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- On the Semlgroup Approach ,for ‘the Optlmal Control \of Semllmear Parabohc
Equatlons Includmg Dlstrnbuted and Boundary Control

F. TROLTZSCH . - . "

Es werden das Komept’der milden Losung und dle Formel der Variation der honstanben an-
gewendet auf die Herleitung notwendiger Optlmalntatsbedmgungen erster Ordnung fur. Steuer:
probleme bei semilinearen parabolischen Anfangs-Randwertaufgaben. Em\adjunglertes Sy-
stem wird mit Hilfe einer abstrakten Integralgleichung definiert und dercn Losung als milde
_Losung einer ad)unglerten parabohschcn Glcnchung nachgewxcscn

'JIOKasuBalo'rcn HEOGXOXUMBIE YCTOBHA onTHMANbIOCTH nepporo nopanka LA mpobic
‘ONTMMAJILHOTO YIIPABIIEHMA CUCTEM MO HHEHHbIX 1apAaGOITICCKNX YPABHEHUN B HACTHBIX
npousBosIX. [TPUMEHAIOTCA KOHUCMUMA 0GOGIEHHBIX , pewennit ' ¢opmysia Bapuauin
. mocrosnux. OupeneIsercs CONPAKCHHAA CHCTEMA C HOMOWILIO AGCTPAKTHOrO UHTErpab-
1OT0 YDaRHeHUs, pellleHHe KOTOPOTO ABIAETCA o6o6wmenHsIM ' peweres CONpAHEHHOFO.
'napaﬁonuqecuoro ypasHerus. .

The ‘concept. of mild solutions and thc varmtlon of constants formula are applled to denve
first-order necessary conditions for optimal control problems governed by semilinear para.bollc
. initial-boundary. value problems. An adjoint system is defmed by means of an abstract integral .
\equa.tlon the solutlon of the lattcr being a mild solution of an adjomt parabolic equation.

- 1..Introduection : _ ST ST
The aim of this paper is to apply semigroup methods to_contrel problems governed
by semilinear parabolic-differential equations, which- include both distributed and
‘boundary controls. Much pxoneenng work on the treatment ‘of inhomogeneous
" boundary .conditions by 'strongly continuoussemigroups. has been done for linear
. boundary control'by Bavakrisuxax [2], FarTorinI [3], Lasiecka [8], and WasH-
BURN [16]. It is rather obvious that the celebrated variation of constants formula
discussed in these papers, allows the treatment of non-linear boundary conditions,
‘too Hoxyever the work in L,-spaces, which is sufficient for linear boundary coqtrol
systems, causes too restrictive assumptions on the non-linedrities. In a recent publi-
cation by ‘Amaxy [1] the appllcatlon of the variation of constants formula to non-
- linear ‘boundary " conditions in W, *-spaces was con81dered Stimulated by these
‘results the author extended own results on non-linear boundary control, which were

focused .only  on the W,'-case. In thjs way a satisfactory handling of non-linear '

boundary control systcms is possible,.in particular the consideration of states which -

are continuous both in time and space. This paper is to present the outcome of these -

~investigations, thus filling in a. gap in the auther’s book [14]; where dlstrlbuted

controls were handled by a semigroup approa.ch but boundary control systcms were |

described by an integral equation wnt’,h a Green function as kernel. The use of Green
functions is, to a certain extent, equlvalent to the application of strongly continuous
semigroups, but the w1de1y mvestlga.ted semxgroup theory makes the latter more
favourable.”" : . o
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432 _F.TroLTZSCH ) . ‘ -
We shall consider the following model problém: Minimize ~ * ‘=~ -
. . ,' ) N r ' ; V. . X
s~ J(w, u) = @(w(T,'-)) + f ff,,(t, x, w(t, x), u,(¢, x)) dz dt
- . 09 S -7 .
’ . . - ' . : » ) .T ) ) N . ' :- . . N . .
/v . » : + f f fz(l, z, w(t: x); “Z(tx x)) dS.t dat ’ . (11) : .

subject to the pa,ra,bollc semllmear initial- boundary value problem

o w,(t z) = (4w (¢, z) + h(t z, w(t, 7), u(t, x)) " in 0,7 X Q,

N B o 8w(l x)/on. —-g(t z, w(t, ), us(t, 2)) on (0, T] ><]"
" and fo the constramts on the controls . ) L i
u,Su,(t:r)Su,,A' i=1,2. o o (1‘3

In thls paper we shall: not admit :state- constramts The consxdera.tlon of state-con-
straints is connected with special investigations of adjoint operators, which would

- " exceed the size of this' paper (see for instance TROLTZSCH [14]
In our- problem we have the following fixed quantities:- Real constants 7' >0,
. %; = W; (¢="1,2), and a bounded domain 2 - R* with boundary I" such that £ is
_ loca]ly at one snde of I" and I'is sufficiently smooth, _say of type C2. By A the Laplace -
operator and by dw/on the conormal derivative is denoted Moreover, real functions’
“f1s R [0, TY X 2 XR X [uy, ] — R and f29: [0, T} X I' X R X [us, ug] —~ R with.
approprlate dlffercntlablhty properties are given, which will be specified later. @ is
" < a real .Fréchet- dlffcrenblable functional on L,(Q), where p is chosen according to
- (2 10). The controls u, - (distributed control) and wu, (boundary control) belong to,

~

w(0, x)—wo(x) onQ, " L )

Loo(0, T72) and L(0, T'; T'), respectively (by Lo(0, T'; D) we shall denote the space

of bounded and measurable functions on [0, T} X D)~ The function w is said to be
‘a'slale corresponding o w = (uy, u,). It is defined in the sense of mild solutions to (1.2)
(sec Section 2) and belongs to C[0,T; W, (Q)] “where W,°(£2) 1s the usual.Sobolev
space of functions on Q with derlvatlvcs in L,(2) and C[O T; X] is the space of
continuous abstract functions from [0, T to X Once and for all we fix pand ¢ such

'~ that (2. 10), n/p <o <1+ l/p, holds. In order to ensure the contmulty of w(t
the (fixed) initial value wo(z) is supposed to belong to W,°(2).

"The functions f;; &, g depending on (¢, z, w, u) are supposed to fulfil the followmg
Carathéodory type condition: For fixed (¢, z) they are continuously partially dlfferentl-
able with respect to w and u, and for fixed (w, %) they and their-derivatives are measur-

" able with respect to (¢, ). Moreover these functions and their derivatives are supposed
to be bounded if (w, ») runs through a bounded subset of IR2:

Throughout-the paper the following notatlon is used; where D =Qor D F

Iltl, (D) " norm of LyD); R .

C T Heear norm of W,AD); L :
¢, ‘pairing- between L,,(D) a,nd Ly(D) (q = p/(p — 1))
{f, ) .. - value of f € X* applied. to z€ X : '

(X.: Banach space, X*: its dual space). If in the norms the underlymg domam D.is
missing, then we mean D = Q. (X, Y) is the Banach space of linear and continuous
-operators from X to ¥ cndowed with the uniform opcrator topology, ( () = (X, X ).

A T -
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o : : h V =
/2. The variation of constants.formula -

Follo'v&;m'g the lines of 1,3, -8 16] and others we introduce in this section the concept
"of mild solutzmbs to (1.2). We defme a linear operator A inX = L,,(.Q) by

’ s s

D) = {wE W 2(.o) ﬂ‘—()on r} / Aw = —3w + bw-on D(A),

where b € IR i8 supposed to be posmve such that the resolvent R(1, A) ex1sts
in particular for allreal 1=0. Ais clobed and densely defined, and — A4 is the infinitesi
mal generator of an analytic semigroup {S(£)},z, of operators in ¥(X). This is known-
for. Dirichlet boundary conditions. (see Pazy [11]) and extends to our case of Neu-
mann boundary -conditions by the results of STEwART [13]. We have d S(!) wldt
- = —AS(t) w and S(t) w € D(A4) for-all we X -and ¢t > 0. Moreover, the ch01ce of b~

+ yields the existence of- fractlona.l _powers A“ forQ.=x =1, a,nd

°S(t)w — S(t) A"w, w € D(A“),‘ R “‘ .' ) (2.1)

A8 @) wlly < e ey C 22)

N >>(') o€ [O 1)). If h is sufficiently smooth and Wy € X, then '
(z) —S(t) w, + fS(t ) h(s) ds- -~ o o (é.3)

© isa strong so]utlon to, the Cauchy problem w (t) + Aw(t) *h(t), w(0) = w, (includ-
mg the homogeneous. boundary condition dw/dn = 0 in the domain of A4). After a
gouple of formal-manipulations, which' are ‘clear for sufﬁclent]y smooth data, the . -
'mhomogeneous boundary condition (dw/dn) (t) = g(t), g [0, T} — L,,(I‘), can’ be
handled by the vanatzon of constants /ormula N . :
» t .
w(t) = S(t) w, _—}—fS(t g s)h s)'ds + j AS(t = s) Ng(s)ds, L (24)

pwhere N: L,,(I’) - W '(.Q), 8 < 1 + l/p, a.smgns tog e LyI") the solutlon w of '
Aw—bw—Oon.Q aw/an_gonﬂ R L (25).

We refer to the dxscusswns by "FATTORINI [‘3] or AMANN. [1] The idea behmd (24) .
isto write w(t) = w,(¢) 3 wy(t), where w, fulfils the homogeneous boundary condl-
tion, w,(t) solves (2.5) for-g = g(¢), and to apply (2. 3) to the resulting system for wW;.
It: should be remarked that in terms of the Green /unctzon s

S

(x Ys- O == Z: va(2 n(?/) ex’P (_c,nt): ~ _

. ) ')”= . S ' - o t
o —Av + bv, = Cnvn, 60,,/671, = 0 the expressron (2.4) comcrdes w1th

’ [

f«‘f’(x 2 ) wo(y) dy+ff3(x Yt —ls) k(s, y) dy ds

'—!—ffé‘v’(:v;y,t—s) gls, y) dS;ds. © o (2.6)’

: '__(dS surfa.ce element on T). Thls can be proved after an integration by pa,rts in the
. last term of (2.4) by means -of Green 8 formula Equatlon (2. 6) was taken for t;he

i ' o
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4 .AzlzNeg’( Ly(T), Ly(R)), 0<5<s<l+l/p Hence oy

3. Abstract séttixig and linéari'zationf | R o o

-~

e . . Lo~
. -

A deflmtlon of generallzed solutlons in 'severa,l earlier papers on optimal control of
. paraboli¢ equations, for mstance by FRIEDMA\ 6], SACHS [12] TROLTZSCH [14] and
-v. WOLFERSDORF [17].

’ "\Iow we' -define tra,nsformatlons H: [0 T} ><W "(.Q) me(.Q)—)Lw(.Q) and

GO TIX W, 1”’(I") X L) — Lw(P) by - L o

(A, w(-)s w()) (2) = h(t, z,w u(x)) + bulz), o e

(G’(t w(-),u())) (z) —g(l z, w(x), u(x))

S

(note that wy = - Ay - k iff Wy = ZAw + H) Then a.ny solutlon w 6 C[O ’1’ W2 ()} K

ooof ¢ \ . S .

» ¢ .
Cw(t) = S(z wo,+ f S —5) H(s w s), ul(s)) ‘,A. "

|

—{—fAS(t—s) NG’(S 1ws) uz(s)ds T B (2.7)

-

i said to be amzld solutzon of (1:2). Here v: W "(.Q) W a=1p(Iy 1sthe tra.cc operator A
.+ The behaviour of (2.7) is closely connected: w1th the order of singularities of S(¢). and -
» AS() N at ¢ = 0. It was- already’ proven by Amaxnx [1] that i o =

IS(8) ., < ot o2 > el S B (2.8)

[

4SO Nl < o= gl (- - ‘,(2.9)-[

~fort>0and0<s<8<1+1/1’

We shall bnefly l]lustrate correspondmg cstlmatlons by means' of fmctlonal powers of A

.. along the lines of [15] It is Lno“n that |lw[|,,3 S c IIA"’-wllp on D(A”z) Consequently, for
CE> 0, € {0, 1] P

e . 0
IIA°S( )l S € IIA”“’S( )wllp S =ity Ilwll,, B

. with a genenc ‘constant ¢, by (2. 2) Thus (2 8) follows for'x = 0. For s < 1+ l,fp, s +0l, the

equahty W,3(Q2) = (Lp($2), D(A) )algp holds. We' refer to the remarks by Amax~ (1], Here
(s)i,p denotes the real interpolation Munctor. I‘hen it can be shown with some effort that

lIAS(t) Ng”ps <6 Aol F1=eIzS (t) Al Ngll, < etl “‘:‘A"A.‘ii"") Hgli‘p (r, -

'h =

0<s<e<l+l/p,by(21)and(22)

Fma,lly we note that W, S(2) & C’( ) for s> n/p Therefore we fix p a.nd athr0ugh-
out the paper such that p > 7 — 1 and ‘ o ¢

n/p<o<1+1/p : o o 2.10)
Thcn we' can take &€ (6,1 + 1/p) so that AS(t) N is only Wea.kly smgular” from
(F) to W (). S(l) 18 by (2 8) weakly smgular for p > 1.

’

" By means of - the semlgroup approach dlscussed in the precedm sectlon we. can

t 'formula.te the “control problem, (1.1—3) in /an ‘abstract form, which covers many. -

other types of applications, too. In our presentation we shall confine ‘ourselves.

" to the model problem (1.1—3) as a:background, but the reader will observe that
“the method also extends to other problems For, mstance, more general elhptlc

]
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opera.tors cin be subsbntuted for —A4, and systems of parabohc equatlons more
. general types of. bounda.ry condltlons or other functionals.instead of (1.1) can be
_treated as well. Of course, some work still remains to be doné then: namely to deter- =
mine and to interprete certain adjoint operators a)nd systems. )
' Accordmg to our notatlon the ‘control problem (1. 1—3) admlts ‘the form to mlm- .
mize : :

subJectto I ° e L

LA w(l)—S(t)wo—}—fSt—s)H(S, s) ul(S)ds - -. o e

, T fASl—s)NG(s,no(s), ())éis (‘32)’

VA V,.‘ R _.
' u. € U,a", te [O ’1’] Where U; ad are_ the convex and closed sets of Ul = Loo(O T, Q)

and U, —LOO(O T,I, respectlvely, defined ' by (1.3), and the state w is from
W = ([0, T "(Q )] The functionals F* and F? are-defined by : .

F‘(t, w, u) = .f hit, =, w(z),.@(x,)),dx: (w €W "(Q), u€ Lw(!?))

F (t w, u) j fa(t, 2, w(z), (x)) (we W-v—lfv(r) u€ Lm(-}"))
" In all that follows let (u?, !, u2°) be a locally oplzmal lnple for (3.1)—(3.3). Thls
‘means J(uw’, u,% %,%) < J(w, uy, up) for all (w, Uy, Uy) satlsfymg (3.1—3) and being
contamed‘m an open ball around (WP, u,°, u,%) in-W x U, X U,. Later we shall need

. - _various partlal Fréchet-derivatives of ¢, H, and @ at the fixed triple (w?, u,°, u,°),

~which will bé indicated by appropriate subscripts. For instance, the partial deriva-
“tives of ¥ at the fixed element (w, u)y € W,(2) X L(2) with respect to.w and u are’
denoted by F,)(¢, w, u) and F (¢, w,u) (¢ fmed) These. derivatives exist due‘to the .
Caratheodory type assumptions (this follows from KrAsNosLskIr a.o0..[7] after
embedding W ,°(2) into L w{£2))- Insertmg w = w°(l) u = u1°(£) m these denvatwes
we write for short

R0 = R, uM,u,()); R = R l),ul"(t))

‘Analogously F, 2(t) F2(t), Hy(t), H,(t), G,(t), and 2] «(t). are defined. As a concluswn
from the Carathéodory conditions we can regard these quantities as abstract functi-
ons on [0, 7] with valuesin L(R2), (), Lo(I), Loo(T), £ (Lp(2)), ¥ (Lp(2)), £ (L(T)),
( ,,(I")), respect)lvely, which are bounded and measurable with respect, ‘to t. For
erample, the mapping ‘H, o(t) is defined by ( w(t) w(- )) () =h (l z, w(¢, z), u %, x))A
x w(z), and- h, is bounded. and measurable mth respecb to.t and z. Hence H,(t) -
€ .Z’(L (£2) ) forall ' < o < (¢ flxed) and the mapping ¢ > H,(t) is bounded and -
measurable. In the same way [ w(-) € Loo(L(L (P))) is obtained. The derivative of & .-
_at w?(T') is written &'{u0 ( r ))/— V®. Note that in general V& € L «(2), ¢ = p/(p — 1).
i Before stating the next result, which is basic for all that follows, we.introdute a -
" more general notation, ‘which will be frequently used’in the next sections. We defme
for l<r<oo operators A;: L(Q2) > D( f) - L (.Q) by
¢ o ' '
T '='O},. . A,w_.—_f'—'Aw +bw, we D(4,). -

<) °

AN D(A,):‘{we
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These opérators are linear, closed and dense]y defined in L,(£2) and generate analytic -

semlgroups in L;(£2); which we denote by { ,(l)},zo Moreover, N, L(I') > WA+Ur(Q) - .‘

‘18 defmed according to (2.5) for g:€ L(I").. Note' that we havc A =A4,'N =N,
8) =8,(). A

Lemma. 1: Assume that operator-valued abslmct functions H € L (O T, .Y’(L,(.Q)))
Ge€ Lw(O T; £(L,(I))), and anabstmct/umtumc [0 Tl W, (0Q),1r<o< -+ 1r,
- are gwen Assume furtker that - :

(1)c€L(O T, W, (Q)) or - (ii) ce C[O,'T;W,".(Q)].

_ Then the abslmct mtegral equatz'on '
x(t) =c t) + f S (t —9) H(s) z s) ds + f A S,(t ) N G’(s) rz(s) ds (‘3.4)

. has a umqw: solution in L (O T; W,o Q)) wkzch zs contmuous on [O T] in the case. (u) ~
o Proof We formally defme the operator L t«o be the mtegral operator standmg
on the right-hand sxde of (3.4), i.e.

N

t o o ;
| ( () l)—fk(t s)x(s)ds e
where k(t, s) x = S,(t — s) H( s)z + A,8,(t = ) N ,G(s) vz is linear and continuous
from W,°(Q) to W for £ > sand o > 1/r. At ¢t = s this operator has a “weak singu- -
larity’’, as (2.8), (2. 9) imply |[k(Z, s)|| < c(¢ — )74, where 2 = max (6/2,1 4 (6 — €)/2) -

€ (0,.1) (cf. (2 10)). We compare L w1th an opera.tor L acting in spaces of real func-,

A tions defmed by (Ez) ) _f c(t — )~ (s) ds It is kno“n (cf.. KRAS\'OSELSKH 2.0.

[7)) that L is continuous. m each space L,(O ™1y S oo, and that L: L,(O T)‘
— C(0, T] for r >- 1/(1 — 2). In particular, E L (0, T) - C’[O T] Therefore it can
be shown that {w()}e, S -
v o Lo , e
B A ' WOt <e, !
o (¢ J t—e n ) ,
. w() fk(t s)x(s)ds Cifest=sT,

Tisa Catfchy sequence in 'L (0 T W.(2) ) (case (1)) or co, 7, w "(.Q)] (case (ii)) for
¢ = +0. In this way the contmulty of L in L, or'C, respectively, is shownl. Further-
-more 1t 18 easy to show by induction that ||[L*]| < ]|Z"]l n € N. L* is known to be a
contraction in L0, T) Jor n e N sufficiently large (cf. KRASNOSELSKII 2.0. [7]
Hence L" is in this case contractive, too. Now the sta.tement of the lemma follows
“from the Banach fixed point theorem B N .-
. For convenience we introduce the. non-linear operator ‘K = K(w, u,, u,) which
assigns to (w, uy, %) € C[0, T; W% Uy X ‘U, the right-hand side of (3.2). K is
continuous from "C[0, T; W] X U1 X U2 to C[O T, Wl “The. contmunty of S(t) w,

l) It should be remarked that more geneml results can be proved using methods from singular
. mtegral theory, we refer ’oo FATTOBINI (51 and LASIBCKA [9]. -

\ . -
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follows from w, e W °(.Q) - ,' » , R '/
L 1I8@) we— S(e) wonpo = c|

< S c ” ) — S(t ) A°/2w0|l,,

E “and S(¢) is strongly continuous in L (Q) \/Ioreover H(s w(s), uy s)) G(s w(s), ug(s)) .

. belong to Ly(0, T'; L,(2)) and Lm(O T; L(I')), respectively, and depend con-
.tmuously on (w, uy, %) (Carathéodory type conditions). In the proof of the preced-
ing lemma the contmmty of L was shown. Altogether this implies that K is con-
‘tinuous. It can further be proved that J and K-are contmuously differentiable on

C[0,T; W] x U, x U,. This follows from the considetations on "differentiability

- above (Where ¢ € [0, T') was fized) along the'lines of f14 Thm. 2.2.2]. In accordance
with our previous notation we write K, Ky, Ku,,‘.]w, Ju,, Ju, for the’ corresponding
F—derlva.twes at the locally optxma.l trlple (w" u,°, u2°) The opera,t,or K, admlts the,
“form. . ./ . )

N

,,(K(;w)f(tj' = f St =) Hofs) w(s).ds +: f AS(t - s)' Naw<s) rw(s) ds

" Ttis clear from the proof of Lemma 1 tha.t K,is contmuous n C’[O T, W] and Lemma _.'o '

' 1 applied for r = p, H(t) = w(l), G(t) = ,,,(t) directly lmplxes the following
Corollary: (I '-. Ky)~ 1 exists in .2’(0[0 J’ w)).

.+ This result can_ also be derived after having endou ed C(0, T';-W] wnth the equwa.lent norm
‘|w(-){g = max {exp( Bt) ||w(t)|lp, | te [0 T]} Then K is contractlve for ﬁ >0 sufflclently
' lurge ' . . .

'

' Theorem 1 The locally oplzmal trzple (w° ul s uzo) salzsfzes the varzalzonal in-
equality _ . .

(vo u,(T w(T)) + f {(F. Hs), w s) — w"(s)) + (F 2(s), w(s) - w°(s ,-}ds
. .0 .

.

; +f{ 0 ()~ )+ (P, o) = o) }dszo R

for all (w, s uz) € C[0,7T; W] X U,"" X U,““ whzch solve lhe lmeanzed equatzon

t
w(t) — w°(l =8 S( l — 8 [H,,,(s) (w(s) - w°(s)) + Hu(s (ul(s) - u,°(s))] ds
: . 0

\ . t

~ N .

o + f AS(l — ) N[G’ (s) (rw(s) - rw°(s)) + G, s) (uz(s) — u2°(s))] | (3.5) '

A°/2 S(l) — s8¢ )) wf, .'f ‘ v

“

Proof Lmea.nzatlon rcsults of the form (3.4—5) hold true if a. certa.m regulanby

condition is fulfilled. In our:gase thjs 18 the a.ssumptlon t,ha,t (I — u,) is surjective.

Then (w®; u, ,u2°) sa.tlsfles C ) . S

(Jw’ w — w0> + (J'ln U — u10> + (Ju.’ u2 - u2°> 2 0 . .‘ : . (36) A

for all (w, %y, uz) w1t:h u; € U 84 and - _
-w_wo K( )+Ku,(ux—u1°)+]\ (uz_u2), . S (38.7)
‘_ of TROLTZSCH [14 Thms 1.2 2 and 1.3.1]. Thxs is obv1ously equlvalent to (3.4—5) l

’

. 29 Analysls Bd. 8, Heft 5 (1989)
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" Remark: It follows from (3.6— 7) that (w®, u, A u2°) is t.he solutlon of the linear programm-

‘ mg problem in a Banach space

Voo W) +, (Ju,, u) + (Jup up) = min! - \

" subject to (3.7) and u € U; “’ Problems of this type are of- particular interest for numenoa.l ]
methods of feasnble dlrecnons in order to find a new direction of descent.

N . . 3 ) . ) . . . : N,

4. Adjoint operators
For the necessary optimality conditions we need some ad Jomt operators, whlch will -
- be determmed in thls section. , B K . ‘

Lemma2: The ad]omt operator A* 'to A is gwm by A* = A (q = p/'(p - 1),
and S(t)* = q(t) holds true. .

‘Proof: It'is known that —A* is the gencrator of a Cy-semigroup in L,(2) and :
that exp (—A*t) = S(t)%, as L, is reflexive, see Pazy [11]. Therefore it remains to -

) show A* = A, Wedefine D' = {y'c W, 2(Q) | ayjan =.0}. Fory € D{ w € D(4),

) : P, .
(Z/, Aw) =.— (y: w) "l' (ai ’ w) (Ay’ w) 'l" b(y: w) = (Aqy) w)
r

by Green S formula (see MiknATLOV [10]). Hence D' = D(A4¥*). The opp031te 1nclus10n_
can now be proved completely a.na.logous to the proof of Lemma 3. 4 in Pazy [11 '
p-213] 8 o , - .

L‘emma 3: Assume 1 < r < oo, zE L,(I‘) cmd Yy € D(A4, ), where r = r/ (r —1).
Then (A, ]y, N,x) = (ry, z)r. N . .

, Prqof. We put w ="N,z, where ze€ W 1- l"(I’) Then weE W2 (Q) and
(Ar"y: ,-IE) T ( A?/ 'l_ by, u‘) " . ) R .
-= ,—Aw + bw) - (%a w) + (y, %) =y x)r a

by y € D(4,) and the def:mtlon of w. The statement follows from the densnty of

WA ll'mL "

Now it, is easy to derive the form of séveral a.djomt operators. We know fort > 0
that zAS(t) N € £(Ly(I)), AS() N € £(Ly(I"), Ly(9)), 8(t) € £(Ly(Q), L(IM). In
what follows, we shall regard these “operators in these L,-spaces. Thus we have
(z4S8@) N)* € £(L q(r)) (A4S N)* € 1’( Q(Q), ,,(I’)) and (IS (0)* € £(L(T), q(g))
In this sense we can prove |

Lemma 4: Fort >0,

(i) - (rAS() N)* = A Sqt) N,

(ii) (AS('t). N)* = z8,(), : . ‘

(i) (zS@)* = A4S Ng - (g —p/(p — 1)) L
"Proof: To show (i) we take ye€ L (P), T € L,(T) fixed and fmd fort >0

(y, rAS(t) Nx)p = (y, T — S(f). Nx) = —'-% (y, tS(t) N:e)f .

© (the operator v and the pa,mng are contmuous)
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d e - o
'= — —dz- (qu, AAS(!) Nx) = —dl—z- (NQ?I,S(” Nx) T ) B
(by Lemma 3 with r = ¢) . . "
d? * b d ‘* * "
=7 (S(ty* Ny, Nz) = - (A*S() .qu, Nz)
, : = . \
. 4d .

d

. (Aqu(t) Ny, Nx) = —:E (rsq(t) Ny, x)r
, (by Lemma 2, 135' - ‘

= (rAqu(t) Ny, 2)r, - - A
hence-(i) is shown. Sigﬁlarly,‘ for y E-qu(Q)i,'a‘; € L,(I)

(0 40 Na) = < (4,80 Ne) = — 3 (S()* 3, V)

) i = (A*‘S(l)* Y, N(L‘) = (Aqu(t) Y, Nx) = (78(0 Y, x)l‘:
i.e. (ii). Finally, for y € L(I") and z € Ly(£2) by Lf_srqma. 3

»

| (v, 78(t) z)r = (qu,.AS'(t).x) = _z_(Ne% 8() ) B

‘. . d\ ’ ‘ﬂ y . . .
= == (S(t)* Ny, Az) = (4,5,() Ny, x) l”

‘. -
5. Necessary optimality condition = minimum principle .
After introducing a suitable adjoint state the linearization Theorem 1 can be expressed
.. by a minimum principle. We d_efin? the adjoint state y as the solution of the equation -
YO = ST — ) VD + [ Sels — &) Fu\(s) ds + [ ASy(s — t) N,F,2(s) ds
T ‘ ' ,...‘ - (5.1)
+ [ Sols — &) Ho(s)* y(s) ds + [ AgSy(s 1) NoGu(s)* ty(s) ds,
- Lt ¢ . . .
where ¢ = p/(p — 1). In this equation ‘we rega.rd‘ H,(t) and G,(t) as dperato'rs in
L,(2) and L,(I'), respectively. Hence their adjoints are operators in L,(2) and L(I'). -
Actually, we have éven H,* Eva(O, T; La(.'Q)) and G,* €'L;°(O,, T; La(.Q)) for all
1=<a < oo, as H, and G, are formally self-adjoint. Now it follows from Lemma 1
. after the change of variables ' = 7' — ¢, which transforms the “backward” equation
" (5.1) into a ““forward” one, that (5.1) has a unique solution in Lq(O, T;AW,,"'('Q)),
- provided that 1/g < o' < 2/q. : -

. Theo rem 2: T'he locally dp\timal triple (w®, u,°, u,°) must salisfy -

T L . .
SAH0* 30 + P26, w) — o) o ~
\.0 T ' .' RO »l’ N . A ’ . ’ . ) .
. + (Gue)* y(t) + F2(s), wolt) — %)} dt 2 0V o €UM  (1=1,2).
L [ 62
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Proof We mtroduce for short z = w — w, v, — u; = w0 and start ‘ﬁom'.the,”
va.rlatxona,l mequahty (‘3 4). The term containing w w111 bé transformed. The equatxon
(3. 5) reads now :

S ) T o ‘
2(t) = [ S — 5) [Hu(s).2(5) + Hu(s),v:(5)] ds )
, o S o

_ D -,+, f AS(t — ) N[G;,,(sj ivz(s) + Gu(é)'ngsj] ds. : (5.3) . .
| setting "‘0' SR T
A ‘o) = [ (S(ti—__"s) H(s) z‘(s)"_.—{f AS(t — §) NGu(s) rz(s))}is,_ e
.' E 0 ‘v. B ,. ' \‘ - K o -,—I | ~' | " | .. "v" -~ (5.4) ,
Ceut)=J (S(t = S)H (8)'?1(8)_' F AS(t — 5) NGu(s) vo(s)) ds L
B - we fmd for all z satlsfymg (5. 3) ‘ |

o~

e . : A T i r C
- CI= (V@ z T)) + j (F 1(s), z(s))’ds + f (F 2 s), rz(s))

v , . 7

v

(!7@b ¢Z<T>+¢u T))+f(F (O (t)+%<z>) o

T ’ -‘... . B . '_'_‘.'
f(F2(t<p(t)+q:u(t)) Co LT
0 ’ e N ".“ . : . Co .

' byt53),é,nd i _ o o : o
f (Ha* . ) 2() ) ) dt + f (Gul®)* zw(t), v2(O)r dt + R, -
. [ . :
Where . R v E P S ,
v | . R . . o o N
w(i)-': ST — z) VO + [ Si(s = t) Ful(s) ds + [+ ASe(s — 1) NoFu(s) ds
~ . Lo - L - ’ t .
and o . L L K ) - . ’
(Vﬁp, 2u(T)) +f (1" %(t)) dt +f T%(l)) . (8.:5)
after a,djomlng the last expressmn by Lemma. 4. Accordmg to tho deflmtlon ofy We. ‘
ha,ve o ‘ - ‘
‘ w(t) - y(t) - f S,,<s — 0 Hy(o)® ol yds — f AS4s — z) N Gule)? ry(s) ds’
‘ Hence, msertmg th.ls term mto (6. 5) and “ad_]ommg back” we continue -
T=]# w«)* Y, 20 - %(t)) &t + f (G ry(t) ) <) d .

_«l

r

L . : |
f ( w(t)* t), %(t)) dt+ f ( w(t*ry(t) wPu®))r dzA+ R

...‘
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s ; .
by (5.3): From (5.4) and Lemma 4,

0

f?==f(ﬂdo*{fSAs—i)HM”*M”ds
'+ fT 4,8 ‘q(s — 1) NoGiols)* ry(s) dsl[,vx(ﬂ) S

+

\
O\.‘i -~

ww*{wwm@+Rﬂ AR
=owvw»mmm+fmmew%mpm
- 0 ) . . ,l

—f( ,,(t [ T —t) VcD,+qu(s—‘g)'F,,,l(s) s
'] . " X X ] ‘

l + fTAqS,,(s —t) NJ.',;z(s) (is], 'v,_(t)') dt ! , o : .
1 —J (G r’[.u],‘vg(t))rdt'ju R
L0,

1

f( t)*y(t i z) d¢+j( t)*U(z) ve(t)) : L (5.6)

asa sunple calculation, yields the equxvalence of R with the mmus part in the expres- .
Slon above. Now (5.2) follows 1mmed1ately from (3.4—5) § ‘

. After ret,urnmg to, tho orlgmal quantities mtroduced in (1 1—3) the mlmmum o
" prm(:lple (5 2) admxts the form - . - .

ff (h °t x) y(t, x) + fo (2 x)) (ualt, x) - ulo(l x)) dx’dt

.V
'

+ f f (guo(t x) y(¢, ) + /" & @) (ualt, 2) — u2°(t z)) dS dtZ 0
- . 4
for all 'u,, ¢ U; ad (6 = 1,2), where h L, 2) = hu(t x, w°(t x), u,°(¢, x)) a.nd 7.%, 1%, are'»
.~ defined’ analogously Finally, this amounts to.pointwise minimum principles by -
known arguments. For instance;’ min {[£,°(, z) y(t, %) + fi.(t; 2)] w| u € [y u,,] } s’
' attamed almost everywhere on [0, T X £ by »,°(¢, ). -

The optimality conditions in the paper are obtained by means. of linearization, .
they are so-called local minimuni principles. An entirely - different’ approach was
~ discussed by Fartorix [4]. He derived a sequence maximum pnncxple by means of
the Ekeland variational principle. -

" We shall finish the paper with an mterprefatlon of y as the solutlon of an a,d]omt '
partial differential equation. It is quite clea.r from (5.1) that y should An: an a.ppro-.

pna,tc sense, solve the adJomt system . .
—y'(t) = dy(t) — by()'+ Hu(t)* y(®) + F, ‘(t), o _— B
yT) =re,

\Limm—,myw%mm,
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which admlts with the orlgmal quantities the form

—ult, ) = Ay, 2) + kO, ) y(t, ) + A x) inQ, L ,
YT, z) = ((D (w(T, -))) @ - ingQ, | 3.7) :
dy/on(t, x) = g.,°(¢, z) Yt ) + At ) onr > P

0 St < T. We shall not thoroughly discuss the questlon in ‘which sense y solves (5.7).
In our 1mportant particular case, however, y is seen to be a mild solution of (5. 7)

Theorcm 3 : Suppose that Vd € Wo'(Q). Then y is a mild solution of (5.7) in the

sense that v, v(t) = yT —t),isa mzld solutzon of . . PN
v,(tx)_zlv(t x)—{—ho(T——tx)v(t x)+/°(7—tx) ' )
. 'v(O z).= (&'(w™T, 1)) (@), | L ' (5.8~

ovfon(t, ) = g,°(T — ¢, 2) v(t, ) +/° T —t ).

Proof A mild solution v of (5.8) is defined as continuous solution of

[N

o(t) = o(t) ‘+f (Sq(t — 8) Hy(T' — s)* o(s) ' L
! ) D .

+ A St — 8) NG (T — s)_*' 9(3)) ds,
-where . s

¢ .

= [ (St = 8) FAT — &) + A,8,(t —s) NP AT — 9))ds -
0' . . . -

-

+ 80V, . S T g R

F(t), F2(t) are bounded and measurable with values in L 4(82) and Lq(I’) respcctlve-
ly, and S(T"— ¢) V® is continuous according to the as%umptlon ‘of the theorem.
Hence ¢(-) € C[0, T'; W,7'(2)]. Moreover, H,(t)* and G,(t)* are bounded and measur-
able with respect to ¢. ‘\Tow Lemma 1/(11 apphed for 7 = ¢ and o := o’ yields the
existence of v(-) € C[0, T'; W, (2)). It is easy to see tha.t y( ) =T — t) solves (5 7
in the mild sense (substltute =T —1) & . "

Remark : The assumptxon Vb € Wo'(2) is ‘satisfied in the fo]lowmg example: We take
p>max(n —1,2), 0 accordmg to (2. 10) (this is- possnble due to n — 1 < p), /g < 0’ <~
"1+ 1/g and assume o’ < o (take gclose to 1 + 1/p and o’ close to 1/g = 1 — 1/p). The function-
al @ is defined by. D(w(-)) = f(w(x) - ‘.(:zc))2 dz, where z ¢ W' »7(82). ’l‘hen VO = 2(uw(T) = 2)

€W, ”(.Q) From P> 2 we have q <\ s hcnce o' Zo 1mphes Y E W l’(Q) W, (.Q)
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