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_The Volume Problem for Pseudo- Riemannian Manifolds R o

.R. ScHmMMING and D. MAaTEL-KAMINSKA

) ’ T N : N
Wir stellen das Volumenproblem fiir pseudo -Riemannsche Mannigfaltigkeiten und legen erste
’Resultate dazu vor: Aus dem Volumen kleiner abgeschmttener Llchtkegel werden gewxsse geo-

metrische Eigenschaften abgelesen. | , ) . ;

Mbi noguuMaen npobiemy oGBEMA’ HCEBLO- PHUMAHOBHX nmoroo6pa3:m M JOCTHUraeM MepBHIX
Pe3ybTaTOB: UCCIEAOBAHME 00BHEMA MATCHBKAX paapeaanuux CBETOBHIX Konycon TO3BOIAET
CYIMTL O HEKOTOPHIX FeOMETPHIECKIX CBOHCTBAX. . :

We pose the volume problem for pseudo-Ricmannian mani\folds and pre_sent first 'results °Qn it:
certain gcometric properties are réad from the volume of small truncated light concs.
. . c . [ ©t * . B
Introduction.
The volume problem for (pseudo-) Riemannian manifolds (M, g) of given dimension -
n and signature ('n, ''n), as we take it here, roughly reads as follows: to what extent
does the volume of small. naturally defined test bodies determine the geometry? -
‘Here the “test bodies” are-assumed to be compact and to depend on as small a num-
ber of real parameters as possible. One should begin with test bodies of chmens:on n,
but those with a positive codimension could be studied too.

The problem .of the volume of small geodesic_balls in properly Rlemanman geo-
metry is classical. It has historical roots in the theory of surfaces and has been studied
in a series of papers of A.GRAY, L. VANHECKE, O. KOWALSKI and others [4—7,

10—18]. o , .

F. and B. GACKSTAT’I‘EB [2 3] initiated the volume problem for Lorentnan mani-
" folds. They proposed truncated light cones as the test bodies.

The-general idea of the definition of test bodies is the following: Choose a flxed
point y € M and define test bodies in the vector space 7, M, the tangentlal space at
y. Map then these test bodies by means of the exponentlal map exp, with origin y

_into the manifold M. Effectively, the pnocedurc is done by means of normal coordi-

- mates 2% of x € M with respect to the ongm y € M. The ball with radius B> 0 in
M ! - :

(xl) (x2)2 + + (xn)2 S R2

is mapped to the- geodesm ball with radius R and centre y in-a properly Rlemanman

manifold (M, g). Analogously, the truncated light cone with altitude B > 0in T, M

(xl)z + (z2 + - (xn 1)2 S (x°)2 < R2
is mapped to the truncated light cone with altitude R and vertex y in'a Lorentllan .

manifold (M g). For a pseudo -Riemannjan manifold (3, g) of dimension. n and
signature (‘n, "'n) we propose the test bodies.in T, M to be defined by
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and we call the image with respect to exp, “truncated light cone with altitude R zmrl
vertex y'’ in (M, g). (We have no better name at hand.) For any s1gneture the volume

‘of test bodies can be expanded into an asymptotlc power, series in R by ineans of

,

Fubini’s integral theorem and Pizzetti’s expansion formula for spheres and balls in
flat space. Kach coefficient in the asymptot,lc series is a différential expression in the

normal volume function ¢ = o(z, ). In order to extract geometrical informations -

from the, volume of test bodies in (M, g), it is compared with the volume of analogous

- test bBodies in some simple “model manifold” (Mg, go). The manifolds (M, g) and

(M, go) are called isovolumal if M is covered by nelghboulhoods U and local diffeo-

= .morphisms @: U — o(U) & M,. such that (U, g) and (U, ¢*g,) exhibit the same vo-

lume of test bodies. That means, the volume is cal_culate(l twice, once with respect to
thie proper metric g of M and once With respect to the local pull-back metric ¢*g,:

" The parameters of the test bodies are the same in the two calculations. Clearly, the -

simplest model manifolds (M, go) are the flat ones; for them the volume of a test
body depends on R only and not on the other parameters. F. and B. GACKSTATTER
[2, 3] introduced the volume defect, that is the relative deviation of the volume of a
test body in ¢M, g) from the volume of an analogous test body, with the some R, in
flat space R™ A manifold (M, g) is isovolumal to R"™ if and only if the volume defect
vanishes for all sufficiently small R > 0. The “volume conjecture’ says that a mani-

~ fold with vamshmg volume defect is flat. For properly Riemannian geometry, this

conjecture is due to A. GRAY an(l L. VA‘II{ECKE [6] and it is neither confirmed nor
refuted until now.

" The first a.uthor of the present paper has.decided the volume conjecbure for Lo-
rentzian geometry in the affirmative [20]. He has, moreover, shown that Ricci-
flatness is also a geometnc property which can be read from the volume of small
truncated light cones in a. lLorentzian manifold. For n = 4, F. GACKSTATTER [3]
derived the same results. It is in order to study the volume problem in general pseudo-
Riemannian geometry after that in properly Riemannian and Lorentzian geometries.
This is the topic of the present paper. The programme sketched above is not realized

"in full generality. In this our attempt the followi ing partial results are achieved :

1. The volume of any small truncated light cone is asymptotlcally c:spanded in
powers of the altitude R. The first terms of the expansion are given as exprcssnons in

the curvature of (M, g). \
2. A ma,mfold with ‘definite Ri¢ci curvature or with definite four f01m 2(Rzem)

" — B(Ric)?,~ 9d2Ric has a non-vanishing volume defect.

3. If the pseudo-Riemannian product of two properly Rlemanman manifolds™ -

('M,’y), (”M "g) has vamshmg volume defect, then all the mvarlants (A’,‘ ‘0) ('y, J),
i‘,”"g 'y, "y) k=1, 72,...) are constants. Here ‘0 = 'o('z, 'y), "o("x, y)
are the normal volume functions and 4,,, 4, the so-called Euclidean- Laplace opera-\

“tors of ("M, ’g), ("M, "'g), respectively. Particularly, the factor manifolds must hz_we

constant scalar curvatures 'S, VS such that (”n + 2)'S + 2SS = 0, where 'n
— din "M, ", =dim " M. .
4. The pseuclo -Riemannian product of two manifolds of constant cunature or of
two two-dimensional manifolds with vamshmg volume defect is flat.
5. A coordinate- mdependent expression for the so-called Euclidean-Laplace opera- ‘

" tor 4, with respect to y € M is presented: dju = Va(o7'y% Vyu). Here o = g(x y) is’
the normal volume function and y°® = y®(z, y) is some contravariant tensor with

respect to z, explicitly given in the text, which reduces to- constant components
g®(y) in a normal cooulmate system with. or lgm Y. :

A
“~
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T“o pomt geometry
Certain scalars and tensors dependmg on two pomts z, y naturallv arise in. (pseudo-)
. Riemannian geometry. We consider smooth (i.e. of class C®) n- dlmensmnal Rieman-

- nian mamfol(ls of arbitrary signature. . . . : P -

Co- Deflmtxon 1: The distance /unctzon ¢ = oz, J) is the solubxon of the problem

9P Vo Veo =20, - (Vao) (4,9) =0,  (VaVe0) (9, Y) = gan(y)-

- The function u = u(z, y) is defined by 2u = As — n. The normal volume /um:twn

o = p(x, y) is the solution of the problem g V,a Vpo = 2up,0(y,y) =1. Here and in

the following, the: differential operators V, 4, d, ... réfer to the first argument z; V.
.~ denotes the Levi-Civita derivative. to g and 4:=g%V, V,, the usual Laplace. opera-

. tor acting on tensor fields. " - S
It is'known that both the two-point functions ¢ and o are (1efmed in some neigh-
‘bourhood of the diagonal of M X M and are syminetric in their arguments: o(z, ), -

= o(y, x), o(, y) = o(y, z). For properly-Riemannian manifolds ¢ equals one half of
the square of the geodesic, distance s between two sufficiently neighboured points: .
20(z, y). = s(x, y)*. For pseudo- Riemannian manifolds o defines the gcodesxc distance:

2 |o(z{y)| =: s(z, )% The limit for = — y, if existing, ,of a two-point.quantity ‘de-
pending on z, y is called its_coincidence limit. The equallty of the comcndence limits

is an equivalence relation between two-point quantities and shall be denoted by =
One-point quant,ltxes and ¢onstants may be looked uponas specml two-point quantltles \
A svmmetl ic dlffex ential form of degree P

'7 Up = Ug,a, -0, XD dx® 0. dx ,

is'a néw notdtlon for a symmctm covariant tensor field of degree P! Apalt from the
usual tensorial notations' there are specific operations for symmetric forms:

— Symmetnc product of a p- form u, and a g-form v: * -
S Up¥g 1 T Uay- a,’vo, b dx“' -+ dz% dah -'-Adxbc.
= Symmetrlc power:ut:=uu...u{k times).
- — Trace = tr with respect, to the metric g:
tru, 1= g° PUabay--a, dzos C- dx forp = 3,
trug:=0,  tru, =0, b Uy = g%y .
.= Value of u, on a vector or vector field v
T up(v, v, ..y V) 1= Ug,a, a0V %, . : . -

— Symmet,nc ‘differential d:

-

.'d = Vaug,...a, dz® dx"l -or dady.
—> Powers of tr and d: - o
Ctrkc= (tr)(tr) o (b)), d¥i=dd - d.

The curvature tensor, Ricei tensor, and scalar curvabure are denoted by Riem, Ric, S‘
respectively. The components of Rzem Ric'read Rypeq, Ry, respectively. Wé use the -
special abbreviations . , . B ‘ b
N (Riem)?:= RyeplR. 4 dz® dab dx¢ dz®, -
' |Riem|® := RpealRobed  Ric|*:= Ry R.

- . LT -
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, The sign convcntlons for the curvature quantities arc the same as'in [4 6, 20] There
holds [20] :

dg =G, *_'3dzesmc,' —2d% = d mc,‘—

S | —18d% = 2(Riem)* — 5(Ric)* +.9d*Ric. - . . (1
])efmltlon 2: The Euclidean Laplaczan 4, w:th respect to the origin y, actmg on -’
functlons U = u(x) over M, is glven by : . ) N
SN | Auu—eV(e y‘”V,,u), s o ) _ ’- . : (2) .
W iwhere tile two- pomt tensor field y“° = y""(:v y) is defmed by . o I A
o= 0/0z" a/9?/ oz, %), v = 9(y) GaiTs () = (ya) " CL
o Theor em 1: In normal coordmaks T = (x") € IR" of x € M with respect to the orzgm
JEMthereholds o B A i ,
C emy) = e, @
o@ y) ='ldet gu(@)® [det g%, — - T - @,
% = —Gald)s °"—g°°(y),\ R - 6
,,u = g""( o/ax“ a/ax" ) . R o (6) -

4 / Proof The formulas (3), (4) and. thc flrst part of (0) are genemlly known [21, 19,
+ 1]; the second part of (5) is an immediate consequence A well knownformula for the
dxvergence of a vector field 1mp11es : -

. Af,u.: 0 |det g,,b(x)l“/?ax (0_' [det gap(x)|}/? ‘/’,ab\a—ﬁ,)["

s
Conlsldcrmg thab in normal coordmdte% e e e
aldet%o(x)l V2 — Idetgu( )H2, et = go(y), _ Lo T
- we arrnc at the result (6) S ‘ o . ’ ‘

" The Euchdcan Laplacxan 4, with respect to an origin y € M has been expllcltly
, \ Introduced thlough the repzesentatlon (6) by A. GrRay and T. J.-WiLLmoRE [7, 22].
"It has also been studied by O. Kowarskr [14, 15]. These authors consider the pro-
perly Riemannian case only and they normalize g%(y) = 6% (diagonal matrix with -
éntries 1 in the main'diagonal). In the pseudo-Riemannian case, “Euclidean Lapla- g
cian” is not a good name, but we have no other name to propose. In [7, 22] the coin-,
.~ cidence limits of A,u, 4 2u, A2u have been calculated. Let us reproduce the flrst and
- second by meauns of our covauant definition (2):
SY\IGE s book [21] provnde@ after simple calculations, the comudence rc]atlons :

‘=0, V o= ~1/3R,, Al = —1/2V,8,
"..V:a.yab =0, A‘y“b 2/€;Rab : "Vai'“vc,yoc = 2/I3Rab,
A Vayab'-'& —1/6 Vb8; e -

" where we.abbreviate ls = Vs1no. With this,‘ we find
41/“, = ydb Ve ,Vbu. + (Vo y® — L) ‘Vbu. ’ : * ‘
= y? Vs Vou = ¢V, Vou = du,
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- . . ,.

2y = ) V
A2u = Ad,u

v

fle

At 4 (dy + 2V° Vpbe — 2(V,) y#9) V, Yy
(4 Ve — (AL) y) Vo ' -
\

= ftu 4 23RV, Vyu + 1/3¢% VS V..

‘A normal coordinate system z > Z € R® with origin y is, by definition, the inverse
to,the exponential map exp, from T, M to M. (Both the maps z > Z'and exp, are
restricted here to appropriate domains:) Considering this, the formulas (3), (4) can
be reinterpreted. Let, in the following, d"Z denote the measure on T, M defined by

the metric g(y) with (constant) components g;;(y) and let dvol denote the canonical -

measure on M defined by the metric g(z) with (variable) components gg(%). F urpher,'
identify a measure with an alternating n-form and denote by exp,* the pull-backof
exp,. This pull-back transforms covariant tensors on M to covariant tensors on T, M.
With: these notations, coordinate-independent expressions for ¢ and g can be given
[19, 1]: : . ‘ L o A
oz, y) = 129(y) exp, w, exp, 7), .
", - exp,* dvdl = p(exp, %, y) d"Z, " o ’ .

i.e. the normal volume function equals the Radon-Nikodym derivative of (/:xp',,* dvol
with respect to d"Z. : ; L

Let us finish this section by shortly reviewing the volume problem for properly
Riemannian marnifolds. The following formulas are needed'in the next section. ..

" .Definition 3: The numbers

>

@ = ay(n) = 2 (k)2 ("{2 +kk B 1)._1 = 2=k (123 —}-'vk.)"-l r(g) |

for integer k = 0 are called -Pizzelti’s coefficients.

Obviously, . A ' ) _ S
a, =1, a,”! = 291,; (1;2"1 = 8n(n + 2), ~ ' 4

(8
;! =2%kn(n +2)...(n+ 2k —2) fork=1. (. )
The.name “Pizzetti’s coefficients” appeared in [14]. We denote by B"(y, ) and
S"=1(y, R) the geodesic-ball and the'geodesic sphere, respectively, with centre y and
racdius B = 0 in an n-dimensional properly Riemannian manifold. Further, we de- .
note by B*(R) and S*-1(R) the ball and the sphere, respectively, with centre 0 and
radius R > 0 in the n-dimensional Edclidean space R”. The symbol Vol means the
v volume with respect to the canonical measure. - L v

o Propositioh 1:. There hold the asymplolic power series expansions
. . s . :

Vol §*Y(y, R)

Vol §7I(R) N-ké,%(n) (A.,“'@)l(y,‘ y)_R"”‘, - | ' A 9

 VolBUy, B Y o
B~ A mn £ 2) (40 (4 y) B S

~
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. A A y
"~ Theproof can be read from [6, 14] and is based on the famous Pizzetti formulas .

’ fudS ,

: S"UR) R . FRTRN . ' ~
o Vol S*(R) k=2’0 a(n) (do*u) (0) R, . o o
‘ ~ . -

f u d"x ) i
T~ Tyl + 2) (k) (0) R
VO] B"(R) k=0 N . ’
where 4, denotes the Laplacian of R" 'R . ' ) . R
The volume of truncated light cones ' - . o - f
In this section we consider n-dimensional pseudo-Riemannian manifolds (M, g): of
signature ('n, “n) such that 'n = 1, "n-= 1, 'n + "'n = n. The orthogonal groups to
the dimensions 'n, "’n are denoted by O('n), O(’’'n), respectively, the pseudo-ortho-.
gonal group to the signature (', "'n) is denoted by O('n,"'n). -

..Definition 4: An O('n) XO("'n)-structure at the point y € M is a representation -

. of the metric at y as the differencé of two positive semidefinite quadratic forins with™
the maximal possible ranks: g(y) = ‘g(y) — “9(%), '9(y) (v, v) = 0, "g(y) (v,v) =0
for every v € T, M, rank 'g(y) = 'n, rank "g(y) = "'n. o -

- Such O('n) X O(’'n)-structures at a point, “exist.” There exist.normal coordinate
systems z+—>'Z = (2°) € R" with the origin y in which the components of ‘g(y), "’g(y)

are given by ‘ . ' - .

Y c : g’a'l(.’/) 0 ’ re 0 0 ' . ! ’ ‘_A ) .
¢ 9:(y) =( . 94(y)) = T 11)
oo ( ] ) . 0 0 ( I( ) 0 9"5";’(._?/) ( -
respectively. Here we introduce and use a new indéx convention

. . ¢ 7 )
ay by, =1,20 ,
“a, b, =41, .

’

The normal coordinate system can be further specia.]ize(l to
i) =iy grini(y) = Buiny.

If O('n) X O("'n)-structures are given at various points y of some domain U € M and
.if they depend, in a sense which can be made precise, smoothly on y € M then we
‘arrive at the usual notion of a local O('n) X O(""n)-structure [8, 9]. If, particularly, -
U = M then we have a global O('n) X O(''n)-structure. Generally, such a_global
structure does not-exist. If it exists then it is called a reduction of the global O('n, "n)- .
. structure defined-by the metric g. A local O('n) X O(''n)-structure exists in_ a suffi-
ciently small neighbourhood of each point. | :

Definition 5: The truncated ligkt cone C(y, R;'g, "'g) with i{cr'_tex yeM ahd
altitude R > 0 with respect to an O(’n) X O(''n)-structure at y is described by the
inequalities ~ o . : '
b0 o R? i C-

- — < .
oyt oyl =

v, L OO 30_ : )
9y — = =< '9"()

oyt oyt _,
Here ‘g%(y), ""¢%(y) originate from '9ii(¥), "9i;(y) by raising.of the indices.
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The first unequality of Defmmon 5 expresses or(:z: y) =2 > 0, as will become clear in

" the following, while the second unequality is the “truncation condition”.

~ In normal coordinates with the origin y there holds, eqmvalent to (5), aa/ay
= —gi(y) 2° and-as a consequence

00) 5 5 = ) 2% G 0 5 = ) 2

o
oyt 3y’

Thus in the normal coordmabes belongmg to (11) C(y, ,19, "'g) is described by the
“inequalities ' .

gran(y) %" < gan(y) 2'°2’® < RE.

With ‘7, ”'r defined by 7% = g1 b(y) :c”:c" "2 = grgr b(y) 2"z, the truncated l)ght

cone is also described by .0 < 'r <'r < R. These descrlptlons show that for all

sufficiently small R > 0-the point set C(J, R,'g, "g) is defined and is compact. In
the - normalization g¢,4(y) = 6aby ‘gran(y) = O-+p the truncated llght cone is
described by .

(x'n‘+1)2 + + (:t")2 < (zl)Z L ( 22 < < Rz

"We ‘denote the set of all pomts T = (x‘ L L x") of the flat space R"
satisfying these last mcquahtles by C(R ”n) Now we are in the position to pre-
sent our main theorém. . g

The.lorem 2: There holds the dsymplotic “power series e:z:pdn&z'oﬁ

Vol Cly, R, 'g, "'9) e !
Vol C(R, 'n, "'n)

~ ');?_ n(n + 2k)1 wk('n) a»k("n + 2) bk K d) (y, y) R

Ck,

where 'tr denotes the contraction with 'g(y ) of some symmelric tensor at y, "'tr denotes '
the contraction with "g(y), and k'="k + ""k. The absolute term of the expanszon

equalé 1. The coe//zcwnt of R2? is~proportional to
[("n + 2) ‘tr + 'n "'tr] Ric(y) o (12}

The coefficient of R* is proportional to.  ~ ) !

[('n 4 2) ("n + 4) tr? + 2(% =+ 2) (”9},'—}— 4) 'tr ”t-l" 4 "n('n + 2) "tr?] ‘
X [2(Riem)? — 5(Ric)* — 9d® Ric) (y). . S

A3

(The proportwnalzt y factors do not vanish.)

Proof: We apply, in a notatlonally sumpllfled mamler the for mula (7 and thcn
Fublm s integral theorem:

Vol C(J, R, g, "g) = f dvol = | d"ig
Lot C(yR 9.”’g) C(R/n,'n)

= [d"z [ d""=zo.

B'™R) B'(’r)

"\ .

RN
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Here C - . o
4"z = (det gran(y))* dzt da? --- da'™; L o S
: d"% = (det g~ "(,(J))l/2 dz' "t ... dgn

in suitable normal coordinates. The inner integr: al is expanded by means of the sccond
- 1’177ett1 formula (10), ' : ~ ‘ ‘
S fdme ~ Vol B'M(1).5" av("n + 2) ("dg %0) ('Z, 0) # m e,
B¢y " : k=0 . : :
The outer integral is decomposed accor dmg to Fubm1 s theorem and i is e\p‘mded then..
by means of the’ fust Pizzetti. formula (9)
' R .- . . ) ) X ) . " " . . i
Vol C'(y, R, g, "g) = f d'r [ d’8 f d""zo .
e [ S" H'r)  B8(r) i
N '. ) o "0

~ Vol B"(R) Vol B.""(R) Py n(n + 2k)‘ o,

><a"( n) an('n + 2) ('Ao"ﬂ"Ao"" )y ( )R”‘

We have written the integration differentials just after the mtegxal 51gns in order to
avoid parentheses. The formula (17) in-O. KowALskr’s paper [14] translates dlffel-
* - ‘ential operators on T, M into covariant differential opelators It gives here

(4% 45" k0) (0) = ' "t d2g) (y, ).

(]: or an evallmtlon of the first terms of-the asymptotic cxpansmn we liave to take the
‘: commdencc limits of d? and d“g from (1) and the Pizzetti coefficients from (8) | I

- * The observatlon that the numer ical* coefﬁments in (12), (1 3) are posntlvc leads to

Proposwlon 2: A mam/old (M 9) wuh defmzle chcz cwwture Rw has a non-
vanishing wlume de/ect . . . :

: : o
Vol Cly, R, g, "g) . . 3
r —1. . .
e Cly, R, 'g, "g) : = - Vol C(R, 'n, "n) S o :
szewzse a manifold with defzmte four- form 2(Rzem — 5(Rw)~ — 9d2 Ric has a non-

'v(mzshmg volume defect.

. Proof: The contraction of posmlve defzmte fm ms w1t;h the posmvc semidefinite
matrl_ces ( "(y)) (” "(y)) yields positive numbers. These remain positive when
“multiplied with “"n +'2, 'n, ....1n (12), (13) and added up. Analogously, the contrac-
tions of negative definite furm% yield negative numbers. Thus, the first terms m the

. asymptotl(, expansnon of the volume defect do not vanish § -

) Examples of manifolds with definite Ric or 2(Riem)* — 5(Ric)* — 9d2ch respec- -~
" tively, can be constructed as the products of Einstein manifolds or of manifolds. of
constant’ curvature. Such product constr uctions. w 111 be u)nsulere(l in the next sec- *

tion. . . . ' '

v

' "]‘hé volume problcni for pseudo-Riemanniah products .

[ [ ' ’

" The class of rpamfolds which we comnder in this sect,lon admits a more explicit tx edt-
. ment of the volume problem.:
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I)efnmtlon 6: Let ('M,'g), ("M, "g) bé two properly Riemannian manifolds of

- dimension ‘n, "'n, respectively, and M :="3 X "M be the product manifold. Let,
furthér, ‘p: M — M, "p: M — "' M denote the natural projections and "p*, ""p* theu‘.
pull-backs. We set g = ‘p*'g — "p*"’g and call (M g) the pseudo Rzemanman prod-A
~uct of ("M,"g), ("M, "g)

1
B

A pseudo- Rlemannlan product manifold carries-a natural global O('») X O("'n)-
structure which can be identified with the very product structure." We adopt the
‘convention to consuler truncated llght, cones only with respect to this natural O('z)
X O('n)-structure! Note the change in the meaning of g, ''g; the formulas have to be
appropriately rcmterpreted : .

. Theorem 3% For the pseudo-Rzemanman product (M, g o/ two properl Y Rzemanman '
manifolds ('M, 'g), ("M, "g) there holds . . : :

. dVolC(y; R, 'g,’ /dR = Vol S "‘1(’y, R) Vol B""(”1 Y, R).- L (14)"

As a consequence, there holds the asymptotzc power series expanszon

dVolC’(y,R ‘g, "g)ldR ,
""d Vol O(R, 'n, "m)|dR

~ (go a('n) (d%) (y, y) R“) ( Zalm +2) %0 ("5, "y) R‘”) .. (15)

Here y = ('y,"'y), and "o = 'o('z), "0 = "o("'z) (lenote the normal volume funchons of
(M, g) ("M "g), respectwel y, and A us Aoy their Euclzdean Laplacians. .

. Proof: The mult,lphcat,l\lt) of the normal volume functlon is “cll Known n(.c
.= g( z) " (”x) It implies

\

R . ‘ .
Vol C(J, R, q, ”J) = f dr f ‘S'e('x) f d"mz "o("'x) -

0 s BT .

and, by dif{erent-inbion,

vicw ry = [as 'e('x>’fd.""z"9<'_'x> |
) BA(R) :

N o _volsv-l(;,@vulB (y,R).

The asymptobxc C\pansmn fo]lo\\s by inseition of,l’luetbl s*for mu]as L}

4

Proposition 3: If the pseudo- Rzemanman producl of (M, 'g), ("M "g) has vamsh-
ing volume defect, then both . _ .

Vol 8% 1('y, R) o Vol B"*("y, R)
Vol sy * VAl B(R) .

rlepend only on R (i.e. do not depend on y =y, "y)) and the product of these lwo quanti-
ties equals 1. As a consequence, the comczdence limits of 4% 0 and A%, ”g k=1,2,. )
are constants.

) Proof: ‘Def C(y, R, 'g,?"g) = 0, then (14) implies .
Vol S 1('y, R) Vol B"%('"y, R) = Vol §"(R) Vol B'"(R). -
. . P | N
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" Hereto the usual- “separation_of varlables a,rgument is applxed and gives the first
agsertion. Then the coeffxcxents of the Pizzetti expansions in (15) have to be constants;
this nges the second assertion §

Proposntlon, 4: If the pseudo-Riemannian ﬁroduct- of (M,’q), ("M,"q) has
vanishing volume defect, then the scalar curvatures 'S, 'S as well as the qmntities

o,

4= -3 I'Riem|® + 8 |'Ricl? + 582, A = —3 |"Riem|? + 81" Ricf? + 5"8*

1

are constanls such that A Y

("n+2)'S + 'n"§=0, .

(n+2)("n+ 44+ 10(n + 2) (“n + 4) 8"+ 'nl('n +2)"4 =0. (16) '

. Proof The constancy property follows ‘from’ Proposmon 3 and the coincidence
limits from [4, 6] iy

—3Ae,, o = ‘S, —34, "0 =8,
454% "0 =4, 453,70 = "A!
zero B 7
N .
Example For mamfolds (M,7q), ("M," ) of constant curvature 'K = 2,

- "K = "2, respectively, the volume of geodesw spheres and balls is lmo“n Formulas
from [6] gne us . :

dVol(J,R ‘9, '9)/dR ‘ o S

. S . L\'n-1 1 -1 :
.="Vol & "‘1(1) Vol §7*-1(1) (,—) sin ').R) ]dr ( sin /r) V)]
S ' T 0. . T '

.Hci'efror'n Vol (y; R,/g,"g) follows by. integration with respect to R. If ‘K < 0, then
1 1 : . . .
- = sin /R is to be replaced by ] sinh "4l B; an analogous remark applies if
/rK < O . . :

Proposntlon 5. If the pseudo- Rzemanman product of two manifolds ("M, 'g),
"M, ”g) of constant curvature has vamshmg volume de/ect then the factors ("M, ’g),
("M,’ g) are flat. : . .

Proof: Tf the volume defect vanishes, then the quantity (17) is ploportlonal to . .

" R™1. This i is possible-only in the limit ‘2 — 0, "2 =01

Proposnt,lon 6: If the pseudo-Riemannian product of two two-dimensional mani-

folds 'M,'q), ("M, "g) has umzshzng volume, defect, then the Jactors ( M g) (M, "g) ‘

v are /lal

Proof: Proposition 4 tells us that t,he scalar curvatures 'S, "S are constant. Hence

" the two-dimensional manifolds (M, ‘9), ("M, "g) are of constant curvature and Pro-’

position 5 glves the result l -

The relatlons (16) follow by reqmrmg the coefficients of R? an(l R* in (15) equal to ~

7o
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" Discussion . . ,

Y .
We investigated the general pseudo-Riemannian case with signature (‘n, "'%); the
Lorentzian case ‘n = 1 (or "n = 1) has been treated already in [2, 3, 20]. The two ‘
cases differ in the fpl]owing'aspects: C .

— Here we consider the volume- problem with respect to a fixed O('n) X O("'n)-
' structure at a.point'y € M or in a domain U S M. In [20] e considered the
volume problem with respect to any* O(1) X O(n — 1)-structure in a’ domain
U S M. The ambiguity in the choice of the O(1) X O(n — 1)-structure is described
by a timelike vector field @ = a*d/dy*. Fortunately, these vectors a can be geo- -
metrically visualized as the “axes” of the truncated light cones. For general
(‘n, “'n) the ambiguity in the choice of the O('n) X O(’‘n)-structure does not have
~ such a nice description. : ‘ N
— Here we consider “full cones” while'in [20] only. the “forward half cones”, cha-
racterized by non-negative time values, have been considered. It is this difference
which makes here the odd powers R%**1 of the altitude R cancel out from the-
_asymptotic expansion and.'which makes in [20] both even powers R%* and odd
‘powers'R2+1 to appear. Of course, the odd powers provide-extra informations in -
[20], ‘which. are. not available here. ’ ’ ’ :

" — The Lorentzian case admits geometrical visualization as well as physical applica-

,t,.i'qn (in the general theory of relativity). The general case admits neither the one .
nor the other. _ . oo _— - e
— A Lorentzian manifold with vanishing volume defect for each O(1) XO(n — 1)-"- i
" structure is shown to be flat [20]. This affirmatively answers a'“‘volume conjec- -
-ture””. The answer for properly Riemannian manifolds is not known. For the
remaining case 'n = 2,-"n.= 2 there exist, non-flat pseudo-Riemannian mani-
folds with vanishing volume defect, namély%he (non-flat) simply harmonic maiii-
folds of signature (‘n, 'n). The normal volume function- of .a simply harmonic
manifold is constant, equal to one. Thus the ‘‘volume conjecture’ in-its original
form should not be applied; it is to be reformulated: a pseudo-Riemannian mani-
fold of sighature ('n, ''n), 'n = 2, "n = 2, with va‘n'ishing volume: defect is sup-
posed to be simply harmonic. A o . .
* The Lorentzian case is included.here. Wé obtain, for"instance the following use-.
ful formula: The Lorentzian product (R x M, dt* —'g) of a properly Riemannian
+ manifold (M, g) and the real number space (IR, d¢?) satisfies - . :
d Vol C(t, y, R, dt?, g)/[dR Vol By, R) " -
i} dC(R, 1, n)/dR - ~ Vol BYR)
All O('n) X O(''n)-structures at a point y € M of a pseudo-Riemannian manifold -
(M, g) are parametrized by the Grassmann space. O('n, "7z)/(0(fn) xO("n)); its di-
mension equals ‘n’'n. All O('n) X O("'n)-structures in a domain U & M are para-
metrized by the sections of a Grassmann bundle over U, i.e. a fibre bundle with *
typical fibre O('n, "n)v/(O(’n‘) X 0("n)). In order to effectively exploit the ambiguity
in the O('n) X O("n)-sbrucﬁure, infinitesimal Lorentz transformations should be used,
_i.e. elements of the vector space 6('n, "n)[(o('n) X o('"n)}; these can be interpreted ag

X-

_ “infinitesimal transformations”. Here o(...) denotes the Lie algebra of a Lie group

" 0(...). Such procedures could be the topic of future work. Also, other variants of the
volume problem, taken in a broad sense, for pseudo-Riemannian manifolds could be -
studied, for instance the volume of tubes about curves or submanifolds.. .
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