Zeltschrift Mr **Analysis** und ihre Anwendungen
Bd. 9 (1) 1990, S. 3 – 1**4**

• The Volume Problem for Pseudo-Riemannian Manifolds

R. SCHIMMING and D. MATEL-KAMINSKA

Wir stellen das Volumenproblem für pseudo-Riemannsche Mannigfaltigkeiten und legen erste 'Resultate dazu vor: Aus dem Volumen kleiner abgeschnittener Lichtkegel werden gewisse geo-The Volume Problem for Pseudo-Riemar

R. SCHIMMING and D. MATEL-KAMINSKA

Wir stellen das Volumenproblem für pseudo-Rie

Resultate dazu vor: Aus dem Volumen kleiner a

metrische Eigenschaften abgelesen.

Мы поднимаем проб

Мы поднимаем проблему объёма псевдо-римановых многообразий и достигаем первых результатов: исследование объёма маленьких разрезанных световых конусов позволяет судить о некоторых геометрических свойствах.

We pose the volume problem for pseudo-Riemannian manifolds and present first results on it: certain geometric properties are read from the volume of small truncated light cones.

Introduction.

The volume problem for (pseudo-) Riemannian manifolds *(M,* g) of given dimension *n* and signature ('n, "n), as we take it here, roughly reads as follows: to what extent does the volume of small naturally defined test bodies determine the geometry? Here the "test bodies" are assumed to be compact and to depend on as small a number of real parameters as possible. One should begin with test bodies of dimension *n,* Mы поднимаем проблему объёма псевдо-римановых многообразий и достига
результатов: исследование объёма маленьких разрезанных световых конусов
судить о некоторых геометрических свойствах.
We pose the volume problem for pseu

The problem of the volume of small geodesic balls in properly Riemannian geometry is classical. It has historical roots in the theory of surfaces and has been studied ' in a series of papers of A. GRAY, L. VANHECKE, O. KOWALSKI and others $[4-7,$ $10-18$].

F. and B. GACKSTATTER [2, 31 initiated the volume problem for Lorentzian maiifolds. They proposed truncated light cones as the test bodies.

The general idea of the definition of test bodies is the following: Choose a fixed point $y \in M$ and define test bodies in the vector space T_yM , the tangential space at y. Map then these test bodies by means of the exponential map \exp_y with origin y into the manifold M. Effectively, the procedure is done by means of normal coordinates x^a of $x \in M$ with respect to the origin $y \in M$. The ball with radius $R > 0$ in *m* and signature (Tn, Tn) , as we take it here
does the volume of small naturally defin
Here the "test bodies" are assumed to be c
ber of real parameters as possible. One sho
but those with a positive codimension coul
The (*x*)² + $(x^2)^2 + \cdots + (x^n)^2 \le R^2$
(*x*) Analogously, the truncated light cone with altitude $R > 0$ in T_yM
(*x*)² + $(x^2)^2 + \cdots + (x^n)^2 \le R^2$
(*x*) + \cdots $\binom{2}{2}$ + \cdots $\binom{2}{2}$ + \cdots $\binom{2}{2}$ + \cdots $\binom{2}{2$

$$
x^{1})^{2} + (x^{2})^{2} + \cdots + (x^{n})^{2} \leq R^{2}
$$

is mapped to the geodesic ball with radius R and centre y in a properly Riemannian manifold *(M, g)*. Analogously, the truncated light cone with altitude $R > 0$ in $T_{\nu}M$ $\leq R$
radi
mca
 \leq

$$
(x1)2 + (x2)2 + \cdots + (xn-1)2 \leq (x0)2 \leq R2
$$

is mapped to the truncated light cone with altitude R and vertex y in'a Lorentzian manifold (M, g) . For a pseudo-Riemannian manifold (M, g) of dimension *n* and signature ('n, ''n) we propose the test bodies, in $T_{\bm{y}}\bm{M}$ to be defined by apped to the geodesic ball with radius R and centre y in a prope
iifold (M, g) . Analogously, the truncated light cone with altitude l
 $(x^1)^2 + (x^2)^2 + \cdots + (x^{n-1})^2 \le (x^0)^2 \le R^2$
apped to the truncated light cone with alti T_yM
 $(x^1)^2 + (x^2)^2 + \cdots + (x^n)^2 \leq R^2$

is mapped to the geodesic ball with radius R and centre y in a properly Ri

manifold (M, g) . Analogously, the truncated light cone with altitude $R > 0$
 $(x^1)^2 + (x^2)^2 + \cdots + (x^{n-1})^2 \le$

$$
x'^{n+1})^2 + \cdots + (x^n)^2 \leq (x^1)^2 + \cdots + (x'^n)^2 \leq R^2,
$$

4 R. SCHIMMING and D. MATEL-KAMINSKA

and we call the image with respect to $\exp_{\pmb{\nu}}$ "truncated light cone with altitude R and vertex y'' in (M, g) . (We have no better name at hand.) For any signature, the volume of test bodies can be expanded into an asymptotic power, series in *1?* by means of Fubini's integral theorem and Pizzetti's expansion formula for spheres and balls in flat space. Each coefficient in the asymptotic series is a differential expression in the normal volume function $\rho = \rho(x, y)$. In order to extract geometrical informations from the volume of test bodies in (M, g) , it is compared with the volume of analogous test bodies in some simple "model manifold" (M_0, g_0) . The manifolds (M, g) and (M_0, g_0) are called isovolumal if *M* is covered by neighbourhoods *U* and local diffeomorphisms $\varphi: U \to \varphi(U) \subseteq M_0$ such that (U, g) and $(U, \varphi^* g_0)$ exhibit the same volume of test bodies. That means, the volume is calculated twice, once with respect to the proper metric g of M and once with respect to the local pull-back metric φ^*g_0 . The parameters of the test bodies are the same in the two calculations. Clearly, the τ simplest model manifolds (M_0, g_0) are the flat ones; for them the volume of a test body depends on R only and not on the other parameters. F. and B. GACKSTATTER [2, 31 introduced the volume defect, that is the relative deviation of the volume of a test body in (M, g) from the volume of an analogous test body, with the some R , in flat space \mathbb{R}^n . A manifold (M, g) is isovolumal to \mathbb{R}^n if and only if the volume defect vanishes for all sufficiently small $R > 0$. The "volume conjecture" says that a manifold with vanishing volume defect is flat. For properly Riemannian geometry, this conjecture is due to A. GRAY and L. VANHECKE [6] and it is neither confirmed nor refuted until now.

The first author of the present paper hasdecided the'volume conjecture for Lo rentzian geometry in the affirmative [20]. He has, moreover, shown that Ricciflatness is also a geometric property which can be read from the volume of small truncated light cones in a Lorentzian manifold. For $n = 4$, F. GACKSTATTER [3] derived the same results. It is in order to study the volume problem in general pseudo-Riemannian geometry after that in propeily Riemannian and Lorentzian geometries. This is the topic of the present paper. The programme sketched above is not realized in full generality. In this our attempt the following partial results are achieved:

1. The volume of any small truncated light cone is asymptotically expanded in powers of the altitude *R.* The first terms of the expansion are given as expressions in the curvature of (M, g) .

2. A manifold, with definite Ricci curvature or with definite four-form $2(Riem)^2$ $= 5(Ric)^2 - 9d^2Ric$ has a non-vanishing volume defect.

3. If the pseudo-Riemannian product of two properly Riemannian manifolds ('M,'g), (''M,''g) has vanishing volume defect, then all the invariants $(\Lambda^k_{y'}\varrho)$ ('y, 'y), ("y, "y) $(k = 1, 2, ...)$ are constants. Here ' $\varrho = \varrho(x, 'y), ''\varrho = \varrho(x', 'y')$ 2. A manifold, with definite Ricci curvatuu
 $-5(Ric)^2 - 9d^2Ric$ has a non-vanishing volume 3. If the pseudo-Riemannian product of
 $(M, 'g), ('M, 'g)$ has vanishing volume defect
 $(A_{r,y}^k)'(y)'(y', 'y) (k = 1, 2, ...)$ are constants

are are the normal volume functions and Δ_{xy} , Δ_{xy} the so-called Euclidean-Laplace opera- Δ_{xy} . tors of ('M, 'g), (''M, ''g), respectively. Particularly, the factor manifolds must have constant scalar curvatures 'S, "S such that $('n + 2) S + ''n''S = 0$, where 'n = dim 'M, "n = dim "M. $\langle 'M, 'g \rangle$, $\langle 'M, 'g \rangle$ has vani
 $\langle A_{r,y}^{k''} \rangle$ $\langle 'y, 'y \rangle$ $\langle k = 1, 2, 3,$

are the normal volume functions of $\langle 'M, 'g \rangle$, $\langle 'M, 'g \rangle$

constant scalar curvature
 $= \dim 'M, 'i\omega = \dim$

4. The pseudo-Riémannian product of two manifolds of constant curvature or of two two-dimensional manifolds with vanishing volume defect is flat..

5. A coordinate-independent expression for the so-called Euclidean-Laplace operator Δ_y with respect to $y \in M$ is presented: $\Delta_y u = \varrho \nabla_a (\varrho^{-1} \gamma^{ab} \nabla_b u)$. Here $\varrho = \varrho(x, y)$ is. the normal volume function and $y^{ab} = y^{ab}(x, y)$ is some contravariant tensor with respect to x , explicitly given in the text, which reduces to constant components $g^{\alpha b}(y)$ in a normal coordinate system with origin y.

Two-point geometry

Certain scalars and tensors depending on two points x, y naturally arise in (pseudo-)
 Riemannian geometry. We consider smooth (i.e. of class C^{∞}) *n*-dimensional Rieman-
 nian manifolds of arbitrary signature.
 Riemannian geometry. We consider smooth (i.e. of class C^{∞}) *n*-dimensional Rieman-Two-point geometry

Certain scalars and tensors depending on two po

Riemannian geometry. We consider smooth (i.e.

nian manifolds of arbitrary signature.

Definition 1: The distance function $\sigma = \sigma(x, g^{ab} \nabla_a \sigma \cdot \nabla_b \sigma =$

Definition 1: The *distance function* $\sigma = \sigma(x, y)$ is the solution of the problem

$$
g^{ab}\nabla_a \sigma.\nabla_b \sigma = 2\sigma, \qquad (\nabla_a \sigma)(y, y) = 0, \qquad (\nabla_a \nabla_b \sigma)(y, y) = g_{ab}(y)
$$

The function $\mu = \mu(x, y)$ is defined by $2\mu = \Delta \sigma - n$. The *normal volume function* $g^{\mu\nu}V_a\sigma$, $V_b\sigma = 2\sigma$, $(V_a\sigma)(y, y) = 0$, $(V_a V_b\sigma)(y, y) = g_{ab}(y)$.
unction $\mu = \mu(x, y)$ is defined by $2\mu = \Delta\sigma - n$. The normal volume function (x, y) is the solution of the problem $g^{ab} \nabla_a \sigma \nabla_b \varrho = 2\mu \varrho$, $\varrho(y, y) = 1$ the following, the differential operators ∇ , \varLambda , \tilde{d} , ... refer to the first argument x; ∇ dehotes the Levi-Civita derivative to *g* and $\Delta := g^{ab} \nabla_a \nabla_b$ the usual Laplace operator acting on tensor fields.

It is known that both the two-point functions σ and ρ are defined in some neighbourhood of the diagonal of $M \times M$ and are symmetric in their arguments: $\sigma(x, y)$. $a = \sigma(y, x)$, $\rho(x, y) = \rho(y, x)$. For properly Riemannian manifolds σ equals one half of the square of the geodesic distance *s* between two sufficiently neighboured points: $2\sigma(x, y) = s(x, y)^2$. For pseudo-Riemannian manifolds σ defines the geodesic distance: $2 |g(x,y)| =: s(x, y)^2$. The limit for $x \to y$, if existing, of a two-point quantity depending on x, y is called its coincidence limit. The equality of the coincidence limits is an equivalence relation between two-point quantities and shall be denoted by \doteq . One-point quantities and constants may be looked upon as special two-point quantities. The function $\mu = \mu(x, y)$ is defined by $2\mu = 4\sigma - n$. The normal volume $g = g(x, y)$ is the solution of the problem $g^{ab} \nabla_a \sigma \nabla_b \rho = 2\mu \rho, \rho(y, y) = 1$. Here the following, the differential operators ∇, A, d, \ldots refer to It is known that both in the two-point numerous o and *y* and α **e** terms

bourhood of the diagonal of $M \times M$ and are symmetric in their and
 $= \sigma(y, x), \rho(x, y) = g(y, x)$. For properly Riemannian manifolds σ ether and
 2 *roof* $\sigma(x, y) = s(x, y)^2$. For pseudo-Riemannian manifolds σ defines $|\sigma(x, y)| = s(x, y)^2$. For pseudo-Riemannian manifolds σ defines $|\sigma(x, y)| = : s(x, y)^2$. The limit for $x \to y$, if existing, of a tending on x, y is called its co ivalence relation between two-point quantities and shall be defined
t quantities and constants may be looked upon as special two-point qu
tric differential form of degree p
 $u_p = u_{a_1a_1...a_p} dx^a_1 dx^a_2 \dots dx^{a_p}$
motation for

$$
u_p = u_{a_1a_2\cdots a_p} dx^{a_1} dx^{a_2} \cdots dx^{a_p}
$$

is a new notation for a symmetric covariant tensor field of degree p: Apart from the usual tensorial notations there are specific operations for symmetric forms: usual tensorial notations there are specific operations for symmetric forms:

- Symmetric product of a p-form u_p and a q-form v_q :
 $u_p v_q := u_{a_1 \cdots a_p} v_{b_1 \cdots b_q} dx^{a_1} \cdots dx^{a_p} dx^{b_1} \cdots dx^{b_q}$.

- Symmetric power: $u^k := u u$

$$
u_{n}v_{n}:=u_{n}u_{n}v_{n}u_{n}dx^{a_{1}}\cdots dx^{a_{p}}dx^{b_{1}}\cdots dx^{b_{q}}.
$$

 $-$ Trace $=$ tr with respect to the metric g :

\n Invariance, there are specific operations' there are specific operations. The metric product of a
$$
p
$$
-form u_p and a q -form $u_p v_q := u_{a_1 \cdots a_p} v_{b_1 \cdots b_q} dx^{a_1} \cdots dx^{a_p} dx^{b_1} \cdots dx^{b_q}$.\n

\n\n Invariance, we have:\n \n- \n
$$
u_p := g^{ab} u_{ab a_1 \cdots a_p} dx^{a_1} \cdots dx^{a_p}
$$
\n for $p \geq 3$,\n
	\n- \n
	$$
	u_p := g^{ab} u_{ab a_1 \cdots a_p} dx^{a_1} \cdots dx^{a_p}
	$$
	\n for $p \geq 3$,\n
		\n- \n
		$$
		u_p := 0, \quad \text{tr } u_1 := 0, \quad \text{tr } u_2 := g^{ab} u_{ab}
		$$
		\n
		\n- \n
		$$
		u_p(v, v, \ldots, v) := u_{a_1 a_1 \cdots a_p} v^{a_1} v^{a_1} \cdots v^{a_p}
		$$
		\n
		\n\n

\n\n Invariance, we have:\n \n- \n
$$
u_p(v, v, \ldots, v) := u_{a_1 a_1 \cdots a_p} v^{a_1} v^{a_1} \cdots v^{a_p}
$$
\n
\n
\n

\n\n Invariance, we have:\n \n- \n
$$
u_p := \nabla_a u_{a_1 \cdots a_p} dx^a dx^{a_1} \cdots dx^{a_p}
$$
\n
\n
\n

\n\n This implies:\n \n- \n
$$
u_p(v, v, \ldots, v) := u_{a_1 a_1 \cdots a_p} v^{a_1} v^{a_1} \cdots v^{a_p}
$$
\n
\n
\n

\n\n Invariance, we have:\n \n- \n
$$
u_p(v, v, \ldots, v) := u_{a_1 a_1 \cdots a_p} v^{a_1} v^{a_1} \cdots v^{a_p}
$$
\n
\n
\n

\n\n Invariance, we have:\n \n- \n

Value of u_p on a vector or vector field v :

$$
u_p(v, v, \ldots, v) := u_{a_1 a_2 \ldots a_p} v^{a_1} v^{a_2} \ldots v^{a_p}
$$

Symmetric differential d:

$$
du_n := \nabla_a u_{a_1 \ldots a_n} dx^a dx^{a_1} \cdots dx^{a_p}.
$$

- Powers of tr and *d:*

5

netric differential d:
 $du_p := \nabla_a u_{a_1 \cdots a_p} dx^a dx^{a_1} \cdots dx^{a_p}$.

rs of tr and d:
 $\text{tr}^k := (\text{tr}).(\text{tr}) \cdots (\text{tr}), \qquad d^k := dd \cdots d$.

ature tensor. Ricci tensor, and scalar cur

The curvature tensor, Ricci tensor, and scàlar curvature are denoted by *Rim, Ric, 8;* respectively. The components of \it{Riem}, \it{Ric} read $\it{R}_{abcd}, \it{R}_{ab},$ respectively. We use the special abbreviations The
rest
spec $\mathbf{tr}^k := (\mathbf{tr}) (\mathbf{tr}) \cdots (\mathbf{tr}), \qquad d^k := dd \cdot$

curvature tensor, Ricci tensor, and scalar

sectively. The components of *Riem*, *Ric*ⁱn

cial abbreviations
 $\langle Riem \rangle^2 := R_{a\epsilon\beta}R_c^{e\ell}{}_{d} dx^a dx^b dx^c dx^d,$
 $|Riem \rangle^2 := R_{abcd}R^{abcd}, \qquad |$ *i* the curvature tensor, Ricci tensor, and scalar curva

spectively. The components of *Riem*, *Ric*¹read¹ R_{ab}

is eccial abbreviations
 $(Riem)^2 := R_{aefb}R_c^{ef} dx^a dx^b dx^c dx^d$,
 $|Riem|^2 := R_{abcd}R^{abcd}$, $|Ric|^2 := R_{ab}R^{ab}$.

$$
(Riem)^{2} := R_{a\epsilon/b}R_{c\cdots d}^{~~\epsilon} dx^{a} dx^{b} dx^{c} dx^{d},
$$

$$
|Riem|^{2} := R_{abcd}R^{abcd}, \qquad |Ric|^{2} := R_{ab}R^{ab}
$$

-:

R. SCHIMMINO and D. MATEL-KAMINSKA-

The sign conventions for the curvature quantities are the same as in [4, 6, 20]. There holds [20]

6 R. S_{QHIMING} and D. MATEL KAMINSKA
\nThe sign conventions for the curvature quantities are the
\nholds [20]
\n
$$
d\hat{\rho} = 0
$$
, $-3d^2\hat{\rho} = Ric$, $-2d^3\hat{\rho} = d Ric$,
\n $-15d^4\hat{\rho} = 2(Riem)^2 - 5(Ric)^2 + 9d^2 Ric$.
\nDefinition 2: The *Euclidean Laplacian* $\Delta_{\hat{y}}$ with respe
\nfunctions $u = u(x)$ over \hat{M} , is given by
\n $\Delta_y u = \hat{\rho} \nabla_a (e^{-1}y^{ab} \nabla_b u)$,
\nwhere the two-point tensor field $y^{ab} = y^{ab}(x, y)$ is defined
\n $\sigma_{ai} = \partial/\partial x^a \partial/\partial y^i \sigma(x, y)$, $\gamma_{ab} = g^{ij}(y) \sigma_{ai} \sigma_{bj}$,
\nTheorem 1: In normal coordinates $\bar{x} = (x^a) \in \mathbb{R}^n$ of x ,
\n $y \in \hat{M}$ there holds
\n $\sigma(x, y) = 1/2g_{ab}(y) x^a x^b$,
\n $\rho(x, y) = |\det g_{ab}(x)|^{1/2} |\det g_{ai}(y)|^{1/2}$,

• *• A. Sommario and D. MATEL KAMINSKA*
 *• a. on conventions for the curvature quantities are the same as in [4, 6, 20]. There***

***• do* $\dot{=} 0$, $-3d^2\varrho = Ric$, $-2d^3\varrho = d Ric$, $-15d^4\varrho = 2(Riem)^2 - 5(Ric)^2 + 9d^2 Ric$. (1)
 $-15d^4 \varrho = 2(Riem)^2 - 5(Ric)^2 + 9d^2 Ric.$

Definition 2: The *Euclidean Laplacian* Δ_{ij} with respect to the origin y, acting on notions $u = u(x)$ over *M*, is given by
 $\Delta_{ij}u = \varrho \nabla_a(\varrho^{-1}\gamma^{ab}\nabla_b u),$ (2)

nere the two-point t *CHEREAL EXECUTE DESCRIPTION* α , β , γ , γ , β and γ is defined by
 $A_y u = \rho \nabla_a (e^{-1} \gamma^{ab} \nabla_b u)$,

here the two-point tensor field $\gamma^{ab} = \gamma^{ab}(x, y)$ is defined by
 $\sigma'_{ai} = \partial/\partial x^a \partial/\partial y^i \sigma(x, y)$, $\gamma_{ab} = g^{$

$$
\Delta_y u = \varrho \nabla_a (\varrho^{-1} \gamma^{ab} \nabla_b u), \tag{2}
$$

where the two-point tensor field $\gamma^{ab} = \gamma^{ab}(x, y)$ is defined by

$$
\sigma_{ai}' = \partial/\partial x^a \partial/\partial y^i \sigma(x, y), \qquad \gamma_{ab} = g^{ij}(y) \sigma_{ai}\sigma_{bj}, (\gamma^{ab}) = (\gamma_{ab})^{-1}
$$

Theorem 1: In normal coordinates $\bar{x} = (x^a) \in \mathbb{R}^n$ of $x \in M$ with respect to the origin $y \in M$ there holds *a*_Q = 0, $-3d^2Q = Ric$, $-2d^3Q = dRic$, (1)
 $-15d^4Q = 2(Riem)^2 - 5(Ric)^2 + 9d^2 Ric$. (1)

ition 2: The Euclidean Laplacian A_y with respect to the origin y, acting on
 $u = u(x)$ over M, is given by
 $A_y u = g \nabla_a (e^{-1}y^{ab} \nabla_b u)$,
 $\$ e($x = 0$, $x, y = 100$, $x = 2$, $Riem)$ = 5 , $R\varepsilon$) = 5 , $R\varepsilon$) = 43κ).
 $x = u(x)$ over M , is given by
 $d_y u = g \nabla_a (g^{-1}y^{ab} \nabla_b u)$,
 $e \nabla_b u = g \nabla_a (g^{-1}y^{ab} \nabla_b u)$,
 $e \nabla_b u = g \nabla_b (g^{-1}y^{ab} \nabla_b u)$,
 $e \nabla_b u = g$ $\begin{aligned} \n\phi(x,y) &= 1/2g_{ab}(y) \, x^a x^b, \\
\phi(x,y) &= | \det g_{ab}(x) |^{1/2} | \det \sigma_{ab}(x) |^{1/2} \, d\sigma_{ab} &= -g_{ab}(y), \qquad \gamma^{ab} = 0, \ \n\phi_{ab} &= \psi_{ab}(y) \, \partial/\partial x^a \, \partial/\partial x^b \, u \end{aligned}$ $\begin{align} \textit{caplacian 2}_{y} \text{ with} \ \textit{on by} \ \textit{ab} &= \gamma^{ab}(x,y) \text{ is } \textit{c} \ \textit{y}_{ab} &= g^{ij}(y) \textit{d} \ \textit{y}_{ab} &= x^{a} \in \mathbb{R}^{n} \ \textit{y}_{b} \textit{d} &= g^{a} \in \mathbb{R}^{n} \ \textit{by } g_{ij}(y)|^{1/2}, \quad \textit{by} \ \textit{g}^{ab}(y), \quad \textit{by} \ \textit{d} &= \textit{y}_{b} \textit{d} & \textit{d} \ \textit{d} &= \text$ $\sigma'_{ai} = \partial/\partial x^a \partial/\partial y^i \sigma(x, y),$ $\gamma_{ab} =$

em 1: In normal coordinates $\bar{x} =$

gree holds
 $\sigma(x, y) = 1/2g_{ab}(y) x^a x^b,$
 $\varrho(x, y) = |\text{det } g_{ab}(x)|^{1/2} |\text{det } g_{ij}(y)|^1$
 $\sigma_{ai} = -g_{ai}(y),$ $\gamma^{ab} = g^{ab}(y),$
 $\Delta_y u = g^{ab}(y) \partial/\partial x^a \partial/\partial x^b u.$

$$
\sigma(x, y) = 1/2g_{ab}(y) x^a x^b, \qquad (3)
$$

$$
\varrho(x,y) = |\det g_{ab}(x)|^{1/2} |\det g_{ij}(y)|^{1/2}, \qquad (4)
$$

$$
\sigma_{ai} = -g_{ai}(y), \qquad \gamma^{ab} = g^{ab}(y), \qquad (5)
$$

$$
\Delta_y u = g^{ab}(y) \partial/\partial x^a \partial/\partial x^b u. \tag{6}
$$

'

5 5 ,.

Proof: The formulas (3) , (4) and the first part of (5) are generally known $[21, 19]$, 1]; the second part of (5) is an immediate consequence. A well-known formula for the, divergence of a vector field implies $\begin{aligned} \sigma(x,y) &= 1/2g_{ab}(y) x^a x^b, \\ \varrho(x,y) &= |\det g_{ab}(x)|^{1/2} |\det g_{ij}(y)|^b, \\ \sigma_{ai} &= -g_{ai}(y), \qquad \gamma^{ab} = g^{ab}(y), \\ \varDelta_y u &= g^{ab}(y) \partial/\partial x^a \partial/\partial x^b u. \\ \text{: The formulas (3), (4) and the f, \\ \text{cond part of (5) is an immediate} \\ \varphi &\text{ of a vector field implies} \\ \varDelta_y u &= \varrho |\det g_{ab}(x)|^{-1/2} \frac{\partial}{\partial x^a} \left(e^{-1} \right) \\ \text{ng that in normal coordinates} \end{aligned$ $\frac{b}{b} u$.

and the filmediate

imediate
 $\frac{\partial}{\partial x^a} \left(e^{-1} \right)$

dinates $y \in M$ there holds
 $\sigma(x, y) = 1/2g_{ab}(y) x^a x^b$,
 $\varrho(x, y) = |\det g_{ab}(x)|^{1/2} |\det g_{ij}(y)|^{1/2}$, $\sigma_{ai} = -g_{ai}(y)$, $\gamma^{ab} = g^{ab}(y)$,
 $A_{\mu}u = g^{ab}(y) \partial/\partial x^a \partial/\partial x^b u$.

Proof: The formulas (3), (4) and the first part of (5)

1]; the seco $\varrho(x, y) = |\det g_{ab}(x)|^{1/2} |\det g_{ij}(y)|^{1/2},$
 $\sigma_{ai} = -g_{ai}(y),$ $\gamma^{ab} = g^{ab}(y),$
 $\varDelta_y u = g^{ab}(y) \partial/\partial x^a \partial/\partial x^b u.$

Proof: The formulas (3), (4) and the first part of

1); the second part of (5) is an inmediate consequent

divergence o

\n The equation is given by:\n
$$
\Delta_y u = \rho \left[\det g_{ab}(x) \right]^{-1/2} \frac{\partial}{\partial x^a} \left(e^{-1} \left[\det g_{ab}(x) \right]^{1/2} \gamma^{ab} \frac{\partial u}{\partial x^b} \right)\n \times \text{Im} \left[\int_0^{\infty} \det g_{ab}(x) \right]^{-1/2} = \left[\det g_{ij}(y) \right]^{-1/2}, \quad \gamma^{ab} = g^{ab}(y),
$$
\n

\n\n The result of the equation is:\n $\rho = \frac{1}{2} \left(\int_0^{\infty} \det g_{ij}(x) \right)^{-1/2} \frac{\partial u}{\partial x^b} \frac{\partial u}{\partial x$

$$
\varrho |\det g_{ab}(x)|^{-1/2} = |\det g_{ij}(y)|^{-1/2}, \qquad y^{ab} = g^{ab}(y),
$$

The Euclidean Laplacian Δ_{μ} with respect to an origin $y \in M$ has been explicitly introduced through .the representation (6) by A. GRAY and **T. J.-'WILLMORE** *[7,* 22]. It has also been studied by O. KOWALSKI [14, 15]. These authors consider the properly Riemannian case only and they normalize $g^{ab}(y) = \delta^{ab}$ (diagonal matrix with entries 1 in the main'diagonal). In the pseudo-Riemannian case, "Euclidean Laplacian" is not a good name, but we have no other name to propose. In $[7, 22]$ the coineidence limits of $A_{\mathbf{y}}\mathbf{u}$, $A_{\mathbf{y}}^3\mathbf{u}$, $A_{\mathbf{y}}^3\mathbf{u}$ have been calculated. Let us reproduce the first and second by means of our covariant definition (2): $A_{\mu}u = \rho \left[\det g_{ab}(x)\right]^{-1/2} \frac{1}{\partial x^a} \left(e^{-1} \left[\det g_{ab}(x)\right]^{1/2} \gamma^{ab} \frac{1}{\partial x^b}\right]$.
Considering that in normal coordinates
 $\rho \left[\det g_{ab}(x)\right]^{-1/2} = |\det g_{ij}(y)|^{-1/2}, \qquad \gamma^{ab} = g^{ab}(y),$

we arrive at the result (6) \blacksquare

The Euclide at in normal coordinates
 $\int g_{ab}(x)|^{-1/2} = |\det g_{ij}(y)|^{-1/2},$ $p^{ab} = g^{ab}(y),$

he result (6) \blacksquare

and Laplacian Λ_y with respect to an origin $y \in M$ has been explicition

from studied by O. Kowatsky [14, 15]. These authors c we arrive at the result (6) **I**

The Euclidean Laplacian Δ_y with respect to an origin $y \in M$ has been introduced through the representation (6) by A. GRAY and T. J. WILLM It has also been studied by O. KOWALSKI [14, 15 at the result (6) \blacksquare

uclidean Laplacian Δ_y with respect

ed through the representation (6

so been studied by O. Kowatsk

emannian case only and they no

in the main diagonal). In the ps

not a good name, but we h

 S ÝNGE's book [21] provides, after simple calculations, the coincidence relations.

 \rightarrow

in the main diagonal, in the pseudorrelationian [a.s.,
not a good name, but we have no other name to propose.]
limits of
$$
A_yu
$$
, A_y^2u , A_y^3u have been calculated. Let us repro-
by means of our covariant definition (2):
E's book [21] provides, after simple calculations, the coincid
 $l_a = 0$, $\nabla_a l_b = -1/3R_{ab}$, $Al_a = -1/2\nabla_a S$,
 $\nabla_a \gamma^{ab} = 0$, $\Delta \gamma^{ab} = 2/3R^{ab}$, $\nabla^a \nabla_c \gamma^{bc} = 2/3R^{ab}$,
 $\Delta \nabla_a \gamma^{ab} = -1/6 \nabla^b S$;
 $\nabla_a \nabla_b u = -1/6 \nabla^b S$
 $\Delta u = \gamma^{ab} \nabla_a \nabla_b u + (\nabla_a \gamma^{ab} - l_a \gamma^{ab}) \nabla_b u$
 $= \gamma^{ab} \nabla_a \nabla_b u = g^{ab} \nabla_a \nabla_b u = \Delta u$,

where we abbreviate $l_a = \nabla_a \ln \varrho$. With this, we find

$$
A_y u = \gamma^{ab} \nabla_a \nabla_b u + (\nabla_a \gamma^{ab} - l_a \gamma^{ab}) \nabla_b u
$$

$$
\stackrel{d}{=} \gamma^{ab} \nabla_a \nabla_b u = g^{ab} \nabla_a \nabla_b u = \Delta u,
$$

6

5

5

- *I*

The Volume Problem
\n
$$
\Delta_y^2 u = \Delta \Delta_y u
$$
\n
$$
\Delta_y^2 u = \Delta \Delta_y u
$$
\n
$$
\Delta_z^2 u + (\Delta \gamma^{ab} + 2 \nabla^a \nabla_c \gamma^{bc} - 2 (\nabla^a l_c) \gamma^{bc}) \nabla_a \nabla_b u
$$
\n
$$
\Delta_z^2 u + (2 \nabla_a \gamma^{ab} - (\Delta l_a) \gamma^{ab}) \nabla_b u
$$
\n
$$
\Delta_z^2 u + 2 \beta R^{ab} \nabla_a \nabla_b u + 1/3 g^{ab} \nabla_a \nabla_b u.
$$

A normal coordinate system $x \mapsto \bar{x} \in \mathbb{R}^n$ with origin y is, by definition, the inverse to the exponential map \exp_u from $T_u M$ to M. (Both the maps $x \mapsto \bar{x}$ and \exp_u are restricted here to appropriate domains.) Considering this, the formulas (3), (4) can be reinterpreted. Let, in the following, $d^n\vec{x}$ denote the measure on T_yM defined by the metric $g(y)$ with (constant) components $g_{ij}(y)$ and let dvol denote the canonical measure on M defined by the metric $g(x)$ with (variable) components $g_{ab}(\dot{x})$. Further, identify a measure with an alternating n-form and denote by \exp_{y} * the pull-back of \exp_{u} . This pull-back transforms covariant tensors on *M* to covariant tensors on $T_{u}M$. With these notations, coordinate-independent expressions for σ and ρ can be given [19, 1]: $\dot{x} = A^2u + 2/3R^{ab} \nabla_a \nabla_b u + 1/3g^{ab} \nabla_a S \nabla_b u$.

and coordinate system $x \mapsto \bar{x} \in \mathbb{R}^n$ with origin y is, by definition, the ponential map \exp_y from $T_y M$ to M . (Both the maps $x \mapsto \bar{x}$ and here to appropria

$$
\sigma(x, y) = 1/2g(y) \left(\exp_{y}^{-1} x, \exp_{y}^{-1} x \right),
$$

\n
$$
\exp_{y} \exp(x) \left(\frac{\exp_{y} x}{\sqrt{x}}, y \right) d^{n} \overline{x},
$$
\n(7)

i.e. the normal volume function equals the Radon-Nikodym defivative of \exp_{u^*} dvol with respect to $d^n\bar{x}$.

Let us finish this section by shortly reviewing the volume problem for properly Riemannian manifolds. The following formulas are needed in the next section.

Definition 3: The numbers

\n The probability
$$
a^2x
$$
 is a function by shortly reviewing the volume problem for properly, the probability a_k is a function. The probability $a_k = a_k(n) = 2^{-2k}(k!)^{-2} \binom{n/2 + k - 1}{k}^{-1} = 2^{-2k}(k!)^{-1} I' \left(\frac{n}{2} + k\right)^{-1} I' \left(\frac{n}{2}\right)^{-1}$ \n

\n\n For $k \geq 0$ are called *Pizzetti's coefficients*.\n

for integer $k \geq 0$ are called *Pizzetti's coefficients*.

Obviously,

'1

^a0 ⁼1, a ¹ ' = 2n, *a2'* = *8n(n +* 2), 8 *a' = ²kk!n(n +2)...(n±2k* —2) *fork ^* 1. . (S .

The name "Pizzetti's coefficients" appeared in [14]. We denote by $Bⁿ(y, R)$ and $S^{n-1}(y, R)$ the geodesic ball and the geodesic sphere, respectively, with centre y and radius $R > 0$ in an *n*-dimensional properly Riemannian manifold. Further, we denote by $B^n(R)$ and $S^{n-1}(R)$ the ball and the sphere, respectively, with centre 0 and radius $R > 0$ in the *n*-dimensional Euclidean space \mathbb{R}^n . The symbol Vol means the $a_k^{-1} = 2^k k! n(n+2) \dots (n+2k-2)$ for $k \ge 1$.

The name "Pizzetti's coefficients" appeared in [14]. We denote by $B^n(y, R)$ and
 $S^{n-1}(y, R)$ the geodesic ball and the geodesic sphere, respectively, with centre y and

radius $a_k = a_k(n) = 2^{-2k}(k!)^{-2}$ $\binom{n}{k} = 2^{-2k}(k!)^{-1} \left(\frac{n}{2}\right)$

for integer $k \ge 0$ are called *Pizzetti's coefficients*.

Obviously,
 $a_0 = 1, \quad a_1^{-1} = 2n, \quad a_2^{-1} = 8n(n + 2),$
 $a_k^{-1} = 2^k k!n(n + 2) \dots (n + 2k - 2)$ for $k \ge 1$.

The nam volume with respect to the canonical measure.
Proposition 1: *There hold the asymptotic power series expansions* $(n + 2k - 2)$ for $k \ge 1$.

ts" appeared in [14]. We denote by $B^n(y, R)$ and

the geodesic sphere, respectively, with centre y and

al properly Riemannian manifold. Further, we de-

ball and the sphere, respectively, with ce

$$
B^{n}(R)
$$
 and $S^{n-1}(R)$ the ball and the sphere, respe
> 0 in the *n*-dimensional Euclidean space \mathbb{R}^{n} .
11 with respect to the canonical measure.
13.5 is given by $\sum_{k=0}^{\infty} a_k(n) \left(\Delta_y^k e\right) (y, y) R^{2k}$.
 $\frac{\text{Vol } S^{n-1}(y, R)}{\text{Vol } S^{n-1}(R)} \sim \sum_{k=0}^{\infty} a_k(n) \left(\Delta_y^k e\right) (y, y) R^{2k}$.
 $\frac{\text{Vol } B^{n}(y, R)}{\text{Vol } B^{n}(R)} \sim \sum_{k=0}^{\infty} a_k(n+2) \left(\Delta_y^k e\right) (y, y) R^{2k}$.

⁸
R. SCHIMMING and D. MATEL-KAMINSKA
The proof can be read from [6, 14] and is based on the famous Pizzetti formula *-* N

8 R. SCHIMING and D. MATEL-KAMINSKA
\nThe proof can be read from [6, 14] and is based on the famous Pizzetti formulas
\n
$$
\frac{\int u dS}{\sqrt{0! S^{n-1}(R)}} \sim \sum_{k=0}^{\infty} a_k(n) (A_0^k u) (0) R^{2k},
$$
\n
$$
\frac{\int u d^n x}{\sqrt{0! B^n(R)}} \sim \sum_{k=0}^{\infty} a_k(n + 2) (A_0^k u) (0) R^{2k},
$$
\nwhere A_0 denotes the Laplacian of \mathbb{R}^n **1**
\nThe volume of truncated light cones
\nIn this section we consider *n*-dimensional pseudo-Riemannian manifolds (M, g) on
\nsignature $(n, \text{'n})$ such that $n \geq 1, \text{'n} \geq 1, \text{'n} + \text{'n} = n$. The orthogonal groups to

In this section we consider *n*-dimensional pseudo-Riemannian manifolds (M, g) of signature ('n, "n) such that 'n ≥ 1 , "n ≥ 1 , "n + "n = n. The orthogonal groups to the dimensions 'n, "n are denoted by $\overline{O}(n)$, $O('n)$, respectively, the pseudo-orthogonal group to the signature $(n, 'n)$ is denoted by $O((n, 'n))$.

Definition 4: An $O('n) \times O('n)$ -structure at the point $y \in M$ is a representation of the metric at y as the difference of two positive semidefinite quadratic forms with for extractions in the maximal possible ranks: $g(y) = g(y) - g(y)$, $g(y) = g(y) - g(y) - g(y)$, Vol $B^{\pi}(R)$ $\longleftarrow_{k=0}^{n} u_k(n+2)$ ($\Box a \rightarrow u$) ($\Box f$) $n+7$,

where $\Box a_0$ denotes the Laplacian of \mathbb{R}^n **T**

The volume of truncated light cones

In this section we consider *n*-dimensional pseudo-Riemannian manif ich that 'n ≥ 1 , ''n ≥ 1 , ''n \neq ''n

''n are denoted by $O('n)$, $O('n)$, ro

''n are denoted by $O('n)$, $O('n)$, ro

signature $('n, 'n)$ is denoted by $O($

in $O('n) \times O('n)$ -structure at the positive semple ranks: ensional pseudo-Riemannian maniformers, $m \geq 1$, $n + n = n$. The orthogotor $O('n)$, $O('n)$, respectively, the point $y \in M$ is a represented by $O(n, n)$.
 \rightarrow structure at the point $y \in M$ is a represented by $O((n, n)$.
 \rightarrow

Such $O(n) \times O(m)$ -structures at a point exist. There exist normal coordinate systems $x \mapsto \overline{x} = (x^a) \in \mathbb{R}^n$ with the origin y in which the components of 'g(y), ''g(y) are given by
are given by
 $\begin{pmatrix} y_{ij}(y) \\ 0 \end{pmatrix} = \begin{pmatrix} g_{ij}(y) & 0 \\ 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} g_{ij}(y) \\ g_{ij}(y) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & g_{ij}(y)$ are given by

$$
\left(\sigma_{ij}(y)\right) = \begin{pmatrix} g_{i'j}(y) & 0 \\ 0 & 0 \end{pmatrix}, \quad \left(\sigma_{ij}(y)\right) = \begin{pmatrix} 0 & 0 \\ 0 & g_{i'i'j}(y) \end{pmatrix}, \quad (11)
$$

respectively. Here we introduce and use a new index convention

$$
(90,97) = \begin{pmatrix} 0 & 0 \end{pmatrix}, \quad (90,97) = \begin{pmatrix} 0 & 0 \end{pmatrix}
$$

respectively. Here we introduce and use a new

$$
(a, 'b, ..., 'i, 'j, ... = 1, 2, ..., 'n;
$$

$$
(a, ''b, ..., ''i, ''j, ... = 'n + 1, ..., n).
$$

The normal coordinate system can be further specialized to
 $g_{ij}(y) = \delta_{ij}, \quad g_{ij}(y) = \delta_{ij}.$

$$
g_{i'j}(y) = \delta_{i'j}, \qquad g_{i'i'j}(\gamma) = \delta_{i'i'j}.
$$

If $O((n) \times O((n))$ -structures are given at various points y of some domain $U \subseteq M$ and if they depend, in a sense which can be made precise, smoothly on $y \in M$ then we arrive at the usual notion of a local $O('n) \times O('n)$ -structure [8, 9]. If, particularly, $U = M$ then we have a global $O((n) \times O((n))$ -structure. Generally, such a global structure does not exist. If it exists then it is called a reduction of the global $O(n, 'n)$ structure defined by the metric g. A local $O('n) \times O('n)$ -structure exists in a sufficiently small neighbourhood of each point. $U = M$ then we have a global $O(n) \times O(m)$ -structure. Generally, such a
structure does not exist. If it exists then it is called a reduction of the global $O(n)$
structure defined by the metric g. A local $O(n) \times O(m)$ -structure $g_{i'j}(y) = \delta_{i'j}, \quad g_{i'i'j}(y) = \delta_{i'i'j}.$
 $\langle O('n)$ -structures are given at various points y of some domain U epend, in a sense which can be made precise, smoothly on $y \in M$ the usual notion of a local $O('n) \times O('n)$ -structu

Definition 5: The *truncated light cone* $C(y, R, 'g, 'g)$ with vertex $y \in M$ and altitude $R > 0$ with respect to an $O((n) \times O((n))$ -structure at y is described by the inequalities

$$
"g^{ij}(y)\frac{\partial\sigma}{\partial y^i}\frac{\partial\sigma}{\partial y^i}\leq "g^{ij}(y)\frac{\partial\sigma}{\partial y^i}\frac{\partial\sigma}{\partial y^j}\leq R^2.
$$

Here 'g^{ij}(y), "g^{ij}(y) originate from 'g_{ij}(y), "g_{ij}(y) by raising of the indices.

•

•

The first unequality of Definition 5 expresses $\sigma(x, y) \geq 0$, as will become clear in the following, while the second unequality is the "truncation condition".

In normal coordinates with the origin y there holds, equivalent to (5), $\partial \sigma / \partial y^i$ $=-g_{\mu q}(y) x^a$ and as a consequence The first unequality of Definition 5 exp

the following, while the second unequality

In normal coordinates with the origin
 $=-g_{ia}(y) x^a$ and as a consequence
 $'g^{ij}(y) \frac{\partial \sigma}{\partial y^i} \frac{\partial \sigma}{\partial y^j} = 'g_{ab}(y) x^a x^b,$

The Volume Pro-
\nstat unequality of Definition 5 expresses
$$
\sigma(x, y) \ge 0
$$
, as will be
\nwing, while the second unequality is the "truncation condition
\nmal coordinates with the origin y there holds, equivalent
\ny) x^a and as a consequence
\n
$$
g^{ij}(y) \frac{\partial \sigma}{\partial y^i} \frac{\partial \sigma}{\partial y^j} = 'g_{ab}(y) x^a x^b, \qquad ''g^{ij}(y) \frac{\partial \sigma}{\partial y^i} \frac{\partial \sigma}{\partial y^j} = ''g_{ab}(y) x^a x^b.
$$
\nthe normal coordinates belonging to (11) $C(y, R, \langle g, \neg g \rangle)$ is des

 $y = -g_{ia}(y) x^a$ and as a consequence
 $'g^{ij}(y) \frac{\partial \sigma}{\partial y^i} \frac{\partial \sigma}{\partial y^j} = 'g_{ab}(y) x^a x^b$, $''g^{ij}(y) \frac{\partial \sigma}{\partial y^i} \frac{\partial \sigma}{\partial y^j} = ''g_{ab}(y) x^a x^b$.

Thus, in the hormal coordinates belonging to (11) *C(y, R, 'g, ''g*) is described inequalities *ine 1*
 $=$ $\frac{1}{2}$
 $\frac{1}{2}$
 the normal coordinates belonging to

g_{''a''b}(y) $x''^a x''^b \leq g_{a'b}(y) x'^a x'^b \leq R^2$.

$$
g_{\alpha\alpha\beta}(y) x^{\alpha\alpha} x^{\alpha\beta} \leq g_{\alpha\beta}(y) x^{\alpha} x^{\beta} \leq R^2.
$$

With 'r, "r defined by $'r^2 = g_{a'b}(y) x'^a x'^b$, " $r^2 = g_{a'b}(y) x'^a x'^b$, the truncated light cone is also described by $0 \leq$ $'r \leq r \leq R$. These descriptions show that for all sufficiently small $R > 0$ the point set $C(y, R, 'g, 'g)$ is defined and is compact. In the normalization $g_{a'b}(y) = \delta_{a'b}$, $g_{a'b}(y) = \delta_{a'b}$ the truncated light cone is described by (*x*) $k + \frac{1}{r}$, $\frac{r}{r}$ defined by $\frac{r^2}{2} = g_{\alpha\beta}(y) x^{\alpha} x^{\beta}$, $\frac{r}{r^2} = g_{\alpha\beta}(y) x^{\beta}$

(e is also described by $0 \leq \frac{r}{r} \leq r \leq R$. These described

ficiently small $R > 0$ the point set $C(y, R, 'g, 'g')$ is de

$$
(x^{n+1})^2 + \cdots + (x^n)^2 \leq (x^1)^2 + \cdots + (x^{\prime n})^2 \leq R^2.
$$

We denote the set of all points $\bar{x} = (x^1, \ldots, x^n, x^{n+1}, \ldots, x^n)$ of the flat space \mathbb{R}^n satisfying these last inequalities by $C(R, 'n, 'n)$. Now we are in the position to present our main theorem. $(x^{n+1})^2 + \cdots + (x^n)$

We denote the set of all

satisfying these last inequal

sent our main theorem.

Theorem 2: There holds

Vol $C(y, R, 'g, ''g)$

Vol $C(R, 'n, ''n)$

T h core in 2: There holds the asymptotic power series expansion

We denote the set of all points
$$
\bar{x} = (x^1, ..., x^n, x^{n+1}, ..., x^n)
$$
 of the flat space \mathbb{R}^n
satisfying these last inequalities by $C(R, 'n, 'n)$. Now we are in the position to pre-
sent our main theorem.
\nTheorem 2: There holds the asymptotic power series expansion
\n
$$
\frac{\text{Vol } C(y, R, 'g, ''g)}{\text{Vol } C(R, 'n, ''n)}
$$
\n
$$
\frac{\sum_{k=1}^{\infty} n(n+2k)^{-1} \alpha_k('n) \alpha_k('n+2) 'tr'{}^{k} "tr"{}^{k}(d^{2k}\varrho) (y, y) R^{2k}}{\zeta_k'' k^{-\alpha}}\
$$
\nwhere 'tr denotes the contraction with 'g^{ij}(y) of some symmetric tensor at y, 'tr denotes
\nthe contraction with ''g^{ij}(y), and $k = 'k + ''k$. The absolute term of the expansion
\nequals 1. The coefficient of R^2 is proportional to
\n
$$
[('n + 2) 'tr + 'n "tr] Ric(y). \qquad (12)
$$
\nThe coefficient of R^4 is proportional to
\n
$$
[('n + 2) ('n + 4) 'tr^2 + 2('n + 2) ("n + 4) 'tr "tr + 'n('n + 2) "tr2]\n× [2(Riem)2 - 5(Ric)2 - 9d2 Ric] (y). \qquad (13)
$$
\n(The proportionality factors do not vanish.)
\nProof: We apply, in a notationally simplified manner, the formula (7) and then

where 'tr *denotes the contraction with 'g"(y) of some symmetric tensor at y,* "tr *denotes the contraction with "g^{ti}(y), and k = 'k + "k. The absolute term of the expansion* equals 1. The coefficient of R^2 is proportional to where 'tr denotes the contraction with 'g^{if}(y) of some symmetric

the contraction with ''g^{if}(y), and $k = k + 2k$. The absolute

equals 1. The coefficient of R^2 is proportional to
 $[(n + 2)$ 'tr + 'n ''tr] $Ric(y)$.

The

$$
[(\ 'n + 2)\ 'tr + 'n\ 'tr]\ Ric(y).
$$

The coefficient of *R4 is proportional to*

the contraction with "g^{ij}(y), and
$$
k = 'k + ''k
$$
. The absolute term of the expansion
equals 1. The coefficient of R^2 is proportional to
\n
$$
[(\n m + 2) 'tr + 'n "tr] Ric(y).
$$
\nThe coefficient of R^4 is proportional to
\n
$$
[(\n m + 2) ('n + 4) 'tr^2 + 2(n + 2) ("n + 4) 'tr "tr + 'n("n + 2) "tr2]\n
$$
\times [2(Riem)^2 - 5(Ric)^2 - 9d^2 Ric] (y).
$$
\n(The proportionality factors do not vanish.)
\nProof: We apply, in a notationally simplified manner, the formula (7) and then
\nFubini's integral theorem:
$$

•

Proof: We apply, in a notationally simplified manner, the formula (7) and then **a** (7) a

\n
$$
fraction\ with\ "g^{ij}(y),\ and\ k = 'k' + 'k.
$$
\nThe absolute term of the expansion.\n

\n\n
$$
The\ coefficient\ of\ R^{2}\ is\ proportional\ to
$$
\n
$$
[('n + 2) 'tr + 'n "tr] \operatorname{Ric}(y).
$$
\n

\n\n*ificient of R⁴ is proportional to*\n
$$
[('n + 2) ('n + 4) 'tr^{2} + 2('n + 2) ('n + 4) 'tr "tr + 'n('n + 2) ''tr^{2}] \times [2(\text{Riem})^{2} - 5(\text{Ric})^{2} - 9d^{2}\text{ Ric}] (y).
$$
\n

\n\n*proportionality factors do not vanish.*\n

\n\n
$$
f: We apply, in a notationally simplified manner, the formula (7) and then
$$
\n\n*integral theorem:*\n

\n\n
$$
Vol\ C(y, R, 'g, ''g) = \int_{C(y, R', g, ''g)} dvol = \int_{C(y, R', g, ''g)} d^{\eta} \overline{x}\varrho
$$
\n
$$
= \int_{B''^{n}(R)} d^{n} \overline{x}\int_{B''^{n}(r)} d^{n} \overline{x}\varrho.
$$
\n

\n\n
$$
B'''^{n}(r)
$$
\n

10 R. SCHIMMING and D. MATEL-KAMINSKA

Here

R. SCHIMMING and D. MATEL-KAMINSKA
\n
$$
d_1^{\prime n} \overline{x} = (\det g_{\alpha b}(y))^{1/2} dx^1 dx^2 \cdots dx'^n,
$$
\n
$$
d^{\prime n} \overline{x} = (\det g_{\alpha a'b}(y))^{1/2} dx^{n+1} \cdots dx^n
$$
\nole normal coordinates. The inner integral is expanded by means of the second

in suitable normal coordinates. The inner integral is expanded by means of the second *Pizzetti* formula (10),

$$
u = (\text{det } g^n a^n b(y))^{n-1} a x^{n-1} \cdots a x^n
$$

formula (10),

$$
\int d^n \overline{x}_0 \sim \text{Vol } B^n(1) \sum_{k=0}^{\infty} a_{k}(n-k-2) \left(\frac{n}{2} \right)^k \left(\frac{x}{2}, 0 \right)^k r^{n+2}.
$$

by means of the first Pizzetti.formula (9):

in suitable normal coordinates. The inner integral is expanded by means of the second
\nPizzetti formula (10),
\n
$$
\int_{B''n(r)} d''r\overline{x}_0 \sim \text{Vol } B''n(1) \sum_{k=0}^{\infty} a_{k'}(n+2) \left(\frac{n}{4} \right)^{k} \frac{q}{2}, 0 \right) r^{n+2'k}.
$$
\nThe outer integral is decomposed according to Fubini's theorem and is expanded then
\nby means of the first Pizzetti formula (9):
\n
$$
\text{Vol } C(y, R, 'g, 'g) = \int_{0}^{R} d'r \int_{B''n(r)} d' s \int_{B''n(r)} d''r\overline{x}_0.
$$
\n
$$
\sim \text{Vol } B''(R) \text{ Vol } B''n(R) \sum_{k'}^{m} n(n+2k)^{-1}.
$$
\n
$$
\sim \sqrt{2} \int_{0}^{R} d''r \int_{0}^{R} d' s \int_{0}^{R} d''r\overline{x}_0.
$$
\nWe have written the integration differentials just after the integral signs in order to avoid parentheses. The formula (17) in O. Kowatski's paper [14] translates differential operators on T, M into covariant differential operators. It gives here

We have written the integration differentials just after the integral signs in order to avoid parentheses. The formula (17) in-O. KOWALSKI's paper $[14]$ translates differential operators on T_yM into covariant differential operators. It gives here Find the country of the cou written the integration differentials just
rentheses. The formula (17) in O. Kowar
erators on T_yM into covariant differential
 $({'A_0}^k {''A_0}^{\prime k} \varrho)$ (0) = $'{\rm tr}'^k {\prime'}^k (d^{2k}\varrho)$ (y, y)
raluation of the first terms o written the integration
rentheses. The formula
erators on T_yM into economization of the first tend
raluation of the first tends of $d^2\varrho$ and $d^4\varrho$
servation that the num
sition 2: A manifolon
relation that the num

$$
('A_0'^{k'''}A_0''^kq)(0) = 'tr'^{k''}tr''k(d^{2k}q)(y, y).
$$

For an evaluation of the first terms of the asymptotic expansion we have to take the coincidence limits of $d^2\rho$ and $d^4\rho$ from (1) and the Pizzetti coefficients from (8) \blacksquare ential operators on T_yM into covariant differential operators. It gives here
 $('A_0'$ ^{*k*} $''A_0''$ ^{*k*} θ) (0) = 'tr'^k "tr"^k($d^{2k}\hat{\theta}$) (*y, y*).

(For an evaluation of the first terms of the asymptotic expansio

The observation that the numerical coefficients in (12), (13) are positive leads to

vanishing volume deject

nce limits of
$$
d^2\varrho
$$
 and $d^4\varrho$ from (1) and the Pizz
observation that the numerical coefficients in (1
position 2: A manifold (M, g) with definite
g volume defect
Def $C(y, R, 'g, ''g) := \frac{\text{Vol } C(y, R, 'g, ''g)}{\text{Vol } C(R, 'n, ''n)} -$
a manifold with defining their form $2^{(1)}(\text{Hom})^2$.

Likewise a manifold with definite jour form 2(Riem) — 5(Ric) 2 — 9d2 Ric has a non- -vanishing volume defect.

Proof: The contraction of positive definite forms with the positive semidefinite matrices $'(g^{ij}(y))$, $('g^{ij}(y))$ yields positive numbers. These remain positive when multiplied with ${}^{t}n + 2$, ${}^{t}n$, ... in (12), (13) and added up. Analogously, the contractions of negative definite forms yield negative numbers. Thus, the first terms in the connected the set of the numerical coefficients in (12), (13) are positive

The observation that the numerical coefficients in (12), (13) are positive

Proposition 2: A manifold (M, g) with definite Ricci curvature Ric

v Def $C(y, R, 'g, ''g) := \frac{\text{Vol } C(y, R, 'g, ''g)}{\text{Vol } C(R, 'n, ''n)} - 1$.
Likewise, a manifold with definite four-form $2(Riem)^2 - 5(Ric)^2$
vanishing volume defect.
Proof: The contraction of positive definite forms with the
matrices $({g^{ij}(y)}), ({''g^{$ Likewise, a manifold with definite four-form $2(Riem)^2 = 5(Ric)^2 - 9d^2$ Ric has a non-
vanishing volume defect.

Proof: The contraction of positive definite forms with the positive semidefinite

multiplied with " $n + 2$, " n , . Proof: The contraction of positive definite form
matrices $\binom{r}{j}(\binom{r}{j} - \binom{r}{j} - \binom{r}{j} - \binom{r}{j}$ wields positive numbe
multiplied with $\binom{r}{n} + 2$, $\binom{n}{n}$,... in (12), (13) and add
tions of negative definite f

Examples of manifolds with definite *Ric* or $2(Riem)^2 - 5(Ric)^2 - 9d^2Ric$, respec-• tively, can be constructed as the products of Einstein manifolds or of manifolds of constant curvature. Such product constructions will be considered in the next section. inite forms yield negative number of the volume defect do not
folds with definite Ric or 2(lucted as the products of Ein
Such product constructions
for pseudo-Riemannian products
for pseudo-Riemannian products
which we con

The class of manifolds which we consider in this section admits a more explicit treat-
nent of the volume problem. ets

ection admits a more explicit t

•

• .

Definition 6: Let $(M, 'g)$, $('M, 'g)$ be two properly Riemannian manifolds of dimension 'n, ''n,' respectively, and $M := M \times M$ be the product manifold. Let, further, 'p: $M \rightarrow M$, ''p: $M \rightarrow$ "M denote the natural projections and 'p^{*}, "p^{*} their. pull-backs. We set $g = 'p^{*'}g - ''p^{*''}g$ and call (M, g) the *pseudo-Riemannian prod-*. *uct* of $('M, 'g), ('M, ''g)$. *manifolds ('M, 'g), (''M, ''g)* be two properly R
 manion 'n, ''n, respectively, and $M := 'M \times 'M$ be the
 mather, 'p: $M \rightarrow 'M$, 'p: $M \rightarrow 'M$ denote the natural projectively.
 mather, 'p: $M \rightarrow 'M$, 'p: $M \rightarrow 'M$ denote the **Definition 6:** Let $(M, 'g)$, $('M, 'g)$ be two dimension 'n, "n, respectively, and $M := 'M$;
further, 'p: $M \rightarrow 'M$, respectively, and $M := 'M$;
further, 'p: $M \rightarrow 'M$ denote the pull-backs. We set $g = 'p^*g - ''p^{*'}g$ and call
and o

A pseudo-Riemannian product manifold carries a natural global $O('n) \times O('n)$ structure which can be identified with the very product structure: We adopt the convention to consider truncated light cones only with respect to this natural $O(n)$ \times *O*('n)-structure! Note the change in the meaning of 'g, ''g; the formulas have to be appropriately reinterpreted. *do different* indicated in the meaning of 'g, ''g; the formulas have to be thely reinterpreted.

em 3: For the pseudo-Riemannian product (M, g) of two properly Riemannian
 $g(M, 'g)$, $('M, 'g)$ there holds
 d Vol $C(y; R, 'g$ *A* pseudo-Riemannian product manifold carries a natural global $O('n)$
structure which can be identified with the very product structure. We
convention to consider truncated light cones only with respect to this nat
 $\times O'($

 \ldots Theorem 3: For the pseudo-Riemannian product (M, g) of two properly Riemannian

$$
d \text{ Vol } C(y; R, 'g, ''g) / dR = \text{ Vol } S'^{n-1}('y, R) \text{ Vol } B''^{n}('y, R).
$$
 (14)

d Vol C(y, B, 'g, "g)/dR d Vol C(R, 'n, "n)/dR - (^ak(ⁿ) (Ll) ('Y' 'Y) B2) (a"n + 2) A) ("y, 'y) R2"k). (15) *kO "k=O "g) = fd'r f d 'S 'o('^x) f d" 'e("x) -'*

Here $y = ('y, ''y)$ *, and '* $g = 'g('x), ''g = ''g('x)$ denote the normal volume functions of. *('M,'g), ("M,''g), respectively, and* A_{\lq} *,* A_{\lq} *, their Euclidean Laplacians.*

Proof: The multiplicativity of the normal volume function is well known: $\rho(x)$ $=$ ' $\rho('x)$ '' $\rho('x)$. It implies

\n- \n
$$
(y, 'y),
$$
 and $'g = 'o('x), ''g = ''o('x)$ denote the normic" $(''M, ''g)$, respectively, and Δ'_{y} , Δ'_{y} their Euclidean Lap
\n- \n The multiplicative integral of the normal volume function $'o('x)$. It implies\n
\n- \n Vol $C(y, R, 'g, ''g) = \int d'r \int d'S' \varrho('x) \int d'''' \bar{x}'' o('x)$.\n
\n- \n differentiation,\n
\n

and, by differentiation,

$$
\sim \left(\sum_{k=0}^{\infty} a_k(\eta) (A_{ik}^{k} \rho) (\eta, \eta) R^{2k}\right) \left(\sum_{k=0}^{\infty} a_k(\eta + 2) A_{ik}^{k} \rho) (\eta, \eta, \eta) R^{2k}\right).
$$

\nHere $y = (\eta, \eta)$, and $\eta = \frac{1}{2}(\eta, \eta, \eta) = \frac{1}{2}(\eta, \eta) \text{ denote the normal volume function}$
\n $(M, g), (\eta, \eta, \eta, \eta) = \frac{1}{2}(\eta, \eta) \text{ respectively, and } A_{ij}, A_{ij} \text{ their Euclidean Laplacians.}$
\nProof: The multiplicativeity of the normal volume function is well known:
\n $= \frac{1}{2}(\eta, \eta, \eta, \eta, \eta, \eta) = \int_{0}^{\infty} d\eta \int_{0}^{\$

The asymptotic expansion follows by insertion of, Pizzetti's formulas \blacksquare

• Proposition *3: If the pseudo-Riemannian'produci of ('M, 'g), ("M, "g) has vanish-*

$$
\frac{\mathrm{Vol} S'^{n-1}(y, R)}{\mathrm{Vol} S'^{n-1}(R)} \quad \text{and} \quad \frac{\mathrm{Vol} B'^{n}(y, R)}{\mathrm{Vol} B'^{n}(R)}
$$

• depend only on R (i.e. do not depend on $y = \langle y', 'y \rangle$ *) and the product of these two quanti-*
ties equals 1. As a consequence, the coincidence limits of Δ_{y}^{k} of and Δ_{y}^{k} of $(k = 1, 2, ...)$ The asymptotic expansion follows by insertion of Pizzetti's formulas
 Proposition 3: If the pseudo-Riemannian product of $('M, 'g)$, $('M, 'g)$ has vanish-
 ing volume defect, then both

<u>Vol S'ⁿ⁻¹('g, R)</u>
 and $\frac{\text$

Proof: If Def $C(y, R, 'y, '''y) = 0$; then (14) implies

Vol
$$
S'^{n-1}(y, R)
$$
 Vol $B''''(y, R) = Vol S'^{n-1}(R)$ Vol $B''''(R)$.

12 R. Schmming and D. Matel-Kaminska

Hereto the usual "separation of variables" argument is applied and gives the first assertion. Then the coefficients of the Pizzetti expansions in (15) have to be constants; this gives the second assertion \blacksquare 12 **R. SCHIMMING and D. MATE**
 Are assertion. Then the coefficients of this gives the second assertion **F**
 Proposition. 4: If the pseud vanishing volume defect, then the sc
 A = -3 |'*Riem*|² + 8 |'*Ric*|² + **E.** SCHIMMING and D. MATEL-KAMINSKA

¹

(1) Then the coefficients of the Pizzetti expansic

is the second assertion \blacksquare

sition. 4: If the pseudo-Riemannian processition.
 \blacksquare

sition. 4: If the pseudo-Riemannian France Contains a state of this given by the state of the state of

Proposition, 4: If the pseudo-Riemannian product- of ('M, 'g); ("M, "g) has vanishing volume deject, then. the scalar curvatures '5, "S as well as the quantities Proposition. 4: If the pseudo-Riemannian product of $(M, 'g)$;
vanishing volume defect, then the scalar curvatures 'S, "S as well as the
' $A = -3$ |'Riem|² + 8 |'Ric|² + 5'S², " $A = -3$ |''Riem|² + 8 |''R
are constants

 $\mathcal{A} = -3$ *|'Riem*|² + 8 *|'Ric*|² + 5'S², \qquad " $A = -3$ |''Riem|² + 8 |''Ric|² + 5'S²

$$
('n + 2) 'S + 'n''S = 0,
$$

$$
('n+2) ('n+4)'A + 10('n+2) ('n+4)'S''S + 'n('n+2)''A = 0. (16)
$$

'-Proof: The constancy property follows from' Proposition 3 and the coincidence are constants such that
 $('n + 2)'S + 'n''S = 0,$
 $('n + 2)'(n + 4)'A + 10('n + 2)('n + 4)'S''S + 'n'(n + 2)''A = 0.$ (16)

Proof: The constancy property follows from Proposition 3 and the coincidence

limits from [4, 6]
 $-3A'y'y = 'S,$
 $-3A'y'y = 'S$

$$
('n + 2) ('n + 4)'A + 10('n + 2) ('n +
$$

• The relations (16) follow by requiring the coefficients of R^2 and R^4 in (15) equal to zero

. $-3d'_{\mathbf{y}}$ $'e = 'S$, $-3d_{\mathbf{y}}$ $''_0 = ''S$,
 45d²_{**y**} $''_0 = 'A$.

The relations (16) follow by requiring the coefficients of R^2 and R^4 in (15) equal to

zero \blacksquare
 Example: For manifolds ('M, 'g), (''M, $(n + 2)$ $(n + 4)$ $A + 10(n + 2)$ $(n + 4)$ $S''S + n(n + 1)$

Proof: The constancy property follows from Proposition 3 and

limits from [4, 6]
 $-3A'y'y'e = 'S, \t -3A'y''e = ''S,$

45 $A^2y''e = 'A, \t 45A^2y''e = ''A.$

The relations (16) follow by re vions (16) follow by requiring

ple: For manifolds ('M, 'g'

², respectively, the volume of

give us
 d Vol (y, R, 'g, ''g)/*dR*

= Vol S'ⁿ⁻¹(1) Vol S''ⁿ⁻¹(1)

f: The constancy property follows from Proposition 3 and the coincidence
\nom [4, 6]
\n
$$
-3d'_{y} / \rho = 'S, \t -3d'_{y} / \rho = ''S,
$$
\n
$$
45d_{y}^{2} / \rho = 'A, \t 45d_{z}^{2} / \rho = ''A.
$$
\ntions (16) follow by requiring the coefficients of R^{2} and R^{4} in (15) equal to
\nuple: For manifolds (*M*, *'g*), (*'M*, *'g*) of constant curvature $'K = '{}_{2}^{2}$,
\n ${}_{2}^{2}$, respectively, the volume of geodesic spheres and balls is known. Formulas
\ngive us
\n
$$
d Vol (y, R, 'g, 'g)/dR = Vol S'^{n-1}(1) \left(\frac{1}{2} \sin '2R\right)^{'n-1} \int_{0}^{R} dr \left(\frac{1}{72} \sin '2r\right)^{'n-1}.
$$
\n(17)

Herefrom Vol (y, R, g, g') follows by integration with respect to R. If $K < 0$, then $d \text{Vol}(y, R, 'g, 'g)/dR$
 $= \text{Vol}(S'^{n-1}(1)) \text{Vol}(S'^{n-1}(1)) \left(\frac{1}{\lambda} \sin \lambda R\right)^{n-1} \int_{0}^{R} dr \left(\frac{1}{\lambda} \sin \lambda R\right)^{n-1} \cdot \text{Vol}(M, R, 'g, 'g) \text{ follows by integration with respect to } R.$ If $'K < 0$, then
 $\frac{1}{\lambda} \sin \lambda R$ is to be replaced by $\frac{1}{|\lambda|} \sinh |\lambda| R$; an analo $\begin{align} \text{from [6]} \ \text{from [6]} \ \text{Herefront} \ \text{Herefront} \ \text{in} \ \text{$ From Vol $(y, R, Zg, "g)$ follows by integration with respect to R. If $K < 0$, the $\frac{1}{\sqrt{2}}$ is in $|Z|$ is in $|Z|$ is in $|Z|$ is an analogous remark applies if $K < 0$.

Proposition 5: *If the pseudo-Riemannian product o •* $K = '23$ *, respectively, the volume of geodesic spheres and balls is known. Formulas

from [6] give us
* $d \text{Vol}(y, R, 'g, ''g)/dR$ *
* $= \text{Vol}(S^{n+1}(1) \text{Vol}(S^{n-1}(1)) \left(\frac{1}{2} \sin 2R\right)^{n-1} \int_0^R dr \left(\frac{1}{72} \sin {''x}\right)^{n-1}$ *. (17)

Her*

("111, "g)-are flat. Proposition 5: If the pseudo-Riemannian product of two manifolds $(M, 'g)$, $'M, ''g$ of constant curvature has vanishing volume defect, then the factors $(M, 'g)$, $'M, ''g$ are flat.
Proof: If the volume defect vanishes, then the $C/K < 0$.

Proposition 5: If the pseudo-Riemannian product of two manifolds $(M, 'g)$,
 $('M, 'g)$ of constant curvature has vanishing volume defect, then the factors $(M, 'g)$,
 $('M, 'g)$ are flat.

Proof: If the volume defect v Proposition 5: If the pseudo-Riemannian product of two manifolds $(M, 'g)$,
 $('M, 'g)$ of constant curvature has vanishing volume defect, then the factors $(M, 'g)$,
 $('M, 'g)$ are flat.

Proof: If the volume defect vanishes, t

folds ('M,'g), ("M,''g) has vanishing volume defect, then the factors ('M,'g), ("M,''g) $a\ddot{r}e$ *flat.*

Proof: Proposition 4 tells us that the scalar curvatures 'S, "S are constant. Hence the two-dimensional manifolds $(M, 'g)$, $('M, 'g)$ are of constant curvature and Proposition 5 gives the result \blacksquare $\begin{bmatrix}\n\text{arrows} & \text{arrows} \\
\text{arrows} & \text{arrows}\n\end{bmatrix}$

•

0 - -

The Volume Problem 13

Discussion

We investigated the general pseudo-Riemannian case with signature $(n, 'n)$; the Lorentzian case ' $n = 1$ (or '' $n = 1$) has been treated already in [2, 3, 20]. The two cases differ in the following aspects:

- Here we consider the volume- problem with respect to a fixed $O('n) \times O('n)$ structure at a point $y \in M$ or in a domain $U \subseteq M$. In [20] we considered the volume problem with respect to any $O(1) \times O(n-1)$ -structure in a domain $U \subseteq M$. The ambiguity in the choice of the $O(1) \times O(n-1)$ -structure is described by a timelike vector field $a = a^i \partial/\partial y^i$. Fortunately, these vectors a can be geometrically visualized as the "axes" of the truncated light cones. For general $(n, 'n)$ the ambiguity in the choice of the $O(n) \times O('n)$ -structure does not have such a nice description.
- Here we consider "full cones" while in [20] only the "forward half cones", characterized by non-negative time values, have been considered. It is this difference which makes here the odd powers R^{2k+1} of the altitude R cancel out from the asymptotic expansion 'and which makes in [20] both even powers *R2k* and odd powers R^{2k+1} to appear. Of course, the odd powers provide-extra informations in [20], which are not available here.
- The Lorentzian case admits geometrical' visualization as well as physical application (in the general theory of relativity). The general case admits neither the one From $[20]$, which and
 $-$ The Lorentzian

tion (in the general of the other.
 $-$ A Lorentzian
	- nor the other.
A Lorentzian manifold with vanishing volume defect for each $O(1) \times O(n 1)$ structure is shown to be flat [20]. This affirmatively answers a "volume conjecture". The answer for properly Riemannian manifolds is not known. For the remaining case ' $n \geq 2$, $\sqrt[n]{n} \geq 2$ there exist non-flat pseudo-Riemannian manifolds with vanishing volume defect, namely the (non-flat) simply harmonic manifolds of signature ('n, "n). The normal volume function- of a simply harmonic manifold is constant, equal to one. Thus the "volume conjecture" in its original form should not be applied; it is to be reformulated: a pseudo-Riemannian manifold of signature $(n, 'n)$, $n \geq 2$, $n \geq 2$, with vanishing volume defect is supposed to be simply harmonic. an manifold with vanishing volume defect for each $O(1) \times O(n - 1)$
shown to be flat [20]. This affirmatively answers a "volume conject
answer for properly Riemannian manifolds is not known. For the
case ' $n \geq 2$, " $n \geq 2$
	- The Lorentzian case is included here. We obtain, for instance the following useful formula: The Lorentzian product $(\mathbb{R} \times M, dt^2 - g)$ of a properly Riemannian manifold (M, g) and the real number space (\mathbb{R}, dt^2) satisfies

$$
\frac{d \text{ Vol } C(t_0, y, R, dt^2, g)/dR}{d C(R, 1, n)/dR} = \frac{\text{Vol } B^n(y, R)}{\text{Vol } B^n(R)}.
$$

All $O(n) \times O("n)$ -structures at a point $y \in M$ of a pseudo-Riemannian manifold (M, g) are parametrized by the Grassmann space $O((n, 'n) / (O((n) \times O('n)))$; its diniension equals 'n"n. All $O('n) \times O('n)$ -structures in a domain $U \subseteq M$ are parametrized by the sections of a Grassmann bundle over *U,* i.e. a fibre bundle with typical fibre $O('n, 'n)/(O('n) \times O('n))$. In order to effectively exploit the ambiguity in the $O('n) \times O('n)$ -structure, infinitesimal Lorentz transformations should be used, i.e. elements of the vector space $\delta(n', 'n)/(\delta(n) \times \delta('n))$; these can be interpreted as "infinitesimal transformations". Here $o(...)$ denotes the Lie algebra of a Lie group *0(. ..).* Such procedures could be the topic of future work. Also, other variants of the volume problem, taken in a broad sense, for pseudo-Riemannian nianifolds could be studied, for instance the volume of tubes about curves or submanifolds.

Acknovledgement. The authors are greatly indepted ,to Prof. Dr. P. Gunther for a' •valuable hint concerning this paper.

14 R. Schimming and D. Matel-Kaminska

REFERENCES

- [1] BESSE, A. L.: Manifolds all of whose geodesic are closed. Berlin: Springer-Verlag 1978.
- [2] GACKSTATTER, F., and B. GACKSTATTER: Uber Volumendefekte und Krümmung in Riemannschen Mannigfaltigkeiten mit Anwendungen in der Relativitätstheorie. Ann. Phys. R. SCHIMMING and D. MATEL-KAMINSKA

FERENCES

BESSE, A. L.: Manifolds all of whose geodesic are closed. Berlin: Springer-Verlag 197

GACKSTATTER, F., and B. GACKSTATTER: Uber Volumendefekte und Krümmung i

mannschen Mannig V KEFEKENCES

[1] BESSE, A. L.: Manifolds all of whose geoder

[2] GACKSTATTER, F., and B. GACKSTATTER:

mannschen Mannigfaltigkeiten mit Anwer

41 (1984), 35-44.

[3] GACKSTATTER, F.: Uber Volumendefekte

- Charakterisierun BESSE, A. L.: Manifolds all of whose geodesic are closed. Berlin: SCACKSTATTER, F., and B. GACKSTATTER: Uber Volumendefekte mannschen Mannigfaltigkeiten mit Anwendungen in der Relativel 41 (1984), 35-44.
GACKSTATTER, F.: U
	- [3] GACKSTATTER, F.: Über Volumendefekte bei Lorentzschen Mannigfaltigkeiten und eine - Charakterisierung des Minkowski-Raumes. Preprint. Berlin (West): Freie Universitiit 1986.
	- [4] GRAY, A.: The volume of a small geodesic ball in a Riemannian manifold. Michigan Math. J. **20** (1973); 329-344.
	- [5] GRAY,-A.: Geodesic balls in Riemannian product manifolds. In: Differential Geometry and Relativity (eds.: M. Cahen and M. Flato). Dordrecht: D. Reidel Publ. Comp. 1976, 63-66.

	[6] GRAY, A., and L. VANHECKE: Riemannian and Relativity (eds.: M. Cahen and M. Flato). Dordrecht: D. Reidel PubI. Comp. 1976, GACKSTATTER, F., and B. GACKSTATTER: Uber Volumen
mannschen Mannigfaltigkeiten mit Anwendungen in de
41 (1984), 35-44.
GACKSTATTER, F.: Uber Volumendefekte bei Lorentzsc
Charakterisierung des Minkowski-Raumes. Preprint. Be 41 (1984), 35-44.

	[3] GACKSTATTER, F.: Über Volumen

	- Charakterisierung des Minkowski-I-

	[4] GRAY, A.: The volume of a small $[3]$ J. 20 (1973); 329--344.

	5] GRAY, A.: Geodesic balls in Riem

	and Relativity (eds.: M. GRAY, A.: Geodesic balls in Kiemannian product manifolds. In: Differend Relativity (eds.: M. Cahen and M. Flato). Dordrecht: D. Reidel Publ
63–66.
63–66.
GRAY, A., and L. VANHECKE: Riemannian geometry as determined by the
	- [6] GRAY, A., and L. VANHECKE: Riemannian geometry as determined by the volumes of V small geodesic balls. Acta Math. 142 (1979), 157–198.
GRAY, A.,. and T. J. WILLMORE: Mean-value theorems for Riemannian manifolds. Proc.
	- ht: D. Reidel Publ. Comp. 1976,
3 determined by the volumes of
for Riemannian manifolds. Proc.
rential geometry L. New York. 63–66.

	[6] GRAY, A., and L. VANHECKE: Riemannian geometry as determined by the volumes of

	small geodesic balls. Acta Math. 142 (1979), 157–198.

	[7] GRAY, A., and T. J. WILLMORE: Mean-value theorems for Riemannian manifo
	-
- -
- [9] KOBAYASHT, S.: Transformation groups in differential geometry. Berlin: Springer-Verl. 1972. [6] GRAY, A., and L. VANHECKE: Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math. 142 (1979), 157-198.

[7] GRAY, A., and T. J. WILLMORE: Mean-value theorems for Riemannian manifolds. Pro $(1980), 205 - 225.$ small geodesic balls, Acta Math. 142 (1979), 157-
GRAY, A., and T. J. WILLMORE: Mean-value the
Royal Soc. Edinburgh 92 A (1982), 323-363.
KOBAYASHI, S., and K. NOMIZU: Foundations (Interscience Publ. 1963.
KOBAYASHI, S.: T (10) KOWALSKI, O.: Additive volume invariants of Riemannian' manifolds. Acta Math. 145 (1980), 205-225.

[11] KOWALSKI, O.: The volume conjecture and four-dimensional hypersurfaces. Comment.

Math. Univ. Carol. 23 (1982) Interscience Publ. 1963.

J KORAYASHI, S.: Transformation groups in differential geometry. Berlin: Springer-Verl. 15

I KOWALSEL, O.: Additive volume invariants of Riemannian' manifolds. Acta Math.

(1980), 205-225.

J KOW
	- [11] KOWALSKI, 0.: The volume conjecture and four-dimensional hypersurfaces. Comment. $-$ V. The volume conjecture a Math. Univ. Carol. 23 (1982) 1, 81 -87.

	(12) KOWALSKI, O., and L. VANHECKE: Ball-Ho.

	Manifolds. Math. Z. 180 (1982), 429-444.

	(13) KOWALSKI, O., and L. VANHECKE: On di KOWALSKI, O.: The volume conjecture and four-dimensional hypersurfa

	Math. Univ. Carol. 23 (1982) 1, 81 – 87.

	KOWALSKI, O., and L. VANHECKE: Ball-Homogeneous and Disk-Homogenec

	Manifolds. Math. Z. 180 (1982), 429 – 444.

	- [12] KOWALSKI, 0., and L. VANHEC1E: Ball-Homogeneouand DiskHoinogeneous Riemannian visk-H
symm
rulue
	- [13]-Kowalski, O., and L. VANHECKE: On disk-homogeneous symmetric spaces. Ann. Glob.
	-
- Manifolds. Math. Z. 180 (1982), 429-444.

[13] KOWALSKI, O., and L. VANHECKE: On disk-homogeneous symmetric spaces. Ann. Glob.

Analysis and Geom. 1 (1983), 91-104.

[14] KOWALSKI, O.: A comparison theorem for spherical me [15] KowaLski, O.: Normal forms of the Laplacian and its iterations in the symmetric spaces [10] KOWALSKI, O.: Additive volume invariants of Riemannian manifolds. Acta Math. (1980), 205-225.

[11] KOWALSKI, O.: The volume conjecture and four-dimensional hypersurfaces. Co

Math. Univ. Carol. 23 (1982) 1, 81-87.
 [13] KOWALSKI, O., and L. VAN Analysis and Geom. 1 (198
[14] KOWALSKI, O.: A comparis

"manifolds. Proc. London M

[15] KOWALSKI, O.: Normal for
 \sim of rank one. Simon Stevin

[16] KOWALSKI, O., and L. VAN

fold. Czech. KOWALSKI, O.: A comparison theorem for spherical mean-value operators in R
manifolds. Proc. London Math. Soc.⁴47 (1983), 1-14.
Kowalski, O.: Normal forms of the Laplacian and its iterations in the symme
of rank one. Simo
	- [16] K0wALsKI, 0., and L. VANHECKI: The volume of geodesic disks in a Riemannian maniof rank one. Simon Stevin Quart. J. Pure Appl. Math. 57 (1983), 215–223.

	Kowartski, O., and L. VANHECKE: The volume of geodesic disks in a Riemann

	fold. Czech. Math. J. 35 (1985), 66–77.

	MiqueL, V.: The volumes of small
- $[17]$ MIQUEL, V_s: The volumes of small geodesic balls for a metric connection. Compositio [16] KOWALSKI, O., and L. VANHECKE: The volume of geodesic disks in a Riemannian manifold. Czech. Math. J. 35 (1985), 66–77.

[17] MIQUEL, V.: The volumes of small geodesic balls for a metric connection. Compositio Math. 4 fold. Czech. Math. J. 35 (1985), 66-77.

[17] Mrquer, V.: The volumes of small geodesic balls for a metric connection. Compositio

Math. 46 (1982), 121-132.

[18] Mrquer, V.: Volumes of certain small geodesic balls and al EL', V.: The volumes of small geodesic balls for a metric connection. Comp. 46 (1982), 121-132.

EL, V.: Volumes of certain small geodesic balls and almost-Hermitean geometriae Ded. 15 (1984), 261-267.

H. S., WALKER, A. G
	- Geometriae Ded. 15 (1984), 261-267. I small geodesic balls and almost-Hermitean geometry

	161 – 267.

	361 – 267.

	59. and T. J. WILLMORE: Harmonic Spaces. Roma: Edizion.

	99. and T. J. WILLMORE: Harmonic Spaces. Roma: Edizion.
	- [19] RUSE, H. S., WALKER, A. G., and T. J. WILLMORE: Harmonic Spaces. Roma: Edizioni
	- Cremonese 1961.
[20] SCHIMMING, R.: Lorentzian geometry as determined by the volumes of small truncated
	-
	- [21] SYNGE, I. L.: Relativity. The general theory. Amsterdam: North-Holland Publ. Comp. 1960.
[22] WILLMORE, T. I.: The Euclidean Laplacian. In: E. B. Christoffel (eds.: P. L. Butzer and

VERFASSER:

etriae Ded. 15 (1984), 261 – 267.

, H. S., WALKER, A. G., and T. J. WILLMONCES.

1961.

MINNO, R.: Lorentzian geometry as detern

cones. Archivum Math. Brno 24 (1988), 5-

E, I. L.: Relativity. The general theory. Ams

MO ter Fassung 07.
.
.
. Manuskripteingang: 28. 03. 1988; in revidierter Fassung 0

VERFASSER:

Doz. Dr. sc. RAINER SCHIMMING

Sektion Mathematik der Ernst-Moritz-Arndt-Universität

Friedrich-Ludwig-Jahn-Str. 15a onese 1961.

MINNO, R.: Lorentzian geometry as determined by the volcones. Archivum Math. Brno 24 (1988), 5-16.

E, I. L.: Relativity. The general theory. Amsterdam: North-H

MORE, T. I.: The Euclidean Laplacian. In: E. B. SCRIMMING, R.: Lorentzian geometry as determined by the volumes of small tr

ight cones. Archivum Math. Brno 24 (1988), 5-16.

SYNG, I.L.: Relativity. The general theory. Amsterdam: North-Holland Publ. Cone

WILLMORE, T. I Doz. Dr. sc. RAINER SCHIMMING
Sektion Mathematik der Ernst-Moritz-Arndt-Universität
Friedrich-Ludwig-Jahn-Str. 15a
DDR-2200 Greifswald
Dr. DONATA MATEL-KAMINSKA
Instytut Matematyki, Politechnika Szczecińska L. I. L. Readwrig. The general cheory. Anisotroan. Too in-He
MORE, T. I.: The Euclidean Laplacian. In: E. B. Christoffel
hér). Basel: Birkhäuser Verlag 1981, 508–516.
Manuskripteingang: 28. 03. 1988; in revidierter Fassung

al.Piastów 50 Sektion Mathematik der Ernst-Moritz-Arndt-Universität
Friedrich-Ludwig-Jahn-Str. 15a
DDR-2200 Greifswald
Dr. Doxara Marel-Kaminska
Instytut Matematyki, Politechnika Szczecińska
al. Piastów 50
P-70-310 Szczecin

V

•

V V

V
V
V
V

V
Vite
Vite
Vite

V

V -

V
Vite
Vite

V.'

V'

V

V

 $\begin{bmatrix} \mathbf{v} & \mathbf{r} \end{bmatrix}$

 $\frac{1}{\sqrt{2}}$

 $\ddot{}$ $\ddot{\cdot}$ V

•