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Die ,;Qualokationsrnethode" ist eine kürzlich entstandene durch nuerische Quadratur modifi-
zierte Kollokationsmethode. Sic wird hier auf eine Klasse von Randintegraigleichungen ange-
wendet, wobei Spline-Funktionen stuckweiser Polynome von geradem Grad als Ansatzfunktio-
nen benutzt werden. Die analysierten Probleme sind von der Form (L + K) u = I, wobei L cm 
Faltungsoperator mit geradem Symbol und K ein'Operator mitstärkeren Glättungseigenschaf-
ten als L ist. Vir zeigen, wie für einen Ansatzraumder Dimension n spezielle 2n-Punkt-Quadra-
turformeln konstruiert,werden können, weiche die komponierten Zweipunktformeln von GauB 
veçallgcmeinern, so daB eine stabile konvergente Qualokationsmethode entsteht, deren Kon- 
vergenzordnung in geeigneten Sobolev-Räumcn negativer Ordnung höher ist als die der ge-
wöhnlichen Mittelpunktkollokation, die kürzlich von Saranen aialysiert. wurde. Mit Hulfe der 
Technik glatter Storungen wirddaruber hinaus hier auch die Analysis der Qualokationsmetho-
den mit Splines ungeraden Grades, die von Sloan entwickelt wurde, veraligemeinert. 

Pa313IITb1fl H)BllO MeTOJ 113aJIOIa11111 RBJIHeTCH MeTo)OM Ho IO1I,IU4 ,Moan4nnu1poniilIb1M 
HBapaTypHuMH copMyJ1aMH. 3TOT MeTog 3Aecb UHMüHHTCH H OJWOMY iaccy rpauHiHbfx 
MHTerpaJIsnhIx ypanHeHnl, npsa'IeM B xa'iecrBe 6a311C1lNX 4)y1iH 411ft IIcnOJ1b3yIoTflOJ1HHOMHaJ1b-
Hale CrIJ1aI1H-4YHKUHü `16THOft cTeneHM. PacclIaTpMBaesIale 3 agwin IIMC}OT B11 (L + K) u = / 
rae L onepaop a CBëpTHaX c qCTHaUI cMM6oJloM, a K onepaTop, o6jiagaioiuufl üoiiee CHJIbHb1M 
cBogcTaoM crjla?RIIBaIIHR icm L. Mai noxaaeM, xaic M0+{HO fl0CTOHTb Aii q 6a314cHoro 
npocTpallcTaa p,43MepHocTa n 2n-To 1 Ie 1 1 uble xoaapavyp aie (j)opMyJlhI, o6o6ivaioiuue cocTan-
HalO gByx-ToIe4L1b!e ()OpMyJ1bl l"aycca, 'ITO61,I flO3114Tb ycTol411BbIfl H cxoa,auuflcn MeTog 
IcRajioHauHu. llopngoK CX0HMOCT11 3TOI'O MeToa a nogxogninx npocTpaucTBax Co6oriesa 
0TH1TJ1bHOFO nopigica Baime 'leM ' B ciyae o6bi11011 uoJ oKaIaH- a cpeanefl Toxe, 
113yaeMoft uegano Saranen. HpoMe Toro o6o6uaeTclj c noMoiubio TOXHHKM rjiagiciix no3My-
E1oIiHl aHarn13 MOTOOfl upaoaiuta Co dnJIat1I-(yi1RIunMu ueleTilofl CTeneuu, paanuTalli 
Sloan.

/ 
The "qualocation" method, a recently proposed quadrature-based extension of the collocation 
method, is here applied to a class of boundary integral equations, using an even degree spline 
tiial space on a uniform partition. The problems handled are of the form (L + K)u = 
where £ is a convolutional operator with' even symbol, and K is an operator with a greater 
smoothing effect than L. For a trial space of dimension n, it is shown that it certain 2n-point 
quadrature rule', which is a generalization of the repeated 2-point Gauss rule, givesa stable 
qualobation method, and yields an order of convergence, in suitable negative norms, two powers 
of h higher than achieved by the mid-point collocation method in the recent analysis of Saranen. 
The treatment of the smooth, perturbation covers also the earlier analysis of the odd degree 
spline case by Sloan.	 - 
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contract number Stu 23/70-1. The support of the DFG is gratefully acknowledged.



362 .	IAN H. SLOAN and W. L. WENDLAND	 S 

1. introduction 

In a previous paper [14] a geieral class of methods ('qualocation methods') was pro-
posed for solving a special class of boundary integral equations.

 

There a specifë method was developed for a particular' class of strongly elliptic 
/ boundary integral equations with even principal symbol, for trial spaces of odd 

degree smoothest splines on- a uniform mesh. Here we consider, for a slightly more 
general class of prpblems, the case of even degree smoothest splines; for example 
piecewise-constant functions, or piecewise-quadratics with continuous first deriv-
ative.	 . 

In brief, a qualocation method requires the choice of a 'trial' space Sh, here a spline 
space; a 'test' space Th of the same finite dimension n; and a quadrature rule Qh of 

m, 
the form Q,,g = E w jg(tg), with rnh nh . The method is find Uk E 8h such that 

2.  
•	 Qh(Z,Luh) =Qh(I)	VXhE Th .	•.•	.	-'	 '(1.2) 

It is shown in [14] that if rnh	nh the method is equivalent to the collocation methxI 
• with trial space S, and Collocation points t 1 , ..., t,. Thus in general the method may 

be thought of as a quad ratu re-based generalization äf the collocation method; hence 
the name 'qualocation'. It my also be thought of as a semi-direte version of the 
Petrov-Galerkin method, ora generalization of quadrature formula methods [9]. The 
essential point is, that the freedom that exists in the design of the quadrature rule 
may be exploited to improve the order o/ converge7ce, especially in 'negative norms', 
over that achievable with the collocation method. Hence, qualocatiori can provide 
higher order convergence than collocation. As we sliall.see, the order of convergence 
can even exceed 'that of the superconvergent Galerkin or corresponding . Galerkin- 

•

	

	collocation methods [3, 61. Of course one also has-to establish the stability' of the
resultant method, and this is a central issue in the analysis.' 

In the present work, as in [14], the functions u and / in (1.1) are takentobel- 
periodic, and L is a pseudodifferéntial operator of real' order 9. Here we first con-
sider operators with even symbol, given in Fourier series form [121 by 

1	 - 
Lu(x) = 2(0) + E lkIP 'a(k) e2",	whe're i2(k) = f u(x) P_ 2'i kx dx; (1.3) 

k*O	 0 

and then in Section 6 consider-smooth perturbations (L + K) u of (1.3). As discussed 
in [14], the logarithmic potential on a circle is obtained by setting = —1 in (1.3); 
and the choice = 0 makes L the identity, in which case the collocation method 

•	reduces to spline interpolation. 
As indicated above, in this paper we choose the trial space 8A to be Sh" c C, the 

space of smoothest splines of even degree d, subordinate to the uniform mesh spacing 
h =I/nh= 1fn.The breakpoints are chosen to be	 • 

'..	{jh:j=O,1,...,n'-1}.	 .	 ( 1.4) 

• }or d = 0 the space 81, consists of piecewise-constant functions. - •	As in [14], the test space Th is, taken to be the trigonometric space • 

= span {e 2 P': —n/2 <p	n/2,p € Z}.	 (1.5) 

r
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(In practice a slight modification of Th , as in Section 5 of [14], is useful, to guarantçe 
that Uh is real). This choice of test space gives high orders of convergence for the 
Petrov-Galerkin method, according to the analysis of [2]. There, however, quadra-
ture was not considered. 

The most interesting question concerns the choice of the quadrature rule Qh. If we 
choose a rule with n points (i.e. one point per sub-interval) then, as noted already, 
the method is equivalent to 'a collocation method. Hence the simplest non-trivial 
qualocation method that respects-the rotational symmetry of the test and trial 
spaces uses-two points per sub-interval; and may be expressed as 

Qu=---E

 

wi g .  t')+ W24 (I ±e2)J	
-	(1.6)- 

where 0 .:^-, r 1 <E2.< 1, and w1 + w2 = 1. 
The question, then, is how to choose the free parameters e and w2 in (1.6)" in 

order to obtain high orders of convergence. In [141, for the case of splines of odd 
degree, we made the simpl,e choice e 1 = o, € = 1/2, leaving only the weight w2 to be 
fixed. However, for the splines of even degree it seems less obviOus that the break-
points are desirable quadrature points. ConsequCntly' in' the present work we avoid 

	

a priori assumptions about e1 and 62 .	 S 

The main results of the paper are contained in Theorem 2.1 in the next section. 
There are three parts of the theorem, the successive parts being concerned with 
'increasing, levels of specialization in the choice of the quadrature parameters. 

The first part of the theorem states a comforting result; that almost every sensible 
choice of the quadrature parameters yield a stable method that has the same optimal-. 
order rate of convergence as predicted by SARANEN and WENDii[11] and, ARNOLD 
and WENDLAND [4] for the mid-point collocation method and a more general class of. 
operators L. The only 'restrictions are that one o the quad rature-point parameters, 
say 62, lies in the interior of the interval [0, 11 and has an associated positiveweight, 
and that the other weight is non-negative. For the general choice of quadrature, 
parameters the highest rate of convergence predicted by the first part of Theorem 
2.1, as in [4] for the collocation method, is 

'h Uh - uII ;^L Ch'	IIuhIa+i. 	 ' '	(1.7) 

Here 1 jull, denotes the norm in the periodic Sobolev space H8, which cain be defined by 

lulL2 = 1(0)I 2 + .L' IkI 2 I(k)I 2 ,	 (1.8) 
k40	 —	 V	 S 

and C, here iis elsewhere in the paper; denotes a generic constant, which may take' 
different values at its different occurrences. As a special case of Theorem 2.1(i), we 
recover (by setting w1 = 0, and 62 = e) a known result (see Theorem- 3 of SCH1T, 
[13]), namely that the e-collocation method of [13], which is the collocation method 
with the collocation points {(j + e) h: j = 0, 1, ..., 71 - 1},.is stable for the operator 
.(1.3), and yields'the order of convergence (1.7), for,all values de in the open interval 

The second part of Theorem 2.1 asserts that a quadrature rule that is.'symmetric 
about the mid-point' can yield . a higher order of Convergence, in an appropriate. 
negative norm. Precisely, the error bound-with the highest possible 'power of h now 
becomes  

hUh - ulI,-.i ^5 Chd + 2_P I[ulld+2 .	 S '	 (1.9) 

Thus one extra power of h is 'achieved. However, this is at the expense of a more 
restrictive smoothness requirement on u on the right of (1.9) and a 'rnor-negative'
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norm on the left. For the spe'cial case of mid-point collocation (i.e. e = e,= 1/2) the 
•	result (1.9) has already been obtained by SARANEN in [10]. Thus the second part of 

Theorem 2.1 may be thought of as a generalization of Saranen's result, to more 
general symmetric qualocation methods.	 - 

• The most interesting part of Theorem 2.1 (most interesting because it offers the 
possibility of an improved approximation) is the last: for this asserts that one partic-
ular choice of symmetric quadrature rule can lead to yet two more towers of h in 
appropriate cases. In addition to the bounds (1.7) and (1.9), for this special choice 
we have also	 -	 - - 

•	 11U - u1I$_3 ^	uIId±.	-	 '	 - (1.10) 

For example, for the piecewise-constant trial space (i.e. d = 0) and the ld'garitlimic 
o potential (i.e. = —1) we obtain 0(h5) convergence, provided u.E-H4 , and'provided 

we are swilling to look at érr6rs, in the JJ4 norm. A striking reflection is that the 
Galerkin method for the same problem yields at best 0(h3) convergence - see, for - 
example, [7]. On the other hand it should be said that the Galerkin result imposes a 

-weaker-smoothness requirement on u (namely u.E 111), and is achieved in a much 
less-negative norm (namely H2).  

Theorem 2.1 is proved in Sections 3 and 4.	- 
--	The special quadrature parameters in the third part of the theorem,, yielding the 

higher rate of convergence shown in (1.10), aredefined as follows: w1 = w2 = 1/2,. 
el = x0, and €3 = 1 - x0 , where x0 is the unique zero in the interval (0, 1/2) of the 

- function 

•	 G(x) =Ly ncos 2inx,,  

with y d + 2 - 9. The propertie of this function are discussed in Section 5. 
Here we record some values of x0(y) so that they are available for application. 

•	 -	 Table 1. Least positive zeros' of the function O defined by (1.11) - 

Y	x(y)	 -- - -	-	-,	- 

2	1/2 - 1/2/jf= 0.2113248654	- 
-	 3	0.2308296503 

4 - 1/2 - (1/4 - 11j/)2 = 0.240335 1888 
5 , 0.2451188417	 - 
oo	0.25  

I 

The following remarks may help to give some insight into the quadrature param-
eters in Table I. First, for y = 2 the points x0 and 1 - v0 are the abscissas of the 
2-point Gauss rule, shifted to the interval [0, 1]. The value y = 2 is the appropriate 
value of y if we have = 0, in which case L is the identity operator, and d = 0. 
Now in this-ease the integrals to be approximated, if we adopt the- Petrov-Galerkin 
view, are discontinuous piecewie-smooth functions, and for such functions the 
two-point Gauss rule would seem to , be an ideal choice. Second, if d is very large, or 

- if the order has a large negative value, then the function i.,u4 becomes a very
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smooth periodic function, for which the equal weight and nearly equally-spaced 
- rule that is achieved when y is large would seem entirely appropriate. The other 

values in Table 1 may be-thought of as intermediate between these two extremes. 
The treatment of the perturbations L -)-, , K in Section 6 is expressed in'sufficiently 

general terms to cover nOt only the 1 present method but also that. in [14], and other 
qualocation methods. An important consequence of the perturbation result in Section 
6 is that the conclusions expressed in the following theorem, and in the corresponding 
result in [14], hold not only for uniform meshes on circles, but also for smoothly 
varying meshes on' smooth closed curves (see ['4]). Hence, the qualocation methods 
could be applied to all the examples given in [6], and would converge with the high 
orders predicted here and in [14]. 

Acknowledgements: The authors express their 'gratitude to G. C. Chandler for 
providing us with the nontrivial entries of Table 1, and to G. Brown and D. Wilson 
of the University of New South Wales for proving for us, in [5], that G in (Lii) has 
a unique zero on (0, 1/2). 

2. The main result 
I	 - 

Theorem 2.1: Let fi be a real number, and let L be as in (1.3). Let d > fi - 1/2 be a, 
non-negative even integer, and let S h S be the space of smoothestsplines of degree d. 
with breakpoints (1.4). Let TA be the trigonometric function space given by (1.5), and let 
Qh be the quadrature rule (1.6), where 0 < w2	1, w1 = I -	0 < 2 < 1 and 
0	e 1 < 1. Then the qualocatiom equation (1.2), with / any continuous function, is -



'uniquely solvable for uh E Sh. 
Assume in addition that s and £ are real numbers satisfying s t, S < d + 1/2, 

fl . + 1/2 <t,and that the solution u of (1.1) belongs to H'. 
(i) For 8 ^ s and I ^ d + 1, there holds the estimate 

hUh - 'U 118 ^ Ch'	huh,.	 (2.1) 

(ii) If the quadrature rule. is symmetric, in the sense that w1 = w2 =1/2 ,, and 2 = 
1 - e, then there holds the estimate	. 

hUh	n1l8	Chm1((_8,t_fl,d+1_+2_fl) 1 1u ll,.	 .(2.2) 

(iii) If w,,=w2 = 1/2 and 62 = 1 - l, and if E l is_the least positive zero of the 
-	function Cd+2_0, where 

G(x)	cos 27rnx,	 . ,	 (2.3) 

them there holds the estimate	•. 

huh - U 11 ',	Chm1n(1-8,t— P4-f 1-84+4 P) lull,. -	 .	(2.4) 

	

Remark 1: Without loss we may restrict 6 anU tin (2.2) by — 1	8 t	d + 2 and in 
(2.4) by — 3	.s	t	d + 4.	 - 

Remark 2: Since the condition d> — 1/2, which is modelled on [4], is not strong enough 
to guarantee absolute convergence of the Fourier series for LU, (see Section 3), care is needed 
in defining the sense of convergence. We shall always understand the convergence to be in the 
conventional sense for the pointwise convergence of Fourier series, namely 

lim	. .	 ..	',	 .	S.	 (2.5) 

k	L-.co tkI<L	 .	55 

EA
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3. Proof of Theorem '2.1 - first stage	- 

Following [4] add'['14], it is convenient to define A. = {p € Z: _n/2 <p	n/2}. 
Then the test space Th becomes T	span {: p € A}, with (x) = e2Px, p € Z,
and the method becomes: find Uh € SId such that 

Qh(pI'Uh)	Qh&Ppt),	P € An,	 (3.1) 

in the right-hand side of which we have replaced I by Lu. 
As in[14], the sum (1.3) for Lu(x) converges absolutely beause	i-'1[2 <'t,. thus - 

• .the right-hand side of (1.3) is well defined,, and we have 

Qh( PLu) = '2(0) Qh(;) +	kP 2(k) Qh(pc'k), 
kEZ' 

whereZ* = Z \ {O}. By direct application of (1.6), or by symmetry, we find 

•	'	Q(q)	0	if	k	p(mod n).	'	 (3.2)

.For the non-vanishing quadrature sums we define,  

= Q(ippp+1fl) = Qh(qu),	 '	 (33)

and find, using the quadrature rule (1.6), 
•

	

	 'e1 = w1 e2" 1 "•	w2 e2"'. ..	'	.	' 	 (3.4)

'Then the right .hand 'side' of (3.1) becomes 

l(0)±Ejlnl(1n)el, 
Qh(PLu) 

= Il u(p)+ E I + ln u(p + In) e: p €	
5) 

where	= A. \ {0}.  
Now consider the left-hand side of (.3.1). The analogue of (1.3) is 

Ikx 

	

,. Lu(x) =i h (0) + f kP Uh(k) e2".	 .'	 (3.6). 
kEZ 

Because 'Uh is a spline ,of even degree d, its 'Fourier coefficients satisfy the ' following 
recurrence relation (see [4, equation (2.7)], with appropriate phase adjustment to - 
cater for the different choice of breakpoint):  

(p + 1n) 1 2 (p '+ in)	p'?2(p), p, &E Z.  
Thus  

0,	 p=0,I€Z*, 

•	,	 h(P + In) =	pd+1 	(3.7) 

•	p'+ iy' 
uhP),,.	€ A,,,1 € z, 

and we may write (3.6) as  
Lu(x) = h(0) + E 72h (P) [1p1fl C2nIPZ 

p€/ln•	I	 - 
+ pd+l L' sign 1 Ip +lnI''' e2P+I 1.	 (3.8 

1EZ	 . 

Because we assume only d >19	1/2, the-sum over.l is not absolutely convergent, 
•

	

	and therefore care is needed in 'forming the partial sums. The convergence is always 
understood in the sense of (2.5); that is, the symmetric partial sums are used. (Note 

- that (3.6)and(3.8) are equivalent when interpreted in this sense, beèaüse the indi-
vidual terms in the sum over tin the latter converge to zero.) 

/
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We now show that the series (3.8) fo'r L'uh(x) converges for all real x. First, for 
x0 E ((j - 1)/n, jfn), j E Z, we may argue as for the mid-point collocation method in 
[4]: Because d > - 1/2, we see from (3.7) and (1.8) that u5 € H. Because Uh S 
also smooth in a neighbourhood of x0 , it then follows, by application of Lemma 3.2 
(c) of [4], that Lu5 is Holder continuous in a neighbourhood of x0 . Thus,the Fourier 
series for L'U5, which is the right-hand side of (3.8), converges at x 0 (in the sense of 
(2.5)) to Liu5 (x0). On the other hand, for x = j/n, j E Z, the right-hand side of, (3.8) 
converges because the sum over p is over the finite set A* and the sum over I can 
be written (remembering (2.5)!) as	 . 

-	E sign l i p + lnI d e21(P+1)iIn 
i€Z	 ( 

/	= e2'' E [(In + p)- 4	(in - p)]	 - 

= e 2n iPj/"n-. i-	+	
- ( 

-P) '( 9) 
21Y,	 21 

where we have introduced	 S	 - 

•	=d+1—>1/2	 -(3.10) - 
and''

yp = 2p/n € [-1,1].	-	
-	

(3.11) 

Since the mean-value theorem gives	 S 

(i + -.) _( t - -) 
= --	[(1 + 

_)' 
+ (i 

—
LY 

Where 0 < O(y)< 1, it follows that (1 + yf21— (1 - y/21)I	C/l. Thus the
last sum in (3.9) converges, and the convergence of the series for Luh(x) has been 

- proved for 	x.	 - 

(It may be remarked that the convergeiice of the series for 1IU5 it the breakpoints occurs in 
the present work. but not in general in [4], because we have) 

ven 'symbol' - that is, the1 quantity that multiples 
iere restricted attention to opera- 

tors L of e	 (k) in (1.3) is an even function -	- 
of k.)	 - 

Since the eries (3.8) for Lu5(x) converges for all x, it follows that the quadrature 
sum on the left-hand side of (3.1) is well defined for any choice of the quadrature 
parameters. Now, using (3.2), (3.3), (3.8), (3.10) and (3.11) we obtain, for the left- 
hand side of (3.1),	•	 -	 - 

-	 f. (0),	 7) = 0, - 
Q5Lu) 

= j i p i	( p) D(y),.	p €	*	
(3.12) -	• 

Where  
•	- D(y) = 1 + sign y II E(y),	y E[-1, 1],	- -	-	-	- (3.13) 

and 	-	 :	-	S	 • 

E(y) = •' sign I ly + 2II e 1	 S 

-	 LEZ	 •	-	 - 

•	 •	 S	 -	 S 

•	=^: [(21 + y) c1 — (21 — y) e,],	• y E[-1, 1], -	(3.14)
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where e 1 is given b (3.4). Since the left-hand side of(3. 12) is a well defined convergent 
series, the series E(y) in the definition of D(y) must also converge at least for y = y 
=2p/n; i.e. it must converge for all non-zero rational numbersy in (--1, 11. Thefollow-
ing lemma establishes that in fact (3.14) converges, and therefore E(y) and D(y) are 
well defined', for all y € [-1, 11. (In this lemma the assumption on a is weakened to 
x> 0, since this may be done without cost.) 

Lemma 3.1: For a > 0, consider the series 

(2l,+	c1,	Y € [-1,1],	'	'	 (15)	-' 

where I c i l :!E^ m, with rn independent of 1. If the series converges for some Yo € [ 1, 1], 
then it does so for ally € [-1, 1], and the resulting function belongs to C[ -1, 1]. 

Proof: The formal derivative of the series (3.15) is (absolutely) unifornly conver-
gent,and can therefore be integrated term by term. Thus for y € [-1, 1] we have 

LI 

f[_a	(21 + t)- 'cl dt = E [(21 + y)- 	(21 + yo)] c 1	(3 16) 
V. 

Denoting.the series (3.15) by F(y), , we know that E (21 + yo)- c1 = F(y0 ) is a con- 
•	 .-	 1=1 

vergent sum, from which it now follows that- theright-hand side of (3.16) can be 

•

	

	expressed as the difference of two convergellt series. Thus E (21 + y) c 1 = F(y) is
also a convergent sum. Then from (3.16) we have 

p	 ' 
•	 F(y) = -a	'(21 + y)? C 1 ,	y  (-. 1, 1), 

1 = 1	 - 

'remembering that because the latter series is uniformly convergent,, it defines a 
continuous function on [-1, 11. Thus we have F € C'[--1, 11. A similar (but simp-
ler) argirnient now yields  

F"(y) = a(a ± 1)(21 +y)2ell 

and F € C2[_1, 11; and so on. Thus F € G[-1, 11, and the result is proved I 
Corollary 3.2: With a> 1/2, w1 , w2 € R and a, E2 € [0, 1], the series expre.8ion' 

(3.14), for E(y) converges for all y € [-1, 11. Moreover, E € C[-1, 11. Thus D is a 
continuous function on [-1, 11, and is smooth outside an arbitrary neighbourhood of 
zero.  

As in [4] and [14], the properties of the function D are crucial for both the stability 
and the rate of convergence of the method. To study the stability, it is convenient to 
write, using (3.4), (3.13) and (3.14)	, 

D(y) = w1Z(y) + w2Z,(y).,	y € (_i, 1]; 
where  

Z(y) = I. + sign y l yl l Z sign ly + 21I e2" 1 ,	y € [-1, 1].	(3.17) 
IEZ 

Since Z is the special case of D obtained by setting w2 =0, w1	1, a 1 = a, it follows 
•	from Corollary 3.2 that, for arbitrary a € [0, 1], Z is a well-defined and continuous

function on [-1, 1], and is smooth outside an arbitrary neighbourhood of zero.
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For the stability of the method, the requirement, as in [4] and [14], is that D be 
bounded away from zero. This will follow from the following lemma (the rather 
technical appearance of which is dictated by our desire to obtain explicit bounds for 
the stability constants). 

Lemma 3.3: Let a and let Z e be the complex-valued function de/ind by (3.17). 
(i) For arbiIrary e E (0, 1), Re Z(y) ^ (1 — 3 - 1 ) * (1 - max (cos 2ne, 0)) > 0, 

y E 
(ii) Fore	0, Z(y) > 0, y  (-1,1), Z0(± 1 ) = 0. 

' Proof: Forarbitrary e € [0, 1] we have, from the definition (3.17), 

Re Z(y) = 1 + sign y II E sign 1 I y +. 21I cos 2nd 
IEZ 

•	= 1 + sign y lyl l E [(21 + y) — (21 - y)] cos 2e1; 
i=1 

which is manifestly even. For y € [0, 1] we define h 1 (y) = y [ (2I +	-'-(21 - y)j.
Then for y € [0, 1] we have 

00	 CO 

Re Ze(y) = I +E h 1 (y) cos 2nd	1 +.h,(y) ± h, (y) cos 2ne,	(3.18) 

bcause h 1 (y)	0 and cos 2nd	1. As in (3.9), an application of the mean-value
theorem shows that - h1 (y) is absolutely and uniformly convergent in [0, 1]. More-
over, because '	 S 

h 1 '(y) = 2lcy'[(2l + y)' — (21 1— y)-'] <0,	y € (0,I],,

we see that h 1 (y) is a decreasing function on [0, 11, thus 

Re Z1(y) > 1 + Eh(1) + h, (1)max (cos 2ne,0) 
I2 

= 1 - 3 - (1 — 3) Max (cos2re, 0),	 (3.19)

and the proof of part (i) of thetheorem is complete. 
For the ease e = 0 we see that Z0(y) is real, thus the conclusion arrived at so far 

can be expressed as Z0 (y)	0. Now since h(y) > h 1 (1) for y € (0, 11, it follows from 
(3.18) and (3.19) that the in'equlity Z 0 (y)	0 is strict for y E (-1, 1). Finally, 

•	Z1) = 1 + Eh i (l) = 0 I 
Remark: The second part of the lemma was proved, in effect, in[4, Lemma 2.3] inadiffer-

ent context , - see the case of the function g and splines of odd degree.	- 

Corollary 3.4: Lela >. 1/2.	 . 
(i) With w 1 , w2 > 0, and arbitrary e, e2 E [0, 1], the function D defined by (3.13) and 

- (3.14) satisfies  

-	 Re D(y)	(I - 3) [w( I - max '(cos 2ne 1 , 0)) 

: • + w2 (1 - max (cos 2ne2 , o)J,	YE  

(ii) 1/ E, = 0 and w 1 = I, w2 = 0 then D(± 1 ) = 0.	 - - 

I
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Remark: The first part of this result establishes the stability of the method under 
the conditions stated in the theorem (effectively, that the weights are non-negative 
and there is at least one quadrature point in the interior). The second establishes that 
the latter condition is necessary: in effect it expresses the well known fact that the 
method of collocation at the breakpoints is unstable in the case of even-degree splines. 

Now we turn to the question of the rate of convergence. As in [4] and [14], the 
maximum rate of convergence is determined by the behaviour of the function D(y) - 
in the neighbourhood of 0.. 

Initially we allow the quadrature parameters E,, e to be chosen arbitrarily..: 

Lemma 3.5 : With a	1/2, , w, w2 E R, and e, e2 E [0, 11, the function Dde/med 
by (3.13) aid (3.14) satisfies D(y)	fl	C lyl l , y € [-1, 11, where C depend on 
a, W 1 , W21 E l 1 

e2 , but' not on y.	 .	S 

Proof: This follows immediately from (3.13) and Corollary 3.2 I 

Next, we consider the quadratureparamçters to be chosen symmetrically, as in 
part (ii) of the the that is, w1 w2 = 1/2, and C2 1 - e 1 . The special feature 
in' this case is that the function E(y) defined by (3.14) now vanishes at y = 0: in 

•	fact we have, from (3.4), e1 = e_ j = cos 2jie 1 1 1 and hence  
Co 

E(y) = _T [(21 + y) -O,- (21 — )- 1 cos 2ne 1 l,	 (3.20) 

so that the property E(0) = 0 is immediately apparent. By the mean-value theorem,' 
we may write  

(21 + y) - (21 -'y)7, = —ay[(21 + Oy ) - ' + (21 — 0y)'],	(3.21) 

where-0 <0(y) < 1, thus	 . 

E (21 + y) — (21 - y)j 

EIa I Jyj 2(21-1) -1 = ' C Jy 

Since D is related to E by (3.13), we obain the following lemma. 

Lem ma 36: With a > 1/2, w 1 = w2 = 1/2, 62 	1, - e, and e E [0, 11, the /unction 
D defined by (3.13)'sati8/ies D(y) — 1	C IyI', y E [---1, 1], where C depends on a
and e, but not on y. 

The function E(y) for the symmetric case can be subjected to a more precise anal-
ysis, leading to the parameter choice in part (iii) of the theorem. Replacing the 
mean-value expression (3.21) by the higher-order version 

(21 +	- (21 — y)-'..
	

-  
6, (a + 1(a +2) y[(21+ °y)+ (21— 0y)] 

where 0 < 0(y) < 1, we obtain-from (3.20)  
Co 

-	" E(y) = —a2 y 1-1 cos 27te1l 

- a(a + 1)(a.+ 2)	[(2l +0y) 3 + (21—Oy)	3] cos 2ejl. 
6	

y3
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If Ef is chosen as in part (iii) of Theorem 2.1 then the first term of this expression 
vanishes, and We have 

E(y) ^	+	+	
y 3 f 2(21 - 1)=C i y i•	 - - 

Thus we obtain, using (3.13), the following lemma. 

Lemma 3.7: With a > 1/2, w1 = w2 = 1/2, 2 = 1 - e, and * E, the least positive 
zero of G+i, defined, by (2.3), the /unction D defined by (3.13) satisfies. D(y) - 

'C y3, where C depends on a, but not on y. 
In the sequel we make use of whichever of the three Lemmas 3.5-3.7 is appro-

priate.	 S	 '\ 

4. Proof of Theorem 2.1 - final stage 

Now we are ready to establish the existence of uh , and prove the estimates (2. 1), (2.2) 
and (2.4) for.IIuh - uII,. Recall that the qualocation method is expressed by (3.1). 
With the aid of (3.5) and (3.12), this is expressible' as the set of equations. 

= i2(0) + E Ilnl ?2(ln) e1 ,	p = 0,	 - (4.1) 
lcze 

p I uh(p) D(y) =	Z(p) + _Y 1 p + in I fl 2(p + in) e,	p E A., (4.2) 
i€Z 

The subsequent analysis is almostthe same as in [14], thus we shall be brief. 
Since D(y) 4- 0 for y € [-1, 1], the above equations uniquely,determine 1l(p) for 

- all p E A. The recurrence relation (3.7) then determines all other Fourier coefficients 
of u4 . Thus the approximate solution Uh exists and is unique for every continuous 
right-hand side function /. 'To study the convergence of Uk to u, we investigate, for 
s<d+1/2,  

JjUh - uI2 = Ih(0) - (0)2 ± E jkj 2 I h(k) - (k)12 
kEZ	 ' 

•	^5 71 4(0) - il(0)1 2 + 2 Z kJ28 ((k)I2 
kEA 

•	+ 2 Z 1k1 28 1 72h(k )I 2 + E I pI28 ?ih (p)	i.2(p)j 2 .	,	(4.3) 
•	 k.1,,	 ,	 pEA,.' 

For u € FP, and + 1/2 <t, it follows as in [14] that thefii-st term of (4.3) is bounded 
by  

Ch 2(1-P) IIu IIt2.	 -	(4.4) 

Similarly, because s twe obtain as in [14] the bound 

:	2	jk 28 (k)I 2	Ch2t -8 iiui2 	 (4.5) 
- ,	kA,.  

for the second term of (4.3). For the third term of (4.3) it is necessary, as in[14];to 
first make use of the recurrence relation (3.7) to express '12h (k) in terms of i(p), with 
p E fl*; and then to use (4.2) to express 72h(p) in- terms of Fourier coefficients of u. 
It is in the 'latter phase that it becomes essential to assume, as in the statement of 
the theorem, and as weshall assume from now oh, that at least one 0/ E , I e2 is in the 
open interval (0, 1), and has associated with ita positive weight. Then from Corollary 
3.4 we have ID(y)_ 1 1	C(a), and as in [14] it follows that the third term of (4.3) has
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the bound	 .	 . 

2 ' k l 2 la2h (k)l 2 = 2—i'	' p + in 2 2(p f . 1n)l2 
k54,, -	 pEzl,,1Z 

= 2 !' 1p12(1+ l(p )l 2 2' Ip + ji2(8-1-1) 

-	Eil,,	 . 

• Because s< d + 1/2, thelastsum can beestimated by 
• 

Z IP +  inI2(8)	C(s)n2(8-d-,	 . . 

IeZ 
•	

.	 p
/	\ 

see [4]. Next, we use (4.2) and obtain 

2 Z k1 28 l2h(k)l2 
-	k€ A,,	 \•	 . 

Ci'> E p2(	[1 4 ( p )1 2 -F lvl -2$ (
	I p ± in l(p ±- 1n) 2 

•	 pE4,'	 I	 \1EZ 

C712(8) E lpl1l(p)12.	 - pEA 

.± Cn2 -"	I p l 2 '	E P + not2	E l + 1(0-t) I 2' J(p + 171)12, 

	

PEA,,*	 mEZ	.	IEZ0 

where t = mm (d + 1, t).	 . 

	

Hence, because ft + 1/2 < 1,	 •	 •• 

2	lkI 2 lah (k)1 2	-	 .	--	/	 .• 

kA	 S 

•	:E^; Cn2'1> IJUJIt2 + Gn.2)8	_1+')	 p + 17112' k(	+ 1)l2 
IEZ 

< ((7120 ') + C?") h u ll,2 ,	 . 
Or  

2	IkI ll k2h(k)12	-8) lu 11,2.	 (4.6) 
ke A ,,	 - 

Finally, we consider the fourth term of (4.3). This is the term that plays the crucial 
rôle.in limiting the maximum attainable rate of convergence. Using (4.2) we have 

— (p) = D(y)' 1(1 - D(y)) i(p) ± l pl E P -1- in l P 2(p + in) el 

	

I	 IEZ 

Then with the aid of the stability property in Corollary 3.4, and also whichever of 
the three 1,5emmas 315-3.7 is appropriate, together with y, 	2p/n, we obtain 

	

/	\2(d-4-1-$-)-r)	 •	 • 

	

— 2 ( p) l 2	C n 	- 

+ C l p l 2 (	p + in 112(p ± 1n)l2, 
•	

^'	
•	 /	- 

• where r = 0, 1 or 3, depending on whether the quadrature parameters are as in part - 
(i), (ii) or (iii) of the theorem. It then follows, by the same argument a g in [14], that - 
the fourth term of (4.3) satisfies 

•	,E p 28 1 71h(P) — (p)l2	Ch2min(1_-s3 	hlüll, 2 .	-	(4.7) 
pE1,,

I.
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.Collçcting together the separate bounds (4.4), (4.5), (4.6) and (47),. we obtain 

-	ll'u - U118 :< Chmin(1-s.9_.d-f-_8.d+1+r_Th 11U11t, 

and the proof. of Theorem 2.1 is completed by inserting in this bound the appro-
priate values of r I	 -	 - 

5. The function G7	- 

Since the function G a,, defined by 

= E n cos 2nx',	x E R, > 1,	 - 
n=I	 S 

plays a.key role in the theory, we note'briefly some of its properties. 
Since y > 1, the series (5.1) is (absolutely) uniformly convergent, and therefore 

G is a continuous, even, 1-periodic function on R. Moreover, 
-	- 1 •	Gy(0)rsE=(y)>O, ny 

S	 —1' 
G. (--) = ''	

= —(1 - 21 - v ) (y) <0, fl1 
where C is the Riemann zeta fuiwtibn, and where the last step follows, fdr example, 
from JAHNKEand EMBE [8, p. 3191. Since the continuous function G. changes sign. 
on (0, 1/2), it has at lest one zero in that interval.  

If y is an even integer, then G is closely related to a Bernoulli polynomial: in fact 
for y=2,4, ... we have [1,p.805]	 -. 

¼	 q7() = ( _ 1)2	B(x),	x [0, 1]. 

Here the uniqueness of the zero on (0, 1/2) is apparent from the known behaviour of 
Bernoulli polynomials: The following result establishes that there is a unique zero on 
(0,1/2) for all real y'.-:?: 1.	 - 

Theorem 5.1 [5]: For 	1 the function Gde/ined by (5A) is decrea,sing on (0, 1/2), 
and hais a itnique zero x0(y) E (0, 1/2), which satisfieà 

k •lini x0(y)  
•	 S-	 S 

6. Qualocation in the presence of a smoother perturbation 

In this section we apply the same qu'alocation method to the more general pseudo- 
differential equation which can be written as perturbed equation 

(L±K)u=/,	 -	 6.1)	- 
where L-IS as in (1.3), and K is an operator having a greater smoothing effect than L. 

The following result is stated initially in • a more general form than we need for our 
present purposes. The proof is modelled on ne used by ARNOLD'and W-ENDLAND [4] 
for the case of'the collocation method.

	

 '	-	\. 

25 Analysis Bd. 8, Heft 4 (1989)	- •	 -	 S	 ' 

¼	
5
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Theorem 6.1: Let fi be a real number, and assume that 'L . is an isomorphism fron. 

H onto Fl8- V s E	- a, ± d + ), with , d and a as given below. Let > 0 

be such that K maps H' boundedly into 118 for the above range-of values, and 
assume L + K is bijeetive from H 8 onto H8—P. Assume also that a given qualocation 
method, with trial spaeS h consisting of smoothest splines of degree d > ft - ,u, and 
with given test .pace 1'h and quadrature rule .Q,, has the following property when 
applied to the equation -	- 

Lw = f,	/ E 1i',	w ER':	 S	 (6.2)	 - - 

namely that the -qualocalion approximation Wh E Sh exists uniquely for Ii :c^ h 0 , with h0 
independent off; andsatisfies, for some fied a ^O, 

- w113 < Chmin(t_3t—s,(-8,d+1±a—fl>, liwli,	-	 (6.3) 

for all real . s, t satis/yinq 	 - 

—.a	t,. s<d+1/2,	+1/2<t.	 (64) 

Then the same iesult holds, provided t satisfies also
 

-	-	(6.5) 

for the qualocation method {S h , Th , 9n} applied to the equation.- 

-	(L ± K) u = f, -. f E jj-s;	u E H'.	 (6.6) 

o	Slated f'u,Ily, the result is that the qualootion approximation Uh E 5h exists uniquely foi 
h sufficiently small, and satisfies	 -	 - 

	

-	huh - uft ^ Chmin(t_3_P,d+1-8d+1+a-5) lull	 (.7) 

for all s,,t satzs/yng (6.4) - and (6.5). 

- Proof: Take h h0 , and assume provisionally that uh, a qualocation solution to 
•	(6.6), exists. Then by definition Uk E Sh satisfies, for arbitrary y h E Th , - 

± K)(u - uh)) — 0,  
or	 .' 

-. Qh ( hLuh) = Qh([Lu + K(u - uk)]) = Qh(hifw), 
where  

w = u	L'K(u - Uk) .	 . .' (6.8) 

It follows from the assumption, since 7k E Th is arbitrary, that uk is the uniquequalo-
•	cation approximation to an equation of the form (6.2) for which the exact solution is. 

(6.8). Then the estimate (6.3) gives  
•	 -	

- lu -uh ± LK(u	t)ll  

•	 ^ Chm_st_Pd+1_8.d+1+0_fl 1Iu + L'K(u - un)hhj,	 - (6.9)' 

- for s, ' t satisfying. (6.4).. Assume that I satisfies also (6.5). Then it follows from the 
'mapping properties .of L and K that  

	

. - IkZ .± L'K(u -. h)tlt	hull + , C IK(u - uh)11tp 
•	 .	 -	

lluhI + C Hu - uhlhe. 	 (6.10) 

	

,•	-	S
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We now obtain, using (6.9),'(6.10) and the assumed mapping property of K +'L, 

Hu -	:5 C ll(L + K) (u - Uh)118_$ 

^5 'C jL'(L + K) (u - Uh)ll = C 11( 1 + L-'K) (u - Uh)118 

!c_:^ Chmin ( t_8J_fld+i_8.d+1+a_P )
 Out ± HU - uhlIz_,)	 (6.11)

In particular, setting s = £ - we obtain 

lu -..UhlIt_ ;5 Ghm ( t_fl	d+I_4±I+a_) (IIuIIg ± HU
 - uhIIt_P)." 

Since the exponent o(h' is positive because of the assumptions (6.4) and (6.5), for h 
sufficiently small (say h	h1 ) we have  

11  - uhIIt_	Chm1o(t_fl+d+I_td+I+o—P lltllt	'	S 

Thus the second term of (6.11) is of higher order than the first, and so (6.11) yields the 
desired result (6.7). 

To complete the proof, we now observe from (6.7) that€the qualocation solution . u" 
is necessarily Unique for h h1 . Thus the corresponding linear equations are of full 
rank, from which it follows that the qualocation solution exists for every continuous 
function f- I  

It follows from the theorem' that if y (which is related to, the smoothing property 
of K) is smaller-than a + 1/2, then the maximum rate of convergence of hUh - 'u-,' 
for any value of s, is reducedifrom O(h)'2Th to where s > 0 
is arbitrary. On theother hand, if K is  perturbation arising from the mapping of the 
logarithmic ptential from a C° curve to the unit circle, then t can typically be 
taken arbitrarily large, and then no reduction in the maximum order will occur. 

We now specialize to the case of even-degree splints, and the particular qualocation 
method of this paper.  

Corollary 6.2: Let fl, L, d, 8h' TI, and Qh be as in Theorem 2A. Let t > ± 1/ and - 
t > 0 be such that K maps J.J8 boundedly into i1	for s E [ - a, /L + d + 1/2),
and assume that L + K is bijective from H8 onto Hs - fl for these values of 5. Assume also 
/ E I1'', where u ± - a t <a + d + 112. Let u E W he the unique solution of 

Then for It sufficiently small, the qualocation method {Sh, Th , Qh} aj,iplied -to (6.1) 
• yields a unique approximation uh E 9,,, and if s and £ satisfy (6.4) (with a taking the 

values 0, 1, 3 respectively), then the error norms 11 Uh. - u113 satisfy' the statements in 
parts (i), (ii) and (iii) of Theorem 2.1.	 - 

• Befoie concluding, we note that Theorem 6.1 can be applied with equal effect to 
the case of the odd-degree spline qualocation method considered in [14]. Thus a 
result analogous to Corollary 6.2 holds also in that case. 
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