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The 'Volume Problem for Pseudo-itiemannian Manifolds  

R. Scm'1IlG and D. MATEL-KAMTLNSXA 

Wir stelleii das Volumenproblem für pseudo-Riemannscho Mannigfaltigkeiten und legeh erste 
'Resultate dazu vor: Aus dem Volumen kleiner abgeschnittner Lichtkegel werden gewisse geo-
metrisèhe Eigenschaf ten abgelesen.	 0 

Mai noHHMaeM npofiaeMy o61,ëMa nceB)o-pHMaHoBIJx MHoroopaaI1fl H OCTI1FM LICBbIX 
peayJlbTaToo: uccIegoaaH1e o6'bëMa MaJIeHb}dnx pa3pe3aHHlIX CBeTOBb1X R0HC0B 11035031He'r 
CHTb 0 HK0T0h1X reoMeTpwlecFulx CBOI1CTBaX. 
We pose the volume problem for pseudo-Riemannian manifolds and prevent first results n it: 
certain geometric properties are read fràm the volume of small tràncated light cones. 

Introduction. 

The volume problem for (pseudo-) Riemannian manifolds (M, g) of given dimension 
n and signature ('n, "n), as we take it here, roughly reads as follows: to what extent 
does the volume of small naturally (lefkned test bodies determine the geometry? 
Here the"test bodies" are-assumed to be coñlpact and to depend on as small a rum- 
ber of real parameters as possible. One should begin with test bodies of dimension n, 
but those with a positive codimension could be studied too ,.	 - 

The problem of the volume of small geodesic balls in properly Riemannian geo-
metry is classical. It has historical roots in the theory of surfaces 'and has been studied 
in a series of papers of A. OxAy, L. VANHECKE, 0. KOW' ALski and others '[4-7, 
10-18].  

F. and B. GACKSTATTER [2, 31 initiated the volume problem for Lorentzian maii-
folds. They proposed truncated light cones as the test bodies.  

The -general idea of the definition of test bodies is the following: Choose a fixed 
point y € M and define test bodies in the vector space TIM, the tangential space at 
y. Map then these test bodies by means of the exponential map exp y with origin y 
into the manifold M. Effectively, the procedure ' is done, by means of normal coordi-
nates x° of x € M with respect to the origin y € M. The ball with radius R ' > 0 in 
TM	"	 .	.	• 

(x') 2 + (x2 )2 + ... + ()2 :5, R2	-.	 •	 • - 

is mapped to the-geodesic ball with radius B and centre y in a poperly Riemannian 
manifold (M, ). Analogously, the truncated light cone with altitude 1? > 0 in TM 

(z1 ) 2 + (2)2 + ... + (x 1 ) 2 . 	(x°) 2 :!^ B2  
is mapped to the tru'ncated light cone with 'altitude R and vertex j iia Lorentzian 
manifold (M, g). For apseudo-Riemannian manifold (M, g) of dimension n, and 
signature ('n, "n) we propose ' the test bodie,in T M to be defined by -, 

-•	 (x' !)2 + ... + (X)	(x1)2 + ... ± x")2 f-, /2 , .	•	
0 

1*	•	 '	 -
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-- and we call the image with respect to exp y 'truncated light cone with altitude B and 
vertex y" in (if; g). (We have no better name at hand.) For any sign.ture, the volume 
of test bodies can be expanded into an asymptotic power, series in 1? by means of 
Fubini's integral theorem and Pizzetti's expansion formula for spheres and balls in 
flat space. Each coefficient in the asymptotic series is a differential expression in the 
normal volume function 0 = (x, y). In order th extract geometrical informations 
from the, volume of test bodies in (.231, g), it is compared with the volume of analogous 
test b'odies in sonic simple "model manifold" .(M 0 , g0). The manifolds (M, g) and 
(iW0 , g0) are called isovolunial if M is covered by neighbourhoods U and local diffeo-

. .morphisms': U —> (U) if0 such that (U, g) and (U, *g0) exhibit the same vo-
lume of test bodies. That means, the volume is calculated twice, once Nvith. respect to 
the proper metric g of M and once with respect to the local pull-back metric *g0. 
The paratheters of the test bodies ai'e the same in the two calculations. Clearly, the 
simplest model manifolds (M0 , g0 ) are the flat ones; for them the volume of a test 
body depends on R only and not on the other parameters. F. and B. GACKSTATTER - 
[2, 31 introduced the volume defect, that is the relative deviation of the volume of a 
test body in (M, g) from the volume of an analogous test body, with the home R, in 

• flat space IR": A manifold (M, g) is isovolumal to IR" if and only if the volume defect 
Vanishes for all sufficiently small B > 0. The "volume conjecture" says that a mani-
fold with vanishing volume defect is flat. For properly Riemannian geometry, this 
conjeeure is du to A. GRAY and L. VANHECKE [6] and it is neither confirmed nor 
refuted' until 'flow. 

The first author of the present paper hasdecided the'volume conjecture for Lo- 
• intzian geomtry in the affirmative [20]. He has, moreover, shown that Ricci-

flatness-is also a geometric property which can bc'rcac from the volume of small 
truncated light cones in a Lorentzian manifold. For ii = 4, F. GACKSTATTER [3] 
derived the same, results. it is in order to study the volume problem in general pseudo-
Riemannian geometry after that in propeily Riemannian and Lorentzian geometries. 
This is the topic of the present paper. The programme sketched above is not realized 

• in full generality. In this oir attempt the following partial results are achieved: 

1. The volume of any small truncated light cone is asymptotically expanded in 
powers of the altitude R. The first terms of the expansion are given as expressions in 
he curvature of (M, g). 

2. A manifold, with definite Ri&i curvature or with definite four-form 2(Riem)2 
— 5(Ric)2 ,-- 9d2Ric has anon-vanishing volume defect. 

3. If the •pseudo-Rieniannian product of two properly Rienianniati manifolds 
('M,,'g), ("M, "g)'has.vanishing volume defect, then all the'invariants (zl') ('y, y), 

("y, "y) (k = 12, . . .) are constants. Here ' = '('x, 'si), ",o = "o("x, "y) 
are the normal'volume functions and J,,,	the so-called Euclidean-Laplace opera- . 
tors of ('if, 'g), ('M, "g), respectively. Particularly, the factor manifolds must have 
constant scalar curvatures '2, "S such that ( "n+ 2) 'S -I-"n"S = 0, where 'n 
= dini '.231, ''	' ( lifli I'M.  

4. The pseuclo-Riémannian product of two manifolds of constant curvature or of 
two two-dimensional manifolds with vanishing volume defect is flat.. 

5. A coordinate-independent expression for the so-called Euclidean-Laplace opera-
tor A, with respect to y € M is presented.: 4u V0(&1yb Vu). Here = (x, y) is. 
the normal volume function andyOb = yob(x, y) is some'contravariant tensor with 
respect to x, explicitly given in the text,, which reduces to . constant components 
gab(y) in a normal coordinate system with. origin y.
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Two-point geometry  

Certain scalars and tensors depending on two points x, y naturally arise in(pseudo-) 
Riemannian geometry. We consider smooth (i.e. of class C°°) n-dimensional Rieman-
nian manifolds of arbitrary signature.	) 

Definition 1: The distance /uñ'ction '=. c(x, y) is the soliition of the problem

gab V0ci.Va = 2a,	(Vga) (y, y) = 0,	(Va Vbu) (y, y ) = gab(y)  

The function It = 1u(x, y) is defined by 2z -' Aa - n. The normal volume /Unction 
(x, y) is the solution of the problem g

ab
V0a V (y, y) 1. Here' and in 

the follo'ving, the differential operator V, 4, d, ... refer to the first argument x; V 
dehotes the Levi-çivita derivativeto g and A := gab V0 V b the usual Laplaceopera- 
to acting on tensor fields.'  

It is'known that both the two-point functions a and Q are defined in some neigh-
bourhood of the diagonal of M x 	and are symmetric in their arguments: a(x, y). 

= a(y, x), &, ,y) = (y, x). For pioperly-Riemannian manifolds a equals one half of 
the square of the geoilesic.distance s between two sufficiently neghboured poinfs:5 - 
2a(x, y):= s(x, y)2. For pseudo-Riemannian manifolds a defines the geodesic distance: 
2 (x,1y) =: s(x, y) 2. The limit for x -* y, if existing,of a two-point.qpantity de- 
pending on x, y is called its coincidence limit. The equality of the coincidence limits 
is an equivalence relation between two-point quantities and shall be denoted' by 
One-point quantities and 6onstants may be looked upon as special two-point quantities. \ 
A symmetric differential form of degree p 

Up = U,.,.o dx0 dxc' .:. dxap  
is  new notation for a symmetric covariant tensor field of degree p: Apart from the 
usual tensorial notations there are specific operations for symmetric forms: 
- Symmetric product of a p-form u and a q-form. v:	-. 

upVq- -	-	: = Uo•opVb••bq dx 0	dx°p dXb..dxbq	 -: 
5	

- Symmetric .power:	: = u u ... u (k times). 


- Trace = tr with respect to 'the metric g:  

tr u : = qobuba a dx° .. dx0v foi p	3, -	 -. 

tr u6: = 0,	tr u 1 : = 0,	ti u2 : 
Value of u on a vector or vector field v:  

u(v, v ) . . . v) : = u0,O, ... 0 v v0' •.. Vap  

- Smmetric 'differential d:  

du : = V3u0 ., . 0 dx0 dxai ... dx°p'.	
- 

- Powers of tr and d:  

tik : = (t.r). (tr) ... (tr),	dk = dd	d.  

The curvature tensor, Ricci tensor, and scàlar curvature are denoted by Rim, Ric, 8; 
respectively. The components of Riem., Ricreacl 'RObCd , ROb , respectively. We use the 
special abbreviations  

- '	-	(Riem)2 := RaefRc! d dx dxb dxc dxd,  

	

- ',	jRienI :	Ra dR0 , , 1?ic1 2 : = RabR0b.
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The sign conventions for the curvature quantities are the same as in [4, 6, 20]. There 
holds [20]

	

0,,	—3d2e Ric,	—2d	d Ric, 

	

• —15d40	2(Riem) 2 - 5(Ric) 2 +. 9d2 Ric.	 (1) 

Definition 2: The Euclidean Laplacian'A j, with respect to the origin y, acting on 
functions u = u(x) over M, is given by	 S 

V,,(,-lyal 	 •,	,	(2)' 
where the two-point  tensor field ya6 = yab(a,, y) is defined by 

- cr,, j = 3/3X° alayi &(x, y),	Ya = g(Y)aOab, (yab)  
Theorem 1 In normal coordinates Y = () € Rn of x E M with respect to the origin 

/ € M there holds	 S	 / 

a(x, y) = 1129(y) xoxb ,	 (3) 

e(x;y) ='jdet gab (x)1 u 12 Idet gjj(y)'12 ; 'T	 •'	 •'	() 

a ii = g01(y) i	V° 	gab(Y)	 (5) 

Au'= g(y) 3/3x 3/ 3xb U	 (6) 

/ Proof: The formulas (3), (4) and the first part of (5)'are generally known [21, 19, 
11; the second part of (5) is an immediate consequence. A well-known -formula for the, 
divergence of a vector field implies  

31. 
LIyU = e Idet g,1(x)I'/2	

' 

	

-----	det fJab(X)jhI2 obaxb) 

	

Ox"

Considering that in normal coor(.linates'	 5	

'5,	

5	

5 ,. 

Jdetq(x)j- / = detg,,(y)j 1/ ,	yOb = gob(y), 

we arrive at the result (6) I	 - 

The Euclidean Laplacian Laplacian 4L' with respect to an 'Origin y € M lias been explicitly 
introduced through .the representation (6) by A. GRAY and T. J.-'WILLMORE [7, 22]. 

' It has also been studied by 0. KOWALSKI [14, 15]. These authors consider the pro-
perly Riemannitn case only and they normalize 90b(y) = ôob (diagonal matrii with 
nt.ries 1 in the 'main'diagonal). In the pseOdo-Riemannian case, "Euclidean Lala-

cian" is not a good name, but we have no other name to propose. In [ 7 1 22] the coin-, 
eideneeliniits of Au, A,¼, A. 3u have been calculated. Let us reproduce the first and 
second by' means of oir covariant definition (2):	S '	 •	 - 

Si NGE's book [21] provides, after simple calculations, the coincidence relations.., 

	

0, •	 113R00,	Ala	1/2VS,	.• " 

5	

5 

•	 . V,Ob	0,	A'°= 2/3Rab,	V0VybC	2/3R,	S 

AVayab = 1/6VbS,	
"_\ 

where we abbreviate l = V0 In 0. With this we find 

Au = ob V. Vbu + (V0 yob — layOb) Vbu 
ob V,1 Vbur gob V. Vbu = Au,	 .	.
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A02uL1Llu 

	

zl 2u + (,Jyab 	2Va Vcy -. 2(volc) y) V0 Vbu	 - 

+(zl V0Y0b - (Lila) y0) Vbu 

,42 + 2/3R Va V 4 i/3gab \7.S VbU., 

A normal coordinate system x i - E &' with origin y is, by definition, the inverse 
to,the exponential map expy from TM to M. (Both the maps x -* and expy are \ 
restricted here to appropriate domain.) Conidering this; the formulas (3), (4) can 
be reinterpreted. Let, in the following, d denote the measure on TM defined by 
the metric g(y) with (constant) components gj j(y) and let dvol denote the canonical 
measure on M defined by the metricg(x) with (variable) components g0(). Further, 
identify a measure with an alternatingn-form and denote by exp y* the pull-backof 
expy . This pull-back transforms covariant tensors on M to covariant tensors on TM. 
With' these notations, coordinate-independent expressions for a andQ can be given 
[19, 1]:

a(x, y) = 1/2g(y) (exp x, exp 1 x), 
expyt dvàl = (exp. Zx, y) d,	 '	 ) 

i.e. the normal volume function equals . the Radon-Nikodym (lerivtive of xp,* dvdl 
with respect to d". 

Let us finish this section by shortly reviewing the volume problem for properly 
Riemannian manifolds. The following formulas are needed in the next section. 

Definition 3: The numbers  

= ak(n) = 2 2k(k!)-2 (n/2 +/ - 1)_i = 2 4(?)_1 i (
	

k) r() 
for integer k	0 are called Pizzetti's coefficients.  

Obviously,
 

a0 = 1,	a 1 ' = 2n,	a2' = 8n(n + 2), 	
8 

a' = 2kk!n(n +2)...(n±2k —2) fork ^ 1.	
.	(S . 

''I' he, name "Pizzetti's coefficients" appeared in [14]. We denote by B 0(y, /1) and 
S"(y, R) the geodesic-ball and the'geodesic sphere, respectivcy, withcentre y and 
radius R > 0 in an n-dimensional properly Riemannian manifold. Further, we de-, 
note by B"(R) and S' 1 (R) the ball and the sphere, respectively, with centre 0 and 
radius R > 0 in the n-dimensional E(iclidean space	The sy mbol Vol means the 
Volume with respect to the canonical measure.	 S 

- Proposition 1 ' :. There hold the asymptotic power series expansions 

(A),(y, y)R2k,
 

Vo1B"( R)	00	 5	

5 

	

Vol B"(R) °k=O	+ 2) (Li) (y, y) R.	 -'	(10) 

-	I 

'1
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Thep roof can be read from [6, 14] and is based on the famous Pizzetti formulas - 
fuds	 - 

Vol S-'(R)	k 1k(n) (nku) (0) ]? ,-)k ,	 -	N 

fud"x	I	 - 
+ 2) (A o ku) (0) R2, VolW(R)  

whei-e40 denotes the Lplacian 6f lR 'U	 5 

The volume of truncated light cones	 * 

In this section we consider n-dimensional pseudo-Riemannian manifolds (M, g)- of 
signature ('n, "n) such that 'n ^ I, "n > 1, 'n. + "n = n. The orthogonal groups to 
the dimensions 'n, "n are denoted by O('n), 0(' .'u), respectively, the 'pseudo-ortho- 
gonal group to the signature ('n, "n) is denoted by O('n, "n). 

Definition 4: An O('n) XO("n)-structure at the point y E Al is a representation 
of the metric at y as the differenc of two positive semidefinite quadratic forhis with 
the maximal possible ranks: g(y) = 'g(y) - "g(y), 'g(y) (v, v) ^ 0, "g(y) (v, v)	0 
for every v E TM, rank 'g(y) = 'n, rank "g(y) = "n.	 -	- 

Such O('n) 'XO("n)-structurcs at a' point exist. There e xist normal coordinate 
systems x'i- = (x°) E JR ?S with the origin y in which the components of 'g(y), "g(y) 
are given by

/g'.1(y) 0\	,,	/0	0 
o 0 g 1(y)) = , 	( g1(y)) =	g"i"j(y))'	

(11)


respctively. Here we introduce and use a new index convention 
'a, 'b,. . ., 'i, j . . . = 1, 2,-. . . , 'n 

•	
-	 "a, "b, ...,	"j, ... = 'n+ I, ..., n.. 

•	
'

 

The-normal coordinate system can be further specialized to  
g-j(y) = O'-, '	g-i-'j(y) = 

If O('n) XO("n)-structures are given at various points y of some domain U 9 M and 
if' they depend, in a sense which can be made precise, smoothl y on y € M then we 
'arrive A the usual notion of a local O('n) XO("n)-structure [8,' 9]. If, particularly, 
U = Al then we have i global O('n) XO("n)-structure. Generally, such a global 
structure does notexist. If it exists then it is called a reduction of the global O('n, "n)- 
structure defined-by the metric g A local O('n) XO("n)-structure exists in a suffi-
ciently small neighbourhood of each point. 

Definition 5: The truncated light cone C(ij, R 'g, 'g) with vertex y E M and 
altitude R > 0 with respect to an O('n) x O("n)-structure at y is described by the 

•	inequalities	 .	'	 -	 • 

"gti(y) 'g(y) -	--	R2.  ay ay'	ayt ay	 -' 
•	Here '1(y), "g(y) originate from 'g(y), "g(y) by raising.of the indices.
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The first unequality of Definition 5 expresses a(x, y) > 0, as will become clear in 
the following, while the second unequality isthe "truncation condition". 

In normal coordinates with the origin y there holds, equivalent to (5), a alayi 
—y(y) x° and'as a consequence 

3a Da 

	

g"(y) --	= g(y) XaXI	g1(y)	 gb(y) x'x'ay,

•	Thus, in the hormal coordinates belonging to (11) C(y, R, g, "g) is described by the 

inequalities 

	

•	 f/"o"b(Y) x"ox"b	90(y) x'x'	R2. 

With 'r, "r defined by 'r2 = 9'.(y) x'ax'b , "r2 1= 9"."b(Y) x"ax"b , the truncated light - 
cone is also described by.0 < "r ::S^ 'r :c^ R. These descriptions show that for all 
sufficiently small B > 0-thepoint set C(y, R, 'g, "g) is defined and is compact. In 
the normalization U'ab(Y) = 'a'b, "0• 'b(Y) = "ab the truncated light cone is 
described by  

(X'1)2 +	+ (x	(x')2 + ... + (x' fl ) 2 < R2. 

We deote the set of all points = (x i ,..., ..., x"), of the flat space 1' 
satisfying these last ineqalities by C(R, 'n-, "n). Now we are in the position to pre-
dent our main theorem. 

T h core in 2: There holds the asymptotic power series expansion 


	

•	-	Vol C(y, R, 'g, "g)  

	

•	•Vol C(R, 'n, "n)	 - 

n(n +. 2k)-' a'k(n) a"k(n '+ 2) 'ti'k" Lr'(d 2 ) (y y) R2k 

where 'tr denotes the contraction with 'g"(y) of some symmetric tensor at y, "tr denotes 
the contraction with "gui(y), and k= 'k + "k. The absolute term of the expahsion• 

	

equals 1. The coefficient of .R2 is-proportional to	 - -	-	• 

	

•	[("n + 2) 'tr + 'n "tr] Ric(y).	 (12>	. 

The coefficient of R4 is proportional to 

[("n ± 2) ("n -4- 4) 'ti-2 + 2('n -f- 2) ("n'+ 4) 'tr "t.r -4- 'n('n + 2) ''tr2] 
x [2(Riem) 2 — 5(Ric) 2	9d2 Rid (y).	- '	 - (13) 

(The proportionality factors do not vanish.)	- 

Proof: We apply, in a notationally simplified manner, the formula (7) and then 
'Fubini's integral theorem:	 .	•	

0	 • 

VoIC(y, 11, 'g, "g) =	dvol = f d	• • 

C(y.R/g."g)	C(lln.'n) 

-	 =f d'	f (11).	••	 -	. - 
B"(fl)	B'"(r)	•	 . • 

•	

0	 '7	01
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Here
d, I.T = (det g ab(y)) 1I2 dx' dx'	dx',	 --	- 
d" = ((let g.Ob(y))1/2 dx"'	dx" 

in suitable normal coordinates. The inner integral is ,expanded by means of the second 
Pizzetti formula (10),

Vol B"'(1)	a"k("n 4-2)  ("/1") •(', 0)' r"'". 

The outer integral is decomposed according to Fubini's theorem and is expanded then 
• bvmeans of the first Pizzetti.formula(9): 

Vol C(y R, g g) = f d r f d S f d"-Yo 
0	S"'('r) B"('r)

.00 

Vol B"'(R) Vol B"(R) !' n(n + 2k)-1 

-	 xa'k('m) a"k(n + 2) ('4' '1 z1 0 ") (0) R2k 

We have written the integration differentials just after the integral signs in order to 
avoid parentheses. The formula (17) in-O. KOWALSKI'S paper . [14] translate differ-
ential operators on TM intO covariant differeptial operators. It gives here 

•	
('A	4"k0) (0)	'tr'k "tr"(d') (y , y) 

(For an evaluation of the first terms of-the asymptotic expansion we have to tae the 
coincidence limits of d'e and d40 from (1) and the Pizzetti coefficients from (8) U 

The observation that the nurnericaleoeffiôients in (12), (13) are positive leads to 

•	Proposition 2: . A manifold . (M, g) with definite Ricci curvature Ric has a non-
vanishing volume deject  

1)	R	\ol C(y, B, 'g, "g) e	'	g,	.	Vol C(R, 'n, "n) — 
Likewise a manifold with definite jour form 2(Riem) — 5(Ric) 2 — 9d 2 Ric has a non-

-vanishing volume defect.  
• - Proof: The contraction of positive definite foinis with the positive semidefiiiite 

natrices ('i(y)) , ( 'gi(y)) yieids positive numbers. These remain positive when 
multiplied with "n ±2, 'n......m (12), (13) and added up. Analogously, the contrac-
tions of negative definite forms yield negative numbers. Thus, the first terms in the 

-- asymptotic expansion of the volume defect do not vanish I	- 

Examples of manifolds with definite Rio or 2(Biem)' — 5(Ric) 2 - -9d2Ric, repec-
• tively, can be constructed as the products of Einstein manifolds or of manifolds of 

const.ant curvature. Such product construtiouis- will be considered in the next see-
tion.	-	•.-	.	 •	.	-	 • 

The volume problem for pseudo-Riernannian products	-	.	 ' • - 

The class of manifolds which we consider in this section admits a mOre explicit treat-
-, • nient of the volume problem.	 ,. 

•	.	 .	 \	••\	 •	
•
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Definition 6: Let ('M, 'g), ("M, "g) be -two properly Riemannian manifolds of 
dimension 'n, "n respectively, and M :='M x 'M be the prod uct manifold. Let, 
further, 'p: M –. M, "p: M -. "M denote the natural projections and 'pt, "p* their. 
pull-backs. We set g = 'p 'g — "p*"g and call (M, g) the pseudo-Rie'niánnian prod-. 
uct of ('i°iI,'g), (".M, "g). 

A pseudo-Riernannian product manifold carries a natural global O('n) x O("n)
structure which can be identified with the very product structure: We adopt the 
convention to consider truncated light cones only with respect to this natural O('n) 
X 0('n)-st.ru&ture! Note the change in the hieaning of 'g, "g; the formulas have to be 
appropriately reinterpreted.  

- T h eo r e ni 3'-.'For the pseudo-Rieminnian product (M, g) of two properly Riemannian 
manifolds ('M, 'g), ("M, "g) there holds -,	 S 

d Vol C(y; R, 'g, "g)/dR = Vol S"'('y, R) Vol $'("y, B). .	.	(14) 

As a consequence, there holds the asymptotic power series expansion	. 

d Vol C(y, B, 'g, "g)/dR	- 
d Vol C(R, 'n, "n)/dR	 - 

(
ak( n ) (Ll) ('Y' 'Y) B2) (

	

	
a"n + 2) A) ("y, 'y) R2"k). (15)


kO	 "k=O 

I 

Here y = ('y, "y), and ' = 'o('x), " = "("x) denote the normal volume functions of. 
('M, 'g), ("M,- "g), respectively, and zI' 11 ,' z1 their Euclidean Laplacians. 

Proof: The niultiplicativity of the normal volume function is well known: -(x) 
= 'o('x) ''o( ''x) . it implies 

Vol C(y, R, 'g )' "g) = fd'r f d 'S 'o('x) f d"	'e("x)	-' 
0	S"-'('r)	,B"'(r) 

flU1, by differentiation, 

°	Vol C(y, I?, 'g , "g) f d '4S' '&('x)	d	"("x) 
B"(fl) 

= Vol "('y, ) Vol B"("y, B). 

The asymptotic expansion follows by insertion of,Pizzetti'sformulas I 

• Proposition 3: If the pseudo-Riemannian'produci 
of 

('M, 'g), ("M, "g) has vanish-
ing volume defect, then both	 °	 .	 • 

Vol 5'fl_1('y, R) andVol B"("y, B) 
Vol S" - '(/?)	Vol B"(R) 

•	depend only on R (i.e. do not depend on y = ,(y', "y)) and the product o/ these two quanti-° 
°	ties equals 1. As a consequence, the coincidence limits of	'e and z1, ", (k = 1, 2, ...) 

constants.	 . 
Proof: If Def C(y, B, 'g, -"g) = 0; then (14) implies  

Vol S"'('y, B) Vol B" ("y, B) = Vol S''(R) Vol B" (R).
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Hereto the usual "separation of 'ariables" argument is applied and gives the first - 
assertion; Then the coefficients of the Pizzetti expansions in (15) have to be. constants; 
this gives the second assertion 

Proposition, 4: If the pseudo-Riemannian product- of ('M, 'g); ("M, "g) has 
vanishing volume deject, then. the scalar curvatures '5, "S as well as the quantities 

'A' = —3 J'Riernl 2 + 8 'Rid 2 + 5 1S2, "A = —3 1"Rieml 2 + 8 'l"Ric l2 ' 5"52 

are constants such that	. 

("n + 2) 'S + 'n"S-= 0,	 S 

•	 ("n + 2) ("n + 4) 'A ± 10('n + 2) ("n + 4) 'S"S + 'n('n ± 2) "A = 0. (16) 

'-Proof: The constancy property follows from' Proposition 3 and the coincidence 
-	limits from [4, 6]	 - 

--34 ' i	'5,	—3z1-' "	"S, 

	

•	 45g"0	'A,	45A"  

	

•	The relations (16) follow by requiring the coefficients of R2 and B4 in (15) equal to 
zerol'  

	

•	
.	Example: For nianifolcis ('M, ,'g), ("iW, "g) of constant curvature 'K = 'A2 , •	

"K = "A2, respectively, the volume of geodesic spheres and balls is known. Fdrmulas 
-	from [61-give-us	-	-	 .	 - 

d Vol (g, R, 'g, "g)/dR	-	 R 

=' V ol  S '(l) Vol	"'(l) (- sin ;R) "1fdr (- sin ";.r*  

- Herefrom Vol (y, R,g, "g) follows by integration with respct to R. If 'K < 0, then 

Jw sin 'AR is to he replaced by	sinli 'Al R; an analogous remark applies if 

•	'K< O. 

•	Proposition 5: If the pseudo-Riemannian product of two manifolds ('M; 'g), 

	

•	("M, "g) of constant curvature has vanishing volume defect, then the factors ('M, 'g),	- - 
("111, "g)-are flat.  

0 - -
	Proof: If the volume defect vanishes, then the quantity (17) is pi-opbrtional to 

R"'. This is possible only in the limit	0, "2 - 0 I 

• Proposition 6: It the pseudo-Riemannian product of two two-dimensional mani- 
folds ('1W, 'g), ("ill, "g) has vanishing volume defect, then the factor's ('M, 'g), ("M, "g) 
aie/lat.	-	 S	 '	 - 

Proof: Proposition 4 tells u 's that the scalar curvatures '5, "S are constant. Hence 
the two-dimensional manifolds ('M, 'g), ("M,' "g) are of constant cui--ature and Pro- 
positiOn 5 gives the result I	•	 •	 -	 -	, - 

-	I

	

-	 N
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Discussion 

We investigated the general pseudo-Riemannian case with signature ('n, "n); the 
Lorentzian case 'n = 1 (or " = 1) has been treated already in [2, 3, 20]. The two 
cases differ in the following- qspects: 
- Here we con'sicler the volume- problem with respect to a fixed O('n) x 0("n)- 

structure at apointy E M or in a domain U M. In [20] we considered , the 
volume problem with respect to any , 0(1) x 0(n- 1)-structure in a-' doniain 
U 9 M. The ambiguity in the choice of the 0(1) xO(n - 1)-structure is described 
by a timelike vector field a = aa/3y. Fortunately, these vectors a can be geo-
metrically visualized aS the' "axes" of the truncated light cones. .For general 
('n, "n) the ambiguity in the choice of the ,O('n) x 6("n)-structure does not have 
such a nice description.  

- }{ere we consider ''full cones" whilein [201 only the "forward half cones", cha-
raCteizedl by non-negative time values, have been considered. It is this difference - - 
wliicl makes here the odd powers R2k + 1 of the altitude B cancel out from the ,-
asymptotic expansion 'and which makes in [20] both even powers R2k and odd 
,p6wei-s'R 2 ' to appear. Of course, the odd powers provide-extra infor'mations in - 
[20], which, are. not available here. 

- The Lorentzian case admits geometrical' visualization as well as physical applica-
tion (in the general theory of relativity). The general case admits neither the one 

•	nor the other.  

- A Loi'entzian manifold with vanishing 'volume defect for each 0(1) x O(n - 1)-
structure is shown to be flat [20]. This affirmatively answers a"volunie conjec-
ture". The answer for properly Riemannian manifolds is not knovn. For the 

n remaining case 'n 2,- 2,- "n. 2 there exist non-flat pseudo-Riemannian mani-
folds with vanishing volume defect, namelyhe (non-flat) simply harmonic niañi-
folds of signature ( 'ii, "n.). The normal volume function- of,a simply harmonic 
manifold is constant, equal to one. Thus the 'volume co'ijecture"in -its original 
form shou1d not be 'applied; it is ,to be reformulated: a pseudo-Riemannian mani- 

5 fold of signature ('n, "n), 'm 2, "n 2, with van'ishiflg volume defect is sup-
posed to be simply harmonic.  
The Loientzian case is included here. W6 obtain, for - instance the following use-, 
ftil formula' : The Lorentziad product (IR x M, d12 —'g) of a properly Riemannian 
manifold (ill, ) and the real number space (IR, d12) satisfies  

d Vol C(10 , y, R, d12, g)/dR - Vol B"(y, B)  
dC(R, 1, n)/dR '	- Vol B'2(R) •••	.,	 S 

All b('n) x 0("76)-structures at a point y € M of a pseudo-Riemannian manifold 
(M, g) ai-e parametrized by the Grassmaxui space, 0('n, "n) /(0(n) x 0("n)); its di-
niension equals 'm"n. All 0('n) x 0("n)-structures in a domain U 9 M are pra-
metrized by the sections of a Grassmann bundle over U, i.e. a fibre bundle with 
typical fibre O'('n, "n)'/(0('n) x 0("n)). In order to effectively exploit the anibiguity 
in the 0('n) x 6("n)-structure, infinitesimal Lorentz transformations should be used, 
i.e. elements of the vector space d('n, "n)/(o('n) x o("n)); these can be interpreted a s

 "'infinitesimal transforma'ti'ons". Here o(.. : ) denotes the Lie algebra 'of a Lie group 

0(. ..). Such procedures could be the topic of future work. Also, other variants of the 
volume problem, taken in a broad sense, for pseudo-Riemannian nianifolds could be 
studied, for instance the volume of tubes about curves' or subnianifolds., 

Acknovledgement. The authors are greatly indepted ,to Prof. Dr. P. Gunther for a' 
•valuable hint concerning this paper.



14	R. ScEIMMING and D. MATEL-KAMnSKA 

REFERENCES-

[1] BEss,A. L.: Manifolds all of whose geodesic are closed. Berlin: Springer-Verlag 1978. 
[2] GACKSTArrER, F., and B. GACXSTATTER: JberVyolumendefekte und Krummung in. RieV


	

V	
mannschen Mannigfaltigkeiten mit Anwendungen in der Relativitätstheorie. Ann. Phys. 
41 (1984), 35-44.	 V 

[3] GACKSTATTER, F.: tiber Volumendefekte bei Lorentzschen IS[annigfaltigkeiten und cine 


	

V	
- Charakterisierung des Minkowski-Raumes. Preprint. Berlin (West): Freie Universitiit 1986. 

[4] GRAY, A.: The volume of a small geodesic ball in a Riemannian manifold. Michigan *11th. 
J. 20 (1973); 329-344. 

[5] GRAY,-A.: Geodesic balls in Riemannian product manifolds. In: Differential Geometry\ - 
and Relativity (eds.: M. Cahen and M. Flato). Dordrecht: D. Reidel PubI. Comp. 1976, 

	

V	 63-66.	V	 V	 V 

	

•	 V [6] GRAY, A., and L.,VANHEcKE: Riemannian geometry as determined by the volumes'of 
V	 V	

V
small geodesic balls. Acta Math. 142 (1979)[157-198.	

V	

V


V[7] GRAY, A.,. and T. J. WILLMORE: Mean-value theorems for Riemannian manifolds. Proc. 
Royal.Soc. Edinburgh 92 A ( .1982), 323-363.	 VV V	 V	 S 

[8] KOBAYASHI, S., and K. Noeizu: Foundations of differential geometry I.' New York:	V 

	

-	 •' Interscience Pub]. 1963.	
V	 I	

-	 V	 - 

[9] KOBAYASHT, S.: Transformation groups in differential geometry. Berlin: Springer-Verl. 1972. 
[10] KOWALSKI, 0.: Additive volume invariants of Riemannian nanifolds. Acta Math. 145	V 

(1980), 205-225.  
[11] KOWALSKI, 0.: The volume conjecture and four-dimensional hypersurfaces. Comment. 

Math. Univ. Carol. 23 (1982) f, 81 -87.	 V	 -. V V 

V	 [12] KOWALSKI, 0., and L. VANHEC1E: Ball-Homogeneouand DiskHoinogeneous Riemannian 
V	 Manifolds. Math. Z. ISO (1982), 429-444. 
[13]-K0WALsKI,0., and L. VAHEcKE: On disk-homogenehus symmetric spaces. Ann. Glob. 

Analysis and Geom. 1 (1983), 91-104.	 V	 V	

V 

	

•	[14] KOWALSKI, 0.: A comparison-theorm for spherical mean-value operators in Riemannian. 
V	

V	 manifolds. Proe. London Math. Soc. 47 (1983), 1-14. 
V	

[15] KowALslu, 0.: Normal forms of the Laplacian and its iterations in the symmetric spaces 

	

' of rank one. Simon Stevin Quart. J. Pure AppI. Math. 57 (1983),.215_223.	
V 

	

V	
[16] K0wALsKI, 0., and L. VANHECKI: The volume of geodesic disks in a Riemannian mani- 

	

V -

	 fold. Czech. Math. J. 35 (1985), 66-77.	 .	 V 

[17] MIQuEL,'V5: The volumes of small geodesic balls for a metric connection. Compositio 
Math. 46 (1982),'121-132. '	 V	 V	 V	 V 

	

V	 [18] MJQUEL, V.: Volumes of certain small geodesic balls and almost-Hermitean geometry. 

Geometriae Ded. 15 (1984), 261-267.  

[191 RUsE, H. S., WALKER, A. G., and T. J. %VIJA.MORE: Harmonic SpaCes. Roma: Edizioni 

	

•	Cremonese 1961.	 V	
.	 V V	 V	 -	 V 

[20] ScHIMeINo, R.: Lorentzian geometry as determined by the volumes of small truncated 
light cones. Archivum Math. Brno .21 (1988), 5-16.	 '	 V 

	

•	[21] SYNGE, I. L.: Relativity. The general theory. Amsterdam: North-Holland Pub]. Comp. 1960. 

[22] WILLMORE, T. I.: The Euclidean Laplacian. In: E. B. Christoffel (eds.: P. L. Butzer and 

V.'	 F. Fehér). Basel: Birkhäuser Verlag 1981, 508-516.	 -	
V 

•	
V'	 Manuskripteingang: 28. 03. 1988; in revidierter Fassung 07. 07.1988	 V 

VVVERVASSER:  
Doz. Dr. sc-. RAINER ScRmIMINQ	 V	

V	
V 

	

V	
V	 Sektion Mathematik der Ernst-Moritz-Arndt-Univeisitat - 

Friedrich-Ludwig-Jahn-Str. iSa	 V 

V	

V	
V	

-

 

1jDR2200 Greifswald	 V 

	

V	 V	 Dr. DONATA MA! EL-KAMINSKA  

	

V	
lnstytut.Matematyjd, Politechnika Szczecidska	 V


al.Piastów 50  

	

-	V 

P-70-310 Szczecin	V	 '	
V


