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Obwohl K -Homologie abstrakt a.ls Dual der gewdhnlichen K-Theorie von Raumen deflmert

werden kann, ‘ergibt sich ihre Verwendung in Indextheorie und Analysis durch die konkrete
Reallslerung, bei der elliptische Operatoren Zyklen sind. Das ist wohlbekannt fiir Mannig-
faltigkeiten ohne Rand, aber nicht fiir solche mit Rand. In dieser Arbeit gcbén wir eine Reali-
sierung.fiir relative Zyklen unter Benutzung elliptischér Operatoren auf der verdoppelten

. Mannigfaltigkeit an und untersuchen Paarungen dieser Zyklen mit K-Kohomologie vermittels

Fredholm Indizes und SpektralfluB.

Xora K-romonorus MOeT OHTL ompefesena abCTPaKTHO Kak cONMpsieHHOe K obbiunoft K-
TEOPMH TNPOCTPAHCTB, €e NpHMeHeHHe B TEGPUHM MHIEKCOB M aHAJIN3¢ OCHOBBLIBAETCA HA
KOHKPETHOM NPEJICTABACHMH, IPH KOTOPOM DANIMNTHYECKHE OTEPATOPHl ABIANTCA LMKIAMM.
-9TO XOpOWO M3BECTHO JUIA MHOrooGpasuii Ges Kpas, HO He INA TAKUX ¢ KpaeM. B nanuoft
paﬁo're MBI JlaeM PeaJIH3alMIo /TIA OTHOCHTENLHEX LIUKJIIOR € HCMONL30BAHNEM DILTUIITHYCCKUX
ONepaTopoB HA YABOCHHOM MHOrooGpa3uM M ICCIEAYeM CnapMBaHHe 3THX LUKIOB ¢ K-koro-

* MOJIOorMelt OCPEACTBOM MHIEKCOB D PEArobMa M CNEKTPAILHONO MOTOKA. <

Although K- homology can be defined abstractly as a dual of the ordinary K- theory of spaces,
its use in index theory and analysis comes about-through the concrete realization where elliptic
operators are cycles. This is well understood for manifolds without boundary but not. when a

boundary-is present. In this note we provide a realization for relative cycles using elliptic

- operators on the doubled manifold and explore pairings of these cycles with K- cohomology in
“terms of Fredholm indexes and spectral flow

»

Oneé conséquence of the development of K-homology has been'that an index formula
can be viewed as the result of the pairing betweeh homology .and cohomology in K-
theory. Thus détermining the.class defined by an elliptic operator in K-homology
becomes paramount and the specificity of an index formula depends on the concrete-
. ness of the associated Chern character for K-homology. In the case of compact mani-
folds without boundary there are several good approaches, but we want to mention
the one, due to CoxNES [11], which involves cyclic cohomology and its isomorphism
with de Rham homology. Although work continues in this area, one can say with
considerable justification that we have a basic understandmg of it. This is not case
for elllptlc operators on manifolds with boundary. There is no systematic theory
" which incorporates the index theorem’of Atiyah-Bott [1], the Atiyah-Patodi- -Singer
theorem [2], and provides a concrete formula for the Chern character of the K-homo-
logy class of the operator.

An elliptic operator 4 on a compact mamfold M with boundary can be shown to
determine an element [4] in the Kasparov KK-group-for the algebra Co(M) of func-

1) The research of both authors was pn.rt,lu.lly supported by a grant.from the National Science
Foundatlon . . .
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tions on M. which vanish on OM (see [6]). However, determining the image of [4]
under the boundary map depends on the calculation of a non-trivial Kasparov pro-
duct which is not constructive: For that reason Baum and DoucLas [5] offered an
alternate definition of the relative group Ky(X, Y).in which the boundary map is
constructive and in [6] it was shown how to realize [4] in KoM, oM).

However, constructing the Chern character for [4] explicitly is more difficult as is
describing the connection with the Atiyah- -Patodi- -Singer theorem. One way'to view the
problem is that Co(M) does not have a unit and the tricks introduced by CONNES in
[11] for dealing with this do not work. The problem is fundamental. Although one
can solve this- problem using the one-point compactification, the boundary informa-
tion is lost and, in particular, the fact that A is smooth up to and mcludmg oM plays
no role. One seeks to define the Chern character on C(M) but there is an obstructlon
to that which is the image of [4] under the boundary map. .

In this note we introduce a different approach to the relative K-homology group
KM, 2M) for a manifold with boundary M, which is oricntable with respect to
K-theory. Reflection defines a natural involution J; on the K- -theory of the double

. X of M. We show that- K; (M 0M) is naturally Jsomorphlc to the fixed points of J;
v on K;(X). This enables.one to canonically represent classes in Ki(M,e¢M) by elhptlc
operators on X with the appropriate behaviour under réflection. One expects to use
the well-developed Chern character for operators on X to study the relative K-homo-
logy on M. Following this approach we obtain. explicit calculation of the pmrmgsA ,
between relative K-homology and K-cohomology and the relation of this pau‘mg
‘to the index of concrete operators.

Although part of this has appeared 1mphcntly in the work of others, we beheve o
there is valué in considering these results in a systematic fashion. '

Formulas involving cyclic homology or de Rham homology, and connections with
the Atlyah Patodl'Smger theorem will be taken up in a later paper.

1. ,Cutting and pastihg of elliptic operators

~

We recall here a oonstrllction from [18], which is crucial for the whole consideration.

Let us assume that we have twg compact manifolds M,;, M, with boundary, such
that M, = ¥ = dM, and let us assume that 4, and 4, are first order-elliptic opera-

tors defined on M, and M,, respectively; 4;: C°(M;; E;) — C(M;; F;). We assumel
that they have the followmg form .on some collar nelghbourhood of Y:

A; =Gy + B). , . - ' (1.1

Here Git,-): E; IY — F| Y is a bundle isomorphism, where t denotes the inward

normal coordmate and B; = B(t, -): C’°°(Y E{|Y)—>CxY;E;|Y)is an elhpt,lc
-'differential operator on ¥ .' We denote by ai(z, &) and b,(y, {) the principal symbols
of 4; and B;, respectively. (We suppress the dependence of b on ¢ to-avoid further
_ compllcatmg our notation.) Now we fix Riemannian structures on M; and Hermitian
- structures on E; and F;. If v denotes the unit tangent vector in the ¢ direction, then

ai(t,y; v+ &) = Gi(y) (w Id + by(y; C)) on the collar neighbourhood of Y. Now
let us assume that there exists a smooth ‘bundle 1somorphlsm g:E;Y - F2| Y such
that . N

&*(¥) 99) By; O) = b,*(y; C) Gz*(y) 9. . . - (1.2)
Under these assumptions we define the manifold X = M, 0 M and vector bundles
E¢=FE, u,F, and F? = F, Uco6r E;on X, where we identify e, in B, . With g(¥) e, .
in Fy to obtain. B9 and similarly for F9. We want to construct an operator on X
using 4, and A4,. However, we cannot just glue A, and 4, together, because the nor-
\ , \
\ . L

-



Analytic Realization of f{elapive K-Homology ¢ 487

. .
ot .

dt

. Fig. 1
. L. p . . .
mal derivatives have opposite orientations (see Fig. 1). To overcome this weuse A,*
_in place of 4,. Then, we are-able to construct an operator which has principal symbol"
equal to @, on M, and a,* on M,. - : SN
We may assume that the intersection of M, and M,is equalto N = (—1,, + 1) X Y
a bicollar nelghbourhood of Y (see Fig.2) and that ¢ is the normal coordmate to Y-
in V. With rcspect to this coordinate our operators have the following form on N ‘

AV = G(@,—}—:B) ARV = G0+ (Go%) BAGoY).

“If for = (t,y) in N, we evaluate @ on an element of E9. defmed bye in E, ,, we
obtain the element G,(irv + b,) e of F9, which is equal to

- (Go*¢Gy~ 1)G(zr—f.—b)e—(zr+bn)02g(e) fo -
o | L= GM(ir + (G2*) T Bp*Gh*) gle) = ar*(g(e)).
This shows ‘that the symbol a, ua,*: IT*(E%) — IT*(F9) defined by the Aflormula-
a,' v a,* = a, on IT*(E%) | M\, a, U a,* = a,* on [T*(E%).| M, is a well-defined elliptic
- symbol on X. We denote by 4, u; 4,*: C°(X; E9) — O’"f’(X; F?).any elliptic pseudo-
. differential operator with. principal symbol @, ue,*. In the following we always
assume that it is a differential operator on some bicollar nelghbourhood of Y.

Remark: The operator 4, w, 4, * is only defined up to the O order term. We can.
.define’ the. operator 4, u, 4,* umquely 1f instead of (1 2) the operator identity
G,*9B, = B,*(G,g holds.

" The ,most_interesting case- for us is when’ Ml M,=M, Al = A2 = A and
g= (G*)1. Usually we assume also that G and B do not depend on the" normal
coordinate on sonie suitable collar neighbourhood of the boundary. In this case we
simply write 4 u 4* for the corresponding opelator on M, the closed double of M.
The preceding construction enables one to “paste together” two elliptic operators
defined on two halves of a manifold X under appropriate hypotheses on the operators:
-Since elliptic operators define the cycles for K- homology, this construction has an
interpretation in terms of the Mayer -Viétoris sequence. We will not e]aborate on’,
that here. : '
Next we want to consxder an analogous construction for cycles for the odd’ ar oup
in K: homology which involves self-adjoint elliptic operators. We do not treat the
most general case. In our discussion of the “odd case” we assume that A4: LCo(M; E’)'
- C°°(M E)i is such that

s

A | V is formally self edjomt e
'(1.-3)

(Afhfz = (h, A/a) for - f, fo'€ Co™(M \ Y, E). B

We want to obtain a self-adjoint operator of the form 4 y (:tA) on M. We now assume
that @ and: B do not, depend on ¢ on V. In thab case (1.3) 1mpltes G* = <@ and

-

’

32+ o :
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GB = —B*@. Havmg in mind the case of genera117ed Dirac operators we assume

further that G is unitary and B is self-adjoint.- A section of ES = E yg E is a_ pair

' (s,,sz) of sections of ,E such that s, = Gs;, on V. Since Gds, = GG(9, + B) s,

— (9, + B) s, and A$2 = G(d; + B) s, = +(8, — B) Gs; = (9, + B) sy, it follows

thab we have a well-defined self-adjoint operator on M of the form 4 u(—A):
C~(M, EG) — C(M, E°).. .

/

~ ! . D

\

2. The relative K- homology groups on Spinc-manifolds \

In tlns sectlon we .discuss an analvtlc realisation of relatwe K- homo]ogy groups on
manifolds with boundary. A related realisation is described in [5, 6]. Here we show

how to represent the relative cycles as the fixed points of the involution defined on |

~ the clliptic operators on-the closed double of our manifold. This suggests a generali-
zation of our results to more genoral manifolds which will be discussed elsewhere.

.We describe in detail the “even” case of the group K, and state the analogous result

for K,. . :
Let M be a compact manlfold with boundary ¥ and let X denote its closed double.
We start by recalling.the. exacb sequence of C*-a]gebras

0—>C’0(M)—->C( )——»C(M)—>O -

" . rwhere C(X) and C'(M) denote the algebras of continuous- functlons Co(M) is the
: algebra of contmuous functions on M which vanish on Y, and §(f). = fu 0, k(f, U f,)
= f,. We have also a map s: C(M) ~ C(X) given by the formula s(f) =f u f, which
is a section of k, that is, ks = Id. The last property implies the’ long exact sequence
in K-theory splits:

0 KY{M,Y) —>K‘(X) — KY{M) —>O

By standard results from K- theory (see [8: Section 19 5]) we obt;aln a correspondmg =

A -spllttlng in K-homology
0—>K(M)—>K(X)—>K(M Y)—>0

-Now, let us assume that M is a Spinc-manifold. This induces corresponding Spmc

structures on X. and ¥, and hence all these manifolds are K-oriented (see [3]). Thus ’

we have the commutative diagram
0 KM, ¥) Iy K{(X) &5 KiI) >0 . .
: L .| 2P |27 ' .
0> Ko (M) 20 Ko y(X) 320 Ko (M, ¥) >0.

Here DP denotes the Poincaré duality maps whlch in this case glve isomorphisms
between corresponding groups and n.= dim M. (See [4] for a nice discussion of

- Poincaré duality in K- -homology.) This diagram enables us to present a nice and SImple

analytic representation of the relative K-homology groups.

We now assume that M is even-dimensional and we deal with the case. of even-_

dimensional groups. Recall that K°(M, Y) can-be identified with the set of triples

- (V, W; k), where ¥V and W are vector bundles over M and h: V|Y > WY is a

bundle 1somorphlsm The triple gives the element [V u, W] — [W u W] in K%X).
This element is equal to 0” 'on the second copy of M and:the subgroup of elements

' of this form in K9(X) is, in fact, K°(M Y). We can see this decomposition from yet ‘
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’another point of view. Let Z,= E u F be a bundle over X. We choose a bundle Fr
on M such that F @ Ft=M >< CX and decornpose the class of Z in K(X) as follows:

EuF=[(EPF+)u( F(—BFl 1—=[FLuFt]
=[(E@FL)uCK] ~[FL uF]—[FuF]+[F uF]

={(ED F')uCX] — [CK]} + [F u F].
It is clear that the first summand gives us the element of KoM, Y) and the second
the element.of K%(M). »
The next important fact is that on a Spmc manifold X there exists a natural genera-
tor of K,(X).as a K(X)-module. This is a class of the Dirac operator é.: C°°(X S*)
— C°(X, §7) (see [3, 4]). Now X is a manifold of a special kind, since it is a double
of M, and we can write X = M.uy (—M), where —M denotes M with the reverse
orientation. Positive spinors become negat,n e spinors under the change of orientation

and it is, in fact, obvious that we can construct a suitable Dirac operator using the
Dirac operator on M and the constructlon from Section 1. Thcn -we have

ax—aM UaM* Coo(X S+UIS )—>C°°(X S—US+)

Now it is easy to describe the element i in Ko(X) which corresponds to the (V, W; h)
from K°(M Y). It is the class |

[(3 ué¥) ® Iqu,.w] — [(8 ue¥) ® Ileuw]
- = [(9 ug¥) ®Iqu,.w] + [(8* v &) ® Idwuw]
= [(3 L 8*%) ® IdVUnW@ (#*uve) ® IdWUW]

One may ask how to make contact with the group KO(M) Actually it is not difficult.
The point is that the operator

(@ u&*)@]dmw@ 2*ud) ®Idwuw ' \ e

corresponds- to the well-defined “local” elliptic boundary value problem. It is well
known that the Dirac operator (and 2, ® Idy as well)y does not admit “local” elliptic
boundary conditions (see [2, 6, 10]). We-define the Balderon projection P(?) as the
_projection of C®(M-; S*) onto the space H(8) of the Cauchy data of 2: H@)= {ulY:
u € C¥(M; 8%),8u = 0 in M \ Y}. One can show that P(2) is a pseudodifferential -
operator of order 0. ‘ : t ,

The class of the pr1n01pal symbol of P(2) in K}(T'Y) is an obstruction to the existence ".-
of a “local” boundary condition. This obstruction vanishes in the case of an operator, .
which is essentially of the form (& @ 8*) ® Id-on the collar. The corresponding bound-
ary value problem "R: C®(X; (8* @ V)@ (8- ®, W) - Cc=(X; (S RSP (S+
® W)@ C*(Y; (S~ ® W) | Y) is of the form

(6 @ v @uw) T ((3‘®1dv)81®v,' )
(@* @ Idw) 8, @ w: (G ® h) P(2.® Idy) s, ® v — P(3* @ Idy) 5, @ w)

where s, @ v € C¥(X;8* Q@ V), s, Qw € C°(X; 8~ ® W). It is shown in [1] (see
[15] for a beautiful exposition) how to deform the symbol of & to the elliptic symbol
on M, which is algebraically degenerated at the boundary, i.e. equal to a bundle
isomorphism independent of the cotangent vector.on some collar neighbourhood of
Y. This symbol gives us an element of the group K°(DM,8M v (DM | Y)). We use
Poincaré dua.hty once agam and obtain K°(DM SM uDM | Y) KO(DM) KO(M)

t
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Thus elements of Ky(M) are stable homotopy classes of operators which are algebrai-
cally degenerated at the boundary or, equivalently are operators, with a “local”

elliptic boundary condition. Let us observe that operator (2.1) has a symbol which is

algebraically degenerated on the second copy of M, and thus-also on some nc1gh-

bourhood of the boundary. Hence no deformation is necessary in this case.

. We know that an element of Ko(X) is given by the class of an operator of the form '

(3 U 8*) ® Idgyr.. We decompose this class exactly in the same way as the corre-
sponding class in K%(X): oo

S

“(@u ) v IdEuF = {(8 v &) ® 1dger Lucx@ (9* u8) @ lded ® (Bu 9*) ® IdFuF

The first, summand gives us an element of K(M).and the second represents an ele-

ment of KO(M Y)..The essential point in " the decomposition is that any cycle here
represents the class'of a concrete differential operator. Let us consider the class of
A = A, u 4,, where A is a first order differential elliptic operator. Thanks to the
construction from Section 1 we have the followmg 1dent1t1es whlch hold in Ky(X): -

[AlUAzl—[AlUA@A2UA2*@A*UA2l I

1@14 (A @A*] [Az ud,]. o (22) :

'0nce again, it is obvious that thc symbol of 4,® A,* can be deformed to a symbol,

of the form || Id outside of a certain collar nelghbourhood of Y .-Thus we can deform

v

the operator (4,@ 43) u(4,@ 4,*) through elllptlc pseudodlfferentxal operators -

to an operator of the form (C u Id) ]/Z where.C U Id is an elliptic pseudodifferential

" operator of order 0 and }/Z is the square root of a suitable Laplaman The class of this -

operator C v Id belongs to Ky(M) and the class of A *ud, glves an element of
KoM, Y). Thus we here proved the followmg -

.

. Theorem 2. 18 1 f 8o denotes the set of classes n Ko( ) of the. opem'tors of the form
A U A*, then & = Ky(M,Y). ' )

-

"In a similar ‘way we consuler the “odd case”. Now dim M = 2k + 1 and it is

well-known that in this case the Dirac operator & x: C*(X; §) — C®(X, S) is a genera-

tor of K,(X). Once agam any class in K,(X) is the class of a dlfferentlal operator The
followmg identity is the analogue of (2. 2) o ~

(B G B) =(B® B uB@® (—B) +{(—BJuB).

, Now we can deform the prmupal symbol of the operator B, @ (—B,) to Id through ‘

elliptic self-adjoint symbols and the operator (B, @ B,) u (B26~)( B2)) can be

‘deformed to a self-adjoint operator of the form (C u Id). Thus K;(X) decomposes -

into K,(M) and the set &, of classes of opelatoxs of the form B u (—B). “Thusf we have
the following Theorem whlch covers the * odd case” o

-Theorem 2. 2 If Gl denotes the set o/ classes n K (X) of tke opemtors o/ the /orm
J Bu(—B),'then G, = K,(M, Y) .

’ Now we formulate our fesult in a (llfferent way. On X we haye the natural involu-

tion,J which interchanges the two copies of M. The involution J induces a map on - *

the space of elllptlc operators ‘We let J, denote the composition. of this map with
taking adjoints. It is given by the formula Jo(4) = Jo(4, u 4,) = A,* u A;*. The

-corresponding map on .the space of elliptic self—adjomt operators is given by the’

formula Jy(B, uB,) = (—B,) u(—B)). Now we are able to formulate the results of -

‘this section-in the following. way. - : ' v
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Theorem 2 3: If K; J(X) denotes the set of /z:ved points o/ the mwlutzon I then
K(M, ¥) = KJ(X).

- Remark: Recall that {4*] represents the inverse of [4] in. KO(X) and [—B] the
inverse of [B] in K,(X). Thus J; modifies the operators to compensate for the change .
of onentatlon on the two halves of X.

3. The f)airing ',or Ko(M, Y) with K°(M, Y) '

In this section we describe the intersection product

Eo(M, ¥) x K%M, Y)>Z.o Lo
Thanks to our analyt:cal representatlon we are able to apply here the results of the
paper [12], in which the pairing for the case of a compact manifold without boundary
is discussed. In this situation the intersection number is equal to the index of a suit-
able operator. We begin by observi ing that the index of an operator of the form 4 Y A*

i$ equal t0.0.

Lemma 3:1: If M s a compact manifold with boundary Y and A C°°(1!I E)
— C®°(M ; 'F) is a first order elliptic opemtor of the form (1 1) on the collar nezghbourkood

- of the boundary, then index (4 u A*) =.0.

“Proof: IIJ: X X denotes the .reflection on X, then we have J(4 uA*) J
=A*ud=(4vu A*)* Hence index (4 u A*) =01

Therefo:e the pairing of 4 u A* with a class in KoM, Y) cannot be defined usmg
the'index of 4 u 4*. We must proceed differently to obtain a non-trivial index which
yields the pairing of 4 u-4* with an element of K%M, Y). Fortunately we have the
analytical representation of the pairing on the manifold without boundary (see [12])
and we have the commutative. diagrams introduced in Section 2 These provide us |
with an elementary proof of the following proposmon . : -

-

Propos:tlon 3.2: If [8,] denote the class of the Dzmc opemtor n KO(M Y) and’
[v, W k] is in KM, Y) then .

[3+][V W h] mdex (@, ua, *) ® Idyy,w. *

More genemlly this formula works for any opemtor on X realizing a class m K olM, Y).
That is, of D is an ellzptzc operator such that [D] 8 1n &’0, then the /ormula holds.

Remark: It is not difficult-to formulate a variant of Proposmon 3.2 whlch in-
cludes the relative index formula of Cheegor -Gromov-Lawson (see [14)]. Ca
L ' ’ ‘ ) : . . N

4. The pamng of K,(M Y) and K'(M, \Y)

Now let us assume that M is an odd dnmensmn&l 91pmc manifold. In thls case t,he
Dirac operator &y: C®(M; S) — C(M ; 8) is a self-adjoint operator and its class is
i generator of K\(M, Y) = KJJ(X).
The.pairing between K-homology and K- cohomology is now’ glven by a spect,m.l
invariant, so we discuss the spectral properties of self-adjoint operators on closed
amfolds for a while. Let D: C%(X; V) — C°(X; V) be a self-adjoint elliptic pseudo:
differential operator of positive order on a closed mamfold X. We. l\now (see [13] for

~ - . . Y

|
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instance). that D has a discrete spectrum {%}sez. If we order the eigenvalues |1,
= |4]| = .-+, then there exists a constant C > 0 and an exponent 6 > 0 such that
|2a] > Cn° lf n > n, is large. This implies that the eta-function #(s, D) = Z sign (4)

x 14|~# is well-defined for Re (s) > > 0. Moreover it has a meromorphic extensxon to the
whole complex plane and s = 0 is a regular point. The absolute eta-invariant 5(0, D)
is an important invariant of el]iptic self-adjoint operators, which in some sense cor-
responds to the index. Here we present an analogue of Lemma 3.1 for the “odd case”.

Prdpésitidn 4.1: Let A: C(M;E)y - C®(M; E) be a first order elliptic self-

adjoint pseudodifferential operator having the /orm (1.1) on some collar nezghbouﬂwod
of the boundary. If G and B do not depend on t in the collar G is umtary, and B is self-

. adjoint, then 7(0, A u (—4)) = 0. e
Proof: It is obvious that G* = —Id and GB —f—BG\ under the assumptlons we
“have made. Now, let us consider the equation (4 u(—4)) u = 2u for 2 = 0. A solu-
tion % is of the form w = w; Uu,, where Au, = iu,, Au, = —iu, and Gu, = u,
on some bicollared nelghbourhood -of Y. If we define @ = u, u (—wu,), then % satisfies
the equations (A u ( A)) % = —Z# and G(i,) = 4, on the same collar. ThlS sho“s

. that 4 u(—4) has a symmetric spéctrum I

Remarks: (i) In [20] it is shown that the operatox A u(—4) has trivial null-
space (ii) Proposition 4.1 does not imply the vamshmg of the local eta-invariant.,

fThe ete-function is given by the formula’ 1;(3) ( (s + 1)/2) f te=v2 g (D e—“") dt.

The operator D e—¢P* has a smooth kernel K(t ), and we define the local eta-
+ o0

function #(s, z) = I((s + )/2)~1 ft“’“,”’2 tr (K(t, z, 2)) dt. Tt is well known (see [7]

that 7(s, z) is ho]omorphlc for Re (s ( ) > —2 forgeneralized Dirac operators. Although
Nau-4(0) = 0, it is often the case that the local leta-mvarlanb Nau-4(0, ) does not
vanish. The application of this fact to the study of the eta:invariant on manifolds

. with-boundary will be given elsewhere. -

" Now let us 'assy‘me that {B s is a family of elliptic self—adjoint operators over
8. The spectral flow sf {B,} of the family {B,} is given by the formula '

1
sf (B} = [ (dn(Bi, 0)/dt) dt.

0

It is just the difference between the number of the eigenvalues which change sign
from — to 4- as the parameter changes from 0 to 1 and the number of eigenvalues
which change sign from 4- to — (see [2, 9, 19]). It turns out that the pairing between
K, and K! can be defined in terms of the spectral flow. The elements of K(M, Y)
are just the homotopy classes of the continuous maps h: M — U(co) such that
h| Y = Id. By a standard approximation argument we know that each class contains
a smooth map g: M — U(N), which is equal to the identity on some collar of Y.
Thus it extends to a map of the form § = g u Id on the double of M.
We have two umtanly equlvalent elllptlc operators on X

By=(8n 0 —8y) @ ldcy, By=(Id®§) ((&u—2) ®Id) (Id® §).

. We form the family {B}, B, = tB, + (1 — t) By, over S!. The main result of this -
section is the following corollary from the corresponding result from [12].
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Theorem 4.2: The formula [8][h] =[(2 v (—2)) ® Id][h uld] = sf (B} is true.
More generally this formula holds for any operator B realizing the class in K\(X). . ~

Remark: In [12] the intersection number’is given as the index of a suitable
Toeplitz operator. These realizations are equlvalent and one can find a detailed dis- -
cussion of this in [9, 19).

N v S )

5. Pairing with the image of the-coboundary homomorphism-
< . ;
*In this section we discuss special cases of our results. The reason is that we want to
obtain information about the contribution -to the intersection numbers glven by
terms which depend only on the boundary data. .
". We start with the “even case”. Let M be an even-dimensional Spm -mamfold
with boundary Y. We consider the exact sequence - .

KoM, Y) — K(M) — K«(Y)

2
o s
KY(Y)« K{(M)<« K\(M,Y).
Let us denote by v the element of K(Y), which is, defined by themap g: ¥ — U(N)
Then using our notation we have_ :
. Oy = [M X €Y vy MCT*] — [X X C*) = [E7] — [C¥)
and . ' - S :
[@n] [y] = index (8x ® Idps) = [ (x2,0145:(%) — &2, @140x(2)) d vOl(Z)
Here .0‘,4 denotes the index density of the operator 4 (see [13: Thm 1.7.6]). The dif-.
ference we have.on the right side of our formula vanishes outside some collar of ¥
and, in fact, gives the index density of an operator on 8! X Y. One canfind a detailed
'dlSCUSSIOH of all this in [9, 19]. Let us only mention here that we are able to express
the above index in terms of spectral flow. If we fix a product metric on the collar,
then @y is a Dirac operator on an odd-dimensional manifold which is self-adjoint. -
We put Bo =8y ® ldgy, B, = (I1d ® g) (8y ® Id) (Id ® g)~! and define the family
over SVas in the previous section. We end up with the formula [2] 8,y = sf {B,}.
The “odd case” is similar. If M is an odd- dxmens:onal Spm° manifold, then g,
decomposes as follows on the collar .

0, o
oo 2)

where 2, C’°°( Y; 8*) — C°(¥; 87) is now the.Dirac operator on thé even-dimensional
manifold. Since Y isa boundary, it follows that index &, = 0 (see [17: Chap. X VII]}
or [6]). Now it is difficult to describe 8,([E] — [C*E]) directly. However, if we take
the product of all manifolds with S! and use Bott perlodlclty, we end up w1th the
formula [QM] 30([E] [CT*E]) = index (2, ® Idg) .
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