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•	HebbareSingularitaten für Losungen der Funktional-Wellengleichung,die einerVerscharfung 
der Lipschitz.Bedingung gcnügen, werden enter Verwendung des eindimensionalen Lebesgue-

•	schen Mafiescharakterisiert.  
YcTpauuMue oco6eHHocTM peuieiuitt . )yI1Iu1ouaJlbHoro Bwiiionoi'o ypaniieiiw yJOBJleT-
BOP HIOIIIflX ycH.'lduHoMy YCJIOBHIO J1I1[i[IJIIE(a xapaxTepu3yloTc}l I1flI HOMOIE(H oauoMepllofl 
Mepi Jle6era.  

Removable singularities for solutions of the fupctional wave equation satisfying a, strengthened 
Lipschitz condition are characterized with help of one-dimensional. Lebesgue measure. 

Let G R2 , be an open set. (This assumption will be kept throughout the paper.) 
We shall denote by ?&(G) the set of functions u: G —* JR2 for 'which for every point 
z0 = (x0 , Yo) € G there is a square	. 

•	
Q(z, r) = ' [x0 — r, x0 +r] x [y — r, Yo -)- r]	 (1) 

of side length 2r >. 0 (depending on . z0 ) such that, Q(zo, r)	Gand the equation 

u(x+ h,y ±h)+u(,y)='u(x ± h,y)+u(,y+h)	 (2) 
-holds whenever (x,y), (x + h, y + h) EQ(z0 , r).	 . 

The functional equation (2) and its modifications arise in connection with the wave equation. 
Indeed, a continuous function u belongs to W(G) if and only if it satisfies in U the equation 
82u/ax ay = 0 iii thâ sense of distribution theory (cf. [1-3]); not that, introducing the vari- 
ables = x + y, 77 x — y one may transform a2u/x y 0 into the usual form of the wave 
equation a2v/a 2 — a2v/2 = 0 satisfied by v(, i) = u(1/2( + ), 1/2( - n)). 

We shall be engaged with investigation of removable singularities of solutiois of 
• the equation (2). For this purpose we adopt the following terminology. For a set 

M JR2 U1  denotes the restriction of u 2to M. Let X(G) be a set offunctions 
defined in 0. A set Fc 0, which 'is relatively closed in U, will be termed removable 
for X(G), if, for any u € X(G) with U IG\F, E ?P(G \ F), u € ?e'(G). As a sample 
result we quote a theorem of M. i)0NT [2] who proved, using a result of B-W. SCI-IULZE 
[4], that a relatively closed set Fc: U is removable for the set (G) of all continuous 
functions in. U if and only if F can be covered by countably many straight lines 
parallel to coordinate axes.	 -	•.	. ,.'	.	. 

We shall deal with a subspaceV-Lip10 (0) (0) to be defined below, for 
which reniovablé singularities can be characterized with help of linear measure. For 
this, for M.1R we denote by }MI the outer -Lebesque measure of M.If.I JR is 
an interval then total variation of a function /: I — JR is defined as usual and will 

•	be denoted by var (/; I). Let now K = [a, b] x [c, d] be a rectangle. Then V:-Lip (K)
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will stand for the set of all functions U: K	JR for which there exists a constant
0 (depending on u) such that, for any couple of points x 1 , x2 E [a, b], the function 

- u(x21.):yu(xj,y)-- u(x21y)' 

has bounded variation 6
. 
n [c, d] satisfying the estimate 

var (u(x 1 , .) - u(x21 . ); [c, d])0 ^S c Ix, - x2 1	 -.	(3)
and for any couple of points y, Y2 E [c, d], the function 

-u(.,yj)—'u(.,y2):x--9.u(x,y1)--u(x,y2) 

has bounded variation on [a, b] satisfying the estimate  

var (u( . , y 1 ) - u(•,-y2) [a, b])	x IN - Y21•	 (4)

Finally, let V-Lip10 (0) be the set of all functions U: 0 —. JR such that, for any closed 
rectangle Kc: 0, UIK E. V-LTP (K). 

Denoting by , r2 : JR2 —. JR the projctions	:.(x, y) i--> x, : (x, y) 	Y. we are
now in position to formulate our main result. 

Theorem: Let F c: 0 be relatively closed in 0. Them F ic removable for V-Lip,.,, (0) 
if and only if there are sets P,-, F2 c: 0 such that 

•	 F=F1uF	.	 (5) 
and 

-	Ii1(F,)I =0	(j= 1,2).	 (6)

For the proof of-this-theorem we shall need a series of auxiliary results. 

Lemma  1: Suppose that IF c JR2 cannot be decomposed into subsets F F2 satisfying 
(5), (6). Then there is an s > 0 such that, for each couple of sets L 1 ; L2 c

1, 
R2 fulfilling 

Fc L 1 u L2 , the estimate 17r,(L 1 )j + In2 (L2) ^ e is valid.. 
Proof is easy. •	 S 

Lemma 2: Suppose that F . JR2 is a compact set which cannot be decomposed into 
subsets F1 , F2 satisfying (5), (6). Then there exists a finite non-trivial Boiel measure 
with support contained inF such that the function 

- Vu: (x, y) -+ ut((—oo, x) x (— 00 , y))	 (7) 

• satisfies the Lipschitz condition on JR2 .	 . 

Proof We shall assume, for the sake of simplicity,. that Fc[0, 1] x[0, 1]. Let 
N be the set of all positive integers. For each n E IN we subdivide [0, 11 into the 
intervals Ii" = [(i — 1)/2",i/2"] and put K' = I," x J," (1, ^ i, j -2"), Jl1" =17 spy 
F n K,", = o). We are going to construct a non-trivial Borel measure IUn with support 
in F" = U An such that Vii,, satisfies the Lipschitz condition with coefficient 
on JR2 and u(JR2) :E-, 1.	- 

Since An == 0, we can choose a K',, E An and define first the Borel measure v1 
whose density with respect to the Lebesgue measure in JR 2 vanishes on JR 2 \ 
and equals 2" on' K P j, . Consequently, we have v 1 (1Q) = 1/2", v 1 (K) = 0 when-
ever K,", =1= K',,. Put 4t" = {K,: i = i 1 9r j = j 1 }. Suppose now that, for given 
k E N, we halve already constructed the system tk" (KJ and the Borel measure 
Vk whose density with respect to the Lebesgue measure in JR 2 vanishes outside F" 

--	
'•O
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and remains constant almost everywhere on each square in EAt" in such a way that 
vk(1R2) > Oand the following properties are satisfied: 

(i) For each K, vk(K)E 10, 1/2"}.	. 
(ii) If vk(K",,) = 0 for some (i0 , jo), thin K',1, E .'1t", K" ,, E Atkfor 1	j	2" 

and iik(K J )	Owhenever.j =1= j0 , and also K,",, E JItk" for 1	i	2" and vk(K,) = 0
whenever i i0 . Note that these properti'es guarantee that the function Vvk (defined 
by (7) with z replaced by Vk) satisfies-the Lipschitz condition with coefficient	1. 
(For k = 1 such 141k n , Vk have, indeed, been constructed above.) If JItk"	at", then 
the process stops and we put ,, = vk . If i1t \ iJtk "	0, then we,choose a 
E 4t" \ c/ttk" and proceed to define the -Borel measure Vk+1, whose density with respect 
to the Lebesgue measure in R2 vanishes bi JR 2 \ F" and remains constant almost 
everywhere on each square in at", in such a way that vk+1(K+,jk+,) = 1/2", Vk+1(Kq) 
= k(I pq) whenever	E Jltk", vk+ I (K) = 0 whenever K	. {K + ,jk+ ,} u tk"• Further
put

= {K'j : i = k+i 'or 	k+I} Uj,lt".	 (8) 
Clearly, J1t 1 and Vk+I enjoy all the properties listed above for iltk" and 1k with k 
replaced by k + 1. After a finite number of steps we, inevitably arrive at iJtk"	At" 
and thus obtain the non-trivial Borel measure ia,, = v, with support in F"	[0 1] 
X [0; 1] for which Vu,, satisfies the Lipschitz condition with coefficient	1.
Since for each i there is at most one j with 1t(K) +0, we have also 1z(1R 2) .1. 

Passing to a subsequence, if necessary, we may achieve that the sequence {,u,,} 
converges vaguely to a measure u with support contained in fl F" = F. It is easy to 
see that V,.z satisfies the Lipschitz condition with coefficient'	1 and 1u(1R 2)	1. 
It remains to prove that 4u(lR2) > 0.	. 

Let 4t"' be the system of all the squares K, for' which there exists a K with 
Iq M(K) rl= 0, and Jet j.tt"2 be the system of all the remaining squaresK. We assert 

that, breach K, € jj(2 n 4t", there exists a p such that u(K 1) 0. This is obvious 
if K,", E At 1 ", which was the first system of suares defined in , connection with the 
process of constructing the measure v 1 . Assuming K inj E (at" n'4t"2) \'At 1 " we can. 
choose k € N such that K' € 4t, 1 \ atkl . Taking into, account the definition (8) 
and the fact that K n. 4 JJt" we conclude that necessarily += ,j whence we get for 
P = 1k+1 the relation 1u(K) = Iufl(K + , k,j + 0 as claimed. Set now F1 " = U (tilt" 4(n1), F2" = u (4I A("2) so that Fe" u F2 " = F"	F. We have seen that, for 
each K, € c/It" n At"2, there is a Kr", with	 n.) = 1/2". Consequently, k2(F2")j,
^ u,,(F2 "). It follows similarly from the definition or .4t"' that ki(F1")I whnce	 - 

1 (F 1 ")I + k2 (F2 ".)I	1u(F1 ") + 1z(F2 ) = u([0, 11 x [0, 1]). 
Applying ' Lemma 1' we get an E > 0 such that, 'for all n € N, z,,([O, 11 x'[O, 11 

k(F")I + r2 (F2 ")I	E j whence it follows that U(,JR2)	e, which completes the
proof U. 

Lemma 3: Let y be a finite Borel measure in 1R 2 such that the function Vp defined 
by (7) satisfies locally the Lipschitz condition. Then V,i € V-Lip1 (1R2). - 

Proof: Let K	[a, b] >< [c, d] be arbitrary and choose x E [0, co) such that Vu 
satisfies the Lipschitz condition with coefficient c in K. Let a	x2 5 b. Wehave for yElR 

Vp(x21 y) - V1u(x 1 , y) = /2([x1 , x2 ) x [—co, y)), 

-	/	 S
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which is a non-negative and non-decreasing function of the variable y E JR bounded 
on [C, d] by its value md. Using the Lipschitz condition we get. I V,u(x2 , d) - V,u(x1 , d)I 

Ix2 - x, so that var (V(x2, .) - V,a(x1,..); [c, d]) ;S x I X2 - XII. Similar 
reasoning yields for C	y	Y2 5 . d the inequality var (Vi( . , Y2).- Vu( . , y); 
[a, b])	' jy2	y, 1, so that V/A IK E V-Lip (K) I 

Lemma 4: Let Fc 0 be relatively closed in. 0 and suppose that u: 0 -* JR is a 
/u'nctiOn such that u IG\F E' 911(0 \ F) and U IK E V-Lip (K), K = [a, b] x [c, d]	G. 
If F n K can be decthnposed into subsets F 1 , F2 satisfying (6),. then	- 

• .u(a, c): + ü(b, d) = u(b, c) + .u(a d).	-.	 ..	(9) 

Pioof: If 1= [a, ] x [y, ]	K, we define' w(I) = u(, ) - u(a, ö)	u(, ')
+ u(a, y). Then w is an' additive interval function. Let us fix E [0, oo) such that - 
(3) holds for all x, x2 E [a, b] and (4) holds for all y, y2 E [c, d]. Then 

•	w([a, ] x [y, 5])	c mm I# - , - y).	. .	.	 (10) 

Since the relation (9) is obvious if a = b or c = d, we shall asume that a< b and 
C <d. Noting that K can be decomposed into a rectangle [a, b] x [c, d0] (where 
c <d0 <d) with commensurable side lengths b - a, d0 - c and another rectangle 
[ah] x[d0, d] with 'arbitrarily small side length d - d, 'e cOnclude easily from (10) 
that it is sufficient to verify (9) for squares contained in K; so we shall suppose, 
without any loss of generality, that b'- a =d c. (Note that, in'case u € C(0), such 
reductioh is also possible without reference to (10).) 
• Fix an arbitrary s> 0. Then there are open sets-U 1 c& (i = 1,2) such that 
x 1(K oF) U 1 , lU <e. In view of K n F (U1 xR) u OR x U2) we can choose 
r > 0 small enough to guarantee that from Q(z, r)	K, Q(z0 , r) n F 0 follows 
Q(z0 , r)	(U 1 xlR) u (JR x U2), where Q(z0 , r) is defined by (1). Next fix n € IN large
enough to have (b— a)!2" = (d - c)/2" <rand put 

= [a +(j	1) (b 	a)/2, a + j(b —.a)/2].	 . 
(1	j,k	2). 

'.1k = [c + (k —1)(d —c)/2,c-f- k(b —a)/2]  
Let	.	 •/	 • 

4 = (j,k): (I, XJk) n 	=Ø};	.	 -	• 

B =. {(j,•k): (I x Jk) n F	0, I	U 1 )	 . 

and denote by C the set of all the remaining couples (j, k), so that 

C =.{(j,k): (I,x'Jk) nF+O,Jk	U2) \B. 

We claim that, for any (j, k) € A, the corresponding square L0 = I, x Jk satisfies 
w(L0)= 0. Indeed, in the opposite case one of the squares obtained by quartering1 
L0, to be denoted by L, would also satisfy w(L1) 0. Proceeding in this way we 

- .should obtain,—by the method of, consecutive quartering, a sequence of squares 
{L}^!0, L0	L1	. such that, for each p, w(L) == 0 and the side length of L 
equals (b - a)/2 P . Then fl L,	{z}, where z € G" F; this 'ould contradict u €
911(0 \ F). Writing f for the sum extended over all (j, k) € A we have thus 

A	 . 

w(IXJk)0 .	 .	,-	. •	•..	-	(11) 
A

\ 

Consider now (j, k) € B and put I = [a, ]; j being fixed, we arrange all the inter-
vals Jk with (j,,k) € B into a finite sèuence.{[y3 1 ,ô8 ]). 1 such that y1f <
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•	 62	•... Using (3) we get  
1-+j 

,	w(I, x	bal l)	 -. 
81

	

(u(, Ô8 ) - u(c, ô) -	y8) + u(c, y3 i))	 S. 

	

var (u(#,.) - u(x, .); [c, d])	x	-	= x III.: 
Hence we get for the sum 7 extended over all (j, k) E B the estimate - 

	

B	 - 

Ew(I,xJk) •x I U iI. xe.	 (12) 
B 

Similar reasoning based on(4)yields the inequality	 k S 

Ew(IxJk)	x I U2I	xe.	 (13) 
C 

•	Sumrnirizing (11)—(13) we arrive at 

Iw(K.)J ;5 Ew(I X Jk) - L'w(11 X Jk) + E w(11 XJk )	2x. 

	

A	 B	
-,.	 C 

Since e> 0 can be made arbitrarily small indepéndently . of x, we havew(K) = 0, 
•	which is the relation (9) I	 -	 S 

Remark: Applying (9) to the rectangles [a, x] x [c, y] c: K one gets u(x, y) = —u(a, c) 
•

	

	+ u(x, 0 .+ 'u(a, y) which shows -that there are funjtions f( = u( . , c) - u(a, c)) and g( = u(a, .))such that u can be represented in the form 
u(x, y)	/(x) + g(y),	(x, y) € K.	 (i4) 

The reasoning described in the course of the *above proof of Lemma 4 shows that, ifu 
o ?(G), then w(K) =0 for each rectangle K = I x J G, which is equivalent to saying that 
there exist continuous functions I: I -* IR and g: J -> IR such that u can be represented in the 
form (14) (cf. [3]). 

•	Now we are in position to complete the proof of our main result. 

Proof of the Theorem: Suppose that u € V-Lip 10 '(G), FG is relatively 
' closed in G and U IC\FE ?V(G \ F). If there exist sets F1 , F2 satisfying (5), (6) then, 

- according to Lemma 4, for each rectangle [a, b] x [c, d]	U the relation (9) is valid, 
• ,	which 1p6ans that.0 € 2&'(G) and F is removable for V-Lip,. (, (U). 

• Conversely, suppoe that F i a relatively closed subset in 0 which cannot be 
written as a union (5) of subsets satisfying (6). Then' there is a closed rectangle 
K c: U such that P = K n F also cannot be decomposed into subsets P1 , 'P2 satisfy-
ing In(P) I = 0, i = 1, 2. Applying Lemma 2 we get a finitenon-trivial Borel measure 

with support contained in P such that the function Vzi defined by (7) satisfies the 
Lipsëhitz condition on 1R 2.' Hence it follows by Lemma 3 that V,u E V-Lip 10 (lR2). 
If [, fl] x [y, ô] is any square disjoint with P, then Vi(, ) - V,u(c, ) - V1u(,y) 
+ V1z(&, y) = u([x, fl) x [y, a)) =0, so that 'VUI JR $\ P € W(lR2 \ .P). Since u is non-
trivial, we can choose z0 = (x0, Yo) E Pc U such that, for each r> 0, 1u((x0 - 
x0 + r) x (Yo — r, Yo + r)) > 0 and, consequently, S 

	

• V1i(x0 + r, Yo + r) + V(x0 - r, Yo - r)	V(x0 - r, Yo + r)	• 
• - Vu(xo + r, Yo - r) = 4u([x0 - r, x0 + r) X [Yo - r, y + r)) > 0: 

•	• Denoting u = VIU I G we see that 'u q 2e'(G), although u E V-Lip 100 (U) and uIci 
• -	€ W(U \ F). Thus F is not removable -for V-Lip (U) I	:	 - 

/	S	•	 S	 V
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