A Class of Nonlinear Singular Integro-Differential Equations

L. v. WOLFERSDORF

Dedicated to S. G. Mikhlin on the occasion of his 80th birthday

Mit Hilfé des Hauptsatzes der Theorie pseudo-monotoner Operatoren wird ein Existenzsatz für eine Klasse von nichtlinearen singulären Integrodifferentialgleichungen vom Cauchyschen Typ'und zwei zugehörige Klassen von nichtlinearen Integralgleichungen bewiesen.

С помощью основной теоремы теории псевдо-монотонных операторов доказывается теорема существования для одного класса нелинейных сингулярных интегро-дифференциальных уравнений типа Коши и двух связанных с ним классов нелинейных интегральных уравнений.

By means of the main theorem of the theory of pseudo-monotone operators, an existence theorem is proved for a class of nonlinear singular integro-differential equations of Cauchy type and two related classes of nonlinear integral equations.

Introduction

In recent papers (cf. [3] and [5] for an overview) methods of monotone operator theory were applied for proving the existence of a solution to various classes of nonlinear singular integral and integro-differential equations of Cauchy type. In particular, in [4] by means of the theory of pseudo-monotone operators, the author proves an existence theorem for a class of singular integro-differential equations of second order with linear main part. In the present paper we extend this approach to a corresponding class of second-order equations with nonlinear main part. Moreover, a class of nonlinear integral equations occuring in contact problems of elasticity theory [2] are reduced to special singular integro-differential equations of this type.

1. Formulation of problem

We deal with the nonlinear singular integro-differential equation

$$
-(\gamma P(u'))' + \delta Q(u') + \alpha S[u] - \beta S[u']
$$

+ $\varphi(u) u' + \lambda \psi(u) = f$ on [-a, a]

under the boundary conditions $u(-a) = u(a) = 0$, where S denotes the Cauchy operator

$$
S[u](x) = \frac{1}{\pi} \int_{-a}^{a} \frac{u(y)}{y-x} dy.
$$

The data fulfil the basic Assumptions I:

(i) P, Q are continuous functions on $\mathbb R$ satisfying the growth conditions

$$
|P(U)| \leq c_1 |U|^{p-1} + d_1, \qquad |Q(U)| \leq c_2 |U|^p + d_2
$$

for any $U \in \mathbb{R}$ with positive constants c_i , d_i , $i = 1, 2$, and some $p \in [2, \infty)$.

- (ii) γ , $\delta \in L_{\infty}(-a, a)$.
- (iii) $f, \lambda \in L_1(-a, a)$.

 \int (iv) $\alpha, \beta \in \mathbb{R}$.

 (v) $\varphi, \varphi \in C(\mathbb{R}).$

In the sequel we are looking for *generalized solutions* $u \in W_p^{-1}(-a, a)$ of (1) which are defined by the integral identity

$$
a_0(u, v) + a_1(u, v) + a_2(u, v) = b(v)
$$

for any $v \in \mathring{W}_n^{-1}(-a, a)$, where

$$
a_0(u, v) := \int_{-a}^{a} \gamma P(u') v' dx + \int_{-a}^{a} \delta Q(u') v dx,
$$

\n
$$
a_1(u, v) := \alpha \int_{-a}^{a} S[u] v dx - \beta \int_{-a}^{a} S[u'] v dx,
$$

\n
$$
a_2(u, v) := \int_{-a}^{a} \varphi(u) u' v dx + \int_{-a}^{a} \lambda \psi(u) v dx
$$

\n
$$
= -\int_{-a}^{a} \varPhi(u) v' dx + \int_{-a}^{a} \lambda \psi(u) v dx
$$

with Φ a primitive of φ and

$$
b(v):=\int\limits_{-a}^{a}fv\,dx.
$$

The problem (3) is equivalent to the operator equation

 $Au = b$ for $u \in X := \mathring{W}_n^{-1}(-a, a)$,

where $A := A_0 + A_1 + A_2$, the operators $A_k: X \to X^*$, $k = 0, 1, 2$, are defined by $\langle A_k u, v \rangle_X := a_k(u, v)$ for $u, v \in X$ and $b \in X^*$ is defined by (4). Namely, since $f \in$ $L_1(-a, a)$ and the Sobolev space $W_p(1-a, a)$ is continuously imbedded in the space $C[-a, a]$ of continuous functions on $[-a, a]$, we have $|b(v)| \leq ||f||_{L_1} ||v||_{C} \leq C_p ||f||_{L_1} ||v||$, $\int \int [|u'|^p + |u|^p] dx$ where $|| \cdot ||$ denotes the norm in X defined by $||u|| := ||u||_{W_p} =$ and C_p is the imbedding constant of $W_p^{-1}(-a, a)$ in $C[-a, a]$. Analogously one proves that under Assumptions I for any fixed $u \in X$ the expressions $a_k(u, \cdot)$, $k = 0, 1, 2$, represent bounded linear functionals on X . On account of (i), (ii) we have

$$
|a_0(u, v)| \le ||\gamma||_{L_{\infty}} \int_{-a}^{a} [c_1 |u'|^{p-1} + d_1] |v'| dx + ||\delta||_{L_{\infty}} \int_{-a}^{a} [c_2 |u'|^p + d_2] |v| dx
$$

\n
$$
\le ||\gamma||_{L_{\infty}} [c_1 ||u'||_{L_p}^{p/q} + d_1(2a)^{1/q}] ||v'||_{L_p}
$$

\n
$$
+ ||\delta||_{L_{\infty}} [c_2 ||u'||_{L_p}^p + d_2 2a] ||v||_c \le h_0(||u||) ||v||.
$$
 (6)

 (4)

 (5)

 (2)

 (3)

Singular Integro-Differential Equations

with \cdot

$$
h_0(||u||) := ||y||_{L_{\infty}} [c_1 ||u||^{p/q} + (2a)^{1/q} d_1] + ||\delta||_{L_{\infty}} C_p[c_2 ||u||^p + 2ad_2],
$$

where $q = p/(p - 1)$ is the exponent conjugate to p. By (iv) and the boundedness of the Cauchy operator S in $L_p(-a, a)$ there holds

$$
|a_1(u, v)| \leq [|\alpha| ||S[u]||_{L_p} + |\beta| ||S[u']||_{L_p}] ||v||_{L_q}
$$

 \leq $[|\alpha| + |\beta|] B_p D_q ||u|| ||v||$,

where B_p is the norm of S in $L_p(-a, a)$ and D_q the imbedding constant of $W_p^{-1}(-a, a)$
in $L_q(-a, a)$. Finally, in view of (v), $u \in C[-a, a]$, and $\lambda \in L_1(-a, a)$ we have

$$
|a_2(u, v)| \le ||\Phi(u)||_{L_q} ||v'||_{L_p} + ||\lambda||_{L_1} ||\psi(u)||_{C} ||v||_{C}
$$

$$
\le ||\Phi(u)||_{L_q} + C ||\lambda||_{L_q} ||\psi(u)||_{C} ||v||_{C}
$$

2. Existence theorem

At first we state the needed boundedness and continuity properties of the operators $A_k, k = 0, 1, 2.$

The operator A_0 is bounded since by (6) we have $||A_0u|| \le h_0(||u||)$. Further A_0 is continuous as follows from the estimations

$$
|a_0(u, v) - a_0(u_n, v)| \leq ||y||_{L_{\infty}} ||P(u') - P(u_n')||_{L_q} ||v'||_{L_p}
$$

$$
+ ||b||_{L_{\infty}} ||Q(u') - Q(u_{n}')||_{L_{1}} ||v||_{C}
$$

and

$$
||A_0u - A_0u_n|| = \sup \{|a_0(u, v) - a_0(u_n, v)| : ||v|| \le 1\}
$$

$$
\le ||\gamma||_{L_{\infty}} ||P(u') - P(u_n')||_{L_q} + C_p ||\delta||_{L_{\infty}} ||Q(u') - Q(u_n')||_{L_q}
$$

Under assumptions (i) the Nemitskyi operators of P and Q are continuous from $L_p(-a, a)$ to $L_q(-a, a)$ and $L_1(-a, a)$, respectively. Since $u_n' \to u'$ in $L_p(-a, a)$ if $u_n \to u$ in $X = W_p^{-1}(-a, a)$, the assertion follows.

In view of (7) the linear operator A_1 is bounded and continuous.

Finally, the operator A_2 is completely continuous in the sense that it maps weakly convergent sequences (towards $u \in X$) into strongly convergent ones (towards $A_2 u$ $\in X^*$). Namely, let $u_n \rightharpoonup u$ in X. Then $||u_n|| \leq$ Const and, due to the compact imbedding of $X = \mathbf{W}_p^{-1}(-a, a)$ in $C[-a, a]$, we have $u_n \to u$ in $C[-a, a]$. By assumption (v) then also $\psi(u_n) \to \psi(u)$ and $\Phi(u_n) \to \Phi(u)$ in $C[-a, a]$. Therefore,

$$
||A_2u - A_2u_n|| = \sup \{|a_2(u, v) - a_2(u_n, v)| : ||v|| \le 1\}
$$

\n
$$
\le \sup_{||v|| \le 1} \{ ||\Phi(u) - \Phi(u_n)||_{L_q} ||v'||_{L_p} + ||\lambda||_{L_1} ||\psi(u) - \psi(u_n)||_C ||v||_C\}
$$

\n
$$
\le ||\Phi(u) - \Phi(u_n)||_{L_q} + C_p ||\lambda||_{L_1} ||\psi(u) - \psi(u_n)||_C
$$

tends to zero as $n \to \infty$. As a completely continuous operator, A_2 is bounded, too. Hence also $A = A_0 + A_1 + A_2$ is a bounded operator.

For proving the monotonicity of the operator $B := A_0 + A_1$ we make the additional Assumptions II:

(i) There exist constants $c_0 > 0$ and $d_0 \ge 0$ such that

$$
[P(U_1) - P(U_2)] [U_1 - U_2] \ge c_0 (U_1 - U_2)^2,
$$

$$
|Q(U_1) - Q(U_2)| \le d_0 |U_1 - U_2| \quad \text{for } U_1, U_2 \in \mathbb{R}.
$$

37 Analysis Bd. 8. Heft 6 (1989)

 (7)

 (8)

(ii) $\gamma(x) \geq \gamma_0 > 0, \beta \geq 0.$

6 L. v. WOLFERSDORF
\n(ii)
$$
\gamma(x) \geq \gamma_0 > 0, \beta \geq 0
$$
.
\n(iii) There holds the inequality, with $\Delta := ||\delta||_{L_{\infty}}$,
\n
$$
\gamma_0 c_0 \geq \begin{cases} \Delta^2 d_0^2 a/4\beta & \text{if } \beta \geq (\pi/4) \ \Delta d_0, \\ 2\Delta d_0 a/\pi + 4a\beta/\pi^2 & \text{if } \beta < (\pi/4) \ \Delta d_0. \end{cases}
$$

\nthen we have

566 L. v. WOLFERSDORF
\n(ii)
$$
\gamma(x) \ge \gamma_0 > 0, \beta \ge 0
$$
.
\n(iii) There holds the inequality, with $\Delta := ||\delta||_{L_{\infty}}$,
\n
$$
\gamma_0 c_0 \ge \begin{cases} \Delta^2 d_0^2 a/4\beta & \text{if } \beta \ge (\pi/4) \Delta d_0, \\ 2\Delta d_0 a/\pi + 4a\beta/\pi^2 & \text{if } \beta < (\pi/4) \Delta d_0. \end{cases}
$$
\nThen we have
\n
$$
D := \langle Bu_1 - Bu_2, u_1 - u_2 \rangle_{\mathcal{X}}
$$
\n
$$
= [a_0(u_1, u_1 - u_2) - a_0(u_2, u_1 - u_2)] + a_1(u_1 - u_2, u_1 - u_2)
$$
\n
$$
= \int_{-a}^{a} \gamma [P(u_1') - P(u_2')] (u_1' - u_2') dx + \int_{-a}^{a} \delta [Q(u_1') - Q(u_2')] (u_1 - u_2) dx]
$$

$$
\begin{split}\n&= \int_{-a}^{a} \gamma [P(u_1') - P(u_2')] (u_1' - u_2') dx + \int_{-a}^{a} \delta [Q(u_1') - Q(u_2')] (u_1 - u_2) dx \\
&+ \int_{-a}^{a} (\alpha S [u_1 - u_2] - \beta S [u_1' - u_2']) (u_1 - u_2) dx \\
&\geq \gamma_0 c_0 \int_{-a}^{a} (u_1' - u_2')^2 dx - \Delta d_0 \int_{-a}^{a} |u_1' - u_2'| |u_1 - u_2| dx + \frac{\beta}{a} \int_{-a}^{a} (u_1 - u_2)^2 dx \\
&= \text{since (cf. [3])} \\
&\int_{-a}^{a} S [u] u dx = 0, \qquad - \int_{-a}^{a} S [u'] u dx \geq \frac{1}{a} \int_{-a}^{a} u^2 dx \quad \text{for } u \in \mathring{W}_p^{-1}(-a, \\
&\text{By means of the elementary inequality } 2wz \leq \mu w^2 + z^2/\mu \text{ there follows}\n\end{split}
$$

since (cf. [3])

 $\frac{1}{2}$

$$
\int_{-a}^{a} S[u] u \, dx = 0, \qquad - \int_{-a}^{a} S[u'] u \, dx \geqq \frac{1}{a} \int_{-a}^{a} u^2 \, dx \quad \text{for } u \in \mathring{W}_p^{-1}(-a, a)
$$

since (cf. [3])
\n
$$
\int_{-a}^{a} S[u] u dx = 0, \qquad -\int_{-a}^{a} S[u'] u dx \ge \frac{1}{a} \int_{-a}^{a} u^2 dx \text{ for } u \in \mathring{W}_p^{-1}(-a)
$$
\nBy means of the elementary inequality $2wz \le \mu w^2 + z^2/\mu$ there follows\n
$$
D \ge \left(\gamma_0 c_0 - \frac{\Delta d_0 \mu}{2}\right) \int_{-a}^{a} (u_1' - u_2')^2 dx + \left(\frac{\beta}{a} - \frac{\Delta d_0}{2\mu}\right) \int_{-a}^{a} (u_1 - u_2)^2 dx
$$
\nfor any $\mu > 0$. In the sequel we choose\n
$$
\mu = \begin{cases} (\Delta d_0/2\beta) a, & \text{if } \beta \ge (\pi/4) \Delta d_0, \\ (2/\pi) a, & \text{if } \beta < (\pi/4) \Delta d_0. \end{cases}
$$

$$
\mu = \begin{cases}\n(d d_0 / 2\beta) a & \text{if } \beta \geq (\pi/4) \Delta d_0, \\
(2/\pi) a & \text{if } \beta < (\pi/4) \Delta d_0\n\end{cases}
$$

$$
\int_{-a} S[u] u dx = 0, \quad -\int_{-a} S[u'] u dx \geq \frac{1}{a} \int_{-a} u^2 dx \text{ for } u \in W_p^{-1}(-a, a).
$$

By means of the elementary inequality $2wz \leq \mu w^2 + z^2/\mu$ there follows

$$
D \geq \left(\gamma_0 c_0 - \frac{\Delta d_0 \mu}{2}\right) \int_{-a}^{a} (u_1' - u_2')^2 dx + \left(\frac{\beta}{a} - \frac{\Delta d_0}{2\mu}\right) \int_{-a}^{a} (u_1 - u_2)^2 dx
$$

for any $\mu > 0$. In the sequel we choose

$$
\mu = \left\{ \frac{(\Delta d_0/2\beta) a}{(2/\pi)a} \text{ if } \beta \geq (\pi/4) \Delta d_0, \right\}
$$

$$
D \geq \left(\gamma_0 c_0 - \frac{\Delta^2 d_0^2 a}{4\beta}\right) \int_{-a}^{a} (u_1' - u_2')^2 dx \text{ if } \beta \geq \frac{\pi}{4} \Delta d_0,
$$

$$
D \geq \left(\gamma_0 c_0 - \frac{\Delta d_0 a}{\pi}\right) \int_{-a}^{a} (u_1' - u_2')^2 dx - \left(\frac{\pi}{4} \Delta d_0 - \beta\right) \frac{1}{a} \int_{-a}^{a} (u_1 - u_2)^2 dx
$$

$$
\geq \left(\gamma_0 c_0 - \frac{\Delta d_0 a}{\pi} + \frac{4a\beta}{\pi^2}\right) \int_{-a}^{a} (u_1' - u_2')^2 dx \text{ if } \beta < \frac{\pi}{4} \Delta d_0
$$

in

•

Singular Integro-Different
in virtue of Wirtinger's inequality

$$
\int_{-a}^{a} u^2 dx \leq (4a^2/\pi^2) \int_{-a}^{a} u'^2 dx \quad \text{for } u \in \mathring{W}_p^{-1}(-a, a).
$$

This yields $D \geq 0$ if the inequality (9) is fulfilled. Therefore, $B = A_0 + A_1$ is a continuous monotone operator and since A_2 is a completely continuous operator, the
operator $A = B + A_2$ is *pseudo-monotone*.
Finally we show the *coercivity* of the operator, A 'under the following additional
Assumption Singular Integro-Diff

in virtue of Wirtinger's inequality
 $\int_a^a u^2 dx \le (4a^2/\pi^2) \int_a^a u'^2 dx$ for $u \in W_p^{-1}(-a, a)$.

This yields $D \ge 0$ if the inequality (9) is fulfilled. There

continuous monotone operator and since A_2 or wirtinger s inequality
 $\int_a^a u^2 dx \leq (4a^2/\pi^2) \int_a^a u'^2 dx$
 $\frac{-a}{a}$

dds $D \geq 0$ if the inequality

are monotone operator and
 $A = B + A_2$ is pseudo-more
 μ we show the *coercivity* c

tions III:

re exist constants *(ii) 2(x)* ^>_ 0 and there exists a constant v ^ 0 such that •

Finally we show the *coercivity* of the operator, A under the following additional Assumptions III: *P(U)* $U \ge c_3 |U|^p - d_3$, $|Q(U)| \le c_4 |U|^r + d_4$ for $U \in \mathcal{F} \times \mathcal{F} \times \mathcal{F} = 1$ and in case of $r = n - 1$ there holds the incountive contains the coercinations of $P(U)$ $U \ge c_3 |U|^p - d_3$, $|Q(U)| \le c_4 |U|^r + d_4$ for $U \in \mathbb{R}$,

$$
P(U) U \geq c_3 |U|^p - d_3, \qquad |Q(U)| \leq c_4 |U|^r + d_4 \qquad \text{for } U \in \mathbb{R}, \qquad (10)
$$

where $0 < r \leq p - 1$ and in case of $r = p - 1$ there holds the inequality.

$$
\gamma_0 c_3 > \alpha_p a \Delta c_4, \qquad (11)
$$

where α_p with $\alpha_2 = 2/\pi$ is the constant in the generalized Wirtinger inequality below.

$$
u_{\psi}(u) \geq -\nu \quad \text{for } u \in \mathbb{R}.
$$

 $u_0 \leq 0$ if the
 $u_0 \leq 0$
 $u_0 \le$ For inequality (9) is fulfilled. Therefore, $B = A_0 + A_1$ is a

rator and since A_2 is a completely continuous operator, the
 pseudo-monotone.

oercivity of the operator, A' under the following additional
 \therefore
 $\text{$ Remark: Obviously, the conditions (2) and (10) for *P* are fulfilled for functions **of** type $P(U) = |U|^{p-2} U$ being moreover monotonically increasing. Further the condition (8) for P is satisfied if *P* possesses a derivative greater than a positive constant. Therefore the conditions (2), (8), and (10) for *P* (in case of $p > 2$) are especially fulfilled for functions of the form $P(U) = |U|^{p-2} U + c_0 U$, $c_0 > 0$. $P(U) U \ge c_3 |U|^p - d_3$, $|Q(U)| \le c_4 |U|^r + d_4$ for $U \in \mathbb{R}$,
where $0 < r \le p - 1$ and in case of $r = p - 1$ there holds the inequality
 $\gamma_0 c_3 > \alpha_p a/c_4$,
where α_p with $\alpha_2 = 2/\pi$ is the constant in the generalized Wirtinger i here α_p with $\alpha_2 = 2/\pi$ is the constant in the generalized Wirtinger inequality below.

(ii) $\lambda(x) \ge 0$ and there exists a constant $r \ge 0$ such that
 $uw(u) \ge -r$ for $u \in \mathbb{R}$.

(12)

Remark: Obviously, the condition where α_p with $\alpha_2 = 2/\pi$ is the condition $\langle ii \rangle \lambda(x) \ge 0$ and there exists a
 $u\psi(u) \ge -\nu$ for $u \in$

Remark: Obviously, the condit
 $P(U) = |U|^{p-2} U$ being moreover m

satisfied if P possesses a derivative

(2), (8), a

satisfied if Q possesses a bounded derivative. Therefore the conditions (2), (8), and (10) for *Q,* are fulfilled if *Q* possesses a bounded derivative and grows at most as the power $|U|^{p-1}$ at in-
finity, for instance for the functions $Q(U) = \arctan U + cU$, $c \in \mathbb{R}$, to mention a concrete $P(U) = |U|^{p-2} U$ being moreover monotonically increasing. Further the condition (8) for P is satisfied if P possesses a derivative greater than a positive constant. Therefore the conditions (2), (8), and (10) for P (example.

Under the additional assumptions (10) and (12) with $\lambda \ge 0$ besides $\gamma \ge \gamma_0 > 0$, $\frac{10}{10}$ and $\frac{10}{10}$ a $\beta \geq 0$ we have

$$
\beta \geq 0 \text{ we have}
$$
\n
$$
D_0 := \langle Au, u \rangle_X
$$
\n
$$
= \int_{-a}^{a} \gamma P(u') u' dx + \int_{-a}^{a} \delta Q(u') u dx
$$
\n
$$
= \int_{-a}^{a} \delta [u] u dx - \int_{-a}^{a} \delta [u'] u dx - \int_{-a}^{a} \phi(u) u' dx + \int_{-a}^{a} \lambda \psi(u) u dx
$$
\n
$$
= \int_{-a}^{a} \delta [u] u dx - \int_{-a}^{a} \phi(u) u' dx + \int_{-a}^{a} \lambda \psi(u) u dx
$$
\n
$$
= \int_{-a}^{a} \delta [c_3 |u'|^p - d_3] dx - \int_{-a}^{a} [c_4 |u'|^r + d_4] |u| dx - v_0,
$$
\nwhere $v_0 := v \int_{-a}^{a} \lambda dx$ and we further used that $\int_{-a}^{a} \phi(u) u' dx = 0$ for $u \in W_p^{-1}(-a, a)$.
\nIn the following we introduce the equivalent norm ||\n $\begin{vmatrix}\n\vdots \\
\downarrow\n\end{vmatrix} \begin{vmatrix}\n\vdots \\
\downarrow\n\end{vmatrix} = ||u'||_{L_p}$. If $r < p - 1$, we put $s = p/r$ and t the exponent conjugate to s and obtain
\n
$$
\int_{-a}^{a} |u'|^r |u| dx \leq |||u'|^r||_{L_a} ||u||_{L_a} = ||u'||_{L_p} ||u||_{L_a} \leq E_t ||u||_0^{r+1},
$$
\n
$$
37^*
$$

In the following we introduce the equivalent norm $\|\cdot\|_0$ in $\mathcal{W}_p^{-1}(-a, a)$ defined by **1**, we put $s = p/r$ and t the exponent *f* $\int_{\|L_p}^{a}$ *i* $\int_{\|L_p}^{a}$ *i* if $r < p - 1$, we put $s = p/r$ and t the exponent conj $\int_{a}^{a} |u'|^r |u| dx \leq |||u'|^r||_{L_p} ||u||_{L_t} = ||u'||_{L_p}^r ||u||_{L_t} \leq E_t ||u||_0^{r+1}$,

$$
\int_{a} |u'|^{r} |u| dx \leq |||u'||_{L_{\bullet}} ||u||_{L_{\bullet}} = ||u'||_{L_{p}} ||u||_{L_{\bullet}} \leq E_{t} ||u||_{0}^{r+1},
$$

V V

where E_t , $t \ge 1$, is the imbedding constant of $\mathring{W}_p^{-1}(-a, a)$ in $L_t(-a, a)$. Therefore,

$$
D_0 \geq \gamma_0 c_3 \, ||u||_0^p - \gamma_0 d_3^2 a - \Delta c_4 E_t \, ||u||_0^{r+1} - \Delta d_4 E_1 \, ||u||_0 - \nu_0
$$

from which in view of $r + 1 < p$ the coercivity of A follows. In case $r = p - 1$ we have

$$
\int_{-a}^{a} |u'|^{p-1} |u| dx \ge ||u'||_{L_p}^{p-1} ||u||_{L_p} \le \alpha_p a ||u||_0^p
$$

in virtue of the generalized Wirtinger inequality (cf. [1])

$$
\int_{-a}^{a} |u|^p dx \leq \alpha_p^p a^p \int_{-a}^{a} |u'|^p dx \quad \text{for } u \in \mathring{W}_p^{-1}(-a, a)
$$

Under the assumption (11) again the operator A is coercive.

The main theorem of the theory of pseudo-monotone operators by Brézis (cf. [6: Theorem 27.2]) now yields the existence of a solution u to the operator equation (5).

Theorem 1: Under Assumptions I-III the integro-differential equation (1) possesses a generalized solution $u \in \mathring{W}_p^{-1}(-a, a), 2 \leq p < \infty$.

Remark 2: If $\varphi = \psi = 0$ and (9) is fulfilled as true inequality, the operator $A = B$ is strictly monotone and the solution $u \in \mathring{W}_p^{-1}(-a, a)$ of (1) is unique.

Remark 3: Theorem 1 also holds if in the left-hand side of (1) an additional term of the form $K_1[u] + K_2[u']$ is present, where K_1 is a positive linear bounded operator in $L_p(-a, a)$ (or, more generally, from $L_{\infty}(-a, a)$ into $L_1(a, -a)$) and K_2 is a linear bounded operator in $L_p(-a, a)$ satisfying the condition $\int K_2[u'] u dx \geq 0$ for $u \in \mathring{W}_p^{-1}(-a, a)$.

3. Application to integral equations

We consider the integral equation

$$
-\gamma P(u') - \alpha N[u] - \beta S[u] + \varPhi(u) = F + c
$$

with a free constant $c \in \mathbb{R}$, where N denotes the operator

$$
N[u](x) = \frac{1}{\pi} \int_{-a}^{a} u(y) \ln |y - x| dy,
$$

 Φ is a continuously differentiable function on $\mathbb R$ and F an absolutely continuous function on $[-a, a]$. This equation is equivalent to the equation (1) with $Q \equiv 0$, $\varphi = \varPhi', \psi \equiv 0, f = F'$ obtained by differentiating (13). As a corollary to Theorem 1 we therefore get

. Theorem 2: Let there be $\gamma \in L_{\infty}(-a,a)$ with $\gamma(x) \geqq \gamma_0 > 0, \alpha \in \mathbb{R}, \beta \in \mathbb{R}_+$, and P a continuous function on $\mathbb R$ satisfying the conditions (2), (8), and (10). Then the equation (13) possesses a solution $u \in \mathring{W}_p^{-1}(-a, a)$, $2 \leq p < \infty$, for some $c \in \mathbb{R}$.

Further we deal with the integral equation

$$
-\gamma P(v) + \int_{-a}^{b} \delta Q(v) \, d\xi + \beta N[v] = F + c
$$

 (13)

 (14)

with a free constant $c \in \mathbb{R}$ and the additional condition

$$
\int v(x) \ dx = d
$$

fv(x)dx=d (15) with à given constant $d \in \mathbb{R}$. Again F is a given absolutely continuous function on $[-a, a]$.

Equation (14) (with constant coefficients δ , γ) occurs in a plane contact problem of denting a stamp into a plate with rough surface, where *v* is the sought function of the contact pressure, *F* the function describing the form of the basis of the stamp, P the tangential pressure on the surface of the plate as function of v and Q a characteristic quantity for the roughness of the surface of the plate ("dislocation of micro-roughness") also as a function of *v* (cf. [2]). given constant
 ation (14) (with

p into a plate

unction described the plate

of the plate

of the plate
 $\frac{x}{\sqrt{2}}$
 $\int_{-a}^{b} v(\xi) d\xi$
 \int_{-a}^{a}
 $\int_{-\infty}^{b} v(\xi) d\xi$ *n* (14) (with constant coefficients δ , γ) occurs in a plane contto a plate with rough surface, where v is the sought function of this describing the form of the basis of the stamp, P , the tan the plate as funct

We again differentiate the equation (14) and introduce the new unknown function $u(x) = \int x(\xi) d\xi - d(x + a)/2a$ satisfying the conditions $u(-a) = u(a) = 0$ in view

of (15). This function u is a solution of the equation

$$
-(\gamma P(u'+D))'+\delta Q(u'+D)-\beta S[u']=f
$$

with $D := d/2a$ and $f := F' + \beta D S[1] = F' + \beta D \ln [(a - x)/(a + x)]$. This is a special case of the equation (1). If *u* is a solution of (16), $v(x) = u'(x) + d/2a$ is a solution of the equation (14) with (15). Theorem 1 and Remark 2 imply the following

Theorem 3: Let there be $\gamma \in L_{\infty}(-a, a)$ with $\gamma(x) \ge \gamma_0 > 0$, $\delta \in L_{\infty}(-a, a)$, $\beta \in \mathbb{R}_+$, *P* and *Q* continuous functions on **R** satisfying the conditions (2), (8) with (9), and (10) Figure 1. The equation (14) with (15). Theorem 1 and Remark 2 imply the following

Theorem 3: Let there be $\gamma \in L_{\infty}(-a, a)$ with $\gamma(x) \geq \gamma_0 > 0$, $\delta \in L_{\infty}(-a, a)$, $\beta \in \mathbb{R}_+$,
 P and *Q* continuous functions on **R** of (15). This function *u* is a solution of the equation
 $-(\gamma P(u'+D))' + \delta Q(u'+D) - \beta S[u'] = f$ (16)

with $D := d/2a$ and $f := F' + \beta DS[1] = F' + \beta D \ln [(u-x)/(a+x)]$. This is a

special case of the equation (1). If *u* is a solution of (16), $v(x) =$

as a term of the form $\varphi(u)$ u' in (1) (with an additional given function). Then the existence of a. solution $v \in L_p(-a, a)$ to (14) with (15) follows without assuming the inequality (9). Also the solution is unique since $\int u'u dx = 1/2[u^2]_{-a}^a = 0$ so that the corresponding operator *A* is strictly monotone. $-(\gamma P(u'+D))' + \delta Q(u'+D) - \beta S[u'] = f$
with $D := d/2a$ and $f := F' + \beta D S[1] = F' + \beta D \ln [(a-x)/(a +$
special case of the equation (1). If u is a solution of (16), $v(x) = u'(x)$
tion of the equation (14) with (15). Theorem 1 and Remark 2 imply the
Th

Remark 5: In [2], without proof, KUDISCH states an existence and uniqueness theorem for nonnegative solutions of the equation (14) with (15) under certain monotonicity assumptions on- the functions P and Q without assuming an inequality of the form (9) . In particular, he assumes that, if δ is a negative constant, Q is a nonnegative increasing continuous function on \mathbb{R}_+ with $Q(0) = 0$ and the Nemitskyi operator of the integral of Q in (14) is a monotone operator on a certain class \mathbb{R}_+ with $Q(0) = 0$ and the Nemitskyi operator of the integral of Q in (14) is a monotone operator on a certain class of nonnegative functions. Remark 4: If Q is a linear function and δ is a constant, the term with Q in (16) can be viewed
as a term of the form $\varphi(u)$ u' in (1) (with an additional given function). Then the existence of a
solution $v \in L_p(-a, a)$

equation (14) in case of a positive constant δ would be The corresponding assumption in our treatment of (solutions with arbitrary sign of) the

$$
\int_{-a}^{a} [Q(u_1') - Q(u_2')] (u_1 - u_2) dx \ge 0 \quad \text{for} \quad u_1, u_2 \in \mathring{W}_p^{-1}(-a, a).
$$

But as is easily seen this requirement on Q is only fulfilled if Q is a linear function so that the. foregoing Remark **4** applies.

REFERENCES

[1]BEE5AcK, P., R.: Hardy's inequality and its extensions. Pacif. **J.** Math. **11** (1961), 39—,61. Example 11 Here is a basis of a positive constant θ would be
 $\int_{-a}^{a} [Q(u_1') - Q(u_2')] (u_1 - u_2) dx \ge 0$ for $u_1, u_2 \in W_p^{-1}(-a, a)$.

But as is easily seen this requirement on Q is only fulfilled if Q is a linear functio ных и интегродифференциальных уравнений. Журнал выч. мат. и мат. физ. 26
(1986), 1493—1511. with $Q(0) = 0$ and the Nemitskyl operator of the integral
on a certain class of nonnegative functions.
the corresponding assumption in our treatment of (solu-
attion (14) in case of a positive constant δ would be
 \int_{-

(16)

'570. L. v. WOLFERSDORF

- [3] v. WOLFERSDORF, L.: Monotonicity methods for nonlinear singular integral and integrodifferential equations. ZAMM **63** (1983), 249-259.
- 14] V. WOLFERSDORF, L.: On a nonlinear singular integro-differential equation. ZAMM 67 $(1987), 333 - 334.$
- [5] v. WOLFERSDORF, L.: Some recent developments in the theory of nonlinear singular integral equations. Z. Anal. Anw. 6 (1987), 83-92.
- [6]ZEIDLER, E.: Vorlesungen uber:nichtlineare Funktionalanalysis 11-Monotone Operatoren (Teubner.Texte zur Mathematik: Bd. 9). Leipzig: B. G. Teubner Verlagsges. 1977. 570 L. v. WOLFERSDORF

3] v. WOLFERSDORF, L.: Monotonicity methods for nonlinear singular integral and in

differential equations. ZAMM 63 (1983), 249-259.

41 v. WOLFERSDORF, L.: On a nonlinear singular integro-different Matial equations. ZAMM 63 (1983), 249–259.

LEERSDORF, L.: On a nonlinear singular integro-differential equation.

333–334.

DR. Z. Anal. Anw. 6 (1987), 83–92.

ER, E.: Vorlesungen über nichtlineare Funktionalanalysis II M

VERFASSER:

Bernhard-v.-Cotta-Str. 2 DDR -9200 Freiberg

.'

/ • •

..