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Obwohl K-Hornologie abstrakt als Dual der gewohnlichen K-Theorie von Räumen definiert 
werden kann, ergibt sich ihre Verwendung in Indextheorie und Analysis durch die konkrete 
Realisiening, bei der elliptisehe Operatoron Zykien sind. Das ist wohlbekannt für Mannig. 
faltigkeiten ohne Rand, aber nicht für soiche mit Rand. In dieser Arbeit gebén wir eine Reali-
sieruñg.fur relative Zyklen unter Benutzung elliptischer Operatorew auf der verdoppelten 
Mann igfaltigkeit an und untersuchen Paarungen dieser Zyklen mit K-Kohomologie vermittels 
Fredhoim-Indizes und SpektralfluB. 
XOTR R-ro1oJ1orHH MoeT 6uTb onpeeieiia a6cTpaHT116 Hax conpRWCHHoe H O6b1'1Hol K 
TOHH npocTpaHc'rB, ee npnMeIIeIIue B TOOI4II H1IeHCoB ii anainae OCHOBbIBaeTCR sia 
HOHHpeTIIOM npegcTaBJIenllH, npii HOTOOM n1BnTs14ecHlle onepaopi HBJ!H}OTCH UMHJ!aMH. 
3T0 xopowo 113BOCTHO )JlH MHorooGpaoHu 6e3 H$4, HO H J1H TaHux C HpaeM. B aHHofl 
paoTe Mbi jAaem peaJlM3aUBIO J.UH 0TH0CHTeI1bHb1x IXHRJIOB C Hdn0J1b30BaHneM J!J!1anTH'1ecHMx 
onepaTop 'on iia YLBOCHHOM Mnoroo6paauI! Is ucc.ueyeM cnapane aTlix [F1HJI0B C R-ioro-
MoJ!oI'!iet nOCpe)CTBoM HHexcoB cDpeu'oJ!bMa H cnexTpaJlbHoro noToHa. 
Although K-homology can be defined abstractly as a dual of 'the ordinary K-theory of spaces, 
its use in index theory and analysis comes about through the concrete realization where elliptic 
operators are cycles. This is well understood for manifolds without boundary but not when a 
boundary' is present. In this note we provide a realization for relative cycles using elliptic 
operators on the doubled manifold and explore pairings of these cycles with K-cohomology in 
terms of Fredholm indexes and spectral flow. 

0. In&oduction 

One consquence of the development of K-homology has beer that an index formula 
can be viewed as the result of the pairing betwee'h homology and eohomology in K- 
theory. Thus de'termining the. class defined by an elliptic operator . in K-homology 
becomes paramount and the specificity of an index formula depends on the concrete-
ness of the associated Chern character for -K-homology. In the case of compact mani-
folds without boundary there are several good approaches, but we want to mention 
the one, due to CONNES [11], which involves cyclic cohornology and its isomorphism 
with de Rham homology. Although work continues in this area, one can 'say with 
considerable justification that we have a basic unde'rs' tanding of it. This is not case 

\ for elliptic operators on manifolds with boundary. There is no systematic theory 
which incorporates the index theorem -of Atiyah-Bott [1], the Atiyah-Patodi-Singer 
theorem [2], and proyides a concrete formula for the Chern character of the Khomo-
logy class of the operator. 

An elliptic operator A on a compact manifold M with boundary can be shown to 
determine an element [A] in the Kasparov KK-group-for the algebra c0( M) of func-
1) The research of both authors was partially supported by a grant.from the National Science 
Foundation.	 S 
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tions on M which vanish on &M (see [6]). However, determining the image of [A] 
under the boundary map depends on the calculation of a non-trivial Kasparov pro-
duct which is not constructivc. For that reason BAUM and Douáias [5] offered an 
alternate definition of' the relative group K0(X, 1') in which the boundary map is 
constructive and in [6] it was shownhow to realize [A] in K0(M, aM). 

However, constructing the Chern character for [A] explicitly is more difficult as is 
describing the connection with the Atiyah-Ptodi-Singer theorem. One way'to view the 
problem is that C0(M) does not have a unit and the tricks introduced by CONNES in 
[11] for dealing with this do not work. The problem is fundamental. Although one 
can solve this problem using the one-point corupactification, the' boundary informa-
tion is lost and, in particular, the fact that A is smooth up to and including M plays 
no role. One seeks to define the Chern character on C(M) but there is an obstruction 
to that which is the image of [A] under the boundary map.  

In this note we introduce a different approach to the relative K-homology group' 
K . (M, M) for a manifold with boundary M, which is orientable with respect to 
K-theory. Reflection defines a natural involution J 1 on the K-theory of the double 
X of M. We show that' K I(M, M) is naturally isomorphic to the fixed points of' J 
on K(X). This enables one to canonically represent classes in K . (M, &M) by elliptic 
operators on X with the appropriate behaviour under reflection. One expects to use 
the well-developed Chern character for operators on X to study the relative K-homo-
logy on M. Following this approach we obtain: explicit calculation of the pairings. 
between relative K-homology and K-cohomology and the relation of this pairing 
to the index of concrete operators.  

Although part of this has appeared implicitly in the work of others,, we believe 
there is value in considering these results in a systematic fashion. 

Formulas involving cyclic homology or de Rham homology, and connections with 
the Atiyah-Patodi-Singer, theorem will be taken up in a later paper. 

1. Cutting and pasting of elliptic operators  

We recall here a construction from [18], which is crucial for the whole consideration. 
Let us assume that 'we .have two compact manifolds M 1 , M2 with boundary, such 
that M1 = 7 = M2 and let us assume that A 1 and A 2 are first order-elliptic opera- - 
tors defined on M 1 and M2 , respectively; A 1 : C00(M1; E) - C(M; F 1). We assume, 
that they have the following form on some collar , neighbourhood of Y: 

A,=G1(a,+B1).  
Here G 1(t, .): E i I Y F 1 1 7 'is a bundle isomorphism, where t denotes the inward 
normal coordinate and B =B 1 (1, .):CcV(Y; E, I Y) -* C(Y;'E1 1 . Y) is an elliptic 

'differential operator on Y We denote by a . (x, ) and b 1 (y, ) the principal symbols 
of A, and B, respectively. (We suppress the dependence of b on t to avoid further 
complicating our notation.) Now we fix Riemannian structures on M . and Hermitian 
structures on 'E 1 and F1 . If v denotes the unit tangent vector in the I direction, then 
a 1 (t, y; rv + ) = G 1(y) (ir . Id- + b(y; )) on the collai neighbourhood of Y. Now 
let us assume that 'there exists a smooth bundle isomorphism g: E, I F - F2 1 F such 
that  

	

-	02*(y) g(y) My; ) = b2*(y; ) G2*(y) g(y).	,	.	.	(1.2) 
Under these assumptions we' define the manifold X = M1 i M and vector bundles 

= E1 u F2 and F = F1 GgC,-' E2 on X, where we identify e in E1 ' with g(y) e1 
in F. o obtain E and similarly for F. We want to construct an operator on X 
using A 1 and A 2. However, we cannot just glue A 1 and A 2 together, because the nor-

 ,'	'
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mal derivatives have opposite orientations (see Fig. 1). To overcome this we use A2* 
in place of A 2 . Then, we are-able to construct an operator which has principal symbol• 
equal to a1 on M 1 and a2* on M2 .	 - 

We may assume tkiat the intersection of M 1 and M2 is equal to N = (- 1, , -- 1) X Y, 
a bicollar neighbourhood of Y (see Fig. 2) and that t . is the normal coordinate to Y. 
in V. With respect to this coordinate our operators have the following form on N: 

A 1 I V = G 1 (a, +'B 1 ),	A2* I V	G2* (a + (02 *)_ 1 B2*G2*). 

If for x = (t, y) in N,' we evaluate a on an element of E9 defined . by- e in E1,, we 
obtain the element 0 1 (irv + b 1 ')e of pg, which is equal to 

(G2 *gO 1 ) 0 1 (ir + b 1 ) e , = (ir ±'b2 *) 02*9(e)  

= G2(ir. ± (G2*) b 2 *02*) g(e) = a2*(g'e)). 

This shows 'that the symbol a1 ua2*: H*(E9) --> 17*(F) defined by the formula 
a 1 ' u a2* = a1 on 11*(E0) I M 1 , a1 ü a2* = a2 * on TJ*(E0) I M2 is a well-defined elliptic 
symbol on X. We denote by A 1 ug A 2* C(X; E) -* C°°(X; F) any elliptic pseudo- 

- differential operator with principal symbol a 1 u a2 * . In the following we always 
assume that it is a differential operator on some bicollar neighbourhood of' Y. 

Remark-: The operator A i ug A 2* is only defined up to the -O--orderterm.Wecan 
,define the, operator A 1 u0 A 2* uniquely if instead of (1.2) the operator identity 
02*9Bi = B2 *G2g holds.  

The 
'
most interesting case for us is when M1 = M2 = M, A 1:= A 2 = A 'and 

g = .(G*) . Usually we assume also that G and B' do not depend on the nornial 
coordinate on sonie suitable collar neighbourhood of the boundary. In this ease we 
simply Write A u A* for the corresponding operator on M, the closed double of M.. 

The preceding construction enable one to "paste together" twoelliptic operators 
def inert on two halves of a manifold X under appropriate hypotheses on the op'erators. 

• Since elliptic operators .define the cycles for K-homology, this construction has an 
interpretation in terms of the Mayer-Viétoris sequence. We will not- elaborate on', 
that here.  

Next we want to consider an analogous construction for cycled for the 0(1(1 , group 
in K . homology which involves self-adjoiiit elliptic operators. We (10 not treat the 
most general case. In our discussion of the "odd case" we assume that A :.000(M,; E) 
-^ C(M; E) is such that	 . 

A V , is formally self-ad joint,
'(1.3) 

(A/ 1 /2) = (/1, Af2) for /1, f2 'E CO (M \ Y E) 

We want to obtain a self-ad joint operator of the form A u, (±A )'on M. We now assume 
that 0 and,'B do not depend* ont on V. In that case (1.3)'ithpliesO* = --'G and 

32* - 

7I,	-	•
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GB = _B*G. Havihg in mind the case of generalized Dirac operators we assume' 
further that G is unitary and B is self-adjoint. A section of E = E UG E is a pair 

•	(se, 2) of sections of E such that s2 = Os on V. Since G4s = GG(a + B) .s 
= -( + B) s and As2 = O( + B)82 = +( - B) 082 = ( + B) s, it -follows 

•	that we have a well-defined self-adjoint operator on M of the form A u (—A): 
C(M, EG )	 C(M,EG)., 

2. The relative K-homology groups on Spincmanifôlds 

In this section we discuss an analytic realisation of relative K-homology groups on 
manifolds with boundary. A related realisation is described in [5, 6]. Here we show 
how to represent the relative cycles as the fixed points of the involution defined on 
the elliptic operators on the closed double of our manifold. This suggests a generali-
zation of our results to more general manifolds'which will be discussed elsewhere. 
We describe in detail the "even" case of the group K0 and state the analogous result 
for K3. S 

Let M be a compact manifold with boundary Y and let X denote its closed double. 
We-'start by recalling.the.exact sequence of C*algebras 

,where 0(X)7 and C() denote the algebras of continuous 'functions, C0(M) is' t  
algebra of continuous Junctionson M which vanish on Y, and j(/) = / u 0, k(11 U /2) 

= /2. We have also a map s: 0(M) - 0(X) given by the formula s(/) =+ / u f, which 
is a section of k, that is, ks	Id. The last property implies the'long exact sequence 
in K-theory splits:	 . 

o K(M, Y) K(X) - K(M) -*!0. 

By standard results from K-theory (see [8: Section 19.5]) we obtain a correspqnding 
splitting in K-homology	 .	 . 

0 -> K1(M) --->- K(X) - K(M, Y) -*0. 

- Now, let us assume that M is a Spinc manifold. This induces corresponding Spin e-
structures on X. and Y, and hence all these manifolds are K-oriented (see [3]). Thus 
we have the commutative diagram 

O—^Ki(M,Y)ii-,.K(X)-+ K(M)-*0 
,DP 

0 -^ K-(M)	K_1(X) itt K_ 1(M, Y) —^ 0. 

Here DP denotes the Poincaré duality maps which in this case give isomorphisms 
between corresponding groups and n= dim M. (See [4] for a nice discussion of 
Poincaré duality in K-homology.) This diagram enables us to present a nice and simple 
analytic representation of the relative K-homology groups. 

We now assume that M is even-dimensional and we deal with the case, of even-
dimensional groups. Recall that K°(M, Y) can-be identified with tbe set of triples 
(V, W; h), where V and W are vector bundles over M and h: VI Y -. 14 I Y is a 
bundle isomorphism. The triple gives the element [V U, -W] - [W u ,W] in K°(X). 
This element is "equal to 0" 'on the second copy of M andthe subgroup of elements 
of this form in K°(X) is, in fact, K°(M, Y). We can see this decomposition from yet
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another point of view. Let Z,= E u F-be a bundle, over X. We choose a bundle F' 
onM such that F F' = M x C" and decompose the class of Z in K(X) as follows: 

EuF=[(EF')u(F(@F')]_[F'uF1] 

=[(E(TJF')U 'Ell —[F'uF1]—[FuF]+[FuF] 
{[(E3F') uC"] - [C"]} + [FuF]. 

It is clear that the first summand gives us the element of K°(M, Y) and the second 
the elenientof K°(M). 

The next important fact is that on a Spin'-manifold X there exists a natural genera-* 
tor of K0(X)as a K(X)-module. This is a class of the Dirac operator +: C(X; Sf) 
-* C(X, 8-) (see [3, 4]). Now X is a manifold of a special kind, since it is a double 
of M, and we can write X = M.0 (—M), where —M denotes M with the reverse 
orientation. Positive spinors become negative spinors under , the change of orientation 
and it is, in fact, obvious that we can -construct a suitable Dirac operator using the 
Dirac operator on M and the cohstruction from Section 1. Then we have 

•	
x= 9,1f uz*: C(X;S u8)	C(X;S uS). 

Now it is easy to describe the element in K0(X) which correspnds to the (V, W; h) 
from K°(M,Y). It is the class 

[( u ) ® Id 1 } - [ ( 91 u *) ® Id1] 
u *) ®	± [(*u ) ® Idwjw] 

[(91 0*)01dvu,w(* u) ®Id]. 

• One may ask how to make contact with the group K0(M). Actually it is not difficult. 
The point is that the operator 

*) ® Idyuh w	( u) ® Id,u,	 1	
(2.1) 

corresponds to the well-defined "local" elliptic boundary\ value problem. It is well 
known that the Dirac operator (and4,,i ® Idv as well)'cloes not admit "local" elliptic 
boundary conditions (see [2, 6, 10]). We define the Balderon projection P() as the 
projection of C(M;S) onto the space H() of the Cauchy data of: H() = {u 
U EC(M; St), u 0 in M \ Y}. One can show that P() is a pseudoclifferetitial 
operator of order 0. 

The class of the principal symbol of P() in K1 (TY) is an obstruction to the existence. 
of a "local" boundary condition. This obstruction vanishes in the case of an operator,. 
which is essentially of the form ($ ) ® Id'on the collar. The corresponding bound-
ary value problem R: C(X; (S ® V) (5 &,'W)) - C(X; (8- 0 V) (54 
® W)) C(Y; (ST ® W) I 1') is of the form 

( 8 1 0v;s2 0 w)-3. (( (DId)s1 ®v; 
(* 0 Id) 82 0 w: (G (3 h) P(.® Ide) S ® V - P(* (D I) s2 ® w) 

where s ® v E C(X; S 4 (D V), 82 ® w E C(X; 8 ® W). it is shown in [1] (see 
[15] for a beautiful exposition) how to deform the symbol of fl to the elliptic symbol 
on M, which is algebraically degenerated at the boundary, i.e. equal to a bundle 
isomorphism independent of the cotangent vector, on some collar neighbourhood of 
Y. This symbol givs us an element of the group KO(DM , SM u (DM I Y)). We use 
Poincaré duality once again and obtain K°(DM, SM u DM I Y) = KO(DM) = K0(M). 

/	I
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Thus elements of K0(M) are stable hornotopy classes of operators which are algebrai-
cally degenerated at the boundary or, equivalently are operators, with a "local" 
elliptic boundary condition. Let us observe that operator (2.1) has a symbol which is 
algebraically degenerated on the second copy of M, and thus-also on some neigh-
bourhood of the boundary. Hence no deformation is necessary in this case. 

We know that an element 'of K0 (X), is given by the class of an operator of the form 
u *) ® IdEup. We decompose this class exactly in the same way as the corre-

sponding class in K°(X):  

u *) u IdEUp = {( u ) ® ME .iucK	(* u ) ® IdcK}	(u *) ® IdFUF. 

The first summand gives us an element , of K0(M) and the second represents, an ele- 
ment of KO (M, Y).. The essential point in the decomposition is' that any cycle here 
represents the class'of a cncrete differential operator. Let us cons iderthe class of 
A = A 1 u A 2 , where A is a first order differential elliptic operator. Thanks to the 
construction from Section 1 we have the follovin identities which hold in K0(X): 

[A 1 uA 2]'= [A 1 uA 2 A 2 uA2*A2* uA2] 

= [(A j A 2 ) ' u(A 2 A 2*)J± [4 2* u'A2].  

•	Once again, it is obvious that the symbol of A 2 A2* can be deformed to a symbol 
of the'form I Id outside of a certain collar neighbourhood of' Y.-Thus Ave can deform'- 
the operator (A 1	A 2) u (A 2	A2*) through elliptic pseudodifferential operators- - 
to an operator of the form (C u Id) i/k, where.0 u Id is n elliptic pseudodifferential 
operator of order 0 and fA is the square root ofa suitable Laplacian. The class of this 
operator C uld belongs to K0(M) and the class of A 2* u A 2 gives an element of 
KO (M, Y). Thus we here proved the following.  

Theorem 2.1 If So denotes the set of classes in K0(X) of the. operators of the form 
A u A*, then $o = K0(M, Y).  

In a similar 'way we consider the "odd ease". Now din'i M = 2k + 1 and it is 
well-known that in this case the Dirac operator : C(X'; S) - C(X, S) is a genera-. 
tor of K 1 (X). Once again any class in K 1 (X) is the class of a differential operator. The 
following identity is the analogue of (2.2):  

[B1 6 B2] =[(B 1 B2) uB2 (—B2 )] +-[HB2)'u BI. 

Now we can deform the principal symbol of the *operator B2 (—B2 ) told through 
elliptic self-adj'oint symbols and the operator (B1 B2 ) u (B2 (_B2)) can be 
deformed to a self-adjoint operat6r of the form (C u Id. Thus K(X) decomposes - 
into K 1 (M) and the set S, of classes of operators of the form B u (—B).'Thus1 we have 
the following Theorem which covers the "odd case". 

Theorem 2.2: If 01 denotes the set of classes in K, (X)of the operators of the form 
• B u (—B),'then 61 = K 1 (M, Y). 

/ Now we forriulat.e our 'result in a different way. On X Ave have the natural inv6lu- 
tion.J which interchanges the two copies of M. The involution

,
 J induces a map on 

the space of elliptic operators. 'We let J0 denote the composition. of this map with 
taking adjoints. It is given by the formula J0(A) = J0(A 1 u A 2) = A 2* u A 1 *. The 
corresponding map on the space of elliptic self-adjoint operators is given-by the'. 
formula J I (BI uB2 ) = (—B2 ) u (—B1 ). Now Ave are able to formulate the results .of 
this section in the following, way.
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Theorem 2.3: If K(I) denotes the set of fixed points of the involution J, then 
K 1(M,.Y) = K(X). 

Remark: Recall that [A*] represents the inverse of [A] in.K0(X) and [—B] the 
inverse of [B] in K(X). Thus J modifies the operators to compensate for the change 
of orientation on the two halves of X. 

3. The pairing of K(M, 1!) with K°(M, I') 

In this section we describe the intersection product - 

KO(M, Y)xK°(M, Y)–* 7L.'	 n 

Thanks to our analytical representation we are able to apply, here the results of the 
paper [12], in which the pairing for the case of a compact manifold without boundary 
is discused. In this situation the intersection number is equal to the index Of a suit 
able operat9r. We begin by observing that the index of an operator of the form A . u A* 
is equal. to 0.  

Lemma  31: If M is a compact manifold with boundary Y and 'A: C(M; E) 
—* C'(M; 'F) is a first order elliptic operator of the form (1.1) on the collar neighbouhood 
of the boundary, then index (A u A*) =0. 

Proof: If 'J: X -* X' denotes the,reflection on X, then we have J(A u A*) J 
= A* uA'= (A uA*)*. Hence index (A uA*)= 0 I  

Therefore the pairing of A u A* with a class in K°(M Y) cannot be defined using 
the index of A u A* . We must proceed differently to obtain a non-trivial index which 
yields the pairing of A uA* with an element of K°(M, Y). Fortunately we have the 
analytical representation of the pairing on the manifold without boundary (see [12]) 
and we have the, commutative. diagrams introduced in Section 2. These provide us 
with an elementary proof of the following propositioi.  

Proposition 3.2: If ['] denote the class of the Dirac operator in K O(M, Y) and' 
[V, W; hI is in K°(M, Y), then  

[] [V, W; hi = index (, u +*) ®  

More generally this formula works for any operator ' on X realizing a class ii K 0(M, Y). 
That is, if D is an elliptic operator such that [D] is in S, then the formula . holds. 

Remark: It is not difficult-to formulate a variant of Proposition 3.2 which in-
cludes the relative index formula of Cheeger-GromovLawson (see [14)].	- 

4. The pairing of K1 (1 11, Y)-and K1(M,"Y) 

Now let us assume that M is an odd dimensional spin'-manifold. In this case the 
Dirac operator M: C(M; 8) —* C(M; 8) is a self-adjoint operator and its class is 
a generator of K I (M, Y) = K1(X).  

The.pairing between K-homology and K-cohomology is now given by a spectral 
invariant, so we discuss the spectral 'properties of , self-adjoint operators on closed 
manifolds fora while. Let D: C(X; V) —* C(X; V) be a self-adjoint elliptic pseudo 
differential operator of positive order on a closed manifold X. We know (see [13] for
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instance), that D has a discrete spectrum 244EZ. If we order the eigcnvalues I2 
^	..., then there exists a constant C.> 0 and an exponent b> 0 such that 
12,I I > Cnô if n . > no is large. This implies that the eta-function j(s, D) =	sign (2) 
x I2I_ 8 is well-defined for Re (s) > 0. Moreover it has a meromorphic extension to the 
whole complex plane and s = 0 is a regular point. The absolute eta-invariant (0, D) 
is an important invariant of elliptic self-adjoint operators, which in some sense cor-
responds to the index. Here we present an analogue of Lemma 3.1 for the "odd case". 

Proposition 4.1: Let A: C(M; E) -* C(M; E) be a first order elliptic self-
ad joint pseudodifferential operator having the form (1.1) on some collar neighbourhood 
of the boundary. I' G and B do not depend on tin the collar, G is unitary, and B is self-
ad joint, then (o, A ,u (—A))	0.	 . 

Proof: It is obvious that G2 = —Id and GB = '—BGt under the assumptions we 
have made. Now, let us consider the equation (A u (—A)) u = Au for A 0. A solu-
tion u is of the form u = ui u u, where Au, = Au 1 , Au, = —Au2 and 0u 1 = 
On some' bicollared neighbourhood-of Y: If we define ü = u2 u (—u 1 ), thenü satisfies 
the equations (A u (—A)) ii	—2i and G(u 1 ) = ü2 on the same collar. This shows

that A u (—A) has a symmetric spectrum I 

Remarks: (i) In [20] it is shown that the operator A u ('—A) has trivial null-
space. (ii) Proposition,4.1 does not imply the vanishing of the local eta-invariant. 

'The ete-function is 'given by the fOrmula' 1 ) = r((s + I)/2)'f g)8- 1)/2 tr (D e') dt. 

The operator D e 1 has a smooth kernel K(t,,x, 'y), and we define the local eta-
+00 

function (s, x) = P((s ± 1)/2)_if 080 tr (K(t, x, x)) dt. It is well known (see [7]) 

that s, x) is holomorphic for Re (s) > —2 for generalized Dirac opérators. .,Although 
77Au-A(0) = 0, it is often the case that the local eta-invariant 7Au-A(O, x) does not 
vanish. The application of this fact to the study, of the eta-invariant on manifolds 
with boundary will be given elsewhere.-' 

Now let us assume that {Bj )( s1 is a family of elliptic self-adjoint operators over 
S'. The spectral flow sf (B} of the family {B} is given by the formula 

sf (B)) =f (d' i(B, 0)/dt) dt. 

It is just the difference between the number of the eienva1ues which change sign 
from — to ± as the parameter changes from 0 to 1 and the number of eigenvalues 
which change sign from + to — (see [2, 9, 19]). It turns out that the pairing between 
K 1 and K' can be defined in terms of the spectral flow. The elements of K'(M, Y) 
are just the homotopy classes of the continuous 'maps h: M - U(oo) such that 
h I Y = Id. By a standard approximation argument we know that each class contains 
a smooth map g: M -. U(N), which is equal to the identity on some collar of Y. 
Thus it extends to a map of the form = g u Id on the double of M. 

We have two unitarily equivalent elliptic operators on .1 

B0 =.(M U — M) ® Jd,	B1 = (id ® ) ((9 u —) ® Id) (Id ® +. 

We form the family {B}, B = tB1 + (1 — t) B0, over S1 . The main result of this - 
section is the following corollary from the corresponding result from [12].
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Theorem 4.2: The formula [][h] =	u (-4)) ® 1d] [h uld] = sf {B} is true.

More generally this formula holds for any operator B realizing the class in K1(X). 

•

	

	Remark: In [12] the intersection number is given as the index of a suitable 

• Toeplitz operator. These ealizations are equivalent and one can find a detailed dis-

cussion of this in [9, 19].  
+5	

0 

56. Pairing with the image of the coboundary homomorphism 

'In this section we discuss special cases of our results. The reason is that we want to 
obtain information about the contribution to the intersection numbers given by 

'terms which depend only on the boundary data.	 .	 . 
We start with the "even case". Let M be an even-dimensional Spin'-manifold 

with boundary Y. We consider the exact sequence 
•	Kc(M, Y) -K'(M)	KC(Y)	.	... 

K1( Y) K1 (M) + 
Let us denote by y the element of .K'(Y), which isdefined by the-map g: Y -- U(N). 
Then using our notation we have 

	

= [it X (EN U MCN] - [X X (EN] = [Es] [(EN]	 .

and • 

•	[&r] [y]' = index (9x ® jlE,) =J	
( x®1dEg(x) - x®IdcN(x)) dvol(x) 

Here cA denotes the index density of the operator A (see [13: Thin L7.6]). The dif- 
ference we have on the right side of our formula vanishes outside some Collar of Y 
and, in fact, gives the index density of an operator on S 1 x Y. One can find a detailed 
•discussion of all this in [9, 19]. Let us only mention here that we are able to express 
the above index in terms of spectral flow. If we fix a product metric on the collar, 
then is a Dirac operator on an odd-dimensIonal manifold which is self-adjoint. 
We put B0 = 49y ® IdcN, B 1 = (Id ® g) (91 y ® Id) (Id ® g) - ' and define the family 
over S"as in the previous section. We end up with the formula [} y = sf {B}. 

The "odd case" is similar. If M is an odd-dimensional Spin'-manifold, then t4m 
decomposes as follows on the collar: 

M= o(a1 + (' - 
'here -: C( Y; 1S) — C( Y; S-) is now theDirac operator on the even-dimensional 

manifold. Since Y is a boundary, it follows that index + = 0 (see [17: Chap. XVII] 
or [6]). Now it is difficult to describe 80([E] - [€']) directly. However, if we take 
the product of all manifolds with 5' and use Bott periodicity, we end up with the 
formula [eM] a0([E] - [(ErkE]) = index (, 0 Ide). 
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