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Es werden die abzählbar erzeuten geschlossenen O-Vektorraume 4 durch eine notwendige 
und hinreichende Bedingung charakterisiert, furdie'die starke Operatoreritópologie die feinste 
lokalkonvexe'Topologie auf 4 ist.	 S 

aeTcH IIeoGxO;JjlMoe H IOCTaTOMHOC yciiosie pJ1H C'IëTHO nopoHëHILbiX 3aMI$HymIx O-nex 
TOHbIX npoCTpauCTn It AJIH KOTObIX cHJIbHan onepaopiian TOUOJIOI'HII RBJIHCTCH Club-
HellLueü uioIaubIIo nblnyKulofl Tononorilefi Ha cit. 

The countably generated closed O-vectr'spaces 4 for which the strongoprathr topology is 
the-finest locally convex topology on a are characterized by a neceksary and sufficient condi- 
tion;  

,The objective of the present paper is to prove a theorem which characterizes those 
'countably generated closed 0-vector spaces cii contained , in .t(2)) foi which the 

•	strong qperator topology on cit coincides with the finest locally convex topology on••'' 
- . 4. This theorem generalizes the assertion. of Theorem 3 in [1]. Examples and applica-

tioiis of-thisresult are given in Section 2 of [F]. Further, our proof as given below 
•	fills.a'gap contained in thepro9f of Theorem 3 in [1].-  

We collect the terminology used in this paper (see e.g. [2]). Let 2) he a linear sub-
space of a Hilbert space -X. An 0-vector space it on 2) is a • linear subspaceof closable 

• linear operator with domain 2) such that 4 contains the identity map I of 2). The 
graph topology t t is the locally convex topology' on '2) generated by the seminorms 

•

	

	: = M a. I[, .a E it. Let 2)(4) be the completion of the locally convex space 2[L]. 
considered as a . lihear subspace of 0 {(): a E c4}. The 0-vector,space 4 = (d r 

a E cit}. is called the closure of cit. By .(2)) we mean the set of all closable 
linear operators a' with domain 2) such that a2) -2), '2) 2)(a') and a*2), D. 

•	

'

 

The-strong operator topology a- on 4 is the locally convex topology defined by the 
family of seminorms j . I!q, : =	q E 2). The finest locally convex topology on  is 
denoted bY Tst.	.• .	.	 ,	 ..	S	 , 

The, result mentioned, above is the following  

/	T  e ore m: Let cit be an 0-vector space on 2) with countable algebraic basis. Suppos,e 
that cit	.t(2). Them the following two statements are equivalent:  

(i) The strong opera1o'topology , on cii is equal to the finest locally convex topology ; 
oncit.  

-	(ii) For each continuous seminorm p on 2)[1] the vector space := U {a E c/i: 

1[a II ^ 2p(p) for all E 2)} is finite-dimensional.	'	-, -	 S 

Proof: Upon replacingcit by its closure Xwe an assume withputoss of general-
- -	ity that 4 is EkIready clbsed. First we verify the implication (i)	(ii). Assume to the: 
•	-	contrary that the space 41` is infinite-dimensional for some continuous seminorm p 

S	 -	-



I 
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on 2)[t]. Then.therë is. a linearly independent subset {a n E N} of aP such tha 
IIa	p() for n E N and hil T E 2). Sine	= r on4by (i), for . each- seminorm 

• q on 4 there are vectors ,	E 2) such that q(a)	ILa iII + ... + 11aipj for all
a, E 4. If we take a se,min6rrn q such that - q(an ) > n for n E N, we obtain thedes 
red contradiction.	.	 . .	. 

Now we turn to the proof of (ii)	(i) which is the main assertion of the theorem.
The proof will be divided into five steps In case where it is finite dimensional the 
assei'tion follows immediately from	..	s	 •' S 

Statement 1 For each finite dimensional O'vector space a on 2) there are finitely 
many vectors 	E 2) such that x'-- max ( I jx$ 1 11, , Ix dI} defines a norm on 

Proof: Let	be a north on	and let f be the unit sphere of ('IIIIII) . For' 
x E there is 	E 2) such thatx	0. By the compactness of T, the open covering 

{y E T: y + 01; x  c, of X has a finite subcbzér, say V2,....,	Letting 
•	'	:=	for j = 1,...., vi,- the assertion follows I	 5 

Statement 2: There is a sequnce (as ; n E N0)'o/ 'operathrs from	with 'a0 
such that

the graph topology 1,4 on 2) is generated by the seminorms 

p(çv) = iIao	-f	+ IIa IJ,	n E N0	 (1) 

sup (Pn() P.	9) E 2)} = + 00 for n E N; (2) 

supl{pn() (Pn-i(9')	IIxcII)-i q E 2)} <+oo for each 

XEuV"\ AN- and nEN. 

Proof First we construct indicti''elv ' sequence (a n E N0) such that (1) and 
• .	(2) are fulfilled; Since A has a.countable basis, there is a sequence (be ; n E N) of 

operators from'c,'Vsuch that'1,4 is geneiated.by the seminorms	n E N. Let a0 : = I. •

	

	If a0 ,..., a,.+ are already chosen, let -rn be the smallest natural iiumber for which 
sup {llbm pn() _ i : E 2)}= +00. Such an m E N exists, since otherwise 4 = 
and 4 would be finite dimensional Defining a,1 =bm, (2) is satisfied in the case 

•	ofn+1	••	•'	 S	 .	 - : 

Next ve show how in addition (3) can be-fulfilled. Suppose that the 9uprenitim in 
(3) is infinite for some x E 4Pft and h = k E N. Then we replace (as ) by the: 
new sequence (a0, :" ak _, x, a,, ...). To verify (2) for the latter, it suffices to do 
this forn = k and for n = k ± 1. From	it follows (2) in case n k; Since
the supremum in, (3) is infinite for x and .n = k, we get (2) for n F='k + 1. Since all 
spaces	 n' E N0, are finite-dimensional, by an inductive argument this procedure
can be continued until (3) is satisfied I 

We keep the sequence . (as ; n E N) from Statement 2 fOied. Let 4 0 :'= ,4Po . For 
n E N, we choose a • linear subspace of the (finite-dimensional!) vector space 
oQ" such that c4 Pn is the direct sum of 4n and AN— 'o. A. E N0 . Let {a 1 , ..., 
be a base of the vector space	Without loss of generality we assume' that jjan r J • 

s •,	• p,p) for E 2), r =1, ..., d:Define a norm ilIIfl Onan by 111 ,E 2ran, III:=E 

where .2,'. •, A E C. Clearly,	411:11 is"the vector space of all bOunded operators 
contained inj,,4 and IIxoi l	IH xojII fQr all x0 E 40 

• .

	

	Because of (1), cit is the algebraic.direct sum of the vector spaces 4, n E N0. That • - 
is, each x E cit can, be written in a unique way as a finite sum,x.= ' x, with x, E '.4, • - 

'I	./.	•	•	•	 -	.•	 S •	S	 •	5'
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For each positive sequence y = (y n E ?1 O) we define a seminorm q on by q(x) 
= (L ll I Ix 111 2 ) 1/2 for x' =' ' xe .' Since the topology rst on 4 is, of course, generated 

by the family, of seminorms q,it suffices to show for each positive sequence y '= (yb; 
•	fl E N) there are vectoth	, ..,	E , 1 E N . such that q(x) ^ max {tJziII, •••

I1x zII}'for alIx E 4. From now on .lety = (y,; n E N0))be.fixed.  

Statement 3: For each n 'N there' is an; e, > 0 such that  

IIx ll	Ilix ill (npn() - pn—i()) V  E 14 n and	E	 (4) 

Proof Assume that the assertion is false for some n E N. Then there are operators 
Xk E ' 4 and vectors k E .such that-   

•	
,	 'IkkkIl< IIIxkIIl (

	
n() '	Pn1(k)) for k 	'.	'

	
(5) 

After forming if necessary we can assume that Pn(i) = IlI x ñI =1 for all kEN. 
'Then, by (5), !XL. k II	0 if k -* oo and P.i(k) , 11k for k E N. By the compactness 
of the unit sphere of the finite-dimensina1 space	Ill•jIl); there is a subsequence
of' (Xk) converging to some x E 11,, x + 0. For simplicity -we assume that already 
lim I II ±k — x lii = 0. From II(xk	x) 99d	. iIIk — x lii Max Ijafl q k -c . III xk	x111 

Pn(i) = 'llI Xk — x lii - O ' and iiXkkll —0 if k-+do we conclude. thatjIx kii - 0 if 
k	oo. Therefore,  

sup Pi) (Pn—ik) + ikk!l).'	sup .(
	. iiii)	.= +' 

kEN,	'	'	'	keN .	k  
Since x E c4" ,\ 4P— , this contradicts (3) I 

	

Statement 4 There are numbers r > 0 and I E I'i, a double sequcnce	n, m - 
. E NO )  of positive 'numbers and sequences. (kn; n E N), k. =1; :.. ,l, o/ vectors, from ID'. • 

such that/Or all k = 1, - ., 1 and n E N the following is satisfied:  

max iixo,oIi	(so + /& ± Yo) j I x fl for X E40	 (6) 

Pn(kn)	E.1 (Am + Yn + 26n -' Dn-l) + 1 +Pn(9'km)	ann	(7) 

Ptn(Wkn) ^ O;2" ^ e02 if in. E N0 , m <n	 (8) 

O nn = Onm	I 	Pn(k3) if  EN0, m <n; .	'. (9) 
r.s<n.	 S 

(xrkn, Xskm) = 0 if m, s, r E N0 , m < n, r	ii s	n,	 (10) 

xrEc/r' and xsEc.4a;	.	.	,	'I 

	

600	—601	0n 

	

=	10	oil	> 0	 (11) 

	

• -	— anO	an	• 1..	. •	,':'	•	•	-	S. 

n–i  
(Here weset 6n1	=	=	;.:	0 incase n. = 0.)	. ,.	•	•	 - 

•	m1	r3<n	 .	'	•  

	

Proof: Applying Statement 1 to the'finite-dimensiOnal vector 'space c4' there are	• . 

unit vectors ,	, j E	1 E N such that go( . ) = max (II iiIi,	Ii 11} is	norm
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on 40 . Thus there is an o >0suchthatq0 ( .) 	I on A. Now take apositiye 
number 6o e0 1 such that. oo	e1 Yoo + Yo 4. 1 = :2 and set 940 
k	1, !. .,.i. Then (6) and (7) in case n. =' O are fulfilled. 

We continue by induction. Let n E N. Suppose that j a'nd kI for i, j, k, 1 E N, -
n - 1, ^ n —.1,k ^ lare chosen such that (6)—(11) are true in that case. 

First take number 3 m	ânm, rn = 0,..., n - 1, such that (9) is satisfied. Since 
D_ 1 > 0 by induction hypothesis, there is a 5,,,	en-' such that D > 0 and, for 

•	lc=l,...,l,.	 .	S	 S 

6 > i 
(V6n + Y + 2a . _)± 1 +n(km) 

-	 S	
m=1.,f	 . 

Let S be the linear space of XrX8 km, where Xr E '4r' x, E	s, r E No, -m <n, 
r ^ ii, $ ^ n. Since, the vectors q'km .are in 2) and cit	2'(2)); is a well-defined
finite-dimensional subspace of D. We check that  

Su
p	 E 2),q rhO and q' _L 61 = +00.	 ..	(12) 

Assume to the contrary that the supremum in (12) is finite, say equal to 2. Let e- be; 
the orthogonal projection with range N. Since the operators a 1 , . . ; a are, of course, 
bounded on 6 1 there is a a> 0 such that pn(eq')	.t 11 9? 11 for 99 E D. 
Thus	 S.'.'. 

p)	p((I - e) ) + p(e)	2p 1 ((I - e) ) + P;() 

	

"S .

)p () ±0. + 1)	().+ 2Ia. + ) p -) for q9. E. 0- 

-	which contradicts (2). Lei; k E {1, . ., 1. Because of (12), there is a vector Pkn E 2)' 
'	such that Pkn' .1. r, and . Pn(Pkn) > 2knOnn2 11pn_ 1 ( kn ) ; After multiplication by some 

•	constant we get Pn( fPkn) =	Since Pm ( S )	p,,_) for rn	n -- 1, We thus obtain
(7) and-(8) in ease of n. (10) follows from pkn .1. 6 U . 

Let k E (1, ..., l). From (1) and (7) it follows that (ip	 'kfl; n E N0) is a . 

Cauchyséquence in the complete locally convex space [/] Hence there is a vector 

E 2) such that q = 1 - lim q. That i; we have Xk E x k,for each x E cit in 
the norrh of X.	' n-00 n=o	- 

-	.. 
•	Statement 5.: max	q(x) for all x  c/t.  

k=1..... I	 .	 -. 

Proof: First fix a Ic E (1, ..., 1). Suppose m, n E N0 , m <-fl: Using (7)—(10), we 
.get for i = 1, ..., d,,, and j = 1, ...,d,,.	.	. - 

•	.	Kamk, a ik)I .	S	 ,	 -	 S	 •	 •	

'	 N 

I(ami7kn, afl , kfl )I + Z . am97 , afl jpk,)I -4- Z (amjpkrafljpkr)I	S 

r,8<n .	 T^lfl+1	.	 . 

Prn(q n) Pn(99kn) + E Pm((Pkr) Pn(9ks) +	' Pm ('Piir) Pn(r) 
t.8<fl	 •-	 ' Tn+j 

+ Z	+ " 22_	ômn. 
4<n* ' r^fl+1  

By the definition of the norm I fl . ffl this yields	- • . . 
•	

'	 I(m, X)I	IIkmIII ffl x III ma Kam	 91/C  

S	 ^6mn ImIHJIlXnhII for Xm E	and x E c4	 (13)
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By symmetry, (13)is true for , all m,m E Nwith.n + m. Let n EN0: Sinceô,r 1 and 
hence Pn(kr)	for r >'n, it follows from (8) and (7) that 

00 fl — i	 n—i 

IPn(Pk)	Pn(t7 kn)I	E P(') ,+ L'Pn(c'km)' 1 + .Pn(km) 

	

r=n+i	-	mO	 m=O 

and Pn(Pk)	pn( q') + ö,,,	26, By this and (7),	 —' 
0	

nPn(Pk) - Pa—i('Pk).  

1P	 M=1 
- 1 —EPfl(9km)} - 2ôfl _ i flj = 'öflfl + Yn  

•	for E N Combining the latter with (4), we get  

lXfl9kII 2	(s,,,, Lf y,) lllxnl 11 2 for x E <.4	nd fl E N	 (14) 

Let xO E <• Since Jjx O jj	IIxoIII, (8) yields	
• 

IlXOk	11X09401I - 
m=i  

•	.	
-	IkooII -	lixoll eo2	IiXokI[	II IoI II' 

tn=i	 00	 'S	- 

for k = 1, .1 Combined with (6) this gives 

Max IIXokII2 —yo IIIXOIII2	600 111X01111. (15) 
k=1..... 1  

Now let x E 4. Werite x as a finite sum x = ' x,, with X E <.4 < . By (13) and (14) 
•	,, we havéfor k = 1, 

.
I  

II XMk— q(x)=Z. tJnkM—	IIkHI 2 +	iKxm, xflk)I  
•	:.	n 

•	'	.	.'

 

JjXOqqkjj 2 yo HI xoiII 2 + EÔán III n IiI 2'	rnn 111111 IIXnIIL. -	 '	 fli	 Tfl*fl 
•	Therefore, by(15), '	• *	,'	,.	-	.	.,	 •. 

•	'	'	(maxJjxj\2 - qy(x)	n IIkn UI 2	E ómn III xmUI IIXnIII; '. • - .	<k=i..... I -.	-	 fl	 m+n	, 

•	From (ii) it; follows that the latter is non-negative.  

•

	

	Remark: The preceding proof actually shows the following: Let <.4 be as in the
Theor ,m and assume that (ii) is fulfilled. If the (finite-dimensional) vector space' 

- <.41111 of all bounded operaors in 154'has a'separating'set consisting of 1 vectors 99, ..., 
q : E . (i.e, if x E'.41Ifl satisfies xq = 0 for k = 1, .. .,.l, then x = 0),, then fo'r each 
'seminorm q 'on <.4'here are'l vectors T,, ..., € D such that q(x) ;Z•'nia {IIxII,,.... 
1I490 for all x 1€ <.4. In particular, if the multiples of the identity are the only bounded-

	

•'operators, in <it, then 'already one vector 99, E . is sufficient.	
5	

0	•	•




