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Mit Hilfé des Hauptsatzes der Theorie pseudo- monotoner Operatoren wnrd ein Existenzsatz
fir eine Klasse von nichtlinearen singuliren Integrodafferentmlglcxchungen vom Cauchyschen
Typ'und zwei zugchérige Klassen von nichtlinearen Integralglenchungen bewiesen.

C TIOMOLIbIO OCHOBHOM TEOPEMbl TEOPMM 1ICEBJIO: MOHOTOHHLIX onepaTopOB nOl\aauBaeTcn
TEOpeMa CYUIECTBOBAHMA IJIA ORHOrO KIACCA HEJHHEHHLIX CHHTYNADHHX' WHTErpo-Audde-

‘PEHLMATBHLIX YypaBHeHHH THma Hown u msyx cnaaammx -C HIM KJIACCOB HeNHHEHHBIX:
HHTErPAILHHIX ypaBHEHNL. :

By means of the main theorem of the theory of pseudo monotonc operators, an existence
theorem 'is proved for a class of nonlincar singular integro- -differential equations of Cauchy
type and two related classes of nonlmear integral equations. . . !

. N )
: ;Int'roduétion ’ : . - Y
In recent papers (cf. [3] and (5] for an overview). méthods of monotone operator
theory were applied for proving the existence of a solution to various classes of non-
linear smgular integral and integro-differential equations of. Cauchy type. In parti-
_cular, in [4] by means of the theory of pseudo-monotone operators, the author proves

;an existence theorem for a class of singular integro-differential equations of second
ord/er with linear main part. In the present paper we extend this approach to a
.corresponding class of second-order equatrons with nonlinear main pa.rt Moreover, a
class of nonlinear integral equations occuring in contact problems of elasticity theory -
[2] are reduced to spcclal smgular mtegro -differential equtmons of this type.

; T . ) ~ o

1. Formulation of problem . o SR ,

We dea] wmh the' nonlinear 8ingular integro-dz//erentzal equalzon '

L —(PW) + 8Qw) + oSl — pSw]
+o(w) v i Ay )—/ on[—a,a]

under the boundary conditions u(—a) = u(a) =0, where S denotes the Ca.uchy
opera.tor
. a
’ _1 u(y)
_S{u] (@) = —~ _[y_——:;d

—a . . ' s
.

o
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The data fulfil the basnc Assumptions I:
(i) P, Q are continuous functions on R sa,tlsfymg the growth condltxons
PO S e |UP +dyy- QO SelUP+d )
" for any U € R with positive constants ¢;, d,, i = 1, 2, and some p € [2, ooj.
(ll) Vs o€ Lm(~—a, a)° ‘ , . ‘ . . . .
' (i) £, A € Ly(—a, a). » . _ ‘
“(iv) «,; B € R. ) ' : . o L ‘
(V) ¢, € O(R). . R -
- In the sequel we are looking for generalized solutions ue W, ‘(—a, a) of (1) which
are defined by the mtegra.l 1dent1ty .
as(tt, v).+ ax(u, ) + ay(i, ) = bo) o 3)
for any v € W Y(—a, a), where

/

(u,?))—f‘)/Pu)?)dx-{—faQ(q;)vdx’ o

—a

N .Aa(u, .—afS[u]vdx—ﬂfS[u]vdx, " . '

" ag(u,v): f(p(u)uvdx—{—f}.zp Yyvdz

S X = —fd?(u).v’-(.iz—{—f).w(-u)vdz e o
with @ a prlmxtlve of ¢ a;rlld . B . | ) _
b(o) : —f/v dz. g | - . - . (4)
The problem (3) is: equnvalent to the operator equatzon \ |
du=b for ' uweX:=Wpi—a,a), - G

wheré 4 := 4,4+ 4, + Az, the operators A X > X* k=0,1,2, are defined by
(Au, V)y :=ay(u,v) for u,v€ X and be X* is defined - by (4). Namely, since f €
Ly(—a, a) and the Sobolev space W, (=a, a) is continuously imbedded in the space

. ,C[ a, a] of contmuous functions on [ a,al, we have |[b(v)| = ||f||L, e = C, ]|/||,“ ]|v]|,

where ][ Il denotes the norm in X defmed by )l : = |l = f [[u P + [%}P] d:z:)

and C, is the imbedding constant of W,}(—a, a) in C[—a, al. Analogously one proves
that under Assumptions I for any flxed u € X the expressions a;(u,-), £k =0, 1, 2,
represent bounded linear functionals on X. On account of (i), (n) we have

* ol )] = e f [ea [P=3 + dx] |v'|. dz + ”6”1400] [ez lw'lP + dz] 12l dx

< Wl o IS + dy(23)] [z,

- 10llo [e2 12, + d22a] [lollc < ol [~ | - (8
- \ . . ‘
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with - . - : - ,
o)) := [IYllzeo [en [[ullPfe <+ (2a)47 dy] + 116]l o Coles [P+ 2ad,],
‘where ¢ = p/(p — 1) is the exponent conjugate to P. By (iv) and the boundedness of
the Cauchy operator § in L,(—a, a) there holds_

jas(et, o) < Il STl + 1B] ST Mz, ol :
< [lal + 161} BpDg Ilull 1ol : S ™

where B is the norm of S in L »(—a, a)and D, the 1mbeddmg constant of W l( a, @)
in L,(—a, a). Finally, in vneW'of (v), w € C[—a,a], and 1 € Ly(—a, ) we ha,ve

laz(u, O = 1Pz, 1]z, + IAllz, lv(@lle e
< (22, +. C'p 21z, IIw wlie] llll.

2. Existence theorem'

. At first we state the.needed boundedness and contznuzty properties of the operators
A k=0,1;2.
. The operator Ao is bounded since by (6) we have ||A0u]| S ko(J]u”) Further Ao 1s
. continuous as follows from the estimations

|a0(%, ¥) — ag(tn, )] < |llzeo IP(w') — P(us ), vlz,
- ) T 10l e Q) ~ Qua Mz, Mellc
and . . o -
- [ldgu — Aguall = sup {|ay(u, v) — ao(u;., o) bl = 1}

= [IVHLOO IP(') — P(u,’ Mz, + Cp 181l 1eo 1Q(w) — Q(ua" I, -

Undcr a.ssumptlons (1) the 1 \’emltskyx operators of P and Q are continuous from
L,(—a, a) to L(—a,a) and L,(—a, a), respectively. Since u,” — " in L A—a, a) lf
Uy > uin X = Wyl(—a, a), the assertion follows. .

" In view of (7) the linear operator 4, is bounded and continuos. :
Finally, the operator A, is completely continuous in the-scnse that it ma.ps weakly

convergent.sequences (towards u € X) int6 strongly convergent ones (towards: 4,u

T € X¥). Namely, let w, — w in X. Then [|u,|| < Const and, due to the compact imbed-

ding of X = W Y—a,a) in C[—a, a], we ha.ve Uy —> % 1IN, C’[ —a; a] By assumptlon

(v) then also w(u,.,) — y(u) and P(u,) — ¢(u) in C[—a, a]. Therefore,

'Ilf_lzu Aau,.ll = sup {Iaz(u v) — aylty, )1 o)l < 1)

\

\ . E i {l1P(u). — (un)”L IIv ”L s II?IIL. llw(u) = w(un)llc flvllch

= [|P(u) — Plug)llz, + C’ ”;”L, Hw(u) — ¥(®allc

tends to zero as n — co. As a completely continuous operator, Az 1s bounded, too.
Hence also 4 = Ao + A, + A, is'a bounded operator. :

For proving the monotonicity of the operator B:= A, + A4, we make the additio-
nal Assumptions II:

(1) There exist constants ¢, > 0 and dy = 0 such ths.t
[P(Uy) — P(U (U, — Us] 2 o(U; — Uz)2 '
IQ(UI) - Q(Uz)l S dy |U, — Uy ) for U{) U, €R.

’

<
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© (i) y@) 2 9 >0,82=0.

(iii) There holds the inequality, with 4 := [|6]|5o,, .

Ad2alaf if § = (n/4) Ado,
= {2Adoa/ﬂ +daflnt B < (w4) Ado.

Then we have

= (Buy — Buy, uy —

h
Ug)x .

6.

= [ao(ub U, — uz) - ao(’“m Uy — u‘z)] + al(ul — Uy, Uy — Up)

—a

+ f (0oS[uy — 5] —

- .

= f y[P ') P(u2 )] (ur — u,’)dz + f Q) — Qi) (m — w) dz '

—a

BS[w)" — uz']) (uy — %) dz

= )’ocof (ul — uy')2dzx — Adof )" — g [ lw, — u,y| dz + — f(ul u,)% dx

since (cf [3])

i [S[ﬁ]u&xéo '—fS[u]udx>—fu2dx foruEW‘( —a, a).

—a

AN

By means of the elerpentary mequqllty 2wz < puw? + zz/,u there fol]ows

. a '
° ’_D = (?oco - A(;O#)f(ul' - )2 dx + (—_ %) f( Uy — u2)2 d:z:
for any g > 0. In the sequel we choose
. . . \
| [(Adyf2B)a. B2 (n/4) Ady,,
. AT @ e if B < (w[4) Ad,
: and obtain - .
242
Dz (e = Ad°“)f(,—uz>2dx tpz X s
- ! : . . . ) ' o .
Dz('}’oco Ado)f(l —u2)2dx——( Aady — )%f(urfuzydxj

/

Y,

(‘}’0‘30

2Ad°a )f(ul )2 der  ifp < % Ad,
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in virtue of Wirtinger’s'inequé,lity
a a ’ -
fuz,d:r §'(4a2/n'~’) f w'?dz for u € W,,’(—a, a).
-a -~a

. This ylelds D =0 if the mequahty (9) is fulfxlled ‘Therefore, B = A, + A, is a

2

continuous monotone operator and since A, is a completely contmuous operator the -

operator A = B + A, is pseudo monotone.
Finally we show the coerczvzly of the opera,tortA under the followmg addltlonal
: Assumptlons III: .

- (i) There exist constants €3 >0,d; 20 and ce 20, d, = 0 such that .
PO)U2c|UP =dy, Q)| SealUF +dy  forUe R, ' (10)
where 0 < 7r'<p— 1andin case of 7 = p — 1 there holds the mequalxty '
yoca > ayadc,, . L : S . (11)

where «, with %, = 2/n is the constant in the generahzed Wirtinger inequality below.

N

(ii) A(xz) = 0 and there exists a constant » = 0 such that : '
L L . . N : . . \
e uy(u) = —v . forueR. ‘ L o (12)

Remark: Obviously, the condltxons (2) and (10) for ‘P are fulfilled for functions of type
PU) = |UjP2U being moreoyer monotonically increasing. Further the condition (8) for P is_
satisfied if P possesses a derivative greater than a positive constant. Therefore the conditions
(2), (8),and (10) for P (in case of p > 2) are especially fulfilled for functions of the form P(U)

= |UP"2 U + ¢,U, ¢y > 0.

" The condition (10) for @ implies the condxtlon (2) zmd the anschltz condltlon (8) for @ is. -
satisfied if @ possesses a bounded derivative. Therefore the conditions (2), (8), and (10) for Q. .

are fulfilled if Q possesses a bounded derivative and grows at ' most as the power |U|P—! at in-
finity, for instance for the - functlons Q(U) = arctan U+ '¢U, c€R, to mentlon a concrete
example. -

r, Under the additional a.ssumptlons (10) a,nd (12) with 2 = 0 besides v =y > 0

B = 0 we ha,ve : \

. . s

_D0:=(A1i,u)x L

A Y

_fyP(u)u dx—{-féQ(u)udx

-8 <

ocfS[u]udx— fS[u]udx—fd)(u 'dx—{-f).ap(u)udx

—a ' : -a

s

. I' = ‘)’of.[és_mllp — da] dx — 4 f [cs l?"[' + dl] ful dz — v,,.

~where vy i= vf).dx and we further used that f D(u) u’ dx - 0 for u € W, —a, a)

In the followmg we introduce the equlvalent norm Jillo in W p'(—a, a) defined by
ol i = e, If 7 <p- 1, we put s = plr and ¢ the exponent conjugate to s and
obtam

J 1l el de < Q1 e, fells, = 001, ez, < B fulg

N

37% : S '

-
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S 'r ! o

where. B, ¢t = 1, is the imbedding constant of Wpl(—xa, a) in L(—a, a). Therefore,
Dy Z yogs lulle? — yodi2a — Ae,By |lull +* — AduBy [ulle ~ %o

from which in view of 7 4 1 < p the coercrvrt,y of A follows In caser =p — 1 we
have .

- |7; 1P ul de = I’ %" Nz, = o Jlulle®
-0 . .
in virtue of the génemlized'Wirtinger inequality (cf. [1])'
f |u|v de < oc,,”a,”f ! |1’dx for‘ue Wpl(.—;‘z‘, a).' ‘
. —a . -a N
 Under the assumptlon (11) aga,m thc opemtor A is coercive.

The main theorem of the theory of pseudo-monotone operators by Brézis (cf [6:
Theorem 27.2]) now yields the existence of a solution u to the. operator equation (5).

Theorem 1: Under Assumptions 1—TI1 the znt'egro—dz‘//e'rential equation (1) posses-
sesa genemlzzed solution u € Wyl(—a,a),2 < P < So.

Remark 2: Ifg =y =0 zmd (9) is fulfilled as. true mequahty, the opemtor A = B is
strlctly monotone’ a,nd the solution u € W p(—a, a) of (1) is umque

‘Remark 3: Theorem 1 also holds if in the left-hand side of (1) an additional term of the
form K,[u] + K,[u’] is present, where K, is a positive linear bounded operator in Ly(—a, a)
"(or, more generally, from Lw( a, a) into L,(a, —a)) and K is a lme'lr bounded opera,tor in

—a, a) satlsf in the condmon K ('] d:c 2 0 for € W l( —a, a)
L, y g 2 /
—a . . )

3. Application to integral equations N
':We consider the mtegral equation S

~yP() — aN[u] — S[u] + Pl) = F + ¢ - : (13)

" with a free éonstant c€ R, where N denotes the operator :

Nul(x) =+ f u(y)In J v~ = &y,

’

/

Dis a contmuously dlfferentxa.ble functlon on R and F an absolutely continuous
function on [—a,al. This equation i equivalent to the equation (1) with @ =0,

=0, vy=0,f=F obta.m(,d by dlfferentlatmg (13) As a corollary to Theorem 1
we therefore get o

. Theorem 2: Let there be y. €. Lw( —a, a) with y(x) Zy>0,0 € R, e R, and P
a continuous function on R satisfying the conditions (2), (8), and (10). T'hen the equatzon
(13) possesses a solutzon ueWw —a,a),2 < p < o, for some ¢ € R.

'F urther we deal with the integral equa!zon ‘ '

—yPl0) + [ 8Q(0) dé + B[] = Fae 0 dy
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with a free constant ¢ € R and the addition:,a.I condition
"a ' . : o ) .
fv(x)d:c:d. , e o (15)

—-a
\

w1t,h a given constant d € R. Again ¥ is a given absolutely contmuous functxon on

[—a,a]

1l
hqua,mon (14) (with constant coefficients &, y) occurs in a plane contact problem of denting
a stamp into a plate with rough surface, where v is the sought, function of the contact pressure,
F the function describing the form of the basis of the stamp, P the tangential pressure on ‘the
surface.of the plate as function of v and @ a characteristic quantlty for the roughness of the
. surface of the plate (“dlslocatlon of micro- roughness“) also-as a function of v (cf. [2]).

We agam ‘differentiate the equatlon (14) and introduce the new unknown function '

u(:v) = f v(£).d¢ — d(x + a)/2¢ sa.tnsfymg the condltlons u{— a) = u(a) — 0 in view '

of (15) Th_lS function « is a‘solution of the equatlon
~ (P’ +.D))' + 8Q’ + D) —'pS[w] = | - (18)
with D := = df2¢ and f:=F + ﬁDS[l] =F' 4+ '8DIn[(¢ — 2)/(a + z)]. This is a

- special case of the equation (1). If u is a solution of (16), v(z) = u'(z) + d/2ais a solu-
. tion of the equation (14) with (lo) Theorem ‘1-and Remark 2 1mply the followmg

Thcorem 3: Let there be y 6 Ly(—a, u) with y(x) yo > 0,0 € Lo(—a,a), B€ IR.,,
P and Q continuous functions on R satisfying the conditions (2), (8) with (9), and (10)
with an. Then the equation (14) with (15) possesses a solution v € Ly(—a,a), 2 < p
~< oo, which is uniquely determined if in (9) the strict inequalily sign holds. . ‘

Remark 4:1fQisa [mcnr function and ¢ is a constant, the term with Q in (16) can be viewed

as a term of the form @(u) ¥’ in (1) (with an additional given function). Then the existence of a.

solution v 6 Ly(—a, a) to (14) with (15) follows without assummg the inequality (9). Also t,he

a ‘
solutioh is unique since f’uu dx = 1/2[u2]_a = 0 so that the correspondmg operator 4 is
strictly monotone. —a

Remark 5: In {21, wnt,hout proof, KubIiscH states an existence.and uniqueness theorem for

nonnegative solutions of the equation (14) with (15) under certain monotonicity assumptions
on: the functions P and @ without assuming an inequality- of the form (9). In particular, he

* - assumes that, if § is a negative constant, @ is a nonnegative increasing continuous function on

R, with @(0) = 0 and the Nemitskyi operator of the integral of @ in (14) 1s a ‘monotone opera-

tor on a certain class of nonncgutlve functions. .

) The corresponding assumption in our treatment of (so]utlons with arbltmry sxgn of) the
.equatwn (14) in case of a posmve constant § would be

a o ;
f [Q(ul’) = Q)] (g + ) dz 2 0 for wu, € W, (—a,a).
—-a :
But as is casily seen thls rcqmrement onQis only fulfllled ifQisa ]mear function so that the
" foregoing Remnrl\ 4 applxcs ;- }
: T
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