) a,ndsoalg (AVA LAV, A7Y)
s alg(V, V_,). Analogously, ‘alg (A 1vA, A 1y_A) € alg(V', V1)), and since the
'algebms alg (AV'A-1, AV A1) and a.lg(V”V'_,) and the algebras alg (A 14,
ATIV_ A1) and alg (V, V 1) -are obviously isormorphic we get a).

b) Since I — AV'A-1AV  A-1 = P,, the quasxcommutator ideals QC(V, V ) of

alg(V V_) and QCAV' A1, AL A1) ‘of alg (AV'A~Y, AV A1) coincide. Thus, the
followmg algebras are 1somorphlc to each other: . :

. alg (V V. )/Q0(V) = alg (AV' A1, AV, A7)[QC(AV'AY)
L alg (V, V)/QC( V' =~ (L(V"),0), |
where the last.isomorphy follows from the-fact that alg (V", VL) decomposési 1

. The somewhat unexpected result of Proposition 9 is that the symbol algebras do
not depend on y (only on ). Hint: Proposition 9 does not mean that each symbol of

a Toeplitz operator on [P is again a symbol of a Toeplitz opera.tor on [P-7! In case>

p = 2 we can complet,e this picture as follows

Prop031t10n 10: Let p = 2, y € R. Then the algebra alg (v, V. /QC(V) isa C*
. algebra which is isomorphic to the algebra C(’[‘) of all contmuous fwwtzons on the unit
. circle T. .

Proof: Denote’ by (-, -)o the usual inner product on the Hllbert spa,ce 1290/ The
Banach space I27 (y == 0) can be made into a Hilbert space on defining an inner
. product by (z, y), = (A 'z, A~ 1y)0 Since

(z, Vy)y = (A 1z, A71Vy), = (471, A7V AA- ‘y)o

_ (A 2, (V' + T)Ay)e (with T” € QC(V*)) '

. = (VL + T"yA 'z, ATly),  (with T = (T")* € QC(V"))
= (A1AVL, + T") A1z, A7), : |
=(AYV_1 + Tz, Aly)e . (with T'€ QC(V)) .

=‘((‘V-1 + T) z, y)r

&
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“We see tﬁat’; y* _ V_, € QC(V) and, a.nalogously, we'get Ve, — Ve QO( V). Hence,

alg(V,V_) isa C*-algebra and it remains to verify that the mapping £(i29) > 4
> AAA- € £(1*7) i8 a s-isomorphism. This sta.tement follows by similar conclusions

as we have used above. In fact, we get B* = A~Y A1 BAY* A for B¢ alg (V V_y) v

where the star on the left denotes the adjoint with respect to (-, -), and the star on
the right refers to the usual adjoint on I%°. Thus, the C*-algebras alg (V, V_,) and

alg™ (AV'A71, AV_ A7) are star lsomorphlc and the proof ,is complete since the

latter 1s 1somorph1c to C(T) by standard arguments (cp. Section 5) 1

Our final goal is the finite section method for operators in alg (V; V_,). Put P,
=1I1— V,V_, and assume that P, — I strong]y We say that the finite section
method applies to 4 € alg (V, V_,) if there is an n, such that the equation P,AP,z, .
= P,y has a unique solution z, € im P, for each y°¢ X and for each n = n, and if
these solutions z, converge in the norm of X to a solution x of the equation Ax = y.

. It is well known (Theorem 2.1 in [1: Chap TI, §2]) that the finite section method

applies to A if and only if the operator 4 is mvertlble and if the sequence {P,4P,} is
stable, 1.e. there must exist an n, such that the operators P,,AP limp, are invertible
for n = ny and sup ]|(P AP, |imp,)” 1]| < oo, or, equivalently, if 4 is mvertlble and

- the sequence- {Q A lQ,,} is stable.

Theo rem 11: Let A € alg(V, V_;) C £(77). Then the /ém‘t’e section method upplies

to A if and oniy if the operator-A is invertible on I?-7.

Proof: Let 4 be invertible. Then, by Theorem 6,A-1¢ alg (V, V) = alg (AV A1,
AV, A-1). Hence, A-14714 € alg (V’ ). Since the latter algebta decomposes we

" find bhat/l 14714 = T (a) + K' with T"(a) € L(V’ ), K'e€ QC( v )anda (smb A4)~!

Hence,” . S . . .
AV = AT A + K , e (15)
with some K € QC(A V'A‘l)"= QC(V). Multiply (15) from both sides by @, = V,V_,
= AV,"P’, A to find T ' - -
o QM"Q? =AV, V. (@) ]‘/'n’.V,—.nA_l"*‘ Q.KQ,
= AV, T"(@) V2,47 + Q.KQ, . ‘

The mvert,lblhty of A implies (Theorem 6) that wind ¢ = 0. Since ‘the algcbra
alg (W',-V_,) decomposes, the operator T"(a) must be invertible (inalg (V’, V). Con-
sequently, the operators AV, T'(a) V1 A" img, are invertible, and the norms of their
inverses AV, ’(’]"(a))‘1 V! 4A7! |img, are uniformly bounded. Moreover, by Proposition

4, 1@ KQ,|]| = 0 as n — oo, and these two factslead to the sta.blhty of {Q,471Q,} as

desned ]

Rcm ark: We emphasize that our qpproach to the theory of foephtc operators \nth\ con:
tinuous symbols on I?7 also applies (with minor modifications) tS Wiener- Hopf operators as
well as 'to oper'\tors in finite differencés on weighted LP-spaces.
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