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Die ,:Qualokzitionsmethode“ ist eine kiirzlich entstandene durch numerische Quadratur modifi-
zierte Kollokationsmethode. Sic wird hier auf eine Klasse von Randintegralgleichungen ange-

wendet, wobei Spline-Funktionen stiickweiser Polynome von geradem Grad als Ansatzfunktio- - ‘

nenbenutzt werden. Die analysierten Probleme sind von der Form (L 4 K) » = f, wobei L ¢in

Faltungsoperator mit geradem Symbol und K ein'Operator mit stirkeren Glittungseigenschaf-

"ten.als L ist. Wir zeigen, wie fiir einen Ansatzraum der Dimension n spezielle 2z-Punkt-Quadra-
turformeln konstruiert.werden kénnen, welche die komponierten Zweipunktformeln von GauB3
verallgemeinern, so daf3 eine stabile konvergente Qualokationsmethode entsteht, deren Kon-
vergenzordnung in geeigneten Sobolev-Riumen negativer Ordnung hoher ist als die der ge-
wohnlichen Mittelpunktkollokation, die kiirzlich von Saranen analysiert. wurde. Mit Hilfe der
Technik glatter Storungen wird- dariber hinaus hier auch die Analysis der Qualokationsmetho-
den mit Splinf:s ungeraden Grades, die von Sloan entwickelt wurde, verallg¢meinert.

B

PazBurhiit HEeAAaBHO METO] KBAJOKALHNHU ABJIAETCA METOAOM l\'OJ’IJIO}(auHH,‘MOJ.IH(IDIIILIHPOBEHHHM

KBAJpaTypHHMH GopMyIaMu. DTOT METOX 3/leCh NIPHMEHAETCA K OJHOMY KJIAcCy PpanHuHBIX .

MHTErpaNbHLIX y PABHEHUH, IPUUEM B KauecTBe 6a3MCHBIX Py HKLM A HCNOAb3YIOT HOJTHHOMUAIb-
Hele crraftu-pyHKUHil 4éTHo# cTemeHu. PaccmarpuBaemsie 3agaun nMeior B (L + K)uw = f
rae L onepatop B cBEPTKAX ¢ 46THHIM cumbosiom, a K onepatop, o6naxawouyii Gojee CHAbHBIM

CBOHiCTBOM cryawuBanua em L. Mbl mMoKameM, KaK MOMHO INOCTPOUTH LA 6a3MCHOTO

MPOCTPAHCTBA PA3MEPHOCTH 7 2n-TOHEHHBIE KBagpaTypHble opMyasl, o6obuiatonie cocTaB-
Hble AByX-Touyeunsle gopmynn I'aycca, 4Tobm NOJIy4YUTh YCTOM4MBHI W CXOUALIKICA MeTox
kBaJoKauun. ITOpANOK CXOAMMOCTH OTOTO METOAA B MOAXONAWMX npocrpancrsax CoGonena
OTPMLATEJILHOrO MOPANLKA BHILIE YeM B ciydae oObIuHOft KOJJIOKaUMK- B CpedHell Touke,
usyyaemoit HeasHo Saranen. Kpome Toro 00o0uiaeTca ¢ NOMOILbI0 TEXHUKH TIAJXKHX BO3MY-

LCHUHA. aHanu3 MOTOIIOB KpaJOKauuu co cnaatu- ('byHKL(HﬂMH neuéraoit CTeneHu, paamﬂuﬁ ’

-Sloan.
o ' ' A 7 .

.-The *‘qualocation’’ method, a recently proposed quadrature-based extension of the collocation
method, is here applied to a class of boundary integral equations, using an even degree spline
trial space on a uniform partition. The problems handled are of the form (L + K)u = f,
where L is a convolutional operator with' even symbol, and K is an operator with a greater
smoothing effect than L. For & trial space of dimension =, it is shown that a certain 2z-point
quadrature rulé, which is a generalization of the repeated 2-point Gauss rule, gives™a stable
qualocation method, and yiclds an order of convergence, in suitable negative norms, two powers
of b higher than achieved by the mid-point collocation method in the recent analysis of Saranen.
The treatment of the smooth, perturbation covers also the earlier una]ys:s of the odd degree
~ spline case by Sloan. \ -
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1. 'Introduction

’In a prev1ous paper [14] a general class of methods (‘ qualocatlon methods’ ) was pro-
posed for solvmg a spec1al class of boundary mtegral equatxons

{ ..
=f : . ' - (1.1)
There a specific method was developed for a particular class of strongly elliptic
boundary integral equations with even prmmpal 'symbol, for trial spaces of odd
" degree smoothest splines on'a uniform mesh. Here we consider, for a slightly more
general class of problems, the case of even degree smoothest splines; for example
piecewise-constant functions, or plecew1se quadra.tlcs with cont,muous first , derlv-

ative.
In brief, a qualoca,tlon method requires the choice of a ‘trial’ space S,, here a spline

space; a ‘test’ spa.ce T, of the same flmte dimension o and a quadrature rule @, of

the form Qg = Z wig(t;), with my = n,. The method is: find uy, € S,, such that
7.

QHLw) = Q@ YmeT - - (1)

It is shown in [14] that if my, = n, the mebhod 18 equlvalent to the collocation met,hod
with trial space S, and collocation points ¢,, ..., ,,. Thus in general the method may
be thought of asa quadrature-based generahzablon of the collocation method ; hence

the name ‘qualocation’. It may also be thought of as a semi-disérete version of the

Petrov-Galerkin method, or'a generalization of _quadrature formula methods [9]. The
essentijal point is.that the freedom that exists in the design of the quadrature rule
may be exploited to improve the order of convergence, especially in ‘negative norms’,

~ over that achievable with the collocation method. Hence, qualocation can pr0v1de S
~ higher order convergence than collocation. As we shall see, the order of convergence

can even exceéd ‘that of the superconvergent Galerkin or corresponding- Galerkin-
collocation methods [3, 6]. Of course one also ha.s to establish the sbablhty of the
" resultant method, and this is a central issue in the analysm

In ‘the present work, as in [14], the functions » and f in (1.1) are taken to ‘bel--

periodic, and L is a pseudodlfferent,lal operator of real order f. Herc we first con-

sider operators with even symbol, given in Fourier Series form [12] by
) ¢ .

] - 1 <

I/u(x) = 0) + 3 |k|# ﬁ(k) ek where 4(k) = f u(x) e“z"“" dx; '(1.3)
k+0 _ o

-

and then i in Section 6 consider.smooth perturbatlons (L + K ) u of (1 3). As dlscussed

. in [14], the logarithmic potential on a circle.is obtained by setting = —1 in (1.3);

and the choice § = 0 makes L the identity, in which case the collocation -method
reduces to spline interpolation. = .

As indicated above, in this paper we choose the ¢rial space Sptobe S8 — - (a1 the

space of smoothest splines of even degree d, subordinate to the umform ‘mesh spacmg

h=1/n, = l/n "The breakpoints are chosen to be :

3

(hij=0,1,.m—1). : | (1.4);

For d = 0 the spacé S, consists of piecewise-constant functions.
« As in [14], the test spacé T}, is taken to be the trigonometric space

T) = span {7: —nf2 <p <nj2,p€L}. ‘ (1.5)
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(In pra.ctlce a slight modrﬁcatlon of T,,, as in Section 5 of [14], is useful to guarantee ’

that w, is real). This choice of test space gives high orders of convergence for the

Petrov-Galerkin method, according to the analysis of [2] There, however, quadra- ‘

. ture was not considered.

The most interesting question concerns the choice of the quadrature rule @,. If we -

choose a rule with » points (i.e. one point per sub-interval) then, as noted already,
the method is equivalent to a collocation method. Hence the simplest non-trivial
'qualoca.t,lon method that respects:the rotational symmetry of the test and trial
spaces uses: two points per sub- mterval and may be expressed as

-

‘__.:i‘"l 7_*_ i+ & Y )
w-i gl ) e

WhereO S <g<l,and w, + w, = 1.
The question, then, is how to choose the free parameters ¢,, &, and w;, in (1. 6), in

order to obtain high orders of convergence. In [14], for the case of splines of odd

degree, we made the 81mple choice &, = 0, &, = 1/2, leaving only the weight w, to be
fixed. However, for the sphnes of even degree it seems less obvious that the break-
points are desirable quadrature points. Consequent,ly, in the present work we avoid
a priori assumptlons about ¢, and &,.

The main results of the paper are contained in Theorem 2 1 in the next section.
There are three parts of the theorem, the successive parts being concerned . with
‘increasing levels of specialization in the choice of the quadratiire parameters.

The first part of the theorem states a comforting result; that almost every sensible .

' choice of the quadrature parameters yields a stable method that has the same optimal-

order rate of convergence as predicted by SARANEN and WENDLAND[11] and ARNOLD

and WENDLAND [4] for the mid-point collocation method and a more general class of .

operators L. The only restrictions are that.one of the quadrature-point parameters,
© 8ay &;lies in the interior of the interval [0, 1} and has an associated positive weight,

and that the other weight is non-negative. For the general choice of quadrature .

parameters the highest rate of convergence predicted by the first part of Theorem

2.1, asin [4] for the collocation method, is , s
Tn — ully < ChIF18 g C Lo
| Here ||u||, denotes the norm in the periodic Sobolev space H¢, which cdn be defined by
Ilulla2 = [0 -+ Z (K[> |2(k)]2, ' ) ' (1 8)

’
— . -

and C, here as elsewhere in t,he pa.per denotes a generic constant, which may take"

different values at its different occurrences. As a special case ofi Theorem- 2.1(i), w

recover (by setting w, = 0, and ¢, = ¢) a known result (see Theorem-3 of SCHMIDT
[13]), namely that the ¢-collocation method of [13], which is the collocation method
with the collocation pomts {(G + s) h:7=0,1,...,n — 1},.is stable for the operator

.(1.3), and yields"! the order of convergence (1. 7), for all values of ¢ in the open interval :

(0, 1). |
The second part. of Theorem 2.1 asserts that a quadrature rule that i is ‘symmetric

about the mid-point’ can yield a higher order of convergence, in .an appropriate .

negative norm. Precnsely, the error bOund-wnth the highest possible power of & now

becomes -~ . . .
lfun — wlls -1 < ChA+2=P [lullgso. ' (1.9)

. Thus one extra power of k is-achieved. -However, this is at the expense of a more

restrictive smoothness requirement on % on the right of (1.9), and a ‘more-negative’

\
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norm on the left. For the special case of mid-point collocatlon (i.e. e, =g = 1/2) the .

result (1.9) has already been obtained by SARANEN in [10)]. Thus the second part of
Theorem 2.1 may be thought of as a generalization of Saranen’s rcsult\to more
general symmetric qualocation methods. :

. The most interesting part of Theorem 2.1 (most interesting because it offers the
possibility of an improved approximation) is the last: for this asserts bhat one partlc-
ular choice of symmetric quadrature rule can lead to yet two more powers of k in
appropriate cases. In addmon to the bounds (1.7) and (1.9), for this special choice

we ha.ve also .

lan — wlls-3 < CRIH4= Jullg g~ s ' . (110)

For example for the p1ecew1se -constant trial space (i.e.d = 0) and the logant,hmlc
potential (i.e. § = —1) we obtam O(h®) convergence, provided w.€- H4, and‘provided
we are willing to look at érrors.in the H-% norm. A striking reflectlon is that the
Galerkin method for the same problem yields at best O(k3) convergence — see, for
example, [7]. On the other hand it should be said that the Galerkin result imposes a
-weaker "smoothness Tequirement on % (namely u.€ H 1}, and is achieved in & much
less-negative norm (namely H-?), :

Theorem 2.1 is proved in Sections 3 and 4. :

The special quadrature parameters in the third part of the theorem, yleldmg the

; higher rate of convergence shown in (1.10), are defined as follows: w, = w, = 1/2,- -

& = x, and & = 1 — x,, where z, is the umque zero. in the interval (0, 1/2) of .the

* function

G, (z) = X n cos 2anz, _ ‘ S (1.11)

Lon=1

with ;;—— d.—}— 2 — B. The properties 'of this function are discussed iri Section 5.

Here we record some va,lues of :z:o(y) so that they are available for apphcatlon

Ta.ble 1. Least posmve zeros of the function G, defmed by (1. 11)

yoomb) R

2 1/2 — 1/2/)3 = 0.211324 8654

02308206503 - | - -

-4 12— (14 — Y30 = 0.240335 1888 z " )
. 5 . 0.2451188417 2 o
oo 025 '

i

The followmg remarks may help to give some insight mto the quadrature param-'

eters in Table 1. First, for y = 2 the points z, and 1 — Z, are the abscissas of the

2-point Gauss rule, shifted to the interval [0, 1]. The value y = 2 is the appropriate -

value of y if we have 8 = 0, in which case L is the identity operator, and d = 0.
Now in this-case the integrals to be approximated, if we adopt the. Petrov-Galerkin

view, are discontinuous piecewisé-smooth functions, and for such functions the

two-point Gauss rule would seem to be an ideal choice. Second, if d is very large, or
if the order B has a’ large negative value, then the function Lu, becomes a very

N\
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smooth perlodlc functlon for which the equal wenght and nea.rly equally Spaced
rule that is achieved when y is large would seem entirely appropriate. The other
values in Table 1 may be thought of as intermediate between these two extremes.

The treatment of the perturbations L 4+ K in Section 6 is expressed in sufficiently
general terms to cover not only the present method but also that.in [14], and other
qualocation methods. An important consequence of the perturbablon result in Section
6 is that the conclusions expressed in the following theorem, and in the corresponding .
result in [14], hold not only for uniform meshes on cnrcles but also for smoothly
" varying meshes on' smooth closed curves (see [4]). 'Hence, the qualocation methods
could be applied to all the examples given in 1 [6], and would converge with the hlgh
orders predicted here and i in [14].

Acknowledgements: The authors express thelr ‘gratitide to G. C. Chandler for
- providing us with the nontrivial entries of Table 1, and to G. Brown and D. Wilson

of the University of New South, Wales for provmg for us, in [5], that G, m (1.11) has
‘a unique zero on (O 1/2) :

1

~

2. The main result _
/ ~ o

Theorem 2.1: 'Let § be a real number, and let L be as in (1.3). Let d > 8 — 1/2 be a,
non-negalive even integer, and let S, = 8,3 be the space of smoothest splines of degree d.
with breakpoints (1.4). Let Ty, be the trigonometric function space given by (1.5), and let.
Qn be the quadrature rule (1.8), where Q < w, <1, w, =1 —w,, 0 < g, < 1 and
0 < & < 1. Then the qualocation equation (1.2), with { any contmuous function, is
uniquely solvable for u, € S,.

Assume in addition that s and t are real numbers satisfying s < t, K < d+1/2,
B+ 1/2 < t; and that the solution w of (1.1) belongs to H*. :

(1) For Bs=sandt<d+1, there holds the estzmate

llu;. — ulls = O flulle. < o

s

(2. l)

(i) If the quadrature rule. is SJmmetrzc in the sense that w, = w, = 1/2 and & =

1 — ¢,, then there holds the esttmate . - . X -

lup — ull, < Chmln(t—a.l—&d-}-l—a.d+2—ﬂ)‘ s . (22)
(i) If wp=1w, =1/2 and e =1 — €1, and if & s, the least posztwe zero of the -,
function Gy o_p, where - .
e -
G,(z) = Y nt cos 2nnz, . ' (2.3)
n=1 t L . . )

then there holds the estimate o
llup ~ ully < Chmint=st=Bd+1-sd+a=p iy, L (24)

Remark 1: Without loss we may resmctsandtm (2. 2) byﬂ— 1S StSd-{- 2 and i in
(24)byﬂ—3£s$t$of+4

Remn,rk 2: Since the condmon d> ﬂ — 1/2, which is modelled on [4], is not strongenough
to guarantee absolute convergence of the Fourier series for Lu, (see Section 3), care is needed
in defining the sense of-convergence. We shall always understand the convergence to be in the
conventional sense for the pointwise convergence of Fourier series, namely

Y =1lm ¥ . S . | ) (2.5).\

k L—oc0 |k|< L

- An Appl-oach to Improving the Collocation Method . 365

1



t

.366 * IaN H.SLoAN and W. L. WENDLAND - ‘ S,
3. Proof of Theorem 2.1 — first stage

Eollowmg {4] and [14], it 1s convenient to define A, ={pel:—n2<p S n/2}.
Then the test space 7', becomes T, = span {g,: p € Aa}, with pplx) = e¥7%, p € Z,
a.nd the method becomes: find u, € S,, such that

Qn(@pLuy) = Qu@pL), peA, .t | (3.1)

in the rlght -hand side of which we have replaced /by Lu.
As in'[14], the sum (1.3) for Lu(z) converges absolutely because + 1/2 < t thus‘_
‘the rlght -hand side of (1.3) is well defined, and we have

Qu(@pLu) = ?2(0) Qu(®s) + Z Ikl" a(k) Qn(%%), .

where Z* =Z \ {0}. By dlrect appllcatlon of (1.6), or by gymmetry, we find ‘
' Qn(%%) 0 if . kdpmodn). [ C

'A For ﬂ;e non-vanishing quadrature sums we define, .
' (3.3)

) € = -Qn(¢p¢p+1h‘) = Qn(‘l"ln)_, v
and find, using the quadrature rule (1.6),
g Yoy = w, €¥Mn o gy, e2Mle, oo (3.4)
Then the rlght -hand snde of (3. 1) becomes o ‘ o o \
' L (WMo + Z i a(in) e, . p=0,
- Qu(@plu) = e @35)
nr Ipl"u(p +Z|p+lnl"u(p+ln)eu peA>, | . :
where A,* = A, \{0} : l.
Now con51der the left-hand side of (3.1)..The analogue of (1.3) is - -
LmAz)_z%w)+-ZwHau(mewux - o B (&m

 Because’ u,, is a splme of even degree d, its Fourier coefficients satlsfy the followmg
recurrence relation (see [4, equation (2.7)], with appropriate phase’ adjustment to -
cater for the different choice of breakpoints):

(p + In)¢+ 72;.(p + In) = p**lay(p), p, L€ 2.

Thus - . ‘ -
(o, p=0,lc7*, .

p 4 n) =1, pitt ' P 3
R (p F ln)i+t Wnp), pEMNIEL, ' '
and we may write (3.6) as ’

Lu,,(x) = 12,,(0) + Z ﬂn(?’) [|P|ﬂ ganiee

peAn

T+ d+1 Sl nl -;—ln" —d- 16211(p+ln)z ) ) (3.8~
P gnllp

“Because we assume only d > B - 1/2 the .sum over.l is not absolutely convergent,

and therefore care is needed in formmg the partial sums. The convergence is always

understood in the sense of (2.5); that is, the symmetnc partial sums are used. (Note

- that (3.6).and *(3.8) are equlvalent when interpreted in this sense, because the md1- .

’ v1dual terms in the sum over [ in the latter converge to zero) :
i
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We now show that the series (3.8) for Luy(x) converges for all real z. First, for '

€ (4 — 1)/n, j/n), ] € Z, we may argue as for the mid-point collocation method in
[4] Because d > # — 1/2, we see from (3.7) and (1.8) that u, € H%. Because u, is
also smooth in a nelghbourhood of x,, it then follows, by application of Lemma 3.2
(c) of {4], that Lu, is Hélder continuous in a neighbourhood of z,. Thus,the Fourier

series for Lu,, which is the nght -hand side of (3.8), converges at z, (in the sense of -

(2.5)) to Luy(x,). On the other hand, for z = j/n, j € Z, the right-hand side of (3.8)
converges because the sum over p is over the finite set 4, * and the sum over l can
be written (Pemembermg (2.5)!) as C

N

2 Slgn Lp + In|f—d=1 e2mi@+iniln
A . Ja

| /
G = St gyt = (= )]
. 7 B . ' . Lo
‘ : I ] v
_ ~ Yp Yr C -
— e2aipj/ s 25 —_ — =) - 3.9
"t e f’l"nr ill'[( +2l) ( '2l) ]’ ¢ ( )
where we ha.ve;i_ntrodu_ced . T - - < -
o x=d+1—8>1/2 ' : SN B T))
and - - T N S
Y= 2p/n e (—1,1].- C ' (3.11)

Smce the mean- value thcorem gives

' . - <y —a _ x ’ey —a—1 Q —a-1 )
(‘+ ) (“21) j‘_%y[(“’z_l) +(1‘ 21) : ]

where 0 < 6(y)' < 1,"it follows that |(1 + y/2l)* — (1 — y/2l)"* < CJi. Thus the.

last sum in (3.9) converges, and the convergence of the series ior Lu(z ) has been

~ proved for allz. o ! .

(It may be remarked that the convergence of the series for Lu, at the breakpoints occnrs in

the present work, but not in general in [4], because we have here restricted attention to opera-

tors L of even ‘symbol’ — that is, the quantity that multiples 4(k) in (1. 3) is an even function: -

ofk)

Since the geries (3.8) for Lu,(z) converges for all z, it follows that the quadrature
sum on the left-hand side of (3.1)-is well defined for any choice of the quadrature

" parameters. Now, usmg (3.2), (3.3), (3.8), (‘3 10) and (3.11) we obtain, for the left- -

hand side of (3. 1)

T ﬁh(o): P = 0, - . )
Pploun) = ' > : 3.12) -
QL) {lpl"ﬂn(P) D), . pedt, (3.12)
where . T . . ) )
- Dy)=1+signylyl*Ely), ye[-1,1], . .. o (3.13) .
and | o : . .

E(y) =l‘)_;,"sig|1 lly + 2l ¢
A

= Zl@+y)yee — (2 Zyreed, Cyel-1,1, - (314)
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where ¢, is given by (3.4). Since the left-hand side of (3.12) is a well defined convergent
series, the series E(y) in the definition of D(y) must also converge at least fory = y,
=2p/[n; i.e. it must converge for all non-zero rational numbersy in (—1,1}. The follow-
"ing lemma establishes that in fact (3.14) converges, and therefore E(y) and D(y) are
well defined, for all y € [—1, 1]. (In this lemma the assumption on « is weakened to
a« > 0, since this may\ be done without cost.) .

Lemma 3.1: For & > 0, consider the series

(e <]

where ‘|c,| < m, with m independent of 1. Lf the series converges for some yy € [—1, 1],
" then it does so for ally € [—1, 1], and the resulting function belongs to C*[ —1, 1].

-Proof: The formel'derivat_ivge_f__the‘series (3.15) is (absolutely) uniformly conver-
" gent, and can therefore be integrated term by term. Phusfory € [—1, 1} we have

v P :

[[—af(mw)—ﬂ—'c,] =z (@ y = @+ o) ere (3.16)

Ve
Denoting. the series (3.15) by F’(y) we know that ‘_‘ (2l + yo) e = Fly,) is a con-

vergent sum, from which it now follows that the rlght hand side of (3 16) can be

expressed as the difference of two convergent series. Thus Z (2l + y) e ¢, = F(y) is
also a convergent sum. Then from (3.16) we have t=1 .
r | ’

.F.’(y)’z —x f':(ﬂ +y)te, ye(—=1,1), .

‘remembermg that because the latter series is uniformly convergent, it defines a
continuous function on [—1, 1]. Thus we have F ¢ C‘[——l 1. A snmllar (but simp-
ler) a.rgument, now ylelds : Coa

1

" F”(y) = a(a + 1) Z (2! +y —*=2¢,,

and F € C[—1, 1]; and so on. Thus F € C*[—1,1], and the result is proved l

Corollary 3.2: With « > 1/2, w,, w, € R and £, & € [0, 1], the series expresszon’
(3.14) for E(y) converges for all y € [—1,1). Moreover, E € C*[—1,1). Thus D is a
continuous functwn on [-—1 1], and is smooth outside an’ arbztrary nezghbourhood of
zero. . . , ) r

Asin [4] and [14], the properties of the function D are crucial for both the stability
' and the rate of convergence of the method. To study the stabxhty, it is convenient to
. wrlte, using (3.4), (3.13) and (3. 14), .

D(y) = I_Ulzc.(y) + woZ:,(y), ' y.€ [.—1, 1];

where C , '
Z(y) = 1 + signy |y|* X signi |y 4 2l e, ye[—1,1]. (3.17)
lez* - . .

Since Z, is the special case of D obtained by setting w, =0, w, = 1, & = ¢, it follows
from Corollary 3.2 that, for.arbitrary ¢ € [0, 1], Z, is a well-defined and continuous
function on [—1, 1], and is smooth outside an arbitrary neighbourhood of zero.

‘

Caa,

l§(2l+y)“c‘, ‘ye[jl,'l], o . L @3as) o
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For the stablhty of the method, the requirement; as in [4] and [14] is that D be
bounded away from zero. This will follow from the following lemma (the rather
technical appearance of which is dictated by our desire to obtain expllmt bounds for
the stability constants).

Lemma 3.3: Let x and let Z, be the cmnplex-valued function de/z'néd by (3.17).

(i) For arbifrary ¢ € (0, 1), Re Z,(y) = (1 — 37*) (1 — max (cos 2z¢, 0)) > O,
y€[=1,1]. v '

Uane_.OZdw:>0y€(—ll)Zdil._0 -

Proof For arbitrary ¢ € [0, 1] we have, from the definition (3.17),

Re Z,(y) = 1 4 sign y lyl® Z sngnl ly 4+ 21| cos 2ael ‘ , |

=1 + sign y ly® Z (2 + y)e (2l — y)°] cos 2-rsl

which is manifestly even. Fory € [0, 1] we defme hi(y) = y“[(2l + y)"; -{(21 —yl
Then for y € [0, 1) we have , .

/.

’ .
1
\

Rez,(y): 1+ );h, (y) cos 2nel = 1 + fh,(y);h (y) cos 2ze,  (3.18)

because h,(y) < 0 and cos 2zel < 1. As in (3.9), an a.pphcamon of the mean-value ; -

theorem shows that 2 h, (y) is absolutely and umformly convergent in [0, l] More-
. over, because - .

-

h(y) = oy~ (2L + y)==t — (2= y)=="1] <0, ye (0,1,

- we see that ki(y) is a decreasing function on [0, l], thus - -
ReZ(y) =1+ 3 k(1) + hy(1) max (cos 2re, 0)
o (=2 i ,
/=1 =3"%— (1 —3") max (cos 2n¢, 0), - . (3.19)
_and the proof of part (i) of the theorem is complete. '

For the case ¢ = 0 we see that Zy(y) is real, thus the conclusion-arrived at so far
can be expressed as Zy(y) = 0. Now since f;(y) > h,(l) for y € (0, 1}, it follows from
(3.18) and (3.19) that the inequality Zo(y) = 0 is strict for y € (=1, 1). }!mally, .

Zo(£1) = 1+)_',‘h Hn=o01

(-4

Remark: The second part of the lemma was provcd in effect, in[4, Lemma 2. 3] in a differ-
ent context — see the case of the function g and splmcs of odd degree.

' Corollary‘34 Let « > 1/2. ) ; ' .-
(1) With w,,w, = 0, and arbztrary &1 .92 € [0, 1], the junctzon D de/med by (3. 1‘3) and
- (3.14) satisfies - |

Re D(y) = (l -3 [w r(1 — max (cos 27e,, 0)) . .
. + wy(1 — max (cos 2ney, 0), ‘ye [—1 1].
' (u) 1/ g = Oand w, = 1, w, = 0 then D(:tl) =0.

/
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Remark: The first part of thls result establlshes the stability of the method under
the conditions stated in the theorem (effectwely, that the weights are non-negative
and there is at least one quadrature point in the interior). The second establishes that
the latter condition is necessary: in effect it expresses. the well known fact that the

method of collocatlon at the breakpomts is unstable i in the case of even-degree splmes

. Now we turn to the question of ‘the rate of convergence. As in (4] and'{14], the

maximum rate of convergence is determmed by the behaviour of the functlon D(y)
in the neighbourhood of 0.. e

. Initially we allow the quadrature parameters &1, & to be chosen arbxtranly

Lemma 3. 5: With o« > 1/2, wy, w, € R, and ¢, ¢ € [0, 1], the function D de/med
by (3.13) and (3.14) satzsfzes lD(y) - 1| <C iyl‘ y €[—1,1), u,here C dcpends on
&, Wy, Wa, &1, &2y but not on y. S

Proof: This follows 1mmedlately from (3. 1‘3) and Corollary 3 2 1

Next, we consider’ the quadrature parameters to be chosen symmetrlcally, as in
part (ii) of the theorem: that is, w, = w, = 1/2,and ¢; =1 — & The special feature
in- this case is that the function E(y) defined by (3.14) now vanishes at y = O in .
fact we have, from (3. 4), €, = e_; = coS 2nell and hence .

By = Z[(2l+y)° @ —yylcos2ned, . - (320)

" .80 that the property E(O) =01is 1mmed1ately apparent By the mean- value theorem '
. we may erte . :

@ty — (2l—y>-“=—ay[(2l+0y) “—*+<2l — gy, “(3.21)
whereO<0(y) < 1, thus o h

Bl = 512+ g — @ - ol

< A_V.' | 13/ 2(2l - 1)“’“‘ = Clyl‘ '

Smce D is related to E by (3:13), we obtain the followmg lemma '

Lemma 3.6: Witha > 1/2,w, = w, = 1/2,6, = 1. — s,,andel €[0, 1],the/uncmm .
D defined by (3. 13) satzs/zes D) -1 =C lyl*t?, y € [—1 1), where C depends on «
and &, but not on y.

The function E(y) for the symmetric case can be subjected to a more precxse anal-
ysis, leading to the parameter - choice in part (iii) of the theorem. Replacing the
mean-value expression (3.21) by the higher-order version .

r
'

@4y — (.zl—yr': : - - ,

L= —o;z—az'—«—l st 123/(“ +2 ¥+ by)j““;'+ (2L — by)=*~3),

where 0 < B(y) < 1, we obtam from (3.20)

. E(y)=‘.—a2- zz—a 1cos2ne,l R

N r

o:(oc + 1) (a.—}— 2)
s

¥ 2 [(2 + 6y)~=—% + (21 - Gy)“’ 3] cos 2re,l.



“Thus we obtain, using (3.13), the fol]owmg lemma
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If ef is chosen as in part (iii) of Theorem 2.1 then the first term of this expressnon

vamshes and we have S

1B >|s"“‘"—+%+—2’|, prag—noc=cpr -

N

Lemma 3.7: With « > 1/2, w, = wy = 1/2, 52 =1 — &, and &, the least positive

~ zero of Gayr, defined by (2.3), the funclion D defined by (3. 13) salzs/zes (D(y) — 1

=<C |yl**3, where C depends on «, but not on y.

In the sequel we make use of whichever of the three Lemmas 3.5 5— 3 7 is appro- -
priate. . , A .
B : i

" 4. Proof of Theorem 2.1 — final stage

N
0

Now we are ready to establish the existence of uy, and prove the estimates (2.1), (2.2)
and (2.4) for |lu, — u||,. Recall that' the qualocation method is expressed by (3. 1)
With the aid of (3.5) and (‘3 12), this is expressnble as the set of equat:ons

C 20) = 4(0) + X P dn) e, p =0, C @
N ! I (¥ 14 ) o

|p1P @n(p) Diy,) = [pl* éz(p) +21p + it dp + In) @ peA*. (4.2> ‘

The subsequent ana.lysns 18 almost ‘the same as in [14] -thus we shall be brlef )
Smce D(y) =+ 0 for y € [—1, 1], the above equations uniquely determine (p) for

- all p € A,. The recurrence relation (3.7) then determines all other Fourier coefficients

of u,. Thus the approximate solution u, exists and is unique for every continuous
right-hand side functlon /- To study the convergence of u, to u, we mvestlgate for

s<d+ 12, - : : .
o — )yt = mhw) - a(0>|2'+ S ) — b

= [2x(0) — L 2(0)2 + 2 Z Ikl” Iu("C)l2

2T W b+ 2 IPI* 1a(p) — u(p)F S w3

Foru € H!, and /3 + 1/2 < ¢, it follows asin [14] that the Afirst term of (4.3)is bounded
by N : :
‘ 2(0) — AO)* = TR Jlull®.~ . S . (44)
" Similarly, because s < ¢'we obtain as in [14] the bound . '
P r s oo g T (4.5)
T k€A

for the second term of (4.3). For the third tenm of (4.3) it is necessary, as in [14],.to

first make use of the recurrence relation (3.7) to express ,(k) in terms of 12,,(7)) with
p € A,*; and then to use (4.2) to express 4,(p) in"terms of Fourier coefficients of u.’
It is in the latter phase that it becomes essential to assume, as in the statement of
the theorem, and as we shall assume from now on, that at least one of ¢,, &, is in the
open interval (0, 1), and 'has associaled with it a positive weight. Then from Corollary
3.4 we have |D(y)™!| = C(x), and as in [14] it follows that the third term of (4.3) has

N



372 Iax H.SLoaN and W. L. WENDLAND

. ~
the bound
2 Z k[ |otia(k) l2 23 Ylip+ lnl s Iu,.(p + ln)l o
| PEAR I€LP '
=2 T |pPe [ay(p)t 3 |p + lnfe=e-b,
- i{GAn‘ ) leZ‘\ ) \
. iBeCa.use s<d + 1/2, thelastsum can beestimated by . : , !
le*lnlq" d=1) <C(s yn2e—d—1 '
ez )
? i / \
see [4]. Next, we use (4.2) and obtain \ N
©2 5 (kP (k)2 .
kg, v - . 4 . .
= CnPlo-d= by Ipl"““’ [I‘(p)l“’ + |pl=%# (Z lp + Inf? 4(p + ln)l)"’].
PEAR® : i€Z+ ) 1
< Cn2e=0 5 |p|* [d(p)|? N . .
PEAL* .o
1 B . ’
NG an(s —-d-1) Z’ |p|2(d+1—ﬂ)):|p'_+_ m-n|2‘ﬂ_”2|p + ln]m Ia(p + l7z)|2,
o T peEA,* . mezZ* ) IFA .
where 7 = min @+ 1,0). ) : . ~
Hence, because § 4 1/2 < ¢, . .
TN
| k&A. o ‘ : -
< Onom0 ¢ 4 Gao=dmi¥80 5 pfto - 95 o i jap + )2
RN \PEA,.
< (CnP—0 4 C'n-"a ") HuH, ) . '
or : . : o o
2 ke I?i;.(IC)I2 g Ch2te— lll2. ' . " (4.6)
k€ A, . .

7z . N

Finally, we consider the fourth term of (4.3). This is the term that plays the crucial
role.in limiting the maximum attainable rate of convergence Using (4.2) we have

an(p) — i(p) = Dy, [(1 — D(yp)) ap) + |pl* 2 Ip -+ P 4(p + tn) ez]

Then with the aid of the stability property in Corollary 3.4, and also whichever of
the three Lemmas 3.5—3.7 is appropriate, together with y, = 2p/n, we obtain °

s -

) Ad+1— ﬂ-Lr)
ia(p) — )P < C (f: )T e
Rl (E e+ bl i + ),
leZ* N .

where r = 0, 1 or 3, depending on whether the quadrature parameters are as in part -
(i), (ii) or (iii) of the theorem. It then follows, by the same argument a$ in [14], that .
the fourth term of (4.3) satisfies

T 19 lin(p) — p)F S CRmmisimban A e @)

peAn
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" Since the function G,, defined by .. . '

pnate values of r l

" (0, 1/2) for all real y 2 1.

/ ; - -
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Collect,mg together the - separate bounds (4. 4) (4.5); (4. 6) and (4 7) we obtain

”u'la — u”a < Chmln(t-al Bd+1— ad+l+r—ﬁ) “u""

and the proof.of Theorem 2 1is completed by msertmg m this bound the appro-

5. The function ‘G, i
' I

G,(x) = }' n7 cos 2anz, z€R,y > 1,‘ ' T i :(5.1)"
n=1 - . B . B
-7
plays a-key réle in the theory, we note bneﬂy some of its properties.
Since y > 1, the series (5.1) is (absolutely) uniformly convcrgent and therefone
G, is a contmuous even, 1-periodic functlon on R. \'Ioreover, i

L G(o'=§ =f ySo; A
n=1

\' 1 — n .

& (2) : 1) —(1 = 2t=7) C(y)<0

nt
25

“where ¢ is the Riemann zeta functlon and where the la.st, step follows for example
-~ from Jan~kE.-and EMDE [8, p, ‘319] Since the continuous function G, changes sign

on (0 1/2), it has at least one zero in that interval.:
If y is an even integer, then G, is closely related to a Bcrnoulh polynomlal in fact :

fory =2,4,... we have [1, p. 805] , “

Qr—lgr
)

Gy(qs) = (=1)t+2 B,(z), 2 ‘e [0, 1].

Here the uniqueness of the zero on (0, 1/2) is appa,rent from the known behavnour of
Bernoulli polynomials. The following result establishes that there:is a unique zero on

'Theorem 5.1 [5]: Fm' y = 1 the function G, de/med in/ (5. 1) i de(reaszng on (0 1/2),‘
and has q 'zmzque zero zo(y) € (0, 1/2), which satzs/zes

T4 limiz(y) = 1/4..

70

" 6. Qualocaﬁon in the presence of a smoother perturbation o RN

\ .
In thls secblon we apply the same qualocatlon method to the more general pseudo-

-dlfferentml equatlon which can be written as perturbed equation -

(L+Ku—/ i . s (6.1
where L.isas in (1.3),and K isan operator having a greater smoothmg effect than L.
The following result is stated initially in .2 more gerneral form t,han we need for our
present, piirposes. The proof is modelled on one used by ARNOLD' and Wb\])l AND [4] ,
for the case of ‘the collocatlon method.

25 Analysis Bd. 8, Heft 4 (1989)
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Theorem 6. l Let /3 be a real n'u,mber and assume that L isan zsomorphwm from.
H’onon‘ “Vse [ﬂ —-a,u +d+ —), with u, d and a asgzvenbelow Letp >0

be such that K maps H*~* boundedly into He-b for the above, mnqe -of 8 values, and
"assume L + K is bz;ectzvc from H* onto H*—F. Assume also that a given qualocation
. method, with trial spdce.S, consisting of smoothest splines of degree d > p — u, and

. with given lest Space 1',, and quadralure ruie Qn, has the /ollou,mg property when

applzed to the equation e

/

Lw—/ /eut—ﬂ-?weliu IR O (X}

’ namely that the qualocation upproximation wy € Sy exists uniquely for h < ko, with hy

independent of f, and’ satzs/ws for some fized a = 0, )
oy — 2], < Chmint—st—B.d+1=sd+1+a=h) ||, - - L (6.3)

for all real s, t satisfying '

p—assst, s<d+l)2 ﬁ+1/2<t ' '(’6.4)
Then the\z same result }wlds promded t satzsjzes also ‘ ’ o

y+ﬂ—a£t<y+d+u2:. x“ . - (65)
/or the qualoratzon method {S,,, T, Q,, applzed to the equatwn R

(L+ Kyu=/f, feH=# - weH" (6.6)

- Stated fully, the-result is that the qualomtzon approa:zmatzon u,,oe S, exzsts unzquely for
h suszczcntly small, and satzs/zes ) L oy

- . N .
”uh _ u”s < Chmin(l —8,t— ﬂ,d+l—s.d+l+n—{3) ”u”‘ s : (6.7)
. - N N -

‘ “for all s, 1 satisfying 16.4)- and (6. 5)

Proof Take h < hy, and assume prov1sxonally that u,, a qualocatlon solution to
(b 6),ex1sts Then by definition U € S, satisfies, for arbitrary y, € 7,

wa4—xu—w»—0 o Voo
. or \ .
. Qn(?nlf%) = Qn(fn[bu + K@u — w)]) = Qu(Talw),
where oo

w = u + L‘lk(u — ). / (6.8)

-

It follows from the assumption, since y, € 7', is arbitrary,.that u, is the unique qualo-

7

cation approximation to an equatlon of the form (6.2) for which the exact solution is . -

(6.8). Then the cstlmate (6.3) gives - n - /
e+ DK@ =l e \

A < Cpmint—st-8. d+l—a.d-'~l—'—a—ﬂ'”u + L‘iK(u _ u;l)”h' ‘ (6. 9)/'

for s, 1 satlsfymg (6.4).. Assume tha.t t satisfies also (6.5). Then it follows from the

mappmg properties_ of L and K that -+ ~ .
|m+me—wmgmm+mmw—wmﬁ | v

<ol + €l — b - 1)
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We now obtain, using (6.9), (6. 10) and the assumed mappmg property of K + L,
IIu — wll, < CI(L + K) (w — w)llo—s .

-~ S CILYL + K) ) (w — wp)lly = = ¢ ll(l + LK) (u — up)lls
S Opeesansane (o = liey). (610)

. In particular, setting s = ¢ — x we obtain

e gl < Chmtates= Pura it o ‘”(Ilth + IIu — Uplle—y) .

¢

" Since the exponent of I is positive because of the assumpt,lons (6 4) a.nd (6 5), for h )

sufficiently small (say h =< ) we have

it — s S Chiminns—Port 1=t 140 g,

Thus the second term of (6.11) is of hlgher order than the first, and S0 (6 11) ylelds the :

desired result (6.7).

To complete the proof we now observe from (6.7) that ¢he qualoca.t,lon sollltlon U .
is necessarily unique for A < h,. Thus the corresponding linear equations are of full -

rank, from which it follows that the qualocation solution exists for every continuous
functlon IS I

It follows from the theorem' that if u (whlch is related to. the smoothmg property

of K) is smaller‘than « 4 1/2, then the maximum rate of convergence of |lu, — u,
for any value of s, is reduced’from O(h)d+1+a=F to Q(RA+1/2+K—c=8)) where ¢ > 0
isarbitrary. On the-other hand, if K is a perturbation arising from the mapping of the
. logarithmic potential from a C® curve to the unit circle, then u can typically be
taken arbitrarily large, and then no reduction in the maximum order will occur.

We now specialize to the case of even—degree splines, and thé particular qualocation
method of this paper. ;

Corollary 6.2: Let B, L,d, Sy, Thand Qn be as in Theorem 2.1. Let t > f + 1/2 and
u > 0 be such that K maps H*=* boundedly into H*=? for s B —a, u+d+ 1/2),
and assume that L + K is bijective from H® onto H*~# for these values of s. Assume also

feH=F wherep +B —ast<pudd+ 1/2. Let u € H! be the umque solutzon of

(6.1).

Then /or h suf/zczently small, the qualocation metkod {S,,, T, Q) a,pplzed “to (6 1) -

yields a unique approzimation u, € Sy, and if s and t satisfy (6.4) (with a taking the
values 0, 1, 3 respectively), then the error norms |luy — ulls. satisfy the stalements in
parts (i), (i) and (iii) of Theorem 2.1. .

Before concluding, we note that Theorem 6.1 can be applied with equal effect to

the case of the odd-degree spline qualocatlon method considered in [14]. Thus a
result analogous to Corollary 6.2 holds also in that case. |

< -

~
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