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In der Arbeit werden ‘die Methoden der beschrinkten und der finiten Elemcntc gekoppelt und
auf das duflere Dmchletschc Problem fiir eine Klasse nichtlincarer elliptischer Gleichungen
*.zweiter Ordnung in Divergenzform angewandt. Besondere Betonung erfihrt dic Formulierung
in Variationsform und die mathematische Begriindung der Kopplungsprozedur. Insbesondere
werden hinreichende Bedingungen an die Koeffizienten der Glelchung angegeben, unter denen
mit Hilfe der Methode der monobonen 0pera.toren d1e Emst,enz einer Losung und deren Unitét
folgen } . !
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'TOB K BHeLIHell 3agaue Ilupw(ne oA OJiHOr'0 RJjaccCa Heﬂ“llelllllﬂ‘( {)JIJIHIITH‘IGCF\HA ypaB- D

HeHli BTOPOro NopAaka B AuBeprenTHol gopme. Ocoboe 3Hauene NPUAACTCA BAPHALMOHHOIL

“hopMyIMpOBKe H MaTeMaTHYecKoMy OGOCHOBAaHHIO. COEMMHUTENBHO npoileaypsi.- B uacr-
. HOCTH, JIAKOTCA J0CTRTOMHLIE YCJIOBMA HA KOIPOUIMEHTH ypaBHEHHA M3 KOTOPHX METONOM

MOHOTONHBIX ONCPATOPOB CIEAYIOT CYIIECTBOBaNME M eAMHCTBEHHOCTh PelleHHA.

. This po.per is concerned with'an application of the coupling of the boundary element and the
finite element methods to an exterior. Dirichlet problcm fora class of nonlinear second-order

‘elliptic equations in divergence form. Emphasis will be placed upon the variational formulation

and the mathematical foundations of the coupling procedure. In partncular, sufficient condi-
tions are given for the coefficicnts of the equation from which existence and uniqueness result.s
are estabhshed by the theory of- monotone operators.

° ‘ s TN
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1. Introduction - - o '

' Both the boundary element aid the finite-element methods are now recogm/ed as
general approximation processes -which are appllca.ble to a wide variety of engineering
problems. The boundary element method is, better suited to. problems in which the
domain extends to infinity but.is usually confined to regions in .which the.governing
equatlons are linear and homogeneous On the other hand, the finite element method
is restricted to problems in bounded domains but is appllcable to’problems in which
the material properties are not necessa,nly homogeneous and nonlmea,nt,y may occur.
Therefore, these two methods are complementary to each other, and thus, in recent
years there have been increasing efforts to develop variational procedures especmlly

* for exterior problems by taking the advantages of the individual method. This leads
us to the coupling of the boundary element and the flnlte element methods (see
Hsiao [6]). Noticeable success of this approach may be found in CosTaBEL [2], Hax
(5], Hs1a0 and PORTER [8], Jouison and \TEDELEC [10], MacCaxy and MarN [11],’

’ 1) This research was supported in purt by thc Center for Advunced Study of the Umversnt,y of
Delaware. -
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".and WENDLAND [16, 17], to name a few. Howcver all these works deal with only
linear problems. The purpose of this paper is to discuss the feasibility of applying this
approach to genuine nonlinear problems.

' Specifically, we let’ 2y be a bounded, simply connected domain in R? with smooth
boundary.T,. Let 2- be the.annular region bounded by I’o and another smooth closed
surface I. We denote by @+ the complement, of ©,u Q-.-For any function v on

27y 0%, we write v* for its limits on I' from Q+. Then given smooth functions f on
02~ and g on Po, we consnder the boundary value problem: Find » such that ‘

3

aa a-(x Vu(z)) = f(x) in Q— Au = 0in 0%,
. i==1 )
1. ’ = ‘g on ro, b ! \ . |
> ' ' 1.1) ..
u=ut, 'é; ai(x, Vu~(z)) n; = (%)+ .,(z) onl, - (1) .
u(x) 0(|x| l) “as |z| — +oo - .

where n = (n,, Ny, My) 18 thc outer norma.l to I'. The nonlmear coefficients a; will
" satisfy certain regularity conditions:to be specified later. Explicit examples of non-
" .linearities of this type generally .appear in some subsonic flow problems (see, e.g. -
- " FersTAvER [3]). Our goal here is to solve the problem (1.1) by the couplmg procedure
i as in Hax [5]- -and CosTABEL'[2] for linear problems.
The pla.n of this paper is a follows. In-Section 2, we will convert (l1.1) to a nonlocal
-+ boundary problem in 2-. This contains a nonlocal boundary condition which relates - .
the unknown function and its normal derivative on the boundary I’ from' Green’s '
Jormula. In Section 3, we give a weak formulation for the nonlocal boundary problem ;
and reduce it to an equivalent operator- equation form. Existence and uniqueness of
the solution of this operator equa.tlon will be established in Section 4 by the theory
, of monotone operators. Finally in Section 5, we present a Galerkin procedure for the
operator equation and provnde an error .estimate of Cea. S type. :

’

-\

. '2. The nonloeal boundary oroblem Co . ' “ N
To reduce (1.1)-to a nonlocal bouridary problem, we need some results from potentia.l

theory. Let y(z,y) = (4n |x — y|)~' be the fundamental solution for the three-
dimensional. Laplacian. Then from Green’s theorem we have the representation

8 ou\+ o E .
u(®) =fu'(y)_% ¥, 9) dsy—f(%) @) (= y) ds,, =€ QY. (2.0)
r ‘ ro :
from which s we arrive at the 1ntegra.l equa.tlons on I': - ’ R

1} = (— I+ K) ut = V(@u/@n)+
: . . : 2.2)
(8u/6n) = —-Wu,+ + (5 I-— K') (Gufon)* .

Here K, V, W and K’ are the boundary mtegra,l operators of the double, szmple hyper- )
- singular and ad;oml of the double layer potentials, respectively: For x € I', they are
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* defined by o ‘ .
Ko(z) = f o(y) ;;— v,y ds,,  Vol) =fy(x, y) o) ds,, . -,
.r i ” s’ A S r ’ . -
Wolz) = — =2 2 ds | - (29) -
r e : : .
: i(’a(x) = _y)~o(y) ds,.

- - ! ~

These are four basic bo{mdary integral operatofs (see MICHLIN [13]) whose propex.‘ties' '
" will be discussed la,ter Now we use interface conditions from (1.1). We ha,ve ut =wu",

and if we set Z a;i(z, V'u. @) n; = = o(z), then- (6u/8n)+ ='0. We substltute into:.
(2.2) to obtain, on r,

'(%I— )u +Va—0 ; L N -
- \ - S e
: . 3 1 - ) . .
L Za,( V- ())n = Wu‘-{—(—l'—K’)a. g
ci=1 ) .
These formulae lead us to. the nonlocal boundary problem : and (u o) such that o
\" .3 0 . ’ ’ ’ )
. 6 a,(:z: Vu(:z:)) = flz) - in Q- ;» ulr. = g,
. s=vl ) - ’ b
3 . ,‘ . * 1 N : :
2 ai(., Vu-(.)) n; = —Wu™ + (—2—1 — K') c onl, o (2.5)
i=1 \ I

0

,"('%I—K)a—+\*a=0 onT.

. It is easy to see from the a.bove derivation that the nonlocal boundary problem (2. 5)
is equivalent to the problem (1.1) in the sense that if (u, a) satisfies (2.5) and if we set,
from Green’s formula (2.1), - ~ .

o '-"(a(x)»=fu'(y)%.y(x, y) ds, —fo(y) y(x, y) ds,, z €Y, ('2'.6)
_ . ( : o

P ST r "

, \

’ then u satisfies (1.1) with Z a,(x Vu(z)) n; = o'(x) on I Of course, the statement

here can be made more preclse if one introduces appropriate solution spaces (see
Garica [4]). We remark that the boundary conditions on I" are nonlocal conditions,
smce the values - _over the entire boundary™I" are needed in order to compute-

- Z a,(x Vu- (x)) n; at a single point z € T Clearly, one may also consider other types

' of nonlocal conditions, and in'principle, the nonloca.l bounda.ry problem (2.5) can be
treated numerically by any conventional scheme, since it is a problem over the finite
region. We will adopt the Galerkin procedure and lead to the couplmg of the bounda,ry

. ‘element and finite element methods.
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3. The weak formulation _
A - J o
In what follows, for m integer, s real, let H™(Q-) a,nd H(TI™) denote the usual Sobolev

“spaces equipped with norms- {[- ||,,,..(g) and |- ]|,,.(,-,, respectively. Furthermore, for
m > 0, let |-|ymo-) denote the semmorm,

’ Co 2 e '
‘ule(Q—) —{ 2 le“ul2 dx} ) . ) (31)

lal=m .Q‘

and let ( ). denote the duality pairing between H*(TI") and H“(F) wrth respect to the .
) L (7)1 mner product _ o )
rw¢>ﬁfannnm“ WmﬂEHWUxHWD- 3
o ‘r Lo - )
. We also-introduce the subspace H}(Q-) of H‘(Q ) defmed by
L HR@) = e H’(.Q yiole, =0 .33

"It is easy to verify that ]v],, 14 is equivalent to the norm ]|v]|,,-(g_) for all v e H}, (Q ), " -

i.e., there exxsts a constant C > 0 such-that . ,

pluian < Iollniay S Clolivay Vo€ H@)h. L o@
]<or smooth I, the followmg results are well known (see, e.g., HSIAO [7] and Hsrao

) /

Lemma 1: For ‘C boundar y I', the, b(mndary mlegml operators de/med bz (2.3)

ld

v Ha 1/2(11) s H‘““(F) \ . K- H‘sﬂ,’z(p) Hsfalz(p)
' K’. He-1(T) — H’L.‘f’/z(l’) - i 'W: Hs+VY(T) — H?"l/e(l’)
are coMz1zu0us /or any s € R. Mo oreover, there are constants m> 0 and v = O such that :
| W0®>#Mhmm Vo € H-12(T) S @)
(l/nd : ‘ K ~o . . .. . " N . :
(o, Wo) = p oy — » Holﬁmr) VU'E HYXI). - (36)

In fa.(,t from (3.5) it is not dlffrcult to show that .
(6, Wo) =0 Va € H1/2(I‘) : ’ » S h (3.7) .

.I‘hese results will be needed later. - !

Now for the weak formulation, we multiply the partial dlfferentlal equatron in (2 5)
by any function v € H} (2-) and.apply the divergence theorem to yield '

i B
R é; fa§(x, Vu(x))'a%ldx + ({;—,wu— — (%1 fK;)'a> ;f/udz. -
. . oo

o Slmllarly, we multlply the boundary mtegra,l equatlon in (2 5) by any test functron .
i€ H Y(I) and mtegra,te over I' to obtam ’

(Va,i)+<(§l—, )u‘,/1>=0. s ‘ ‘ : '_(3.9_),‘
, . \ T |

[l
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Equa.tione (3.8) and (3.9) then lead us to the weak formulation: G.u,en‘(/, g) € H"(.Q‘)
X HVY(I'), find (u, o) € H‘(Q ) X H"/z(l’) such that w — §e¢ H} ( Q) and” (u, o)

,satzs/zes N

Z fa, (=, Vu(x)) a—dx + B((u, 6); (v /) f/v dx - h *(3.10)

I

for all (v,7%) € HF(Q)x H- 1/2(1‘) where § € Hl(Q ) s an extension ofgu,zth glr, = g, A
- and B(-,-) is the bzlznear form defined by . : .

A}

) B((u, o), (1’),1)) ={v, Wu~) — <‘v;, (% I.— K’) 0'>

) - 1 . N . . l ) EEERRN
.+ Vo, ) + <(§ I— K) w, z) o (31)
for all (w — §, o), (v, 4) € HF(02-) x H-V¥T). o
In order to reduce (3.10) to an eqmva,lent operator equatuon form, we need now to
‘impose some conditions on the nonlinear’ coefficients i ‘We assume that a;: Q°
x R3 = R’and satisfies the conditions: ~ .

(Hl Cmatheodory conditions: The, functlon a;i(+ a) is measurable m Q- for all
a € R? and a;(z, -) is continuous in R? for almost all z € Q"

(H.2) G’muth condition: There exists 4), L2(Q7), i =1, 2, 3, such that'
jas(z, @)] < CUL + fal} + I¢4(x)] o

for all @ € R¥ and for almost all z € Q Here and in the sequel Cisa genenc con-
stant. , - Cs

We also defme the Hllbert space H = Hpo(Q ) X H () with. the product norm
||(w oMlm = (il + ]|a||,, )2, Further, let H* be the dual of H, with the norm,
defined' by, [| e = sup {[-, (v, HY)I(¥, A)}lu: O = (v, 2) € H}, where [, -] denotes the
duality pairing on H* X H Then by (H 1) and (H. 2) we can introduce a nonlmear
operator T: H — H* defined by -

BN

[T(w, o), (v, A ]~Zfa,xV +g)(x) dx+B((w,a) (v, 2))
, (3.12)

for all (w, ), (v, 2) € H. Consequently, if we set, in the weak formuiatlon w: =u—§
€ Hr.(Q )s alternatlvely, we ma.y write (3.10) in the form of an operator equation for
the unknown (w, a): -

;

where,F € H* is defined by

- Fv, 2) =f/vd:z:— B((g, 0), (v, /1)). - | _ (3.14) .

~We remark that the bilinear form B is bounded as a consequence of Lemma. 1, and the -
trace theorem. The operator equation form (3.13) then allows us to dicuss the solv- -
ability of the variational equation (3. 10) by the theory of monotone-operators.

T(w, o) =F, , . ;o , (3.13)
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4. Existence and uniqueness

’

To ‘apply .the theory of monotone opera.tofs, ‘following NEGas [14] and OpEN [15], '
we need to make further assumptions on the nonlinear: coefflcxents a; in (3.10).

- We con81der the followmg condltlons

(H 3) Coercweness condztzon There exist a constant C, >0 and a functlon C..'

¢ L‘(.Q ) sich’ that Z’ aiz, a) a; 2 Cy a2 — Cy(z) for all a = (ocl, &g, aa) € R3 and

foralmostallxﬁ.Q‘ , o T T

(H.4) Monotony condition:

\

E,[\’]ca

(aiz, @) — @@, @) (3 — &) 20
i - . . '
for all a, &', € R3 and for almost all x € 2.

" (H.5) Strict mmiotony'cmzdz‘ticm:
: 3 - - A ,
qzwmm;mmeM—mw>o
= /

;-

foralla +=a’ ¢ R3 and for almost all z € Q-.
. (H.6) Strongly monotone condztum There exists a constant u > O such that

Z (8(1, (x, a)/ao‘l) & 57 Z I 2 &2

v]l

v

for all§ = (E,, &, 53), o= (al, xy, o3) € R? and for almost all z € Q.

Clearly these conditions are not mutually exclusive. Hence our main results can-
”'be summanzed in the following theorems dependmg on the assumptlons on a;-

~Theorem_1: Suppose that the coefficients a; satisfy the assumptions (H. 1)—(H 4)
Let P: H — H* be the operator defined by (3.12) and let F € H* be the bounded linear
__ Junctional defined by (3.14). Then there exists a solution (w, a) E 'H of the equation (3. 1‘3),
and the solution is umqwz if (H.5)is Satzs/zed -

Theorem 2: Under the assumption (H.1) and (H.2) tke opemtor T is continuous
and bounded. Furthermore, if (H.6) holds then T is strongly monotone i.e., there exists
« constant u > 0 such that ‘

[T(w;.0) — T(v, 1), (w, 0) — (v, D 2 ulw, o) — (v, A)llix : 4.1)

" for all (w, o), (v, %) € H, '\and hence T is coercive on H; i.e., -

lim  [T(w, o), (w, o)}/ll(w, U)Iln = +0<> , - (4.2)

(X u)||H—>+oo

.~ We remark that Theorem 2 1mp11es that the equation (3.13) Kas a unique solution..

. The proofs,of these theorems are tedious and lengthy, but the arguments here are
straightforward if one is familiar with the theory of monotone operators (see, e.g.,

NECas [14])..To facilitate the proofs, let us first make some observations: We note -
that the boundary operators corrcspondlng to B in the.definition of the nonlinear -

’operator T of (3.12) possess all the nice properties. In partlcular we see that in addi-
, tion to being bounded, A )

|wwmmw£0wammnm S (a:3)

’

. ~

7
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' .

for all (w, a) (v )) € H B satisfies the mequahty, L : ) - ,
L, o -
B((w, ), (w, o) = p lol-simers V(w,0) € H, ‘ S 44

whlch follows from (3.11), (3. 5) and (3. 7) Hence the operator T is completely domi-
nated by the nonlinear term in T, i.e., the Nemytsky operator A;, defined by

Mmeww@vm+mm)" ‘ . f (4:5)

The assumptlons (H 1) and (H.2) snmply 1mply that A;isa contmuous map from
H\(Q- ) into L2(22-) and the inequality - -

A aoliney < O{VOI (-Q )+ Jw+ 9|u'(0 ) + ||¢.||1.'(D N . .‘ (4 6)

holds for all w € H,- (£2- ) As a consequence of (4 3), (4 6), we have the followmg s
lemma. s . . “ .

Lemma 2: Under the assumptions (H.1) and (H 2) “the opemtor T H - H* has ‘the >
following properties: o PN ) I
(i) T is bounded. ‘ '
(i) There exists a constant My > 0 such that "A.u/"p(;} V< C]l(w, o‘)j]u for all
(w, 0) € W, |[(w, o)flu = Mo. N
. (i) 'I‘ is conlinuous. - . ' : .

Itis easy to verlfy that- the constant ‘M, in (ii) is gnven by
12 <
M, = {VOl (27) + 19130 + Z “¢>i”w9-)} -,
' TN

- The assumptlon (H.3) naturally gives ‘the coercxveness property of T.(4. 2) as can
be. seen in the following. We may write from (3.13),

~ .. . -

-, .
- ‘ §f (xV(u-{—g(x)) xdx v

- = Z fa.(x, (x)) - (w g) dx S >
—mwM@M+Mwoyﬂ) . : : RPN
and hence from (H.3) together wlth (4.3) and (11) in Lemma 2, we have -
3 ' : [ S

2. ui(x, V(w + §) (x)) 6_w e ' s A : . -

i=1 - - azl . - - ..
K i : N ; .
20w+ §lives — ICalve- — C l|(w, o)llu I|§||u'm Yo . :

for all (w, a) € H with ||(w, O')”[{ =M, Consequently, we deduce from 3. 12) (3.4)
and (4.4),

['l‘(w: U)’ (w’ U)]
i(w, o)|ln

N

zamWﬂm—cmwwwwww&mwww

for all (w o) € H with (2, a)]lu M,. This proves that T is coercive on H
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Similarly, it is not difficult to verify that
e (T, 0) — T, ), w,0) — (0,2)]
=B((w, 0) (@, 4) (w, o) — (0,7))

+ 2 [l Vw(x)-a,(  Vila ))}{22’.’ j;’}dx L ah

with @ =w + § and D= + g Because of (4 4) the monotomcmy condltlons will ~
“be determined by the second term on' the nght hand side of the above equahty and
.thus by the conditions (H.4) and (H. 5) ] ~ ,

- To complete the proof of Theorem' 1, we rema,rk that the contmmty of T
implies the hemlcontmmty of T, i.c., the mapping

Rt [1{w, o)—{—t(p, 8)), (@, /)]e R.

is contmuous for all (w, a) (p, (v )€ . Moreover T has the property (see NEGas
[14: Theorem 3.3.14]): . AL

(M) Lel (W, 3,)} be a scquence of H. Suppose thal (w,,, 0,) converges weakly to (w, o) T
and-T(w,, ¢,) converqes u,eukly toF u,zth lim sup [T(w,, or,,) (w,,, a,,)] < [F, (w, a)], then
. T(w o) =F. T | Rt .

We also note that the continuity of T 1mphes clearly, the demleontmulty of T, L
namely, if (w,, )’ converges to (w; o), then T(w,, dn)rconverges weakly to'T(w, ¢). Now,
property (M), coerciveness, demleontmulty and boundedness of T 'implies that. T is

~sur]ect1ve (see NECas [14, Theorem 3.3. 6]). The rest of the proof follows ea.snly

To complete the proof of Theorem 2,it remains to show that under (H.6), T
-satisfies the strongly monotone condition (4.1), since the coerciveness of T is a 81mple
consequence of (4. 1) We proceed as followe We note that we may write . -

.V a,(x Vw(x)) — a, x, V'v(:c f 2\ 8 x a(x, ) {%b - %} di

- w1th a(x t) = Vv(x) + t(Vw(x) -~ Vv(x ). Then (H 6) yields

T Z f 1&, z, Vw(x)) — a; (x, W(x))} {— - 7} dx

IS

" “The result then follows from (3.4), (4.4) and (4.7) W
‘ : ' b i

’

5. Galerkin approximations - .

To formulate the Galerkin approwmatlons of the solution. of (3. 10 , we let {H,,},,Es be
a family of finite-dimensional subspaces of H such that u {H,: k € S} is dense in H,
' . where the parameter % is in an index set 'S and represents, without loss of genera,ht,y,
a measure. of the sme of the correspondmg finite elements Then the Galerkin approxi-

o . ) : . . N
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~ .

mation of the solution'(w, o) of (3.15)‘ is defined as an element (wh, o) € H, satisfying
the Galerkin equations SR . ' ’ .

([T, o), (P IN] = [F, (oA M) | GRS

for all (+*, A%) € H,. Clearly, the existence, uniqueness as well as the convergence of
the Galerkin approximations (u*, o*) of (5.1) depend heavily on the assumptions of
the nonlinear coefficients «; in. T. From Theorem 1 in Section 4, we know at least
that there exists a unique solution (w, ) € H of (3.13), provided (H.5) is fulfilled in
-addition- to the assumptions (H.1)—(H.3); In this case,-one cah show that .there
exists a unique Galerkin approximation (w*, 6*) which has a subsequence converging
only weakly to the exact solution (w, o) of (3.13). On the other hand, the weak con- -
“vergence of the Galerkin approximations can be improved by the strongly monotone
condition (4.1). However, in order to obtain some kind of rate of convergence, an
additional condition will be needed in contrast to the linear problems (see MICHLIN
' [12])., For this purpose, one will introduce a Lipschitz condition below. We recall .
that T: H — H* is Lipschitz continuous if there-exists a constant k& > 0 such that <

‘

M, 0) — T, Dlle S £ fiw, 0) ~ (0, e - (5.2) -
for all (w, 0), (v, 2) € H. As will be.seen, a sufficient condition on‘the nonlinear coef-
ficients a; tocnsure (5.2) is the fo}llowing one: I

- (H.7) Lipschitz condition: The partial . deriva.:tives ou;(z, a)/a_bs," (#7 =1,2,3)
satisfy the Carathéodory conditions (H.1) and there exists a.constant Cy > 0 such
that |8ai(z, @)[dx;] < Coi, 7 =15 2,3) for all @ € R3 and for almost all z € Q-.

To establish ‘(5.2), it suffices to. show that the -Nemytsky operator A; defined by
(4.5) is Lipschitz continuous on H}(2-): We denote that under conditions (H.1) and ~
(H.2), A; is a continuois map from HY(Q-) into LX) For w =w 4 § and % = -
v + § € HY(R2-), we have by the definition of A;, ' . '

C A — Ao 1='f Ius(x, V&;(x)) - ui(x’_ Vﬁ(z))lz dx
: : Q- . T

1

. N ) _ /
1 . . 2,

where a(z, 1) = Vi(z) + ¢(Vis(z) — V#(x)). It follows from (H.7) that

-
-

. 1 ) ) .
5[ o C(ew  aw) I
]=2; fx “i(x) G(I,‘t)) {a—x b a_x,} dl
0

dz, -

i i

v

1A — Aplliso < 3CE b — B3 S C lw —~ vlfier

which proves.that A;: HY(Q-) = L¥(0-) is Ljpséhitz continuous. ., | .
_The following result concerning the error estimates of the Galerkin approximations .

_can now be easily established. S0 " C- ‘

Theorem 3: Suppose that the assumptions (H.1), (H:2)', (H.8) and (H.7) are ful- - :
filled. Let (w, 0) € H and (u*, o*) € H, be the unique solutions of the equations (3.13)
and (5.1), respectively. Then, there exists u constant C > 0 independent of h.such’that
i, o) — @A @Ml S € inf Jw, @) — (A, M. . (83)
o (0", A% eH, L . )
We remark that ag in the case for linear problems, this simple, yet crucial A.est,imate ‘
(5.3) shows that the problem of estimating the error between the solution (w, 0) and
the. Galerkin approximation (w”, ¢*) is reduced to & problem in the approximation .

'

A
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tvheor.y' We further comment that for the humerical implementations, one generally . ~ -
“does not solve (5.1) exactly. This leads us to consider the following modification of
- (5.1). To this end, let, T,: H, — H,* be an operator that approximates T on the sub-

space H,, and let F, € H,* be an approximation of F on H;. Then we redefine a

.Galerkin &pprox:m&txon of the solution (w, o) of (3.13) as an element (wy, a,,) € H,
' (1f it exists) such tha.t . 4

[Taan, 00), @3, ) = [Ba(A, L - ERCE)

. for all (v" e H,,, where [+, -] denotes the duallty pairing on H,,* X Hy. As far as

the existence of a solution of (5.4) concerns, it suffices, from Theorem 1, to assume
that.T, is a, continuous, monotone and coercive operator on H,. Since H,.is flmte- )

."dimensional, the.monotonicity of T, implies that T, is bounded (see ODEN [10
" Theorem 27.3]). Slmllarly, from Theorem 2,-we see that therc exists a unique solu-

tion of (5.4) if T, is continuous and strongly monotone on H,. We now summamze 5
these results in the following. theorem

Theorem 4: Suppose that the coefficients-a; satisfy the assumptions (H.1), (H.2)

~ l(H 6) and (H.7). Let F, € H,* be an approximation of F; and let Ty: H, — H,,* be an

approxmmle operator of T with the properlzes ’ ’

\i) T, is-continuous. !

(11) T, 2s uniformly strongly morwlone, ie., thére exist constiants hy > 0 and u, '>,'0,'
zndependent of k, such that o S o
) I i \
N & WORPAT L.(v* i), (u,.; ) — (o I 2 oo ll(n, ) = (2, e
. for all (us, %), (o, %) € H,, and /or all b € (0, hy). _
Then (3:13) kas a unique solution (w, ¢) € H and (5:4) has « unzque solutzon (s, 04)
€ 1{,l M oreover, the followmg estimates hold /or all b € (0, hy):

,;‘)

SN o A CFy @, ) — [F, (&, M)l
’_ ||(un 0') | (u,,,, O'h)”H =C {(ZA;U)E)HA - (2", 6" e

h,8%) %0
MM+ \

~

+ inf (u<w,a)—(w,z")un |

el (o ety
> ' . :
+ |[T('U", )'b)) (2'.’ 6")] — [Th(?/‘» lh)) (zh) 6h)]h|
i (2,0 eH, iz, 6")”“ ' h
(z",0%) 0 .

where C > 0 is a,consdtant independent of h. '

The proof of the ihetjuality (5.5) follows in the bsame manner as for-the linear prob-
lems (see, e.g., Cmrlet [1]) We omit the details.

To conclude this paper, we remark thab in GaTICA [4],an exphclt operator T, will
be given to possess the properties of (i) and (ii) in Theorem 4, and specific error esti-

. mates based on (5.5) will be also available for a family of fmlte element subspaces
- (Habrco.n-

’
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