A Note on the Strong-Operator Topology of Countably Generated O-Vector Spaces

K. Schmüdgen

Es werden die abzählbar erzeugten geschlossenen O-Vektorräume \mathcal{A} durch eine notwendige und hinreichende Bedingung charakterisiert, für die die starke Operatorentopologie die feinste lokalkonvexe Topologie auf \mathcal{A} ist.

Даётся необходимое и достаточное условие для счётно порождённых замунутых О-векторных пространств \mathcal{A} для которых сильная операториая топология является сильнейшей локально выпуклой топологией на \mathcal{A} .

The countably generated closed O-vector spaces \mathcal{A} for which the strong operator topology is the finest locally convex topology on \mathcal{A} are characterized by a necessary and sufficient condition.

The objective of the present paper is to prove a theorem which characterizes those countably generated closed O-vector spaces \mathcal{A} contained in $\mathcal{L}^+(\mathcal{D})$ for which the strong operator topology on \mathcal{A} coincides with the finest locally convex topology on \mathcal{A} . This theorem generalizes the assertion of Theorem 3 in [1]. Examples and applications of this result are given in Section 2 of [1]. Further, our proof as given below fills a gap contained in the proof of Theorem 3 in [1].

We collect the terminology used in this paper (see e.g. [2]). Let \mathcal{D} be a linear subspace of a Hilbert space \mathcal{H} . An O-vector space \mathcal{A} on \mathcal{D} is a linear subspace of closable linear operators with domain \mathcal{D} such that \mathcal{A} contains the identity map I of \mathcal{D} . The graph topology $t_{\mathcal{A}}$ is the locally convex topology on \mathcal{D} generated by the seminorms $\|\cdot\|_a := \|a\cdot\|, a \in \mathcal{A}$. Let $\mathcal{D}(\hat{\mathcal{A}})$ be the completion of the locally convex space $\mathcal{D}[t_{\mathcal{A}}]$ consideréd as a linear subspace of $\cap \{\mathcal{D}(\bar{a}) : a \in \mathcal{A}\}$. The O-vector space $\hat{\mathcal{A}} := \{\bar{a} \mid \mathcal{D}(\hat{\mathcal{A}}) : a \in \mathcal{A}\}$ is called the closure of \mathcal{A} . By $\mathcal{I}^+(\mathcal{D})$ we mean the set of all closable linear operators a with domain \mathcal{D} such that $a\mathcal{D} \subseteq \mathcal{D}, \mathcal{D} \subseteq \mathcal{D}(a^*)$ and $a^*\mathcal{D} \subseteq \mathcal{D}$. The strong operator topology $\sigma^{\mathcal{D}}$ on \mathcal{A} is the locally convex topology defined by the family of seminorms $\|\cdot\|_{\varphi} := \|\cdot\varphi\|, \varphi \in \mathcal{D}$. The finest locally convex topology on \mathcal{A} is denoted by τ_{st} .

The result mentioned above is the following

Theorem: Let \mathcal{A} be an O-vector space on \mathcal{D} with countable algebraic basis. Suppose that $\mathcal{A} \subseteq \mathcal{I}^+(\mathcal{D})$. Then the following two statements are equivalent:

(i) The strong operator topology on $\hat{\mathcal{A}}$ is equal to the finest locally convex topology τ_{st} on $\hat{\mathcal{A}}$.

(ii) For each continuous seminorm p on $\mathcal{D}[t_{\mathcal{A}}]$ the vector space $\mathcal{A}^{\mathbf{p}} := \bigcup_{\lambda>0} \{a \in \mathcal{A} : \|a\varphi\| \leq \lambda p(\varphi) \text{ for all } \varphi \in \mathcal{D}\}$ is finite-dimensional.

Proof: Upon replacing \mathcal{A} by its closure $\hat{\mathcal{A}}$ we can assume without loss of generality that \mathcal{A} is already closed. First we verify the implication (i) \Rightarrow (ii). Assume to the contrary that the space \mathcal{A}^p is infinite-dimensional for some continuous seminorm p

426 K. SCHMÜDGEN

on $\mathcal{D}[t_{\mathcal{A}}]$. Then there is a linearly independent subset $\{a_n : n \in \mathbb{N}\}$ of \mathcal{A}^p such that $||a_n\varphi|| \leq p(\varphi)$ for $n \in \mathbb{N}$ and all $\varphi \in \mathcal{D}$. Since $\sigma^{\mathcal{D}} = \tau_{st}$ on \mathcal{A} by (i), for each seminorm q on \mathcal{A} there are vectors $\psi_1, \ldots, \psi_k \in \mathcal{D}$ such that $q(a) \leq ||a\psi_1|| + \ldots + ||a\psi_k||$ for all $a \in \mathcal{A}$. If we take a seminorm q such that $q(a_n) > n$ for $n \in \mathbb{N}$, we obtain the desired contradiction.

Now we turn to the proof of (ii) \Rightarrow (i) which is the main assertion of the theorem. The proof will be divided into five steps. In case where \mathcal{A} is finite-dimensional the assertion follows immediately from

Statement 1: For each finite-dimensional O'vector space \mathcal{B} on \mathcal{D} there are finitely many vectors $\xi_1, \ldots, \xi_l \in \mathcal{D}$ such that $x \to \max \{||x\xi_1||, \ldots, ||x\xi_l||\}$ defines a norm on \mathcal{B} .

Proof: Let $||| \cdot |||$ be a norm on \mathscr{B} and let \mathscr{S} be the unit sphere of $(\mathscr{B}, ||| \cdot |||)$. For $x \in \mathscr{S}$ there is a $\xi_x \in \mathscr{D}$ such that $x\xi_x \neq 0$. By the compactness of \mathscr{S} , the open covering $\mathscr{V}^x := \{y \in \mathscr{S} : y\xi_x \neq 0\}, x \in \mathscr{S}$, of \mathscr{S} has a finite subcover, say $\mathscr{V}^{x_1}, \ldots, \mathscr{V}^{x_m}$. Letting $\xi_j := \xi_{x_j}$ for $j = 1, \ldots, m$, the assertion follows

Statement 2: There is a sequence $(a_n; n \in N_0)$ of operators from \mathcal{A} with $a_0 = I$ such that

the graph topology $t_{\mathcal{A}}$ on \mathcal{D} is generated by the seminorms

$$p_{n}(\varphi) := ||a_{0}\varphi|| + \ldots + ||a_{n}\varphi||, \quad n \in \mathbb{N}_{0};$$

$$\sup \{p_{n}(\varphi) \ p_{n-1}(\varphi)^{-1} : \varphi \in \mathcal{D}\} = +\infty \text{ for } n \in \mathbb{N};$$

$$\sup \{p_{n}(\varphi) \ (p_{n-1}(\varphi) + ||x\varphi||)^{-1} : \varphi \in \mathcal{D}\} < +\infty \text{ for each}$$

$$x \in \mathcal{A}^{p_{n}} \setminus \mathcal{A}^{p_{n-1}} \text{ and } n \in \mathbb{N}.$$

$$(1)$$

Proof: First we construct inductively a sequence $(a_n; n \in \mathbb{N}_0)$ such that (1) and (2) are fulfilled. Since \mathcal{A} has a countable basis, there is a sequence $(b_n; n \in \mathbb{N})$ of operators from \mathcal{A} such that $t_{\mathcal{A}}$ is generated by the seminorms $\|\cdot\|_{b_n}$, $n \in \mathbb{N}$. Let $a_0 := I$. If a_0, \ldots, a_n are already chosen, let m be the smallest natural number for which $\sup \{\|b_m \varphi\| \ p_n(\varphi)^{-1} : \varphi \in \mathcal{D}\} = +\infty$. Such an $m \in \mathbb{N}$ exists, since otherwise $\mathcal{A} = \mathcal{A}^{p_n}$ and \mathcal{A} would be finite-dimensional. Defining $a_{n+1} := b_m$, (2) is satisfied in the case of n + 1.

Next we show how in addition (3) can be fulfilled. Suppose that the supremum in (3) is infinite for some $x \in \mathcal{A}^{p_k} \setminus \mathcal{A}^{p_{k-1}}$ and $n = k \in \mathbb{N}$. Then we replace (a_n) by the new sequence $(a_0, \ldots, a_{k-1}, x, a_n, \ldots)$. To verify (2) for the latter, it suffices to do this for n = k and for n = k + 1. From $x \notin \mathcal{A}^{p_{k-1}}$ it follows (2) in case n = k. Since the supremum in (3) is infinite for x and n = k, we get (2) for n = k + 1. Since all spaces \mathcal{A}^{p_n} , $n \in \mathbb{N}_0$, are finite-dimensional, by an inductive argument this procedure can be continued until (3) is satisfied \blacksquare

We keep the sequence $(a_n; n \in \mathbf{N})$ from Statement 2 fixed. Let $\mathcal{A}_0 := \mathcal{A}^{p_0}$. For $n \in \mathbf{N}$, we choose a linear subspace \mathcal{A}_n of the (finite-dimensional!) vector space \mathcal{A}^{p_n} such that \mathcal{A}^{p_n} is the direct sum of \mathcal{A}_n and $\mathcal{A}^{p_{n-1}}$. Now fix $n \in \mathbf{N}_0$. Let $\{a_{n1}, \ldots, a_{nd_n}\}$ be a base of the vector space \mathcal{A}_n . Without loss of generality we assume that $||a_{nr}\varphi|| \leq p_n(\varphi)$ for $\varphi \in \mathcal{D}, r = 1, \ldots, d_n$. Define a norm $||| \cdot ||| \text{ on } \mathcal{A}_n$ by $||| \sum_r \lambda_r a_{nr} ||| := \sum_r |\lambda_r|$, where $\lambda_1, \ldots, \lambda_{d_n} \in \mathbf{C}$. Clearly, $\mathcal{A}_0 \equiv \mathcal{A}^{||\cdot||}$ is the vector space of all bounded operators contained in \mathcal{A} and $||x_0|| \leq |||x_0|||$ for all $x_0 \in \mathcal{A}_0$.

Because of (1), \mathscr{A} is the algebraic direct sum of the vector spaces \mathscr{A}_n , $n \in \mathbb{N}_0$. That is, each $x \in \mathscr{A}$ can be written in a unique way as a finite sum $x = \sum x_n$ with $x_n \in \mathscr{A}_n$.

Statement 3: For each $n \in \mathbb{N}$ there is an $\varepsilon_n > 0$ such that

$$||x\varphi|| \geq |||x||| \left(\varepsilon_n p_n(\varphi) - p_{n-1}(\varphi)\right) \forall x \in \mathcal{A}_n \text{ and } \varphi \in \mathcal{D}.$$

Proof: Assume that the assertion is false for some $n \in \mathbb{N}$. Then there are operators $x_k \in \mathcal{A}_n$ and vectors $\varphi_k \in \mathcal{D}$ such that

$$||x_k\varphi_k|| < |||x_k||| \left(\frac{1}{k} p_n(\varphi_k) - p_{n-1}(\varphi_k)\right) \quad \text{for } k \in \mathbb{N}.$$
(5)

After norming if necessary we can assume that $p_n(\varphi_k) = |||x_k||| = 1$ for all $k \in \mathbb{N}$. Then, by (5), $||x_k\varphi_k|| \to 0$ if $k \to \infty$ and $p_{n-1}(\varphi_k) \leq 1/k$ for $k \in \mathbb{N}$. By the compactness of the unit sphere of the finite-dimensional space $(\mathcal{A}_n, ||| \cdot |||)$, there is a subsequence of (x_k) converging to some $x \in \mathcal{A}_n, x \neq 0$. For simplicity we assume that already $\lim_{k \to \infty} ||x_k - x||| = 0$. From $||(x_k - x)\varphi_k|| \leq |||x_k - x||| \max_k ||a_n, \varphi_k|| < |||x_k - x|||$ $p_n(\varphi_k) = |||x_k - x||| \to 0$ and $||x_k\varphi_k|| \to 0$ if $k \to \infty$ we conclude that $||x\varphi_k|| \to 0$ if $k \to \infty$. Therefore,

$$\sup_{k\in\mathbb{N}}p_n(\varphi_k)\left(p_{n-1}(\varphi_k)+\|x\varphi_k\|\right)^{-1}\geq \sup_{k\in\mathbb{N}}1\cdot\left(\frac{1}{k}+\|\varphi_k\|\right)^{-1}=+\infty$$

Since $x \in \mathcal{A}^{p_n} \setminus \mathcal{A}^{p_{n-1}}$, this contradicts (3)

Statement 4: There are numbers $\varepsilon_0 > 0$ and $l \in \mathbb{N}$, a double sequence $(\delta_{nm}; n, m \in \mathbb{N}_0)$ of positive numbers and sequences $(\varphi_{kn}; n \in \mathbb{N})$, k = 1, ..., l, of vectors from \hat{D} such that for all k = 1, ..., l and $n \in \mathbb{N}$ the following is satisfied:

$$\max_{j=1,\ldots,l} ||x_0\varphi_{j0}|| \ge (\varepsilon_0 + \sqrt{\overline{\delta_{00} + \gamma_0}}) |||x_0||| \text{ for } x_0 \in \mathcal{A}_0;$$
(6)

$$p_{n}(\varphi_{kn}) = \varepsilon_{n}^{-1} \left(\sqrt{\delta_{nm} + \gamma_{n}} + 2\delta_{n-1,n-1} \right) + 1 + \sum_{m=1}^{n-1} p_{n}(\varphi_{km}) \leq \delta_{nn};$$
(7)

$$p_m(\varphi_{kn}) \leq \delta_{nn}^{-1} 2^{-n} \leq \varepsilon_0^2 2^{-n} \text{ if } m \in \mathbb{N}_0, m < n;$$
(8)

$$\delta_{mn} = \delta_{nm} \ge 1 + \sum_{r,s < n} p_m(\varphi_{kr}) p_n(\varphi_{ks}) \text{ if } m \in \mathbb{N}_0, \ m < n;$$
(9)

$$\langle x_r \varphi_{kn}, x_s \varphi_{km} \rangle = 0 \text{ if } m, s, r \in \mathbf{N}_0, m < n, r \leq n, s \leq n,$$

$$x_r \in \mathcal{A}_r \text{ and } x_s \in \mathcal{A}_s;$$
 (10)

$$D_{n} := \begin{vmatrix} \delta_{00} & -\delta_{01} & \dots & -\delta_{0n} \\ -\delta_{10} & \delta_{11} & \dots & -\delta_{1n} \\ \vdots & \vdots & & \vdots \\ -\delta_{n0} & -\delta_{n1} & \dots & \delta_{nn} \end{vmatrix} > 0.$$
(11)

(Here we set $\delta_{n-1,n-1} = \sum_{m=1}^{n-1} \dots = \sum_{r,s< n} \dots = 0$ in case n = 0.)

Proof: Applying Statement 1 to the finite-dimensional vector space \mathcal{A}_0 there are unit vectors $\xi_1, \ldots, \xi_l \in \mathcal{D}, l \in \mathbb{N}$, such that $q_0(\cdot) := \max \{ \|\cdot \xi_1\|, \ldots, \|\cdot \xi_l\| \}$ is a norm

427

on \mathcal{A}_0 . Thus there is an $\varepsilon_0 > 0$ such that $q_0(\cdot) \ge \varepsilon_0 ||\cdot|||$ on \mathcal{A}_0 . Now take a positive number $\delta_{00} \ge \varepsilon_0^{-1}$ such that $\delta_{00} \ge \varepsilon_0^{-1} \sqrt{\delta_{00} + \gamma_0} + 1 = : \lambda_0$ and set $\varphi_{k0} = \lambda_0 \xi_k$, $k = 1, \dots, l$. Then (6) and (7) in case n = 0 are fulfilled.

We continue by induction. Let $n \in \mathbb{N}$. Suppose that δ_{ij} and φ_{kl} for $i, j, k, l \in \mathbb{N}$, $i \leq n-1, j \leq n-1, k \leq l$ are chosen such that (6)-(11) are true in that case. First take numbers $\delta_{mn} = \delta_{nm}, m = 0, ..., n-1$, such that (9) is satisfied. Since $D_{n-1} > 0$ by induction hypothesis, there is a $\delta_{nn} \geq \varepsilon_0^{-1}$ such that $D_n > 0$ and, for k = 1, ..., l,

$$\delta_{nn} \geq \varepsilon_n^{-1} \left(\sqrt{\delta_{nn} + \gamma_n} + 2\delta_{n-1,n-1} \right) + 1 + \sum_{m=1}^{n-1} p_n(\varphi_{km}) =: \lambda_{kn}$$

Let \mathscr{E} be the linear space of $x_r^+ x_s \varphi_{km}$, where $x_r \in \mathscr{A}_r$, $x_s \in \mathscr{A}_s$, $m, s, r \in \mathbb{N}_0$, m < n, $r \leq n, s \leq n$. Since the vectors φ_{km} are in \mathscr{D} and $\mathscr{A} \subseteq \mathscr{L}^+(\mathscr{D})$; \mathscr{E} is a well-defined finite-dimensional subspace of \mathscr{D} . We check that

$$\sup \{p_n(\varphi) \ p_{n-1}(\varphi)^{-1} \colon \varphi \in \mathcal{D}, \varphi \neq 0 \text{ and } \varphi \perp \mathcal{E}\} = +\infty.$$
(12)

Assume to the contrary that the supremum in (12) is finite, say equal to λ . Let e be, the orthogonal projection with range \mathcal{E} . Since the operators a_1, \ldots, a_n are, of course, bounded on \mathcal{E} , there is a $\mu > 0$ such that $p_n(e\varphi) \leq \mu ||\varphi||$ for $\varphi \in \mathcal{D}$. Thus

$$p_{n}(\varphi) \leq p_{n}((I-e)\varphi) + p_{n}(e\varphi) \leq \lambda p_{n-1}((I-e)\varphi) + p_{n}(e\varphi)$$
$$\leq \lambda p_{n-1}(\varphi) + (\lambda+1)\mu ||\varphi|| \leq (\lambda+\lambda\mu+\mu) p_{n-1}(\varphi) \text{ for } \varphi \in \mathcal{D}$$

which contradicts (2). Let $k \in \{1, ..., l\}$. Because of (12), there is a vector $\varphi_{kn} \in \mathcal{D}$ such that $\varphi_{kn} \perp \mathcal{E}$ and $p_n(\varphi_{kn}) > \lambda_{kn} \delta_{nn} 2^n p_{n-1}(\varphi_{kn})$. After multiplication by some constant we get $p_n(\varphi_{kn}) = \lambda_{kn}$. Since $p_m(\cdot) \leq p_{n-1}(\cdot)$ for $m \leq n-1$, we thus obtain (7) and (8) in case of n. (10) follows from $\varphi_{kn} \perp \mathcal{E} \blacksquare$

Let $k \in \{1, ..., l\}$. From (1) and (7) it follows that $(\varphi_{kn} := \sum_{m=0}^{n} \varphi_{kn}; n \in \mathbb{N}_0)$ is a Cauchy sequence in the complete locally convex space $\mathcal{D}[t_{\mathcal{A}}]$. Hence there is a vector $\varphi_k \in \mathcal{D}$ such that $\varphi_k = t_{\mathcal{A}} - \lim_{n \to \infty} \varphi_{kn}$. That is, we have $x\varphi_k = \sum_{n=0}^{\infty} x\varphi_{kn}$ for each $x \in \mathcal{A}$ in the norm of \mathcal{H} .

Statement 5: $\max_{k=1} ||x||_{\varphi_k} \ge q_{\gamma}(x)$ for all $x \in \mathcal{A}$.

Proof: First fix a $k \in \{1, ..., l\}$. Suppose $m, n \in N_0$, m < n. Using (7)-(10), we get for $i = 1, ..., d_m$ and $j = 1, ..., d_n$

$$\begin{aligned} |\langle a_{mi}\varphi_{k}, a_{nj}\varphi_{k}\rangle| \\ &\leq |\langle a_{mi}\varphi_{kn}, a_{nj}\varphi_{kn}\rangle| + \sum_{\substack{r,s < n}} |a_{mi}\varphi_{kr}, a_{nj}\varphi_{ks}\rangle| + \sum_{\substack{r \geq n+1}} |\langle a_{mi}\varphi_{kr}a_{nj}\varphi_{kr}\rangle| \\ &\leq p_{m}(\varphi_{kn}) p_{n}(\varphi_{kn}) + \sum_{\substack{r,s < n}} p_{m}(\varphi_{kr}) p_{n}(\varphi_{ks}) + \sum_{\substack{r \geq n+1}} p_{m}(\varphi_{kr}) p_{n}(\varphi_{kr}) \\ &\leq \delta_{nn}^{-1}\delta_{nn}2^{-n} + \sum_{\substack{r,s < n}} \dots + \sum_{\substack{r \geq n+1}} 2^{-r}2^{-r} \leq \delta_{mn}. \end{aligned}$$

By the definition of the norm |||.|||, this yields

 $|\langle x_m \varphi_k, x_n \varphi_k \rangle| \leq |||x_m||| |||x_n||| \max_{i,j} |\langle a_{mi} \varphi_k, a_{nj} \varphi_k \rangle| \simeq$

 $\leq \delta_{mn} |||x_m||| |||x_n|||$ for $x_m \in \mathcal{A}_m$ and $x_n \in \mathcal{A}_n$:

(13)

By symmetry, (13) is true for all $m, m \in \mathbb{N}$ with $n \neq m$. Let $n \in \mathbb{N}_0$. Since $\delta_{rr} \geq 1$ and hence $p_n(\varphi_{kr}) \leq 2^{-r}$ for r > n, it follows from (8) and (7) that

$$|p_n(\varphi_k) - p_n(\varphi_{kn})| \leq \sum_{r=n+1}^{\infty} p_n(\varphi_{kr}) + \sum_{m=0}^{n-1} p_n(\varphi_{km}) \leq 1 + \sum_{m=0}^{n-1} p_n(\varphi_{km})$$

and $p_n(\varphi_k) \leq p_n(\varphi_{kn}) + \delta_{nn} \leq 2\delta_{nn}$. By this and (7),

$$\varepsilon_n p_n(\varphi_k) - p_{n-1}(\varphi_k)$$

$$\geq \varepsilon_n \left\{ p_n(\varphi_{kn}) - 1 - \sum_{m=1}^{n-1} p_n(\varphi_{km}) \right\} - 2\delta_{n-1,n-1} = \sqrt{\delta_{nn} + \gamma_n}$$

for $n \in \mathbb{N}$. Combining the latter with (4), we get

$$||x_n \varphi_k||^2 \ge (\delta_{nn} + \gamma_n) |||x_n|||^2$$
 for $x_n \in \mathcal{A}_n$ and $n \in \mathbb{N}$.

Let $x_0 \in \mathcal{A}_0$. Since $||x_0|| \leq |||x_0|||$, (8) yields

$$\begin{aligned} \|x_0\varphi_k\| &\geq \|x_0\varphi_{k0}\| - \sum_{m=1}^{\infty} \|x_0\varphi_{km}\| \\ &\swarrow &\geq \|x_0\varphi_{k0}\| - \sum_{m=1}^{\infty} \|x_0\| \varepsilon_0 2^{-m} \geq \|x_0\varphi_{k0}\| - \varepsilon_0 \|\|x_0\| \end{aligned}$$

for k = 1, ..., l. Combined with (6), this gives

$$\max_{k=1,\dots,l} ||x_0\varphi_k||^2 - \gamma_0 |||x_0|||^2 \ge \delta_{00} |||x_0|||^2.$$
(15)

Now let $x \in \mathcal{A}$. We write x as a finite sum $x = \sum x_n$ with $x_n \in \mathcal{A}_n$. By (13) and (14), we have for k = 1, ..., l

$$||x||_{\varphi_{k}}^{2} - q_{\gamma}(x)_{\perp}^{2} = \sum_{n} ||x_{n}\varphi_{k}||^{2} - \gamma_{n} |||x_{n}|||^{2} + \sum_{m \neq n} |\langle x_{m}\varphi_{k}, x_{n}\varphi_{k}\rangle|$$

$$\geq ||x_{0}\varphi_{k}||^{2} - \gamma_{0} |||x_{0}|||^{2} + \sum_{n=1}^{\infty} \delta_{nn} |||x_{n}|||^{2} - \sum_{m \neq n} \delta_{mn} |||x_{m}||| |||x_{n}|||.$$

Therefore, by (15),

$$\left(\max_{k=1,\ldots,l} ||x||_{\varphi_k}\right)^2 - q_{\gamma}(x)^2 \ge \sum_n \delta_{nn} |||x_n|||^2 - \sum_{m \neq n} \delta_{mn} |||x_m||| |||x_n|||.$$

From (11) it follows that the latter is non-negative.

Remark: The preceding proof actually shows the following: Let \mathcal{A} be as in the Theorem and assume that (ii) is fulfilled. If the (finite-dimensional) vector space $\mathcal{A}^{\|\cdot\|}$ of all bounded operators in \mathcal{A} has a separating set consisting of l vectors $\varphi_1, \ldots, \varphi_l \in \mathcal{D}$ (i.e., if $x \in \mathcal{A}^{\|\cdot\|}$ satisfies $x\varphi_k = 0$ for $k = 1, \ldots, l$, then x = 0), then for each seminorm q on \mathcal{A} there are l vectors $\varphi_1, \ldots, \varphi_l \in \mathcal{D}$ such that $q(x) \leq \max\{||x||_{\varphi_l}, \ldots, ||x||_{\varphi_l}\}$ for all $x \in \mathcal{A}$. In particular, if the multiples of the identity are the only bounded operators in \mathcal{A} , then already one vector $\varphi_1 \in \mathcal{D}$ is sufficient.

(14)

REFERENCES

- SCHMÜDGEN, K.: Two theorems about topologies on countably generated Opt-algebras Acta Math. Acad. Sci. Hungar. 35 (1980), 139-150.
- [2] SCHMUDGEN, K.: Unbounded Operator Algebras and Representations. Berlin: Akademie-Verlag 1989

Manuskripteingang: 03. 03. 1988

VERFASSER: 1

Prof. Dr. KONRAD SCHMÜDGEN Sektion Mathematik der Karl-Marx-Universität Karl-Marx-Platz DDR-7010 Leipzig

430