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Dedicated to Prof. Dr. S. Q. Mikhlin on the occasion of his 80tk birthday

Hébba.re Slhgllxla.ntaten fiir Losungen der Funktional- Welleng]elchung, die einer Verschiirfung '
der Lipschitz-Bedingung geniigen, Werden unter Verwendung des emdlmensnona.len Lebesgue- ’

schen MaBes charakterisiert. = .

Ycrpanumie 0COGCHHOCTH pelueniit (I)ymcuuonanbnoro BOJIHOBOI'O0 YpAaBHEHUA YMOBJIET-
BOPSAIOLIAX ycuuermowy ycnosmo JIlmumua xapakrepuayloTCﬂ Npy NOMOIUM OAHOMEPHOTT
mepbl JleGera.

Removable singularities for solutxons of the functional wave equation satisfying a strengthened
LlpSChltL condition are charactenzed with help of one-dimensional Lebesgue megsure.

T

Let G — IR® be an open set. (This assumptlon will be kept throughout the paper.) .
We shall denote by %@(G) the set-of functlons u: G - R? for w hxch for every point
T2y = (xo, Jo) € G there is a square .

‘ Q(zo’ r) =[ao — 7, %o + 7'] X[Ys — 7, ./o -+ "] . ) (1)
.- of side length 27 >0 (dependlng on zo) such that Q(2,, ) = G-and the equatlon i
| (x+hy¢h)+u<xy)—u(xfhy)+u(xy+h) o )

holds whenever (x, Y), (x +h,y +h)e€ Qzo, 7). k

The functional equation (2) and its modifica.tions arise in connection with the wave equation.
Indecd, a continuous function % belongs to (@) if and only if it satisfies in G the equation
-+ O'ujox 9y =0 in the sense of distribution theory (cf. [1 —30); note that, introducing the vari-
ables £ = z 4 y, 7 = ¢ — y one may transform 9%/dz 8y = 0 into the usual form of t,he wave
* equation 3%/[d&% — Bzvlar) = 0 satisfied by v(é‘, 1) = u(1/2E& + 7), 1/2(¢ — 7).

We shall be cngqged with mvestlgatlon of removable singularities of solutions of
the cquation (2). For this purpose we adopt the following terminology. For a set
M — IR2, u|y denotes the restriction- of u’to M. Let J(G) be a set- of functions
defined in G. A set F — @, which is relatively closed in @, will be termed ‘removable
for J(G), if, for any u € JH(G) with uls\r€ W’(G\F), u € W(G). As a sample
result we quote a theorem of M. Do~ [2] who proved, using a result of B'-W. ScHULZE
[4], that a relatively closed set F'— G is removable for the set §(@) of all continuous
functions in. @ if and only if F can be covered by countably many stlalght lines
parallel to coordinate axes. - '
. We shall deal with a subspace V-Lip,,, (@) = K(G) to be defined below, for

which removablé singularities.can be characterized with help of linear measure. For
this, for M — IR we denote by [M| the outer-Lebesque measure of M. If I — R is
. an interval then total variation of a function f: I — R is defined as usual and will

be dencted by var (f; I). Let now K = [a, b] X [c, d] be a rectangle. Then V-Lip (K)

i
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will stand for the set of all functlons u: K—-1R for ‘which there exists a constant

-% = 0 (depending on u) such that, for any couple of points :c,, Zy € [a, b], the function
Su(@ry ) — wlEn, ) Y w(E Y — w(@e, )

_has bounded variation on [¢, d] satisfying the estimate
var (u(zy, -) — w(z,"); [, Al S je —z| 0 B

and, for any couple of points ¥, y, € [c, d], the funetion '

| Ul Y1) = ul-, %) @ > u(z, 31) = (@, o)

has bounded variation on [a, b] satisfying the estimate !
VMW(JO—M(A)WJDS%WV—WI ' (4)

Fmally, let V- L1ploc (G) be the set of all functlons u: G — IR such that for any closed
rectangle K — G, ulg €. V- -Lip (K).

Denotmg by n;, 7: R2 — R the prOJectlons 7y (x, y) >z, 7y (, y) > y, we are
now in posmon to formulate our main result.

Theorem Let F — G be relatively closed in G- Tth Fis removable /or V-Lip,, ()

if and only if there are-sets F,, F,c @ such that .

F=F,uF, ' S ST )

and

For the proof of -this-theorem we shall nced a series of aunllary results

Lemma 1: Suppose that F — R? cannot be decomposed into subsets F,, F, satzs/yzng
(8), (6). Then there is an ¢ > 0 such that, for each couple of sets L,, L, = le fulfilling
Fc L u L, the estimale ]n,(L )N+ ]n2(L2)| = ¢ s valid.,

¢ : t, i

Proof is easy.

Lémma 2: Suppose that F — R? is a compact set which cannot be decompoéed into

subsets F, F, satisfying (5), (6). Then there exists a /mzte non- mmal Borel measure u ‘

‘with support contained in F such that the function

Vi @ 9) > (=00, m) X (—e0w) . ()
satisfies the Lipschitz condition on R2. ,I

Proof: We shall assume, for the sake of slmphclty, that [0, 1] x [O 1]. Let

" N be the set of all positive integers. For each n € N we subdivide [0, 1] into _the

.intervals I;" = [(z — 1 /2" t2"]and put Kf; = I;i" X J;" (1,5 4,7 <27), M™ = {K :
F n K% <4 o). We are going to construct a non- tr1v1al Borel measure u, with support

" in F® = U J" such that Vyu, satisfies the Llpschltz condition with coefflment 71
on IR? and y»,(R?) =< 1. -

Since A" + @, we can choose a K7 € " and define first the Borel measure v,
whose density w1th respect to the Lebesgue measure in R? vanishes on IR\ K?;
and equals 2" on' K. Consequently, we have v (K]
ever K = Kn;. Put A" = (K21 = 401 § =4} Suppose now that, for given
k€N, we have already constructed the system " — {K7} and the Borel measure
v, whose density with respect to the Lebesgue measure in IR? vanishes outside F=»

h)l '

n).) = 1/2"> 1’1 .,) =0 When--

C mEN =0 =12, - R

4
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and remains constant almost everywhere on each square in " in such a way that .
»(IR?) > 0 and the following properties are satisfied: . ‘ |

(i) For each K7, »(K2) € {0, 1/27).- I

(i) If »(K7%,) = 0 for 'some (i, o), then K, € M*, KLi€ M for 1 <5< 20
and %(K};) = 0 whenever.j = j,, and also K, € A forl <¢ < 2%and (K%)= 0
whenever ¢ 5= 4. Note that these properties guarantee that the function V. (defined
by (7) with g replaced by ) satisfies the Lipschitz condition with coefficient 2%< 1. .
(For k = 1 such ", v, have, indeed, been constructed above.) If A" > A", then
the process stops and we put u, = 5. If JH* \ " + @, then we,choose a K ivn

. € M\ S and proceed to define the Borel measure v,,,, whose density with respect

to the Lebesgue measure in R? vanishes on IR2 \ F" and remains constant almost
everywhere on each square in ", in such a way that v, (K2, i..) = 1/2% v (K
= (K3,) whenever K} € ", ve1(KJj) = 0 whenever K7 ¢ {KL e
put -

pq)
} u . Further

MPyy =K% 0 = gy, OF § = feun) UM o 8)

Clearly, #},, and v, enjoy all the properties listed above for " and v, with k
replaced by k + 1. After a finite number of steps we-inevitably arrive at ;" > *
and thus obtain the non-trivial Borel measure u, = v, with support in F* < [0; 1]
X [0; 1] for which Vpu, satisfies the Lipschitz condition with coefficient # < 1.
Since for €ach 7 there is at most one j with Ha(KT) 0, we have also 1,(IR?) <.1.
Passing-to a subsequence, if necessary, we may achieve that the sequence {u,}
converges vaguely to a measure u with support contained in N F» = F. It is easy to
" -see that Vu satisfies the Lipschitz condition with coefficient ‘% < 1 and u(RR2) < 1.
It remains to prove that y(IR?) > 0. . - - .
Let ™ be the system of all the squares K3 for' which there exists a K%, with

"#a(KT) £ 0, and let ™ be the system of all the remaining squares'K;. We assert
that, for-each K7 € A" n A7, there exists a p such that #a(K3;) % 0. This is obvious

if K € M, ", which was the first system of squares defined in connection with the
process of constructing the measure »,. Assuming K3 € (M* 0" M™) \ A" we can. .
choose k£ € N such that K3 € ME,,\ A" Taking into, account the definition 8 -
and the fact that K7 ¢ 4™ we conclude that necessarily j = je+1 Whence we get for

P =ty the relation uq(Kp;) = ua(K%,;,.,) # 0 as claimed. Set now F,» — (AP
‘N AM), Fy" = u (M 0 M), so that F\* y Fy" = Fn» = F. We have seen that, for -
each Kj € " n M™, there is a Kj; with u,(K3) = 1/2". Consequently, |7a(Fa)|,
=< un(F,"). It follows similarly from the definition or 4™ that [ F1\ )| = pn(F\7)
whence T ’

2

I (Fy) o ma(Fa")] S alFr7) + ol Fa?) = ([0, 11 [0, 1).

Applyiné ‘Lemma I we get an & > 0 such that, -for all » € N, ;z,,([b, 1] X0, 1}
2 |7 (F,")| + |7(F,")| 2 &, whence it follows that 4(IR?) = ¢, which completes the

" proof §. :

- Lem ﬁa 3: Let pu be a finite Borel measure in IR2 Sﬁch that the function Vu defined
_ by (7) satisfies locally the Lipschitz condition. Then Vu € V-Lip,, (R2). ~

Proof: Let K = [a, b] X [c, d] be arbitrary and choose x € [0, 00) such that Vu .
“satisfies the Lipschitz condition with coefficient » in K. Let a < ) =2, =b. We
have for y € R ' .

Vu(xs, y) — Vulz,, y) = .“([“fn Zy) X [fﬁo, 3/)) s
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. which is a non-negative and non- (leeleasing function of the variable 3 J € R bounded
on [c, d] by its value in d. Using the Llpschlu condition we get, | Vu(2,, d) — Vu(zy, d)] -

< x|z, — 2|, s6 that var (Vu(z,, ) — Valz,,:); [, d]) = x|z, — 7. Similar
reasoning ylel‘ds for ¢ <y, Sy, <d the mequ’mllty var (Vy( yz) — V/;( yl
[a,b]) < x|y, = > so that Vu|x € V- -Lip (K )

~

Lemma 4: Let F = G be relatively closed in. G and suppose that u- G —-R isa

function such that u|g\r € W(G \.F) and" ulK € V- Llp (K), = [a, b] X [c, d]C G.
If F i K can be decomposed into subsets Fy, F, satzs/ ying (6), then
Y ua, )+u(bd)—u(bc)+u(ad) ST R (9)'

Proof: If I.=[«,f] X[, 8] K, we define' w(I) = u(B, 8) — u(x, 8) — u(B, y

"+ (e, v). Then w is an'additive interval function. Let us fix x» € {0, c0) such bhat .

(3) holds for all z,, , € [a, b] and (4) holds for all y,, ¥, € [c, d] Then
wllx, Bl X[y, 0) S wmin{f — 0,6 —3). . o (10

Since the relation (9) is obvious if @ = b or ¢ = d, we shall assume t;hat a'< b and
¢ < d. Noting that K can be decomposed into a rectangle [4, b] % [c, dy] (where
¢ <'dy < d) with commensurable side lengths b — d, d, — ¢ and another rectangle

[a, b] X[dy, 4] with: arhitrarily small side length 4 — d,, we canclude easily from (10) o

that it -is sufficient to verify (9) for squares contained in K s0 we shall suppose,

‘without any loss of generality, that b'—a = @ = c. (Note that, m case u € C(G), such .

reduction is also possible without reference to (10).) -
Fix an arbitrary ¢ > 0. Then there are open- sets- U lamd ]R (1 =1,2) such that *
(K nF)c U, \Uj| <& In view of K n F — (Ul xX R) u(le Uz) we can choose
r>0 small enough " to guarantee that from Q(zo, ry< K, Qz,,7) n F &= & follows
Q(z0, 7) = (U XR) u (R X U,), where Q(z,, 7) is defined by (1). Next fn: n €N large
enough’ to have (b— a) /2" = (d — ¢)/2" <r and _put v

1_ — 1) (b.— 2n, b —. 2n B oo .
[a-l—(? )( a)/ a’+7( a)/2"}. A4,k <2,
Jk—[c+(k—1(d—c)/2"0+k(b"a)/2"] .o
Let <
.A—( (I><J,r nF ﬁ}
B =1 athF#ﬂlcUJl

. . .
\ N

and denote by C the set of all the remaining couples 4, ) so that
' C =i, k) (1 ><J,,)nF4=@ J,,cUz}\B

,We claim that, for any (j, k) € 4, the corresponding square L, = I; x J, satisfies -

w(Le) = 0. Indeed, in the opposite case -one of the squares obtained by quartering,
L,, to be denoted by L,, would also satisfy w(L,) = 0. Proceéding in this way we

.should obtain,~by the method of, consecutive quartering, a sequence of squares-
AL, },,20, L, > L, > -+ such that, for each p, w(Ly) % 0 and the side length of L,

equals (b — a)/27+?. Then N L, = {z}, where z € G\ F; this would contradict » E '
‘ZW(G \ F). Writing Z for the sum extended over all (7, Ic) € A we have thus
2:’ (1 xJk>—0 . e (11)'
i . .
SN
Consnder now (7, k) € B and put I = [oz B1; j being fixed, we arrange all the mter- :
vals J, with (j, Ic) € B into a flnlte séquence . [y,’, é ’]}6 , such that y,7 < 6,’ = yo!

~
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<6 = ---. Using (3) we get . -

2]
”§1 w(/; X ,[7&’; 8,1

A}

Py N . . N N o . ‘
2 (w(B, 04) — ulex, 81) — u(B, vs) + wle, vih))|
.1e=1 . - . . L )
S ver(u ) —ulw, )il d)) SxB—al=x|L).
Hence we get for the sum J; extended over all (4, k) € B the estimate - °
A - B - : - ' .

|'Zw(1,~><'J;>|§x|U,l.'§xe. | R (12)
B . S : o C
Similar reasoning based on'(4) yields the inequality ) : " \ )
IZ'w(I;XJk)I S x|U S xe. - o (13) -
= : . - 4

Summarizing (11)—(13) we arrive at

| = | Z ol < )| + | Sl x 0|+ | ‘\C'j'w’(l,- X Jo)| < 2xe. {
. A v, : : 1 .

B 4 . e . B o - N . .
Since £ > 0 can be made arbitrarily small in'(lepéndently- of %, we have w(K) = 0,
" which is the relation (9) L : Coe e

~ Remark: Applying (9) to ﬁhe rectnngies [a, ‘x] X [¢, yl < K one gets u(z, y) = —'-u,(a; c) !
.+ ulz, ¢) + u(a, y) which shows that there are funotions (= u(;, ¢) — u(a, ¢)) and g(= u(a, +))

such that u can be represented in the form - :

Vuzy) = @) +9y), (@9 €K, o (i9)
The reasoning described in the course of the above proof of Lemma 4 shows that, ifu € £(Q)
"n W(G), then w(K) =0 for each rectangle K = I x J =@, which is equivalent to saying that

there exist continuous functions f: I — R and g: J — R such that « can be represented in the -
form (14) (cf. [3]). '\\' : i '

. : ° . .
Now we are in position to complete the proof of our main result. ’ : 7

-Proof of the Theorem: Sup’posg that u € V-Lip,oo(¢), F G is relatively
“closed in @ and u|g\ r€ W (G \ F). If there exist sets ¥,, F, satisfying (5), (6) then,
- according to Lemma 4, for each rectangle [a, b] X [¢, d]= @ the relation (9) is valid,

~ which means that » € %(@) and F is removable for V-Lipjoc (@). B
Conversely, suppose that F — @ i$ a relatively closed subset in @ which ccannot be
‘written as a union (5) of -subsets satisfying (6). Then there is a closed rectangle
KcGsuchthat P=KnF also cannot be decomposed into subsets £, #, satisfy-
ing |, (F)] = 0,7 = .1, 2. Applying Lemma 2 we get a finite non-trivial Borel measure
- with support contained in F such that the function Vu defined by (7) satisfies the
Lipschitz condition on IR2’ Hence it follows by Lemma 3 that Vu € V-Lip,,. (R2)."
If [«, B] X [7, 0] is any square disjoint with £, then Vu(B, 8) — Vu(x, 8) — Vu(B,y)
+ Vulx, y) = u(l«, B) X[y, 8)) =0, so that Vulgnp € W(R2\ F). Since x is non-
“trivial, we.can choose z, = (2, y,) € P @ such that, for each r > 0, ‘u((xo -7,
%o + 7) X (Yo — 7, Yo + 7)) > 0 and, consequently, \ A '

- Vu(ze + 7,90 + 7) + V-#(% — 7Y — r) — Vl;(?o — 7Y +7)
= V/‘(xo + 7, Yo — 1‘) = /‘([xo - 7, Zo + T) X[?/o— 7, Yo -+ 7)) > 0.

. Denoting u = Vulg we see ‘that .« 4 (R, a‘lthéugh u € V-Lipoe (¢) and u|g\ s
€ fW(G N\ E). Thus F is not removable for V-Lipjee (G) B ; Ce

O
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