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- Dedicated to the occasion o/ the 80th birthday of Salomon G. M ikhlin on April ?, 1988 

Es wird. eine Kiasse linearer Randwertprobleme betrachtet,, die zeitharmonische elastische 
Wellenausbreitungen im AuBengebiet einer Halbebene im 1R 3 beschreiben. Die expliziteLosung 
ist mOglich dureh Wiener-Hopf-Faktorisierung bestimmter Typen von nichtrationalen 3 x 3 
Matrixfunktionen, die als Fourier-Symbole der Randintegraigleichungen erscheinen. 
PaccMaTpnnaeTcR xiacc JIuHOlHazX 'xpaeeux 3aAwi onncamaiouHx raponsecxno no 
npeieiin ynpyrse pacnpOCTpaHeIIIdn noiii no BHemHef O61IaCTH flOJIE1J1OCKOCT11 B 1R 3 . Hniioe 
peuienne B03M0}rn10 flOCJCTBOM	 BMHepa-Xon4a onpeeJ1eHHoro TBfla 
HepaIHOHaJ1bHIIX 4)ylfl11j1iA 01' 3x3 maTPHIA B03HMHaI0EIUIx Hat; CMMBOJIM 1)ypbe ypawientift 
duHTerpasaM}i no rpaiinie	 "	 - - 

A- class of linear boundary value problems is considered due to time-harmonic elastic wave 
propagation in the exterior domain of a half-plane in 1R 3. The explicit solution is obtained from 
a Wiener-Hopf factorization of specific types of non-rational 3 x 3 matrix functions, which 
occur as Fourier symbols in the corresponding boundary integral equations. 

Introduction. Since S. G. MEI.rN introduced the conept of the symbol of a singular 
integral operator 50 years ago [24], mathematicians working in various fields realized 
the importance of the fact that the structure of problems governed by convolutional 
'type equations reflects in properties of the Fourier symbol function' or matrix func-
tion, respectively. Wiener-Hopf equations and systems of them 'represent one of 
those fields Their nature and explicit solution is directly connected with the factori- - 
zation of the Fourier symbol, see the famous papers by . 1. GOHBERO and, M. G. KREIN 

'[8] up to the recent monographs by-S. G. MIKIILIN and S. PRöSSDORF [25] and others 
[13, 16, 271. 

The problems treated here yield symbols in a particular algebra of non-rational 
matrix function's, for which we present a constructive fdctorization procedure. The 
basic idea: s differ'completely from those which are used for rational matrix functions, 
see [4, 5, 7, 9].  

We shall concentrate on four boundary. value problems which have been posed by 
.VD. KUPRADZE [15], but like to mention that the , method applies also to other 
boundary value arid transmission problems, see'[21, 29, 30] for admissible boundary 
operators and [1-3, 6, 10, 14, 17, 18, 31] for background.  

1. Formulation of the problems. Let I = {x E 1R3 : x 1 > 0, x3 = 0}, Q = JR3 - 
and boundary data, g± be given in the vector Sobolev space H-1/2(E)3. We look for a. 
weak solution u € H' (Q)3 of  

ill S2,	'	 (1) 
tL 

1) Sponsored by the Deutsche Forschungsgemeinschaft under grant number Me 261/4-2.
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V±u=g on Z±, '(2) 
where ) ) ,U ) w, n are known' constants, which satisfy y, > 0, 2 + 21u > 0, Re w, 
Im w> 0 [1].-The boundary data Vu which are always considered as functions defi-
ned on the full plane (XA, x2 ) E 1R2 are given on the banks of Z either by the values of 

•	the traction vector  

U.r = (Tu) = TuI±0 
au 

	

2n.divu ± 2i	+ (n curl u)±og  

or the Diiichlet data (column) vector	- 
•	 '	= (u ) u, u 3)*'= u	=  

or certain combinations of them .'•'-
(u1, u, u3)* =	'.	 '	(2.111) 

or	
u2, 40	g±	 -' 	(2.IV) 

on E-, respectively. For Diiichlet data, the given components naturally are assumed 
to belong to thetrace space 11 112 (E) instead of H- 112 (L'). Moreover, it is well known, 
that the jumps 

to= [u]o = uo' - u0 E fj112(1R2)3, IT = [ '1'u] = u - UT E 

of a. a, solution of (1) across th . plane x3 - 0 are zeio for' x 1 < 0, in other words: the 
jumps across the boundary [UJ ]r € H'/2 (L')3, [Tu]z € H-' 12 (L')3 are extendable'by zero 
within the Cauchy data spaces H ±112 ( 2 )3 (the manifold I c W. is identified with a 
subset of 1R2 ). This operator theoretically important fact can be seen as a compati-
bility condition for the data and is often formulted as 

•	
• to E fl112(I)3,. • / €	 •	 •	(4) 

meaning column vector functions withcomponei ces'ofH±1/(&2) 
distributions supported on I.	•	

ts in the closed subspaces
 

Therefore it makes sense to reformulate the boundary conditions (2) by use of the 
jumps (3), and, for symmetry, the sums of the data 

{u} 0 = u0 + U0-, {Tu} 0 = UT +'.UT 

So formulae (2) are transferred into transmission conditions where one of the data 
sets

= [Tu] 0 € 9 -1 / 2 (1)3 , • . {Tu 0 € H-1/2(1R2)3, •	 /	
(6.1)' 

•	 :	t = [u]0 € 9 1 1 2 (L') 3 ,	u}0 E fJ 1 / 2 (&2 ) 3 ,

/ 
[u]oi \ 	

{u} \
	 . 

( 
[u]02 ) € 9 1 / 2 (1)2 > fl-112(.E),{u}02 )- E H'/2 (1R2 ) 2 x

•	,	•	\[T-u]/	•	- \{'u}3/-	•	•	(6.-Ill) 

/[Tu]o i\ -	'	-	 /{Tu}o1\	'	 •	-- 

[Tu]02 ) €	_h/2(Z)2 x 9 1 / 2 (I) , • • ( { Tu}2 ) € Th'/2 (1R 2 ) 2 x H1/2 (R2 ) (6.1V) 
[ \ u]/	' •	- -	\ M03 /
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•	is given on I. We denote by J P1, I	1, 11, III, 1V, the boundary value problem that 
•	corresponds to (1) and (61).' The Dirichiet problem P l I has already been treated by a 

• simplified approach in [23]. The present more rigorous calculus also works (tip to the 
• .	explicit factorization) -for boundary and transthissior) problems where Vu in (2) 

represent two arbitrary linear combinations of Dirichiet, Neumann (uj -= 3u/8x3), 
- and traction data	 -	-

	

 
('00,3)12,0

 \ fu 0i\0
uos 0 	( U 0 J 'T2,	 0 J IuJ,0
p /	 u 	\ 0 / \uj'3/ \ 0 / \u/ \ 0 /.	\u3/ 

given on the banks of L'. In regard. of the equivalence to a Wiener-Hopf system the - 
.method applies also to (i) arbitrary plane Lipschitz domains (cracks) E,-(ii) different 
media filling the half-spaces x3 > 0 and x3 < 0, respectively, and (iii) a second pair - 
bf conditions of type (7) instead of.(3) on the complementary half-plane R I - E 'as - 

-, well, see analogue investigations for: the Helmholtz equation [20-22, 281.	. 

-. 2. Representation of it by data on the plane x3 = 0. We consider now the half-space 
x E 1R 3 : x > 0}, a solution u € H'(Q)3.of (1), Lu = 0in Q, the resulting 

- .Dirieh)et data u = € HI/z(IRS )3 due to the trace theorem, which yields 
continuous dependence u - u0± , and ask for the inverse relation u 0 --> u+ , which  
means-correct solution of the ' Dirichlet problem for (1) in Q. We use the notation 
X = (x1 , x2 , x0 € 1R3 , X'.= (, x2) 1 = (,	€ 1R2, 2.	+22, and, for brevity, 

- -	
=	qj(x') = f.e1x'.(x') dx',	 '. 

-	t, = t,() = ( 2	k,2)11	L12	 k22 2 =JU 
with t	--oo as	- + 00 and vertical branch cuts connecting ±i( 2 2._ k 2 ) 112 ,	- 
over co, 1 4 denotes the characteristic function of IR.4 = (0, co).  

- Proposition 1: The general solution u € H l (Q)3 of the elastodynamical equations 
(l) in Q reads-	- -.	 --

•	 - •
	

e'' + t()	e"'  

u(x) =•z'	2() e_' 2 ' +.() 3()	 •	1A-x.) 

(2W) + 7) 2 ())e t	±	e'	- 

or brefIy (dropping the dependence on x and )

	

	 -

ti 1 
•	'	

- e"'	-•	•	•	 -	-	.  
u ='F-"1i1 ( 2	) 1(x3),	ø() =	0	1 - ---	(8) 

•	 \3e-'-'/	•	:	•,	 I	•	•. 

	

--'	- 
•	••	 ,-	 •2•	2 

"where the column vector	= ('	3)* sati8fie	 -	-	-. 

- -	u0'	B1 9	F-101. Fq € H' 12 (1R2 )3 .	.	 •	'	( 9) 

21 Analysis Bd.8, Heft 4 (1089)	 - S	 -
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•	 Proof: By use of the two-dimensional Fourier transformation with respect to x1 
and x2 , D5 =	F-'(—i). F, theoperatorL =L(D 1 ,D2 ,D3) can bewrittcnas - 

- 

	

(i^,D3 

2	12 iD3
L=F 1 (D32 .i 	12	22 i 2 D3 	F-^ 

 i 2 D3 —D32 

on.a (dense) .subspace S'(Q) of smooth rapidly decreasing functions, where I is a 
suitably sized unit matrix. Abbreviating v = (A + u)/u and 1(22^_ 62O/,U we look for 
solutions of . the homogeneous system of ordinary differential equations	- -. 

1 ,	2, D3 ) u(, 2' x3) 

	

•	 /D32	(2 ± v2 - k2 2 )	 —ii1D3 

=	-	.D32	(2 + v 2 2 - 1(2 2 )	 —iv2D3 
-	

—iv2D3	 .- iv 2 D3 '.	(1.+ v) D32 - ( —.k22) 
Xu( 1 , 2 ,x3 ) =0.	 (10) 

•

	

	The ansatz u*/I(,,x3) = ()	.x3 > 0, with a parameter-dependent vector q()
leads to the solvability condition 

•	 / c	0	—ic/1	\ 
-	det 

f 
0	c	—i20  

\iv 1 t iv 2t (1 + i') 1 2 _ (2 - 1(22)! 

•	 where c = c() = t 2 () -	+ 1(2 2 . This yields € = tj or 1 = €2 and the solutions (8) 

	

•	with arbitrary 9q j E S(2) 

According to the traëe theorem for H l(Q) and the density of 8(1R 2) in H' 12 (1R 2) one 
• - 

may extend this formula immediately to data 99+ - E H' /2 (1R2 )3 , since the Dirichiet data 
u0 result from q by the aetion'of the pseudo-dferential operator B1 of order zero, 
see (8),  

Conversely we have	-	.	•	 , 

•.	
•	 .	 .	 -	 .	 - •• 

/1 112	e22	'12	 -7i1t2 \	
• 

b1'()	 2 (	12	1112—	2 —i2t2
 

•	 12	
•	'	

j1t,	j21	0	 j•• 
where, despite of the boundedness of	E 1R 2 , the matrix elements can grow 
like 0(2) as	-* co according to	•	 •	 /	•	

i • 

= 2 — 1112	(k2 + 1(22)/2,	II - 0o.	•	 (12) 
This means that Dirichlet data u0 € Hh1 2 (IR2)3 yield only ansatz data 99€ H-32(1R2) 
in general, hut, however, the corresponding half-space solution u is still in H1(Q)3 

•	 • . accordiig to an asymptotic cancellation of higher order terms - •	 • 

'0 \ 
•	

• u(x)=	() (	0"	0	) 5-1() '1 + (x3 ) u0+A() 

\ u  - ..	•	 •	

•	
—	

7	2	 — i112 

•	 =	e_t:2I +	2	g,	(,, 
12	22	22 

	

-	 1i1j	21	€112 

	

X 1 . (X3)'UO+'(0	
0	 •	

(13)' 

•	
0	

• 

•	
0	 .
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which .easily shows IIu4IH'(Q+) 	const• IIu01I1"I(lR9. Thus we have existence 'of 
solution u and continuous dependence onu 0'.	 0 

Proving uniqueness we show that u E H0 1 (Q)3 and I,u = 0 imply u = 0 in 
Q. In this case one may Fourier transforni' the differential equations with respect to 
all three variables, since He'(Q) 3 is a subspace of HI(R3)3, obtaining (10) with D3 
replaced by —i 3 . The resulting matrix can be inverted, which yields uof =0 after 
inverse Fourier transformation I  

Remark: It is possible to express the general solution of = 0 in Q+ in terms of several 
other data on 

X3 = ±0(see Chapter 3). The "ansatz data representation" (8) gives the simplest 
formulae in a sense and it includes the physically important decomposition w = uj' + u,+- - 
into shear and pressure waves, which corresponds to curl uj' = 0, div u+= 0 where q = 

0; T3 	0 hold, respectively. 
In contrast to other elliptic boundary value problems, e.g. for the Helmholtz equation [21; -. 

29, 30], which are also governed by coupled systems of Wiener-Hopf equations, the dependence 
of u-i- on the (exponential) ansatz data q (instead of u0 or others) is not a topological mapping 
(since is unbounded). This fact is important if we look for well-posed formulations Of 
elastodynamical boundary or transmission problems, and motivates the preference-over the 
"s-p-decomposition" in this paper.

as solution	 Dirichlet	,	F	
nat. space	trace thin.	data	(order zero)	data 

I {u): Lwi	O}	
(uniqueness) ), 

11112(2)3	-	 Jt(B,-') - 

•	 11'(Q)3	 / IT-3/(R2)3 

	

Representation Tlicorer,i	 -
(existence -i- eoiitinuoin dependence for 
the topology Induced by u0 € F! "(R'))	 S 

- Figure 1: The choice of function spaces-

Corollary 1: The solution of Lu- = 0 in H1 (Q-) 3 , Q	{x E 1R3 : x3 <0}, reads 

0	0	 0	

0 

- 0

	 u- = F102 ( 0	e" 0 ) 2'1(x3) U, . A	
0	

(14) 
\o	0 etjX 	 - 

with Dirichiet data u0 E H'/2 (1R2 )3 on x3	0and	
0 

• 

	

1	0	_.!	'-	
'1	

•	••	

• 0, 

'•i	
•-	 /10	0\ 

0	
- 2() = 0	1 — -- = MJ 1 () M,	M = (0 '1	Q .	(15) 

1	
-	\o 0-il 

• 0	 .	

-  

	

1 12	12	 S	 - 

Again, the depçndence u0 	u, H'/(1R2 )3 —* {u E H 1 (92)3 : Lu =01 is bijective,	00 
and the an.satz functionals qr = B2 'u0 = F-l 2- 1 ,. Fu0_ are not necessarily in 

•	H'12(1R2)3 but in a (strange) non-closed subspace of H- 3/2(R2 )3 .	 - 

21*	-
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Corollary 2: The general solution u € H'(92)3 of Lu = 0 in Q = 1R3 - is given: 
by u = u'' in Q, see formulae (8), (9) and (14), respectively, i/f those hal/-space solu-
tions satisfy

	

-	°,	IT	(Tu)	(Tu)- or0	on R2- .^.	(16)• 

This is also a consequence of Proposition 1. The traction jump condition can be 
• replaced by the Neumann jump condition f1 = u - u1 = 0 on 1R 2 - Z (which 
leads to equivalent but slightly less esthetic formulae). 

3. The calculus of boundary operators and their Fourier symbol matrix functions. We 
study "further, relations betwden boundary data on x 3 = .0 of half-space solutions 
of, L'u = 0 in Q or Q, respectively. From the preceeding formulae the following 

•	data are in i-1-c6rrespondene and related by convolution (translation inyariant) •	operators B2 -= F-'0 . F:	 -	- 

B1 :	i u0 ,	B: -	uo, -	B3 :	ut-,	- 

• - B4 :	,- u1 ,	B:	.i•- u,	B,: . T- 	-'	 (17) 
B7 :	i_- (u, u 2', u)*', 

•, B8 : - i_: (u; U00 , UT3)* 

B9	.	, u.2 , u)*, 	u2, u-)*  

1t  is easy to see that 02, follows from 02j-I by replacing 1 1 by _ t 1 and 12 by —t We 
now list all these matrices (E1R 3 ):	 -	0 

	

(	 i	 - 1
	 (

1-00 0
0) =	0	i	- ,	02=MOIM,	M=0 1	0 

oo—i 

S	 to	13 

•	 .	 . ' •	 /12000\	-	- 
D=(0 •12 0),	04=02D=MO1MD, 

-	\o 0.t/,	 - 

122+	 --	

2i 
13 .	tO	

1	 -.	 - 

05	L^2	t2 T "2	2i2	,0, = —MO5M,	(18) 
12	12 

I	2I3 : 

	

/ 0 rows\	-	 / 02 rows 
07=1	0	1	-	, 

•	

•	 :' \ 05 row •	• .	

•	 122	2	 \ 0 row /	5 

•	 2i	.2I 3 _ft 
-	 I.-	•	

0.11.
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•	 ,2J_2 2 T=1.	 '1=2 

	

—a	 -- —2i 
•	 /	 t3	 13 

rows '\	 12	 t3 + 32 

t2	 t2 
- I	I = -

	

12	 12
1	j 

•	f6ros\	 • 

0	7-09M-

•	 \2 row /	- 
Remark: One observes many common (more or less relevant) properties of these mlt4rix 

functions 
\	 = (0(	2))j.k-1.2.3 E C( 1 , 21, t1 (), t2())	 •	

S 

vhich are rational in 
,^21 

j 1 , £3. There is, for in'stance, a certain symmetryin and	which 
we briefly describe, putting 

0jk(2' ) -= Ojk(i' )' by Oil 	6221 02 = 021 1 01 2 = 033' 03'1 = 032 
so that 5 of 9 entries already describe the matrix: 

/Oil	012	013\	 -	-	- 

•	= (or,	b 1	0 3 ) .	 (19) 
-	 \031	0 3	033/ 

due to physical isotropy in , 3 (tangential L.direction). The following three results are easily 
proved.	- 

Lemma 1: Matrix functions of symmetry type (19) form an algebra 4X• Linear-
combinations of boundary data mentioned in (7) depend on q and çr by operators 
A = F- 10 . Fwllh 0 € 4x.. 

Further function theoretic (holombrphy) and operator theoretic (mapping) iprop-
erties will be analyzed later. Here we present some algebraic insights, which are 

•	most useful for explicit factorization, and introduce for thispth-pose 

-	o _	 0* -	 -'	 .•-	.	
•-

•	 \J'
2

(20) 
1 f	12\	 1-f	E22	12	• - R1&) =	2 ,	R2() = '	2. "	V'12	'=2

2 1 1

	

=2 f	 \'s12.	'=1 

,where,  I = (i -- 32)1I2 Jor	€ iP.	S..	 • • 

Lemma 2: R1 are complementary projction matrices of rank 1, they are rational 
functions, symmetric and real-valued for E 1R2, i.e.	 . .' -	S • 

•	
R2 =-4	1 + R2 	I,' 

= •	

(	 ) ,

	

= . ('	) =
	 •	 (21). 

R,* =R, , Tm R,() = 0 for	€ 1R2.	
•	 : 

	

Furthermore the vecto .° satisfies	 -	 •	 S •• -, 

= 02 = 1,	= B1 ,	• 

-	 •.	
- 

R1°.= °,	R2° = 0,	O* R1	O*,	o*p = 0,
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0 

	

in particular, it is 'an eigenvector of B, j	1, 2. Finally there hold in 3 x 3 matrix 
-	'notation	 V	 S 

	

-	 / 0	0 5i1\2	/ 2	 0 
00	i2 ) =( 12	22	0	- 

V	

\-11_2 oJ	\ 0	0	2	 V 

and, more generally, in: block matrix form	 S	 S 

•	 I 

	

.1	 5	
V 

-.	 1li0	71 € N, 

( —i^o* 

 

oii°\ 0	i 
 (23) 

0	/ 0	n-1	 V	 V. 

V	

1	j	
2	€ N.	

. 

	

\jo*IO/	V 

Lemma 3: 1. All matrix functions of the form 

• .

	

V	 / all 1 -- b/I2	ic° 
V\	

V	
V 

V	
V 

	 (24) 
V	

V	 V	 \	e	/	 V	

V	

V 

with sailor functions a, b, c, d, e of the variable € 1R2 form an algebra 4. 

	

V	

2. The product of 0, 02 € cit reads (with suggestive numbering)	 V 

V	
I (a1a2 + 1d2 ) B1 + b 1b2 R2	i(a 1c2 +cie2)\	

V 

	

0102 = (-------- __	 - J.	(25) - 
V 

\	—i(d1a0 + e1d2) O*	 d1c2 + e1e	/	.	
V 

V	3. The determinant and inverse of 0 have the form	 V 

V	 det 0 = b(ae—cd),	V	
V	

V V 'V	 V 

V	 e	 1	I	- 
V-V	

V	
- cd R +	I ae -	

V	

V	
(26) 

V	 V 

V	 S	

—d	(_jO*)	 a	 V 

V	

ae — cd	I ae — cd 

Rem5arks: 1. For the proof it is convenient to show firstly by use of Lemma 2 

det (aR1 + bl?2 )	ab,	 V	 S =t (ai?i +1 R2Iic0'  

V	 —id	e / \	o	.	1	
V	 V 

V.	
. 

-	 I	a	 V	 .	 V
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which two factors commute. So thb term can be handled as an isolated scalar (or diagonal) 
factor and the rest is governed by 2 x 2 matrix computational rules. 2. All the 3 X 3 matrices 
Ji (as well as I, 31,

'
D and 'r1) have the form (24). 3.. According to the importance of rationality 

	

(and for brevity) we shall write (putting 9 = c/I and d = d/I)	 - 

•'	
(aii:+ b1 2	Ei	 ..	 . 

\ii1T77 S 

which is  rational matrix function, if the coefficients are rational. The product formula (25) is 
then changed into  

0102 
= jlj2^2) 	

(28) 

( 1a2 + e 1d 2) i 1	 e1e2 - d1c2 

It is now very easy to compute the inverse symbol matrix functions due to 0, 
10.	 - 

Example': Write and compare with (11)  

1

	

	0 I 

1.R1+1.R2Ii

 

_! -	1	
0 

2	12	 12	-! 

•	 ,	 det 1 = b(ae -- cd)= 1 . (1— 2/tt) = (12 - 2)/1112,  

g	 I	 t	 . 
•	

'•	 l2	
R1 +'R2	1' t1	12	'	i	

11121 - 2R2 '••t i	' 

•	 I.	 '. =	 .	 I-

- ------- -------- - ________	

1112 -' ,12 ----------:_-_-
-

-i _. - 1 1 1 L i	•	 1112	'	'	'	
,	 I I 

- 2 -	 - 12 	1	 1 2  

Corollary 3: The inverse matrices due to (18) read

	

 

t2 (12
2) R1 + L R2 I	7-2i 

-	-i =—I,	• •	
, 

ur I---------- 
2i s* 	 11(122 + 2)  

= 2	 t±i)	(29) 
S	 '	

,	 2u11i	
•	 -	 '	 ,	

:	 •	 . 

= i• (	
IRi	1?2	2ut2i 

09 - 1	
•	 ,	 ' 

where the Rayleigh funtion r [1J•occurs:	, ,	-	 'S	 • 

•	 '	r()= (122+ 2)2 - 421it2	41	
- 1112) —k22 (4 2 — k2 2 ).	 (30) 

•	 0	 ,	 S	 --	 - 

N	'	 S	 •	 S
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The remaining natrices can be written as	 j	• 
/	 21 = Mg 1 -1M,'	01 	-1f -1 	Ji41 = MD-101-1M,	

31 -	'	 - M- 'M,	= M-',	j' = - M09-'. 

4. Equivalent Wiener-Hopf systems. We now define the 6 x 6 convolution operator 
•	matrices

B, = F-'W, . F,	1 = T, 11, III, IV-1 (32)
by the following data relations for solutions of (1) firstly B1 = BB--' given by 

/ = (to\ (uo	 = ( p+\	(UT+_ T\	([Tu]o\ 
(3I) 

\tT/	 - u/-	 B	 U + u-/ 
or, instead of the ' last vector,	 i 

[u]	 [Tu]O,	r 

- 
S	 1U]02- ['Pu]02	 S 

((u)o) '
u°1	['l'u103	 -	[u]3

1 
	 or	,.	 (33.11—TV) 

{u}	 {Tu}01 

•	'I'u}2	 S 

S	
{Tu}03	 L {u}0 

respetive1y, accordingsto the four canonical problems in Chapter 1. More precisely 
we consider •B, as' the translation invariant extension on H1I2(lR)3 x H-1/2(1R2) 

•	instead of acting on vectors sipportcd on Z. 
•	The first thrice rows of these correspondences are always decoupled, since !i' = •

	

	. contains exactly'6ne I in each of them. The remaining, relations yield, after an ele-



mentary rearrangement, 'a 3 x 3' system of Wiener-Hopf equations with symbol • .0 = 01,..., say. In order to discuss the continuous dependence on all given data, we 
•	.	continue considering the full 6x 6 operator matrix 

\	i	•.	 Zr Br,,, 1;.x 11 
	 (34)

where B = BB--' stands for one of the convolution operators B, in (32), h = 
• denotes-the restriction of the corresponding right hand side of (33.1—TV) on 1' and • .

	

	. W = W, acts into a vector Sobolev space with components in H±l Il(Z) dependent on 
the type of the problem 9) = JP1 , I= J, II, III, IV (or others, see (7)),. respectively. 

The o rem 1: 1. Problem cP is equivalent to a 6 x 6 system of Wiene'r-Hop/ equations - -	Wf=hwhere	.	'	 . 

-	•	. W: 11i/2(I)3 X!1 h12 (E) 3	X'fli(I) X_ X Hi(E)	 . 
is linear continuous and  

( L 1/2, _1/2 -1/2)•	.	•	 -	(1/2, 1/2, 1/2)	•'	-. 

. 
(8 1, S2183)	 (1/2, 1/2, —1/2)	

(35.1—TV) 

(-1/2, —1/2, 1/2)'.	•	 •	 -	 S	 - 

- 
•	

2. The reduced 3 x 3 Wiener-Hop/ operator	- -	S •	 / 

-	 S

 

W- ;Y 	 S	 • •
	 ( 36)	• -	•	•	 -.	',	 j=1	•	')"I	 •	 .	• 

I	 •	 •
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corresponding to the latter rearranged three rows, is of normal type, i.e.	i 

	

•	 A =F'tJ) .P:X H rJ(1R2) - X Hai(1R2 )	 (37)

acts bijeclively 'where r + s = 0 j = 1, 2, 3, holds for each of the Jour can'onièal 

• Proof:1.A solution u of 91 is given by Corollary 2 in dependence of the ánsatz 
data or, see (33), in terms of the jumps /, sinceB_ is a 1-1-mapping, cf. the subsequent 
Lemma 4. Conversely, a solution of W/ = hyields ansatz data p = B.] and a solution 

' uof. 

2. Since the reduction to a 3 x 3 system and the space setting are obvious, we only 
have to prove the bijetivity of A, i.e. 

0	 I	 - 

det () + 0,	€ 1R2 ,	 -
(38) 

= (o(IIrk_8i))j.k_I,2.3,	-1() = (O(ii8k_ni))j.k_1.2.3: 

This is not trivialbecause of the unboundedness of' 1 - 1 , but it follows most evidently 
from the explicit matrix function representations given later in (43), (46), (47) I 

Corollary 4: 31 is well-posed for all data, if/ W is inveitible. Then the soliUion u is 
given for instance in terms of the Dirichlet data by(13), (14) where 

/ ±'-	•1' 	I	 Ø ( Uo) 
= - (-- ) Bj'/,	f =W-h =(	 )h	(39) 

\U0 / 	jy.i W21	W-1  

with a certain 3 x 3 block W21 of W: All dependences are continuous in the sense of	. 

h,	f i - u0 I- U,  

I X I1 I (L') 
\	 -	 V	

:	
( 40) 

	

•	 V	 I	
f 

)1	 ) ..... ( ').) ... jJJ/2(2)6 —* H I (P) 3 . . .	.'. V 

\xH3J(z)J 
•	 i=I	 .	 V 

Remark: All single scalar Wiener-Hopf operators have the form .. F-'i . F1...: Rr(L') 
-* H8(Z) with Irl = I s l = 1/2. So they are of order —1, 1 or 0 in the sense of 'pseudo-differential' 
operators and correspond with weakly singular (L' convolution type), differential and hyper-
singular, or unit operators (times constant), respectively [6]. 

The operator theoretic str'ucture of the systems can be analyzed in advance and very detailed 
after lifting W on L2(E)3 by Besse l-potential operators [211, a transformation from IR on the 
unit circle (Cayley transformation or sterographic projection [24]), and by use of the theory of 
Cauchy type singular integral equations [25]. We iefer, to [21, Sectidn 3] for details. It turns 
out, for instance., that (37) is necessary for the Fredholni property of W, which is'equivalent to 
the invertibility [27]. The partial winding numbers of the lifted symbol determinants are aivays 
zero-for the canonical problems, since these determinants are even functions in and	But 
the elements of the lifted symbol may have, jumps at E -+ for further problems, see (7), 
which then corresponds to higher singularities of Vu at x = 0, see [29, 30] ; Here we concentrate 
on the explicit factorization'of the (unlifted) symbols. 

• 5. Related symbols. We are going to determine the Fourier symbol matrix functions 
VB. of B_ in (33.1), its inverse Wj, the 6 x 6 matrices W = W1 , l = I, II, III, Iv, 
from (32) as well as the 3 x 3 blocks of the reduced versions 0 = 0 1 ,in (37).
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L e in in a 4 The symbol of B_ and its inverse read 
/ q 7 0 \ / I	—M\	'i./ I	I \ /( 7 ' 0 

	

tJI . .__P I__Il _________ I	(11—i __I	I, B_ - 361	II	 J'	B -	IJ I	 36" 

	

\0 / \ I ' M /	 \—M M /\ 0 (1)
(41) 

where P36 denotes the permutationmatrix for the exchange o/ the 3Yd and the 6h row. 
•	'Proof: By defiñitión one obtains in block matrix notation 

•	- .-••	 -	/	:.	2\  
=	 I.	•.-	--(1)	6! \.	 MOM 

•	see (18), where the secotid block column coincides with the first one up to certain 
signs; which fact we describe symbolically by	 - 

•	 '	•	- - ± 1	 .	 - - +•1 

'1	 +	-	 7 

++—

•	.	 36	 ++-
5	++	-	9	++ 

--•+	E 
The rest of the proof is obvious U  

Proposition  2 I he full symbol of the pure traction problem P, reads 

0 I •••,	 (42.1) 
\ 0, 1)'/	 '	 .. 

where  

	

-j- R
1 - k 2t2R2	0

it 

	

= ----------------
	 = 

•0	'-- - 
3	-	 . 

-•- i*•	9 

	

= a() = 22 • '2 -. t 1 '2 = 2r - k2 2	 ,,•	(43.1), 

	

(remember . • t = ( 2 — k2)1I2, T=	- t 1 t2 , r = (t2 2 + 2)2 -	= 4r - k22 
x (4	- k,2)) .	'	 .. 

•	 Proof: Formulae (32), (33.1), (17) and (41) yield 

/ 05	0, \ ii	I \	 771 0 \ =	=(
\ 05 0, / 2. —M M 	0 01-1 

which can* be simplified by use of 06 = — MO5M, M2 I to -	• - 

1 / —M I.± M\ ( 0107 0 \	/0 I\ 
(0'0'

-0
-• _ 	I 36 = 36 —j	 jr36 
I 2 I M	 .M/ 	0	0509 '/	\I 0/ 	009'/
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The 3 x 3 blocks are easily obtained by the aim of Lemma 3 from (18) and (29):-

2 T	
R1+ t2R2	2i 

_,	
2	 I	 - 

	

o -	 --I-------

l2 

	

+	- 

  .. I 

- j 22t2R2 I -s-. 
 t2 

=	 7_	

() 

	

t2R1 - --- R2	21ut2i 

•1, 
k2

	

-	 _i(42 + 2) 

L2 1	0 

k22

	

.	 ,	 - 
JU tj 

The rest of the proof consists in the exchange of some rows and columns in the last 
formula for !P 1 I	 S	 - 

Remark: The pure Dirichlet problem has already been solved in [23] by amodified 
approach, which could also be used to treat the traction problem. In our opinion, the present 
more rigorous calculus shows clearer how the mixed type boundary symbols 0 7 and 0. come 
into the game - even for the pure problems LPI and T11. 

A completely analogue calculation for the Dirichlet problem yields the corre-
sponding formulae (just replace 0. by ø and P by 0, in the last proof):	 S - 

S	

•	 J 1 O\	 -	S 

= (--I, •	 S	 •	
- (42.11)



:320 : E. MEISTER and F.-O. SPECK	 -

.11 

• where j '

k2	
iR,	0-	 0 

-1	t1 2	 1	 1. 011 = --
	 1	

1	 ,	 = —i	 ' • i 
/42 ---------___I___ 

• :	 0-'	-	 __ i,* 

I	2	 12'

(43.11) 
•	cf. [23,'formula (27)].	 : 

For the complexity of the explicit factorization of the reduced symbol matrix•• 
0 = 0, its block structure (c = d = 0) turns out to be most important (the same •	form weobtained for	Note that this simplification is not given for the other 
two cases. 

•	. Proposition 3: The wo mixed type problems T111 and 31 1 v are governed by the 
reduced 3 x 3t symbols  

01 1 11 = O709	 01V = 0907 '	 (45) 

respectively, presented below.  I	•t
Proof: 1 By analogy to the last proof there follows with 08 = 0 7 M, 0 10 = — 09M, 

see (18),.  

	

-08\ 1 /	7- 1	09	\ 
I I	 .	) 139 

-	.	 \

 

0 7 ' 0 / 2. \_NO,-1'/-' NO,-1' 

P36, 
'\-	0	'  

•	.	.	/ O	—0\	I O'	09' \	/ 0	I \ 
PIV P 1 . -I	•	 ,	11=1	.	•I	36. 

\	o' / 2 \-MOr' . MO9-' / \ 09O7	0 / 
The reduced symbols read, see (18), (29),(28)	,	•' .	 - 

'PIIII	0709-1

k2 2 

- 

1 •	 13R1 - 	2t,i 
—	•	 Ii	i	.12 

- — uk, 2
-------•--------:--I	-	2	2	 •	 I •	

2 i	 12	 i*	_,1(t22 + 2) 
1 1	 -	 •• 

	

\	 -•	 .	 - (/2	
• - 1	

•	'(46) 

- — 4ur	/ •	•	.	,	 '	- 

	

•	.	 .
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and analogously, or just by inversion, see (26), 

	

urR, - 1zk2 2t2 2R2	i 
0IV 0'''2"	 1	 ',	-. 

k,1, ------------- ------- 

/1) 

- due to det	= -(4-24 /10 t I 

6. Explicit solution of the traction problem. In this chapter we constructthe (coii-
tinubus) inverse W-' of the,reduced Wiener-Hopf operator (36) that was needed to 

• represent the solution of problem 3 1 1 , in Corollary 4. This will be done in two steps. 

	

First we look for a strong Wiener-Hopf factorization [27]	
•' '• 

=	 (48) - 

into two 'factoi's with the following properEies:	 - 
(i) ±(' 2) are continuous, invertible 3 x 3 matrix functions on JR for almost 

every 2 E JR (for all bit 2 = 0);	 - 
•

	

	(ii)	2) and &'(., 2) possess holomorphic extensions into the upper or the 
lower complex half-plane C, or C_, respectively, and are continuous on the closures 

= R  C for a.e. 2 E JR;	 . 
(iii) the factors . and their inverses admit asymptotic estimates as	= (12, + 22)h/2

-^ +óo such that the (lifted [21]) matrices  

•	 •	
= (toj) &;	+ =	(2-r)	- 00-

with t() = , j(22 - k2 2 )"2 , and thefr inverses are essentially bounded (except 
at 2 =0) with respect to € JR2• Note that this is more than is needed in the classical 
(function' theo'r'etic) Wiener-}Iopf 1procedure [19, 26; 321, which requires only alge-
braic growth at infinity and admits a finite number'of zeros and poles in C, in 
order to find the explicit solution of a single problem (instead of the inverse W-' 
Which additionally'yields the correctness of J) and a priori estimates of'the solution 
in terms of the data). 

Secondly w(; prove that (48Y with properties (i)-(iii) leads to an operator (theoretic) 
factorization of Ahe basic convolution operator  

A = A.A.,,	A Z = F-'	. F	'	'	',	(49)' 

With respect to' the pair . of Sobolev spaces H 1I2 (R2 ) 'and appropriate projectors 
-P,, '2' which enab)es us to present W-' in the form, of a general Wiener-Hopf opera- 
toi inverse [27].	 . 

bern in a 5: Consider a 2 x 2 matrix function  

G= all, + bR2	 ,	.	(50) 

where a( . , 2), b( . , 2) are regular elements in the Wiener algebra W ,  C - FL'(JR) 
and (for simplicity) even functions in the first variable for a.e. 2 € R..Let the 'faclori-

- ' zations of a = aLa.+ be defined by 

•	a.'= i1	exp {FXil.+l4i(xl) F... log	4	(51)

/
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I. 

and of b = b-b, by analogy, be 'uniformly bounded 'with respect to (ac.) 2 € IR, i.e. 
E L00 (1R2) . Further let 2: IR -* C be defined by 

•	
'b(	') -	= 	2 € R, . •, - a( 1 , 2) 

be measurable and essentially bounded.	 - 
Then G admits a strong Wiener-Hap/ factorization in the sense of (48) (as 2 x 2 

matrices, now with'r =s, = 0) given by 

	

G = G_G (a.R i	R2)R_R+ (a+R, + 1?2')	 (52)

where R represent factors of the matrix function  
R(, 2) =, R1 () + .2R2() = R_(, 2) R+ (, 2) 

• 7	
- 2 I2I	 )2 +	2I 

	

= 1 ± )2	
1)	

±'I2I 
fi	

1 IU 

	

-	 (53)
with +i=i.sgn2.  

Proof: The factorization G = .(a_R 1 + b_R2 ) (a.R1 + b+R2) obviously has all 
.desired properties-but simple poles at = 4i I2I, see (20). These cancel out, if the 
coefficients coincide at the corresponding point (consider the Laurent series) which 
theti happens simultaneously in both factrs according , to the symmetry. in of the

 factors (51) of an even function a. Otherwise, introducing 2, we observe pole cancel-
latioh in the outer factors of (52). The remainding factorization of the rational (iii 

matrixiunction R is simply done by a standard technique [5, 23] I 
•	Remark: Non-even coefficients-would yield different 2, '2 in the plus/minus correction 

terms,- but this generalization is not needed here.	-	 S 

Proposition 4: Let	be given by the reduced 3 x 3-symbol (43) due to the 
' traction problem	Then a strong faclorization in the sense of (48) with r = 1/2 and 
'Si = —1/2,j = 1,2,3, is given by	 ,	 • , 

I' 
•	

-	 •1 o_ Io \ I G	o 
0-0+	t2 	l.i 	t2 ^,	 (54) 

	

0 ej \ 0 e	' 

t2()= (' + 42 2 - k2 2)1/2)1/;,.: •	 -	 S	 -	 '	 -	 -. 

G=aRi ±bR2 =-f4 R, ,R2, Sk2H_La 

and the formulae of the last lemma.	 .. •	 ' 

Proof: The 3 , x 3 block matrices treated here form a commutative subalgehr of 
(due toc	d	0, see (24) etc.). The factori zation. problem decouples into one for 

S

	

	 •• 
S ascalar (lifted) function . e in the Wiener algebra and one for a 2 x 2 matrix function, [ -

which we investigated before. In total we have to factor the 'Rayleigh function r, 
square rdots t and (possibly) one rational (in ) matrix function of the' type (53), 
according to the only non-commutative computation in this procedure. Considera-
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tions concerned with the orders r and si are obvious frorn'Fheoreml and formula 
(54) where order t2 = 1/2 and the block matrices are hounded invertible I 

Theorem 2: The inverse 3 x 3 Wiener-Hop/ operator due to (36) and cP11 reads 
W-' = -A^'YE A__1/oddJ,,_.(E),	.	 . .	 (55) 

thd maps onto fl1/2 (Z)3 , where A± 1 F-1 ± -1F are taken from ' (54) a;zd where todd 
denotes odd extension with respect to Irani X onto the fall .plane R2 (or a'ny other can-
tin.uous extension operator).  

The proof-is based on the philosophy of . asyinmetric 'general Wiener-Höpfopera- 
tors [27; 28].'Consider W = P2AIp,x where. A: X - Y is a linear bijection between 

'l3anach spaces, P1 and P2 are (continuous) projection Operators on X and Y, respec-
tively. It is known that the invertibility of W is equivalent to a strong Wiener- - 
Hopf factorization of A = A-A, into invertible operators A: X —* Z; A_ : Z	Y
with a suitable intermediate Banach space Z, such that, for an appropriate projector 
PonZ,

A + P1 X = PZ;	A(L— I')Z (I — ' P2 ) 1'	 (56) 
are satisfied. The inverse of W then reads W_1 = A^'PA_lp.. In our situation r 

we identify, see (36) or (43), X = H' 12 (JR 2 )3 , Y = H- 112 (1R 2 ) 3 ,Z = H°(1R2)3 
• A	F -110 - F, A = F- 10. F and, since H- 112 (Z) is not a- subspace of H-112(&2), 

we consider W =I dd W = 1OddZV	 which is equiva1ent to W and maps into
the subspace of R_112(&2)3 distributions, which are odd in . Puttin P = ., 

• P2 = toddXZ and P1	1	
/eveZ&'—. one arrives atW =P2Al p,x and obtaines also

- the above-mentioned factor properties (56), see [22, .281 for more details '.1 
. Remaik: For the proof of Theorem 2 one can also lift the problem qn L(.+ ) 3 .by Bessel- 

potential operators, see [21, Proposition 3. 1), and treat the equivalent symmetric Wiener-Hopf 
- operator! acting between L2 spaces [25].	 . 

7. The' factoring procedure for the,symhols of the jitixed problems. Consider again 

S	 .	

••	 —1 T.R+2Ifl	 - 
= Øç1 .	

= 1U 12	 .	 (46) 

	

.2 2	JU

11	

-. 

Yr 

It is sufficient to factor only k111 according to a symmetry argument for 0 1 , (ex-
.change of left and right factorizations)'  

We are going to present a constructive method, which also applies to other non-
rational 3 x 3 matrix functions correspondent to elastodynamical boundary, value 
and transmission problems, see (7). The basic idea is totreat the matrix (46), after 
removing the B2 term, like a 2 x 2 (block) matrix by our method presented in the 
last section. Since it is not possible to write this matrix in paired (block) form similar 
to (50) with projection matrices in the algebra 4 (the proof is left to the reader), one - 
needs some preliminary transformations. These aremodifications of tricks, which are 
common for 2 x 2 matrix functions of Khrapkov type\ 

G	a1Q 1 + a2 Q2	 .	.	-.	-	-.	(57) 

•	wilh rational matrix functions Q1 and nOn-rational coefficients a1 [11, 12, 0]. -
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After some elementary transformations for eliminating the constant factors and 
lifting 0 1 , 1 on the L2 space level, we start with the equivalent bounded invertible, 
symbol

	

/t .0 0\	/1'+ 0 0 \ 

• 
TO,=_k220 1	

O 

.)	

+	 . 'I 

	

•	 '	 I	cr 

T'?i + k2 2 - 112 I 1W1	,,	
S 

	

•	 :	 . 

	

•	 i - iw	 1i2	 - 

•	.	where 1.=> ( + iw 1 ) 1 1 2 ,	= (2 - k 1 2 ) ' /2 with im w 1 > 0 for 2 E R. Note 
that	(., 2) EWS for any fixed 2 E IR	 S 

The second 4ep,consists in a decomposition of the algebra into a direct sum
(59) 

•	of subalgebras of matrix ff i nctions (24) with b 0 and a = c =, d = € = 0, respec- 
tively. These obviously. reprseiit algebras of singular! 3 x :3 mtiix 'functions with 

	

•	unit ele'ments and we try, to factor the first component 

	

1 -	 I	 •.S.•'• 

1	 •• '	 •	

'	 r. 

	

•	

S	 ,	

rR	•	.	.	i•	
'	S

S	 S 

oi =	 :	
'	 \•	 (60) 

S in' cJ( like a 2 x2 matrix function. So we write it, in the (block), fo'rm of (57) remem- 

	

•	bering	= 2 -	= 2r - Ic2 2 , r	4E2t - k22 (45 2 - Ic22) = (42	£22) 

	

-. 2k2 2 ) as	 S	 ' 

•'• .	

' ,	 H1	 0•	 • 

001 .	T S	0	 •	
•	S	

S 

-	•	S	 ••	 If42 - 2k0 2 -	 .	 •	 S 
0	 .1	 2	 S	• 

'S	 IS	 I	.11 

	

—	
S	'-ci	 . '•- 

l5i+IWi	
S 

S	 •	 +a	 S	

••	 • 

	

S'	

T	 ____
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with rational matrix functions and scalar non-rational coefficients. We factor the 
first rational matrix function elmentary (up to poles of , R 1 ) into 

42._2k
j2 

=	 0	 R1	 0 

- IW	 I	j + ZWi 

•	= Q1QI	 ¼ 

- where w2 = ( 2 2 - k22/2)'12, IM —W2> 0 and obtain	• f i •	 Q{J4	
R	0

aQjQ2Qj}

	

0	iJ 
\ 

(
0 

QQ2Q=  

S	 1	- ii'1 
•	 12i—iw2 

R 1	 0
xQ2 

	

-	 0
!2i+iw2 

/	•	
•	 1• 

-	 - iw • 

I.	 ••	 S____i	 _____ 

•	
S	 2	+ iw2	-	 - k22/2 

The term 01 in braces can be written in block cómmutant form [11, 12,301

	

-	 •	.1	2_/c2 -	 2/4\.	 - 
O1 2	k2/2)4.+2C 

22 Analysis Bd. 8, Heft 4 (1989)

(61)
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\1 
where	 - 

- k2 2/4	 1	 - 
-	— /2/2	 + iw2 •	 k24/16	 2 C =	 '	I	 '	= ( 2 - k22/2)2	

= q 14,. 

1	 2 - k2 2/4	
0	 - 

•	— iv	 2 — k22/2  

Fortunately q2 is the square of a rational function, which implies that 

C), A	I — 1 
C •0. 

are complementary projection, matrices in 4, with rational entries. This enables us 
to write cP in paired form as the 2 x 2 blocks aR 1 +-bR2 before, see (24), and to 
follow those ideas using the computational rules of Lemma 3. We have . 

	

— 2 	 2R	 ( — iw2) 

I — ; ç - I--------------i--------- I ' 
•	

S	 \	 ( + iw2 ) i*	!_(2 — k02/2)J 
•	 ,.	 .	 ..	 .	

0•	

(62). 

-	
9 

	
_(2_ k2 2/2) R 1	—( —iw) i 

.2 -
k2  

	

2	
(E1 +	2)  

• 1+2'4,,	31 1 —,312 = 1 C,	
S 

q	. 

oi = a1I , + a2C=a1( cR1+ J ) + a2q ( fl1- 312) - 
-	

= (a 1 + a2q) 31 i + (q 1 - a2q) 312 = b 1 fl1 + b2 312,	 (63) 

•	 .	 a 2 - /.2/40	a	/2/4	 a'	k22 
= t---=---, S 

	

' 

•	 a	2	k22	a	k22/2 
b -	2 = a — a 2q = - 

2 2 _.k2212	2 + 2 2 — /L22/2 

Obviously, b 1 is a constant and b2(, 2) can be factored with respect to the first 
-varib1e into b2 = b2_b2+ as .a regular Wiener algebra element with vanishing wind- 
ing number. One obtains the following result. 

Theorem 3:-A Wiener-Hop/ factorization of oi lli in the sense of (48)' with properties 
• (i)—(iii) up to poles (of R, and 312 ) and algebraic growth at infinity (0/ 34) is given by 

-	.	•
 

(59) and .	 S	 • •	 S	 - 

-	
•

 00 = Q_ 1 (b 1_34 + b31 2 •+ b3_313) . ( +31.+ b2,312 +'b3+813) Q1+,	" (64)
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where b,b1+ = b1 are strongly /adored in the Wiener algebra (with fixed 2 E IR) 

b	
k22	

b	
a/2	' - b _k2.. 

1 - 2 '	2 - 2 \ 
+ 2 - k22/2)'	3 - 2- 

Q1, JR, are defined in (61), '(62) and 973, by JA3 
1= ( R2

__0 1-0—) 
Remark: A stronfaethrization can be obtained as a modificationof (64) by analogy to 

the arguments in Lemma 5.	- 
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