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Es werden das K6n7ept der milden Losung und die Formel der Variation der Konstanten an 
• geweisdét auf die Herleitung notwendiger Optimalitätbedingungen erster Ordnung für. Steuer 

probleme bei semilinearen parabolischen Anfangs-Randwertaufgaben. Ejn5 adjungiertes 'Sy-
stem wird mit Hilfe einer abstrakten Integralgicichung definiert und dere Losüng als milde 
Lösung éiner adjungierten parabolischen Gleichung nachgewicsen. 

•	)ioxaauiaio'rcn 11co6xo)inibIe yc.ionhIR onTuMajibilocTu nepeoro nopsuua gJIH rIpo6neM 
•	onTiiMajlbHoro ynpaBJieHian c}lcTeM noJlyJinHelIabIx iiapa6oJill4ecHiax ypaBHeHldl B 'IacTHbix 

•

	

	npoH3130,111ux. flpllleHnIoTcn FcoHEkeflu;Ifl o6o6111ei1ix peuleeMft '11 i'opMy-.Ja l3apMa[uin 
floCTofluillhiX. OiipeenneTcn conpneiivan clIcTe1a C noioiuiio acpawriioro HHTerpanb-

•	ilOro ypanhleHun; peuiee iooporo ilnirneTcn o6o6ineHHbiM ' peweHiteM COflHHHHOFO 
napa6oim4ecHoro ypaiaHeHnn.	.	•	' 
The 'concept of mild solutions and the' variation of constants formula are applied.

'
 to derive 

first-order necessary conditions for optimal control problems governed by semilinear arabolic 
• initial-boundary value problems. An adjoint system is 'defined -by. means of an abstract integral 
,equation, the solution of the latter being a mild solution of an adjoint parabolic equation. 

1. Introduction  
•	

'	 . .	 ..	 .	 .-	 ,	
5'	 S 

The aim of this paper is to apply semigroup methods to, control problems governed 
by semilinear parabolic-differential equations, which.-include both distributed and 
boundary controls. Much pioneering work on the treatment of iniomogeneous 
boundary conditions by strongly aontinuous'semigroups . has been done for linear 
boundary controlby i3A1uRrsHNAN [2], FATTORINI [3], LASIECKA [8], and WASH-
BURN [16]. It_is rather obvious that the celebrated variation of constants fomu1a 
discussed in these papers, allows the treatment of non-linear boun'dary conditions, 
too: Hoever the work in L2-spaces, which is sufficient for linear bounda5 cortrol 
systems, causes too restrictive assumptions on the 'non-lineárities. In a recent publi-
cation by AMANN [1] the application of the variation of constants formula to non-
linear bOundary conditions in W 8-spaces was considered. Stimulated, by these 
'results the author extended own results on non-linear boundary control, which were 
focused only' on the W28-case. In this way a satisfactory handling of non-linear 
boundary control, systems is possible,. in particular the consideration of states which 

•' ... are continuous both in time and spaceThis paper is; to present the outcome of these 
thus filling in a gap in ' the, author's book [14]; wh'ere distributed 

controls were handled by'a semigroup'approach but boundary control systems were 
described by an integral equation with a Green function as kernel. The use of Green 

• functions, is, to a certain extent, equivlent to the' application of strongly continuous	• 
semigrou, but the widely investigated sernigroup theory makes the latter more 

'	favourable. '	•	• •	•	 •	-	.	.	' 

• 5	 ''	 ,	 .'	 -•
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We shall consider the following model problem: Minimize 

J(w, u) = (w(T )) +ff I(t, x, w(t, x), u 1 (t x)) dx dl 

- + f f 12 (1, x, w(t, x), u201 x)) dSdt 

subject to the parabolic semilinear initial-boundary value poblem	S.. 
w(1, x)	(4w) (1, x) ± h(t, x, v(t, x), u1 (t, x))	in (0, T] x Q,	- 
w(0x) =v0(x)	SQ;	 . 

S	(1.2)' 
S	

w(t, x)/u. = g(t, x, w(1, x), u2 (t 1 'x))'	on (0, T] x,P'	 .	S 
and to the constraints on' the controls	 S 

ui	u1 (t, x) ;5 W i , .	= 1, 2.	 -	 (1.3) 
In this paper we shall not admit: state-̀ constraints. The consideration of state-con-
straints is. connected with special investigations of adjoinj operators, which would 

•	-	exceed the size of this paper (see for instance TRöLTZSCH [14]).  
• . In our problem we hive the following fixed quantities: Real constants 7' > 0, 

u, < iZ (i =' I, 2), and a bounded domain . .Q c IR",,with boundary 1" such that Q is 
locally at one side of rand r is sufficiently smooth, , say of type 02. By 4 the Laplace. •	operator and by sw/an the conormal derivative is denoted. Moreover, real functions' 
/, h: [0, T] x Q x IR x [u1 , ] --* JR and /2, g:* [0, T] x P x JR x [u21 21 - IR vith, 
appropriate differentiability properties are given, which will be specified later. 0 is 
a real . Fréchet-differentiable functional on L9(Q) 7 where p is chosen according to - 
(2.10). The controls u 1 (distributed control) and u2 (boundary control) belong to, 
L,,(0, T (Q) and L(0, T; F), respectively (by L,,(0, T; D) we shall denote the space 
of bounded and measurable functions on [0, T} x D):- The function w is said . to he 
astute correspondtng Lou = (u11 u2 ). It is defined in the sense of mild solutions to (1.2) 
(see Section 2) and belongs to C[0,,T; Wpa (Q)] , where W(Q) is the usual.Sobolev 
space of functions on Q with derivatives in L(Q) and C[0, T;.X] is the space of 
continuous abstract functions from [0, T] to X, * Once and for all we fix p and u such 
that (2.10), n/p < a< 1 + l/p, holds. In order to ensure the continuity of w(1, .) 
the (fixed) initial value w0(x) is supposed to belong to W°(Q). 

The functions /; h, g depending on (1, x, w, u) are supposed to fulfil the following 
- . Carathéodory tjpe condition: For fixed (1, x) they are continuously partially differenti-. 

able with, respect to wand u, and/or fixed (w, u) they and their-dbrivatives are measur-
able with respect to (t, x). Moreover these functions and their derivatives are supposed 
to be bounded if (w, u) runs through a bounded subset of JR2.  

Throughout. the paper the following notation is 'used, 'where D = Q orD = F: 
J[',, (D)	'	norm of L(D);'  

Jk]I p .s(D)	norm of W 8(D);	 . •	S 
(., .) -	' pairing between L(D) and Lq(D) (q = p/(j.. - 1))	• 

x) .	' value of./ E X' applied.to x E X .	; •	- 
(I.: Banach space, 'X*: its dual space). If in the norms the underlying domain D, is 

• missing, then we mean .D = Q. .(X, Y) is the Banach space of linear and continuous 
•operators from X to Y endowed with the uniform operator topology, '(X) = %(X, X). -. 

/
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2. The variation of constants. formula	 . 

Following the lines of [1, 3, 8, 16] and others we introduce in this section the concept 
of mild solutions to (1.2). We define a linear operator A'in X = L(Q) by 

D(A)=.{WE	 / 'Aw=—w+bwonD(A), 

where b E JR is supposed to be positive such that the resolvent R, A) e*ists 
in particular for all real 2 0. A is cloed and densely defined, and —A is the infinitesi-
mal generator of an analytic semigroup JS(t)),ao of operators in 1(X).. This is known-
for. ])irichlet boundary conØitibns.(see PAZY [11]) aiid extends to our case of Neu-
mann boundary conditions by the results of STEWART [13]. We. have d 8(1) zv/dt . - 
= —AS(i) w and S(t) w E D(A) for 'all w E X and I > 0. Moreover, the choice of b - 
yields the existence of fractional powers Aa for Q. a	1, and 

AaS(t) w =8(t) Aw,	w E D(A),. '	.	 . (2.1) 

1A8(t) wJL 5 ct 112V1I	 (2.2) 

• (I > 0, a € [0, 1]). If h is sufficiently smooth and w0 E X, then 

W(t) =S(t)w0 +fS(t - s)h(s)ds	I	 (23) 

is a strong solution to the Cauchy problem w'() + Aw(t), =h(t), w(0) = w0 (includ- 
in the homogeneous boundary condition 3w/3m = 0 in the domain of A). After a 
couple of fQrmal'manipulations, which' are clear for sufficiently smooth data, the -' 

- .	inhomogeneous , boundary condition (&w/an) (1) = g(t), g: [0,.T]-.+ L(I'), can be 
hadleJ by the variation of constants formula	'	 .	 '• -' 

w(t) = S(1)t 0 + f 8(1 - s) h(s) ds + f A8(t - s) Ng(s) ds,	 (24) 

where N: L(P)	W'(Q), 5< 1+ i/p, assigns tog E L(P) the solution wof 

- -Liw - bw = 0 on Q,	3w/3m = g on 1'.	.	 (2.5). 

We refer -to the discussions by ' FATTORINI [3] or AMANN.[1]. The idea behind (2.4) 
is to write w(t) = w1 (t) +-w2 (t), where w1 fulfils the homogeneous boundary condi-
tion, w2(t) solves (2.5) for . g g(1), and to apply (2.3) to the resulting system for w1. 
It should be remarked that in terms of the Green function  

.	.	oo  

'(x, y,.1) =r .^ ' v() v,(y) exp

—Llv + bv =	3v/3n 0, the expression (2.4) coincides with 

w(t, x) = f 3'(x, y, 1) w0(y) dy + f  $(x,y, £ —s) h(s,y) dy ds 
•	 .	 •.	 .	

•-	 :	 .	 - 

+ff '(x,y,t - s)g(s,y)dSds	-	 (26) 

-- (dS: surface element on TI'). This can be proved after an integration by parts in the 
last term of (2.4) by means-of Green's formula. Equation (2.6) was taken for the 

	

C,	 -
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• definition of generalized . solutions in several earlier papers on optimal control of 
parabolie equations, for instance by FRIEDMAN [6], SACILS [12], TROLTZSCH [14], and 
V. WOLFERSDORF [17]. 

Now we define transformations H :-[O, T] x W o (Q) x L(Q)—* L(Q) and: 
660: [0,'T] x w0_lIP(fl.x L(f)	() by -	.,	 S 

•	 (H(t, w( . ); u ( . $))(x) = h(t, x,v(x), u(x)) + bw(x),	 S 

•	•.	:	(G(t) w( . ),. u( . ))) (x)	g(t, x, w(x), u(x))	.	S 

(note that w = 4w + h iff w1 = —Aw + H) Then any solution w € C[0, 'I' W'(Q)] 
of

-'S...	 S.. 

•	 .	 W(t)-=5(1) wo.+f S(t —s) H(s, w(s), u1 (s)) ds	,. 
0	 •	••• 

•	 .,	

S.	 •g .'	 S	 ..	 S 

	

+1 AS(t - s) NG(s -rw(s) u2 (s)) ds	 (2.7) 
0 

is said to be a mild 6olu4ion.of (1:2). Here -r: W 0 (Q)	Wu/P(r) is the trace operator. 
• The behaviour of (2.7) is closely connected with the order of singularities of 8(1) and, - 

AS(S) .N at S = 0. It . was already proven by AMANN • [1] that 

/	J!8() wl	;5 CS_812 JI w I	 (2.8) 

IIAS(t) Ng]j	ctO (8)/2) JIg IP (1')	 (2.9) 
.'for t>OandO<s<<l±l/p.	S	

• 

We shall briefly illustrate corresponding estimations by means of fractional powers of A 
along the lines of [15] It is knosn that	c II A wII, on D(A 312 ) Consequently for 

• t'>O,xE[O,1]	•	

.	 S	

••S	 S 

S. ,	 -	

., •	 S	
/	

1	 5 

IIAS ( t ) wI 8 
5 

c 11A 8 /2 + 8(5) wJI -(+3/2) IIwII,, I 

with , a generic constant c, by (2.2). Thus (2.8) , follows for = o:For s< 1 + l/p,.s +,'l, the 
equality, W 8(Q) =(L(Q), D(A)) 312 holds. We' refer to the remarks by AMANN [1]. Here 

	

(')tp denotes the real interpolation 'functor.Then it can be shown with some effort that	- 
A02N € .°(L(fl, L(Q)), 0 < € <s < 1 + i/p.' Hence	 .	S	 S 

JAS(S) N011 p,	c JJA sI2 +'_ /25(g) A./2 .NgII 5 Cg(-1--8—/2) llg ll,, (F) 

o < s < e <1 + i/p, by (2.1) and(2.2).  S	 -	/	..	S	S	 .:	 .5 
S Finally we note that W 8(Q) --* C() for a> n/p. Therefore we fix p and a through-

out the paper. uch that p> n - 4 and	 S 

n/p<<1+1/p	 (10) 
•

	

	Then 'wecan take s€-(o,1 ± l/p) so that AS(S) N is only "weakly singular" from

L(P) to W' (Q) 8(t) is by (2 8) weakly singular for p > 1

	

,(S	• 

3 Abstract setting and linearization 

By means of the semigroup approach discussed in the precedrn section .we can 
formulate thecontrol problem . ( 1.1-3) in an abstract form, which covers many.' 
other types ofapplications, too. In our presentation we shall confine óurselvès. ., 

•

	

	• to the model problem (1.1-3) as a. background, but the reader will observe that 

the method also extends to other problems For instance, more general elliptic 

•	 ,	S	•	•	S	S	 S
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operators. can be substituted for —4, and systems of parabolic equations, more 
general types of. boundary, conditions or other functionals. instead of (1.1) can be 
treated as well. Of coure, some wbrk still remains to be done then: namely to deter-
mine and to interprete certain adjoint oVpeators .and systens.	. 

According to our notation the control problem (1.1-3) admitsthe form to mini- .. 
mize	 - V	 V	 -.	 . V	 V 

	

J(w, u) = (w(T)) + {Fr(s, w(s), ui(s)) + F (s, w(s), U2(s))} ds	(3 1) 

§ubjectto	V	

V	 V	 ' ' ' ,•	.	V	
V 

W(t) = 2(1) w0 + f 8(t - s) H(s, w(s) ui(s)) ds 
V	

V, 

+f AS(1 - s) NG(s, rw(s), u,(s)) ds	 (3A! 

u, E U, I E[O, T], where U are theconvex and closed sets of U, = t(O, T; Q)' 
V	and U,	L(O, T; F), respectively, defined by (1.3), and the state w is from


W = C[O, T, W"(Q)] The functionals F' and F' are defined by 

F'(t w u) =f /(t x, w(x), u(x)) dx	(w E W°(Q), u E 

u) = f/,(t, x, w(), u'(x)) dS	(w E W; 1 (F), t E L(P)) 

V	 -	
V V	 V	 V	 I	 .	

V 

In all that follows let (w°, u',°, u,°) be' a locally op
t
imal triple for (3.1)—(3.3). This	. 

means J(w°, U,°, u,°) VJ(W, it il u,) for all (w, u 1 , u,) satisfying (3, .t-3)' and being	
V 

contained' in an open ball around (w°, u,, u,?) in W x U 1 x U,. Later we shall need 

	

- V various partial Fréchet-derivatives of ', H, and 0' at the fixed triple (w0, u 10 1 u20)'1	V 

Which will be indicated by appropriate subscripts For instance, the partial deriva 
• , V tives'of F' at the fixed element (w, u) E W°(Q) x L(Q) with respect to - iii and u are: 

denoted by F'(t, w, u) and F 1 (t, w,-u) (I fixed). , These derivatives exist due'to the. 
Carathéodory type assumptions (this follows from KRASNOSELSKIIV, a.o. . [7] after 
embeddingWPC (Q) into L(Q))V Inserting w = w°(t), u'= u 10 (I) in these derivatives 

V	 we write for short	
V	

V	
-	

•,	V	 , 

F'(t) 
= F'(t, 0(1), u,0(t))	F'(I)	•j ,i(1, w°(t), ui0(t)) 

Analogously F,'(t), F'(t), H(t), H(t),-0(t), and 0(t) are defined As a conclusion 
from theCarathéôdory conditions we can regard these quantities as abstract functi- V 

ns 'on [0,-T] .with values in'L(Q), L(Q, L(P) L(F), %(L(Q)), ' (L(Q)), z(L(r')), 
. V (Lp(P)), respectively; which are bounded and measurable with respect , to t. For 
example, the .mappin 'H(t) is defined by (H(t) w( . ))(x) = h(t, x, 0(t, x), u10 (t, VX)), 
x w(), ánl- h is bounded and mea surable with respect to, £ and x. Hence H(t) 
E 1(L(Q)) for all a :^,- oo, (t fixed), and the mapping -* H,,(t) is bounded and 
measurable. In the same way 0() EL(.(L(F))) is obtained. The derivative of 0 .-• 

V V 

at w('T) is written '(w0(T)) i = V. Note that in general VO E Lq(Q), q = p/(p - 1). 
V	

efore stating the next result, which is basic for all that follows, we . introdube a 

	

V more general notation, which Wilf be frequently usedin the next sectioñs. WedCfine	
V 

for 1' < r < co operators A,: L,(Q) D(A,) - L,(Q) by  

D(A) = { E IV,'(Q)	- = o}.	A,w = —4w + bw, w E D(A,) 

-	 1.
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These operators are linear, closed and densely defined in L(Q) and generate analytic 
semigroups in L(Q); which we denote by {Sr(t)}, o. Moreover, N: L,(I') -* W' + iIr(Q) 
is defined according to (2.5) for g  Lr(fl . Note"that e have A = A, 'N = N, 

	

•	(t) =9(t).	 - 

Lemma 1: Assunie that operator-valued abstract functions H E Lm (0,T; .'(Lr(Q))), 
GE L(0, T; .Y'(Lr(P))), and an abstract /unction c: [0,T]--> W,(Q), 1/r <0<1 + 1/r,


	

•	are given. Assume futther that .	 -. 

(i) c 'E k,, (0, T; W,- (S2))	or	(ii) c . E C[0 1; W,o(Q)]. 

Then the abstract integral qua'tion 

X(t) = c(t) +fS(t - s) H(s) x(s) de +f A TST(t - s) NrG(S) tx(s) ds (34) 

has a unique soluzon in L,.(0, T w°(Q)) which is continuous on [0, T] in the case (ii) 

'Proof: We formally define the operator L to be the integral operator standing 
on the right-hand side of (3.4), i.e.  

(Lx()) (t) =fk(t, s) x(s) ds, 

where k(t, s) x S,(t — s)H(s) x + AS(t - a) N,19(s) -cx is linear and continuous 
from W,°(Q) to W ro for t > s and a> 1/r. At t = s this operator has a "weak singu-
larity", as (2.8), (-2.9) imply JLk ( t , s)II < c(t — s), where). = max (a12, 1 ± (a — e)/2) 

	

•	E (0,. 1) (cf. (2.10)). We compare L with an operator L , acting in spaces of. real func-, 

tins defined by (Lz) (t) =f c(t - s) z(s) ds It is known (cf KRASOSELSKL1 a.0'.  

[7]) that Lis continuous in each space L,(0, T), 1 :!9 r	oo, and that L: L,(0, T) 
—C(0, T] for r >1/(1 T 2). In particular, L: L(0,.T) - C[O, T]. Therefore it can 
be shown that {Wt(t)}e,	- 

	

•	.	 0	 .if0t<e,	 . J 

w(t) =	-.	 .	
i	

' 
f k(t,-a) x(s) ds,	 f e	t	 - 

0 

•	is a Catchy sequence in L,(0, T; W"(Q)) (case (i)) or C[0, T; W r0 (Q)] (case (ii)) foi 
e +0. In this way the continuity of L inL,or'C, respectively, is shown'. Further-
more it is easy to show by induction that ]IPII 5 ]IL 'I, ii E N. 12' is known to be . a 
contraction in L,(0, T) jor ii E IN sufficiently large (cf. KaASNOSELSKU a.o. [7]). 
Hence L" is in this case contractive, too. Now the statement of the lemma follows 

'from the BanaS fixed point theorem I - 

• For convenience we introduce the, non-linear operatbr 'K = K(w, u11 u2) which 
assigns to (w, u,, u2 ) E . C[O, T; W] x U1 x ' U2 the right-hand side of (3.2). K is 
continuous from C[0, T W] x U1 x U2 to C[0 T W] The continuity of 8(t) w0 

	

- 
•	 I). IshouId be remarked that more general results can be proved using methods from singuIir 

	

•	integral theory, we refer to FATTOBINI [5] and LASIECKA [9].	 •	 - 

	

-	 -

-	-,	/	I	
S	 •
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follows from w0 E W9 (Q), as  

118 (t) w.— 8(1') W1p0	c 1A012(8(t)	W0 11

 8(1')) A012w011p 

• and 8(1) is strongly continuous in L(Q): Moreover, H(s, w(s), u i (s)), G(s, w(s), ui(s)) 
• belong to L(O, T; L,(Q)) and L(O, T;L(f')), respectively, and depend con-

•	tinuoiisly on (w, u 1 , u2 ) (Carathéodory type conditions). in the proof of the precedr 
• ing lemma the continuity of L was shown. Altogether this implies that K is con-

tinuous. It C'an.furthe'r' . bb proved that J and Kare continuously differentiable on 
C[O, T; W] x U1 x 172 . This follows from the consideatioris on differentiability 
above (where 1 € [0, T] was fixed) along the lines oft 14, Thm. 2.2.21. In accordance 
with our previous notation we write K, Ks,,	'J,,, J,,, for the àorresponding

F-derivatives at the locally optimal triple (w°, U 10 1 U20 ) . The operator K4 admits the 

•	foim .	(	 •	
0 

(Kw) (1) = f 8(1 - ) Hp(s) w(s) ds + I A8(1 - s) NU(s) xw(s) ds 

It is clear from the proof of Lemma 1 that K is continuo6s in C[O, T; W], and Lemma 
•	1 applied for r = p, H(t) = H(t), G(t) = G,(1) directly implies the following	. S 

Corollary (I - K)- 1 exists in .(C[O, 7' W]) 
This result earl also be derived after having endowed C[O T;.W] with the equivalent norm 

Iw()Ip = max (exp (—pt) II w(t)Ii.0 I I E [01 T]). Then Kw is contraètive for /3> 0 sufficiently 
large 

Theorem 1: The locally optimal triple (w°, u 10 , u20 ) satisfies the variational in-
equality	 . 

(v, w(T) - uP(T)) +f{(F'(s), w(s) - w(s) + (F 2 (s), w(s) - uP(s))r} ds 

+1 {(F 1 (s), u i (s) - ui°(s)) + (F 2(s), u2 (8) - u2°(s))f} ds	0	 (34)


for all (iv, u, u 2 ) E C[O, 7'; W] x U,a, x U2 which solve the linearized equation 

w(t) — W0(t) = / (t - s) [Hp(s) (w(s) - U'0(8)) + Ha(s) (u i (s)— u o (s))] ds 

•	
+1 A$(t - s) N[G(s)' (rw(s) - two(s)) + GU (S) (u2(s) —u2°(s))jds. (3.5) 0 	

• . 

Proof: Linearization results of the form (3.4-5) hold true if a certain regularity 
coñditionis fulfilled. In our case this is the assumption .that (I - K,,) is surjective. 
Then (w°, u10 , u2 0 ) satisfies 

• •	
(Jw,W_uP).+(Ju,Ui_Ui0)±(Ju1,U2_U20)O	.	•	 .(...6) 

for all (w, u 1 , u2 ) with u1 € U" and	.	
0• 

•	 p = K,,(t _w0) + Ku(ui -- u10 ) +(u2 - u20),	 (3.7) 
cf. TRöLTZSCn [14, Thms 1.2.2 and 13.1]. This is obviously equivalent 'o (3.4-5) I -	• 

29 Analysis Bd. 8, Heft 5 (1989)	 •	5. 0 •	 S •	•
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Remark: It follows from (3.6-7) that (w°, u101 u20) is the solution of the linear programm-
ing problem in a Banach space	 . 

(Jw' w)	u1) ± (Jua, U2)= mm! 
subject to (3.7) and u1 E U d . Problems of this typo are of particular interest for numerical 
methods of feasible directions in order to find a new direction of descent.	- 

4. Adjoint operators
I	 .	 - 

For the necssary optimality conditions we need some ad joint operators, which will, 
be determined in this section.	 ,..	 .. 

Lemma2: The adjoint operator A* 'to A is given by A* =4 (q p/(p _ 1)), 
and S(t)* = Sq(t) holds true. 

Proof: It "is known that _A* is the generator of a C0-sernigroup in . L(Q) and 
that exp (_A*t)	S(t)', is L is reflexive, see PAZY [11]. Therefore it remains to 
show A* = A q . We define D',= {y 'E W 2 (Q) Iay/On .0}. For y E D' ? w E D(A), 

aw 
(y, Aw)= _(. 

fl-)r + (-a , 
W) ,, - (Ay, w) + b(y, w) = (Aqy, w) 

by Green's formula (see MIx1IAnov [10]). Hence D'= D(A*) . The opposite inclusion . 
can now be proved completely analogous to the proof of Lemma 3.4 'in PA.zY [11, 
p.213]-I   

	

•	Lemma 3: Assume 1 <r < cc, x  L(r) andy E D(A .), where r' = r/(r - 1). 
Then, (A4y, Nix) = (ry,,x)I-.	 . 

Proof: We put w ='NrX, where x E W!r (fl . Then w E W,.2 (p) and 

•	 •(A,.y, Nix) = ( — Lly +,by, w)	.	.	 . 
.	••	 ie	\	

(Y'w\
Qj, —Llw+bw)— —w)+---) =(y,x)r - 

On'	On 

by y E D(A r') and the definition of w. The statement follows from the density of 

	

•	 Wrl_h!T in Lr 1	 .	•'	, 
Now it is easy to derive the form of several adjoint operators. We know for 1> 0 

that tAS(t) N E .(L(F)), AS(t) N E .Y'(L(I'), L(Q)), TS(t) E ."(L(Q), L(P)). In 

	

•	.	what -follows, we shall regard these operator in these L,-spaces. Thuswe have 
(rAS(t) N)* E .'(L(r)), (AS(t) N)* E .'(L q (Q), Lq(f')), and (iS(t))* E .(Lq(fl,Lq(Q))/ 

- - In this sense we can prove  

Lemma 4 :.For 1> 0,  
• (i)' ('rAS(t) N)*	rAqSq (t) Nq,  
• (ii) (As(ty. .ZV') * = iSq(t),  

(iii)(rS(T)* = A qSq(t) Nq .	(q = p/(p - .1)).  

Proof: To show (i) we take y E Lq(fl, X E-L(r) fixed and find for I > 0 - 

•	(y) rAS(t) Nx) = _(Y, r -- S(tNx) = _-_ (y, rS(t)Nx)r .
dt 

(the operator r and the pairing are cotinuous)
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d	 d2 (N0y, 48(1) Nx) = -- (Ny ) 8(1) Nx)	- 
(by Lemma 3 with rq) 

d2	 d = -- (8(t)* Nay, Nx) = -.- (A*S(t)* Nay, Nx)
dt 

-	(A qSq(t) Nay, Nx) = - -- (r8(t) Nay, x)1
dt 

(by Lemma 2, 3)	 - 
= (rA qSq(t) NqY, X),	- 

hence-(i) is shown. Similarly, for y €L(Q), x € L(r) 

(y, AS(t) Nx) = - - (y , 8(t) NZ) = -(8(t)* y,Nx) 

= (A*S(t)* y, Nx) = (A qiSq(t) y, Nx) = (rS(t) y, x) 1 , - 
i.e. (ii). Finally, for y € Lq(P) and x € L(Q) by Lemma 3 

(y , tS(t) x) 1 = (Nqy, A8(t) .x) =	j_ (Nay, 8(1) x) 

	

H	(S(t)* Nqy, )	(A qSq(t) Ny, x) I -

5i	

I-
5 Necessary optirnality condition	minimum principle	 - 

After introducing a suitable djoint state the linearization Theorem 1 can beexpressed 
by a minimum principle We define the adjoint state y as the solution of the equation 

y(t) Sq(T 6 V ± fSq(s - t)F 1 (s)ds + f ASq(S - 1) NF 2 (s) dà 

T	 T	 (5.1) 

+ f 8q(8 - 1) H(s)* y(s)ds +f A8(s --- 1) NO(s)* ry(s) ds, 

where q = p/(p — 1). In this equation .*e regard H(t) and G(t) as operators in 
L(Q) and L(T), respectively. Hence their adjoints are operators in Lq (Q) and L(I'). 
Actually, we have even H* ELc,,(O, T; L(P)) and	€L(O, T; L(Q)) for all 
1 ^ oo, as H and G are formally self-adjoint. Now it follows from Lemma .1 
after the change of variables t' = T - t, which transforms the "backward" equation 
(5.1) into a "forward" one, that (5.1) has a unique solution in Lq (O, T; W((Q)), 
provided that l/q < a' <2/q. 

Theorem 2: The locally Optimal triple (w°, u 10 , u°) must satisfy 

f { (Hu (t)* y(t) + F.1 (s), u1 (t) - u1°(t)) 

± .(G(i)* Ty(t) + ,F 2(55,u2(t) _.U2°(€))r} di ^ 0 V u1 €	(i =1, 2). 

(5.2) 
29* I-	- 

I) -:
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'Proof: We introduce for short z =w - w°,' iii	 _ O and .start from 'the

variational inequality '(3.4). The term containing w will be transformed. The equation 
(3.5) reads now	'•	' 

-ç	 - 
Z (t ) = f S(i - s) [H(s) z(s) + He(s) va(s)] ds 

+ f AS(t - s) N[G(8) tz(s) + Ge(s) v2 (s)] ds	 (5.3) 

Setting  

= f (S(t - 8) H(s) z(s) + AS(i - s) NG(s) rz(s)) ds, 

0g	
-	 (54)


Pu(t). =f (S(t - s) He(s) v t(s) ± AS(t - s) NG(s) v (s)) ds 

we find for all z satisfying (5.3) 

N	I	(VP, z(T)) +-f (Fwi (S) z(s))d8 + f (Fw (s), rZ(S))p ds 

= (v, (T) + (T)) + [, (1) + (i)) di 

+J (F2(t), 0 z (1) + u(t))rd1 

by (5 3), and 

I = f (H(i)* (i), z(t))d€ + f (G(t) r(t), rz(i))r di + R, 

where  
•	'	T	 T 

	

-'	ip()	Sq(T - t)V(I) + f Sq(S - 1) Fwi (s) ds ± fAqSq(s -' t) NqFw2 (8) ds 

and  

R =	(T)) + f(Pi(i), (t)) di + f(E 2 (1),	(i)) di	(5.5) 
-	 0	 0

 

after adjoining the last expression by Lemma 4 According to the definition of- j we 

	

have	-':	• •	 '	 S	 ,	 - 

(i) = y(i) - f Sq(8 - I) H(s)* y(s) ds - AqSq(s - 1) NqGw(s)* Ty(s) ds 

Hence, inserting this term into (5 : 5) and "adjoining back" we continue 

	

r i = J (H( y(i), z(i)	(i)) di + f (G* ry(S), Tz(i) -	(i)) di ± R  

f (H(i) y(i), 9 u (i)) di + I (o(t)* vy(i)	(i)) di + B 
01	 0 

5,
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by 5.3) From (5.4) and Lemma 
4,	 / 

I = J (H(t)*	Sq(S - t) H(s)* y(s) ds 

± f A qSq(S - 1) NqGw (s)* Ty(s) ds} (t)) dl 

+ f (Gt t{ }, Vi(t))F di + R 

! (H(t)* y(l), v j (t)) di+ f (G(* ry(t), vi (l))r dt 

(Hu t* [Sq(T - ) V. + f S(s t) F(s) ds 

	

0	 S 

+ f A qSq (S	1) NqF 2(s) ds] vl(t)) di	 I	 ' 

S	

::•S 

- 

f (G(t) t[ I, oi (1))rdt + R	 I 

	

=f (H(i)t y(t), v i (t)) di + 
f 

(G(t)* Ty(t) vi (t))r dl,	 (5.6) 

as a simple calculation yields the equivalence of R'with the minus part in the xpres-
sion above. Now (5.2) follows immediately from (3.4-5) I 

After returning to the original quantities introduced in (1 1-3) the minimum 
principle (6.2) admits the form 

f 	(h°(t, x) y(t, x) +	(1, x)) (u i (t, x).- u 10(1, x)) dx di 

+ f  (go(g, x) y(i, z) + (1, x)) (u2 (t, x) - u20(t, x)) dSrdt ^ 0 

	

OF	 /	 S 

for all u € U	(i = 1, 2), where h°(t, x) = h(t, x,w°(t; x), u 10(l, x)) and g,°, / are:

defined' analogously. Finally, this amounts to. poiniwise minimum principles 'by 
known arguments. For instance; mm {[h°(t, x)(l,'x) + /?(t ,, x)] u I u € ['a ', ]} 'is 
attained almost everywhere on [0, T] x Q by u,°(l, x). 

• The optithality conditions in the paper are obtained by means. of linearkzatiori,. 
they 'are so-called local minimuñ principles. An 'entirely different approach was 
discussed by FATTORTNI [4]. He derived a sequence maximum principle by means of 
the Ekeland variational principle.	.	 S 

We shall finish, the paper with an interpreation of y as the solution of aiiI adjoint 
partial differential equation. It is quite clear from (5.1) that y should,inan appro-
priate sense, solvethe adjoint system	 , :	,	 S , S	 • 

•	•	
—y'(i) =Ay(t) - by(l)+ H(l)* y(l) + F. 1(t), 

•	 :	 y(T) 	.	S	

S	 S	 ,	

5.	

5. 

aylan = G(l)* (l) + F2(l),,
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•	which admits with the original . quantities the form'	 0 

—y(t, x) = zly(l, x) + h°(t, ) y(t, x) + f(t, x) in Q, 
•	 '	yT, x) = (0'(w0 (T, .)))'(x)	. •	 in S?,	 (5.7) 

ay/.3i1(t, x) = g°(t, x) y(l, x) ± /(t, x) '	on r, 
0 ^'t < T. We shall not thoroughly discuss the question in 'which sense y solves (5.7). 
In our important particular case, however, y is seen to be a mild solution of (5.7). 

Theorem :3: Suppose that 170 E Wq°2). Then y is a mild solution of (5.7) in the 
sert.se 'that v, v(t) = y(T - t), is a mild solution, of 

v1 (t, x) = 4v(1, x) + h°(T -' t x) v(t, x) +	(T - 1, x), 
v0, x) .= (w(w(.'r S))) (x),  

av/an(t, x) = g°(T -- t, x) v(t, x) + ft(T - 1, x). 

Proof: A niild soluton vol (5.8) is defined as continuous solution of 

v(t) = c(t) ,+ f (S(t	s) HW(T - s)* V(s): 

± A qSq(t - s) NQGW(T - s)* tv(s)) ds, 
where  

C(0' f (Sq(t - s) FW'(T - s) ± A qSq(t —'s) Nq ?w2 (T - a)) ds 

+5q(t)170.  
F 1 (t), F 2(t) are bounded and measurable wfth values in L(Q) and Lq(I'), respective-
ly, and S(T'— t) VO is continuous according to the assumption 'of the theorem. 
Hence c( . ) E C[O, T; Wq"(Q)]. Moreover, H(t)* and 0,0(t) are bounded and measur-
able with respect to t. Now Lemma 11(u), applied for r. = q and a: =  a' yields the 
existence of v( . ) E C[0, T; Wq '(Q)]. It is easy to see that y(t) = i'(T - t) solves (5.7) 
in the mild sense (substitute t' =T	1) I 

Remark: The assumption VO E W,-'(Q) is satisfied in the following example: We take 
p> max (n'— 1, 2), a according to (2.10) (this is possible due to n - 1 < p), 11q <a' <-
1 + A lq and assume a' a (take a close to 1 + i/p and ,c' close to l/q = I - l/p). The function-
al 0 is defined by cP(w(.)) =f (w(x) -. z(x)) 2 dx, where z E W,'(Q). Then V = 2(w°(T)	z) 

E W(Q). From p> 2 we have 'q < p, hence a' a implies .V E W(Q)	Wq'(Q). 
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