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Es werdoen mit Hilfe von finiten Dreieckselementen auf einem zweidimensionalen Gebiet Funk-’
tionenrdume vom Besov-Typ eingefithrt und,untersucht. Diesc Raume erméglichen einen syste-
. matischen Zugang zu den grundlegenden Approxlmatlonsu\bschatzungen fur finite Elemente in
Besov-Sobolev-Normen, zum Problem der Approximationsverbesserung durch angepaBt,e Wahl- .
7t der Tna.ngulatlon und zu- asyx}lptomchcn Fehlerschiatzungen fur elliptische Rand w: ertprobleme

BBefienbt 1 MCCICKOBAHEL HEKOTOphIE (YHKIHOHANBHLIC npocq-panc'ma tana BecosaHa
OCHOBE TPEYroJbHHX KOHEUHBIX OJEMEHTOB B [ByXMepHoft ofmacri. DTH HpoOCTPAHCTBA.
T03BOJIAIOT CHCTEMATHYECKHN MOAXQMHTH K OCHOBIAIM HePaBEHCTBAM TEOPHM anmpoKcuMaunu
KOHEUHBIMU DIIEMENTAMU B HOPMaX kiaccos Tima Becosa-CoGoaesa, k npoGieme yayutleHna
npHOIMKEHHH 3a CHET NMOUXOAAILEro umGopa Tpuanrynmum H K oueHKaM oubku’ s
, OTIMATAYCCKIX KPACBHIX 3ajlaq. - R -

Certam function spaces of Besov type based on tri‘mgul(u"' finite elements in a two- dimension.’il‘
domain are introduced and investigated. These spaces allew a systematic approach to the main -
" estimates of finite element approximation theory in Besov-Sobolev norms, to the problem of
1mprovmg the rate of approximation by choosing appropriate trmnguln tions, and to asymptotic
. error- estlmntes for elllptlc boundary value problems : \
v ! . - / - \ V

. . ) R - ~

- The aim’ of this paper is to describe some results on finité-element approximation in
Bcsov Sobolev norms. For simplicity, we concentrate on CP%eléments of type (k)
over 1egular tuangulatlons of a bounded plane polygonal domain. Starting from a
: finite element approximation scheme corresponding to a ‘certain sequence of quasi-
uniform triangulations of G, we introduce a scale of approximation spaces which
allow a direct apploach to questions of fnnte element approximation theory. Tt turns
out that this scale is closely related to ‘the usual Besov-Sobolev spaces. .’

In this way .we are able to give straightforward proofs of some basic mequallbles
used in the finite element error estimation theor v. Moreover, some new results on
improved-rates for nonlinear-approximation by finite elements w ith “free”” triangula-
tion are included. We close with a short discussion of appllcatlons to error CStlm&tLS ,
for thc finife element method for ciliptic boun(lmy ‘alue plobles '
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1. Finite' element approximation schemes and funection spaces

.
o

Let ¢ be a bouncdled polygonal domainin R?and (Ienote byd and « w; the sides and the
interior angles (0 < w; = 2x), vespectively. A finite set T''of nondcgenelate closed

tr nngles K; with pairwise disjoint interiors is called triangulation of G if U K; =@
i
and if the mtersectlon of any two triangles of 7' is either empty or a common vertex’
- or a common side (for the used finite element'terminology we refer to CIARLET [2])-

Set h; = diam K;, b = k(T) =maxk;, and 7; = max {diamB: B K;, B is a

. B .
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circle}. The tnangulamon Tis called y- regular and - y' quasmm/orm if max {hjfr;} <y
-and max {hi/rp} Sy (2 Sy Sy < oo), lespectlvely To- any tr langu]atlon T of

G an(L’ ’any fixed k£ € N we corr cspond the finité element space S¥(T) consisting of
_ all (continuous) functions on G, whose restrictions to‘the triangles K ; are polynomials
of total degree at most k. Let @}, j = 1, ..., M'f, denote the usual Lagrange points

correspondmg to T' (cf Flgure 1), and mtroducc by the properties B € S®(T),
. BEQEN =98;5,4,7 = 1,..., Ms®), the standard basis functions of S""( ) Cleall\

MT("’ = dim S®(TY.

- ~Let us'mention that any triangulation 7' induceés in a natural way a pa.l tition 8’1"
of the boundary ¢ of G and that aSW(T) = span {Brjlac: Q'f; € 0G) defines the
' correspondmg finite element space on 8G with respect to this paxtmon -y

In the following wé consider fmlte element applommamon schemes {S®(T')}
generatcd by a sequence {T } of trlanguhtlons of G satlsfymg the p1 operties (2 6 lNo)

L (2) SW(Tg) = -1 = BT = STy ) oo e
* (b) T; arey’ quasmmform for some fixed constant. y T
(¢) 0122' < M“" =M® <, 2% for some constants ¢, ¢ > 0.

For instance, if T is any fixed initial triangulation of G, anid the T,(z € ]N) are ob- :
‘tained from Ty by standard dyadic subdivision of the triangles (cf. Figure 2) then
the corresponding finite element approx1mat10n scheme satisfies these propertleq
Furthermore, if (b) is fulfilled then (c) is also equlvalent to

(e g2t = h(T) g ¢,'2~# for some constant% c, , c2 > 0.

‘

Now, we associate to thc above mtroduced appxo\umatlon sclleme some.scale of
functjon spaces. Here, and in the followmg, let 0 < P, ¢ £ 9, and L,,(G) 1, (lenoto-

T the usual chesgue spaces. Let s = 0

. -

N 8 T k=2

k=3

Fig.'1. The standard Lagrange points for elements of'ty\pe' (k) ~

’
) - . . .
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Flg 2. The triangulations T; generated by dyadic s.ubdjvisio.n
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J)efmlt,lon A function f €L »(G) belongs to A¢ q({S“”(T )}) = A;;i’; if there exists
a representamon : - . T

v

Jf= Z gio» Gi€ S""(T) o : S L)
: convergmg m L,(G) w here .= U C V- 3
lgilpae = 2 gl Ml < o0- | S .

In this case, set o - : e Co

u/u,m = inf {{l{gillpa;s: g} satisfies (1), (2>} ' S ®
f
.Remarks: 1. This definition of .4} ;-spaces (s > 0) when applied to subspaces of trigono-..
_ metric polynomials‘of order 2¢.on TN or to subspaces of entire analytic' functions of most
exponential type 2! on R¥ leads to one of the cIassnca] definitions of Besov spaces-on T¥or R¥ -
(cf Nr1KoLsk1s [10: 5.6)).
" 2, It is easy to observe that the case s =0 makes sense only for 0 < ¢ < 6 = min (p, 1)
where A% isometrically coincides with L, (G’) (0.< p < oo)and C(G) (p =), rcspectwely
3. Introducmg the best approxlmatlons E®(f), = inf {|]/ — g||1,, g € S”"(T I GIN,,, one

.

shows as in NIKOLSK1 [10 5. 6] t,hat fors >0 o ) . -
G0 = |H2"E,‘“(/),,nl: iz, X WM L - (4)' )
P9 ) L .

(equlvalence ap to constants’ dependmg on'p, q, 8 ,only) ard that A;'g are quasi- Banach spaces
for all cons1dered parameters (Banach spaces iff 1 < p, ¢ < oo). For instance, setting for ab-
brovity X = A% and & = min (p, g, 1) we have-[f + glly” < Ifilx? + lgle® (/. g € X) for
any of the abovc considered equivalent quasinorms and arbitrary values of parameters.

4. Replacmg {SWXT,)} by {8SW)(T;)} we can analogously- define a scale of- functlon spaces
: aA‘ “ = A’ ({8S“"(T Mo L (80’) on the boundary of G.

: The next Lemma follows from the fact that finite element approxxmatlon schemes
have, in contrast to other approximation schemes locally supported basis functions
B“" = BY); Wthh are easy to handle with.

Lemma 1: Let {S""(T )} be a finite element approxzmahon sche'me sahs)‘ymg pro-

. pertzes (a)—(c) Then, for any . SN
M . ’ Y Cet L
= Z‘a, BH € STy, - ieNy, - R ) N
wé'h;av'e e " . ‘ .
cxligillz, < llaidi, < c ||ginb,. o S (6)
where - ' N o . .
o ' ( M ip - S : .o -
- 27 2 ey [P) , 0<p<oo .
i Ml = s ’ . (I

max {le; 'il'»j =1, JVI~“"} P = oo

’ (here and in 2 the followmg, the positive constants c, (I = 3,4, ...) depend on the approzi-
mation scheme (more precisely, on k, ¢, ¢/, (l =1, 2)and y') and on /'urther parameters .
-such as p, g, 5 .-, but are independent of ¢ € N, and of the functwns under conszdem-

tion).
on) ,

" Proof: In the pfoofs' we drop the indiqation of k in the notations. Observe that
-any restriction g¢;lx = X a;;Bi;|K, K € T;, coincides with some polynomial of
: 7:Q €K ' ’ ’
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“most total” (legree k Tlansformmg K by an afflne map onto a fixed xefercnce tri-
angle KO one shows in a standar(l way, that, accor(lmg to (b), (¢),
ll.‘] llL,,(K) = (2 2'<Z |a,»',|")1/",\ n‘llu {la;, ,I

N

Ty ;EK Ol ol ;EI\

N . \-

(cqurvalence up to constants) for 0 <p<oo and p-= o0, respectwelv Samming
up with respect to K ¢ T; we obtain (()) 1

Cw N
»

By Lemma 1 the following characteruatxon of A 1s obv10us

Corollary 1: Let {S(T; satzs/y a)—(c Then

mﬁﬁammwwwmm~

. ~
-~ ~ l

where the m/zmum 18 taken’ with respect to all representatwns (1) 2) of the functzon f
(cf. (5)) is an equwalent quasworm on A%k for all posszble ckozces o/ parameters.

Corolla1v2 Let0<p <.p' < oo, s>0 O<q<oo and 8’ = s — (1/pf']/p’)...

Then we Kave the (continuous) embeddmgs .

r

= AskL,Ask ‘ N _ R veif st >0, . {8)
. . . e 5 S
~ o . As;k L, L , . '('p/ < oo) A&k‘—) O (p _ oo) i/l‘s' — 0'_ ,. (9)
“Pro of Relatlon {6) nnmccllatclv yn(,l(ls a r\]kolsku t,ypc mequallty .' B
“ HML<c%W”wmm ‘0<p<ﬁ§w,~ o (10)
for arbltrary gi € SW(T'Y; 1 € N, Thus (8) as well as (9) (for p< 1orp = o0o) are
obvious bv definition of the spaces. l‘mally the proof of (9) forl < p’ < 60 can be.
-carried out by arguments as in [12 Theorcm 711 S
Remarks 5. The followmg more elemcntary, embeddings i
Ll \ o o o .
o A;,;q,.f' 1f0<p,q,q=oo,0<s,<s,A .
‘ L AEG Atk 0 < p<00,0<gSq <0078 0, Ce @y
v N R if0<p'spsooo<-qsoo~s>o -

can be combined Wwith (8) (9) in order to obtain all possible.cases of embeddmgs between the
above defined spaces.

6. Analogous results can be stated for the spaces 3A‘,’,"‘l For, we have to restrict all represen-

tations to the finite element spaces aS%)(T;) and their basis functions 6B“‘) = B“"Iaa where-

Q(h € 8@ defined on the boundary and to make the changes in the exponents correspondmg to .

. thé fact that dim asw(T)xzt A L

We finish” this Section by stating, somie results on the trace to the boundary of.
functions belonging to 4. According to [10: 6.4] and [1: 20] for our situation of a;
plane polygonal domain. the following definition will apply. Let d = d; be any. side
of G and fix some close(l trlangle K = G- with d as its side’ (without loss of gencrallty,

suppose that d lies on the %,-axis and ‘K in the upper half-plane as shown by Figure =

‘3) Then, a measurable function h (leflned on d is called the trace of the measurable
" function ia defined on @ if, for some 0 < p < oo, there exists a function. f1 defined on.
K such that /1 = f a.e. on K, /, = k a.e. on d the rcstrlctuon of f1 to any segmcnt
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. and, thus,

Cw here in the last step we exp101 ed the elementmv but useful mequalat,y ;
. /

- ’

d(xz) = (x,,xz) (zy, x2 EK is L -mtegrable( =0), and o . ;a

f|/1<x,,x2)—/l<xl,0>|vdx, —o
z,-+0+ 3(:,) D . :

o where J(x2 = {z,: (%,,0) € d and (1:,, z,) € d(z,)}. Finally h dcfmed on 3G is'the trace

of f if hlq is the trace of f with respect to d for any side d of G. The so-defined trace
“(if it exists) is unique and does 'not depend (for f belongmg to some L, space) on the -

* particular choice of the triangles K. Tt will be denoted by ¢f. Obviously, fOl ‘continuous

functlons the trace exists and of = /Iaa Sy

\

Theorem 1: Let 0 < p, g < 00, s > 1p. Then any functwn fe Ayt has a trace
b k
of € 9457, and ||of ”aA*“”PJ' = ce'llf ”A‘,’,’; Moreover, the inverse statement also holds

For. arbztmry e 6A“”” K there exists a /unclwn / € A’ * such that h = 6{ and |]/||
= ”af”aﬂa—llpk , ’ S . o .

.-
N

Proof .The proof adapts the correspondmg argument fxom the IRV-case [10

6. 5 6] Let fe Ayt s >, l/p, and consider any representatlon (1), (2) Let d and K

».Q

: be as above First we show that on the segments d(ac2 the- representatlon Z’ gi |con-4

i=0 .
»exges alsoin L (d(xz)) for- any reasonable z, = 0. For, observe that the ti iangulation

KeTo:Knd(z,)+8 Q. ;E

, ' U L .
o .00 LT . <
Z ”g‘”i,(d(z;) g g 2'“’ “gi”L ) é c ”{gi}lla,p e /'

S

2% isnlly, S €o27 e b ll{2"a.}z>nllz o o (13)

_ which holds with a. constant mdependent of n € Ny and the sequence {a; } whenever
—c,o <b<s<co and 0 < ¢,¢" < co. Thns shows the (lcsne(l convergence, By (1) :

. ’
L/ . '

T, induces on t,he segment d(z,) a certain one-dimensional paitition with maximal .
‘stepswe ¢2-%. Thus, by Lemma 1 and its one- dlmensxona] analogue, we have e

Ny S 2 5 Z|a.,|PSc2‘ng.uL, - (12)° -
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: and the above estnnates it is easy to show that the lmnt function Zg (T, x) =

i=0

\A/,(:z:l,x2), whichisdefined forany reasonable z, = 0’ ond(xz) and thercfore, on R, does

not depend (in the sense of L (d(xz))) on the particular choice. of the representation

(1),(2). Furthermore, Fubini’s theorem implies that f, considered as a function on K

' .coincides a.e. with'f. Since the functions g; are continuous, for any n € N we can find
2(n) > 0 such that for suffluent]y small0 < o, £ x,(n) we have the estimates

"||f1( T,) — fl( 0)||L,(3(z.))
§Z ||9i(", ) ._ gi(- 0)Ilz.,(a(z.)) = l/n + Z (Ilgill% (aczo) +/”g:”L,(d(0)))

—

‘ 'S 1/n + ¢ ||z Ilg.IIL Visallly < 1/n + c2~t0-1ipins ”{g}llapq

;-
/

(cf (12) (13)) Th]S fmally proves that a/ = Z og; = Z‘g Iac (convergence m the
-0

- .sense.of Ly(9G)) defmes ‘the tra.ce of the functlon f € A ¢ if s > 1/p. Moreover, from

(12) it follows that . . 7

.

II{zm P {log; ||L,(aa)}|lz o |l H9~”L»}'Ilu .

and by.definition of the spaces A% i *and 045, we get of € 245 Pk ag well as t:hc con-

P
- tinuity of -the trace operator.

"In order to prove the inverse statement let kb E DA IP:k bc glven and consider

a correspondmg representatlon

-~
v

3 =_2hi,- hi= X \a,,aB,,E dS‘*’( )= SWOT,)

, §:Q4,;€0G
satisfying ||{ 2!16 1/p} ||h |]L,,(aa)}”l ”h||a,43"1/7’=" Extending the functions &; to the
r.q T c s B

w hole domain G by ( ef mmg _
LS A ':/ _.\. .f . At - R ~
Za,, ,,, B, = {gl.l if Qi€ oG, o .

otherwise .
.

S we have |igillz, ¥ 2 1p Ilh.[ll,,(acn dg; = h;. Thus, f = Zg, belongs to A2 (s > ‘l/p) .

-~ i=0 ’

and satlsfles Il o < Ilh”“,_up &. Furthermore, by our construction and the above .

».
proved first'part of Theorem 1 we have of=h 1

"Corollary 3: Let. I'< 3G be a closed subset of the boundary whzch is Lthe union

© of (some) segmenls contained in 0Ty Then for 0 < p,q 00 and. s > 1/p the sub-

" spaces ALt or = {f € A%%: 8f = Oon I'} can equivalently be defined as approximation’

spaces 45 ‘({Sr“" ) (c/ the corresponding definition - above) ‘where S,-‘"’(T,

= lge SW(T) ):glr =0}, i € No. . : .

Proof: Clearly, both definitions make sense and, obv1ouslv A q(S “"(T))-
L» A"‘,- In order to establish the inverse embeddmg, -SUppose - that 8§ > l/p and

. 6 A% 8f =0 on I', and consider any re 1esentatlon 1), (2). Let Sp = g, and
y P -

P
define 3, € S[‘(k)( n) by settmg -

_ N ,Su(Qi.i if Qi'j ¢ 0,
§n(Qi.i) = {0 : otherwise

N

\

{n 'E. N,)-
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Since, by Lemma 1 and (13), ' o .A .

. o o N . ) s "
- KBa— s, = 62""2 (I8all L,y = 02_"_ ( 2 llg l|1,,,(r)) o

x=n+

< 027 |27 igill 1, )i allty < cgsn fl{2e llgaIIL,}s>n|_|I, .-

we get with the ilotat,ion Go =80, G = 8n —'§,,b,, n € N, from (1) that the réf)resent,a-- :

' tlon f = Z §i, §i € S r%NT";) holds in the sense of ’L,,. Furtlﬁpmore, we can estimate
’_ ) : . : '/

(cf (13) and se,t s = §_, = 0) as follo\\s . ' o

MM gn S MG g - i — SIS + Hisics — B8y

< o [{ge-vm iz ||g,nuf>.-u,6}||7' -

c o selier e adlE S oo

{
’_1_‘l1,us., f€ A;'q({Sr(k)(Ti)l ) with the couespondmg inequality for the quasinorms l

. ) :
Remarks: 7. Theorem 1 and Corollary 3 enable s to deal with finite element methods foi'
boundary: valie problems In particular, the.spaces A} ", = A%, ({Sp("’(’l' W), s > 1/p, are’

" . adapted to second order clhptlc problems with Dirichlét Londxtmns on the part I" of the bound-

‘ary. {0y .
8.For0 <s < 1/p one can prove A ({Sr(k)(Ti)}) = Ap'_g.

. - . B ° ) . ’ . . ‘ -

- ~ -

2. A%% and Besov-Sobolev spaces . o
) \.} . . ' - - o » ’ :

. N N - ; . o .

In order to translate the approximation estimates given below in terms of A%t

quasinorms into the more familiar terminology of ‘Besov-Sobolev quasinorms we

~ first clarify the corresponding lcl‘ttxonslups between the spaces itselves.

. For the Besov spates on G we use the inner description by moduli-of contmuxty

(or, what is really equnvalent by differences) as the basic definition: Let 0,< P, q
S00,5>0,andl €N be given. Then a functlt)n feL, belongs to the Besov spage-
B"' iff ;

~

||fn,,u _u/nL,+n{2-°w,(2 ' Dol < o0 )

L

w:hel"e w,‘(t,/ = sup AW lzpieom: 1Bl S 8 is S the t;ot;al I-th order modulus of cont,mu-
ity of f in L (b = (hy, hy), |h| denotes its Euclidean normi, Gy, = {2 = (2, 2,) € G:
. 1

[z, z + k)= G}, and . Mfix) = X ( ) (=1} fx I ih)) From the well- known _

=0
snburatlon properties of the moduli of continuity there follows that for s =1 — 1
+ 1/6 (exept the case s =1 — 1 4 1/d,-g = oo) this definition leads to the trivial

class of polynomials of total degree smaller than I on G. Informations about other
possible definitions and a lot of equivalent quasinorms can be found in, e.g., BEsov,
Iv’x and NIkoLsk1J [1) or TRIEBEL (19} fo: 1<p¢ < oo and in TRIEBEL 18, 20]
_ for the general case.
The Sobolev—élobodezkzy spaces W,,’, | <p<oo,s>0, are (lefme(l by

/

W » = {/ € L G ll/llw, = ll/llL, + X lla"'llaxl"" 92"z, < 00}

My M=
“

‘4 - Analysis, I}d. 9, Heft 1 (1990)

:

L
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for integer § = m and by W,* = B3! for non- mtegex s§>0 (th(, mtcger [>s can
arbitrarily be chosen). We refct agam to the above cited monographs, a detailed
discussion of Sobolev spaces on plane polygonal domains can’be found in GRISVARD
[6]. Let us mention that for p = 2 the Sobolev-Slobodezkij spaces can equivalently
be characterized as Lebesgue spaces with a somewhat different definition (for details
on these H,% spaces as well as on the more general scale of Lizorkin-Triebel spaces
Fy we rcfel to [18—20]). However, for our purposes it’is sufficient to vbserve that
- the Sobolev-Slobodezkij and the. Lebesguc spaces are imbedded between appro-
priate Besov spaces. To be pleClSe for 1 = p < oo we have

: ‘B’plmin(pz)c_> Wp ’ H ac_’Bpmax(pz)» 0 <s < l o (14)

Sometimes we also use the elementary imbedding relation
W,moBrl, (lsp<oo,m=1,..,1I). » (14)’

* Assertions of this kind are proved in [19: 4.6. 1 4.4, 2], and [1: Theorem 18.9]. As we
. show below, these embeddirigs are sufficient for obtaining most of the Sobolev norm
estimates from the corresponding ones for Besov norms. Qur point of view is that
Be%ov qpaccs are natural for approxmlatlon problems and more simple.to deal with.

Theorem2 Lt 0 < p,g<oco, keN, and 0 < s < k + 1/5 (also s =k + 1/)
jz/q—-oo) begnen TkenB""”C—>A“‘ aMA*"‘L»B”‘“zfs<1+ 1/p. ;

p.q
Remarks: 9. The restriction s < 1 + 1/p for the second cmbeddmg is natural because the
* difference’ properties of finite element fanctions are characterized by wy,, (¢, gidp X 1P,
t — 0 (g; € S¥NT})) if g; does not coincide with a polynomial of total degree < k. -
10. As a corollary to Theorem 2 we have fork € N - -

Bskﬂ A3k(0<jp,qSooO<s<l—f—l/p) s

The proof. of Theorem 2 fo]lo“% in a standard way (cf., e. g the consnderatlons in
[12: Theorem 6]) from the folloumg two lemmas. :

Lemma 2 Fork ¢ IN 0<p=oo and/ € L, we have the Jackson -type inequality,
E; ""(/)p = Cewku(2 ey PN : - (16),

AN

Lemma 3: For k ¢ NO<p = oo, and g; € SW(T)), ¢ € Ny, we have the Bernstein-
t2 Jpe meqwzlzty . ;

el gl < 0 min {(£- 297, 1) g, O <t <1 Can

and the z'mzerse wnequality (i € INy) _ [

U oe(@ )y S 0ge -““/m( X 2".““””"15,""0),,"-%llfll”z;,,)

1/8

F=
a

. Proof ‘of Lemma ‘3 Since the inverse mequahty is a standard consequence of ’
- (17), we concentrate o the case t < 2" in (17) (for ¢-> 21 the assertion is trivial):.
‘First consider any basis function B, ;. Let 0 < |b] S ¢ < 2° L, Ac_coxdmg to (b) and
(c) we have ' ‘ \ :

:, '_\ . < ¢ |A] mai,{)— ,,“ Sc|h| 2t er
apnB @) = O I o) =
- N =0, .- : xEGth\E
w he1e E (lenotes the set of all thoscx € Gyyy.nfor which the segment [z, 2 + (& ) hl

intersects at least one side’of some.tr 1anglc K € T; with K = supp B ;. Sm(c mes'E



N

\

i

~

© wecan contmue by _ , . N

¢ '. On Function Spaces '51

Sc|h|2‘weobtambhcestlmate ’ N -
IM“BJMMMVWMHWWWMSMWWWW2m” |

which yields (17) for g; = B, ; (cf. Lemma l) Now, let g; = Za‘ iBi; € S“"(T) be .

arblt,rary Since the sum A,."” ix) = Z a;, A,,"“B, ,(x), for any z € C’,,_H " consists

of at most.c nonero summands where the constantc is mdependent ofg, and k| £ 274,

I8

”Ank“ l"L,(GN. ») =c Z @, yl” ||4'nk”Bi 7||L,(Gw a)
sqwmwmwh- S
, \ sqw2wwmw0<m<2f,
ThlS y1e1ds (17), and Lemma 3 is established B b , _:

Proof of Lemma 2 The 1dea is first to constr uct by Whltnev type estimates a

~ piecewise polynomial function of total degree k“with respect to 7'; which suitably

apprommates f in L,(G) but does not belong to C(G). After this, it remains to smooth
this .piecewise polynomial in order to-get.a good approximant from S*Y(T';). The .
required Whltney type estimate reads as follows. Let 0 < p < o0, k € N,., For any
triangle K €T, ¢ € Ny, and f € Ly(K) there gxists a po]ynonnal pk pk( s K p) R
“of total degree k wh:ch satisfies

H/ — pk"L,(K) < ¢y 22 f Jlan+! /||L,(KH, » dh ' .. - .

=2t . i’ [
(\nth an obvxous modification' if p = oo) Smce the term at the rlght hand side of
- this inéquality is cqulvalent to the p-th power of the modulus of continuity. of order
k + 1 of the function f in L,,(K) (with ¢ = 2-%)this is only another form of the usual
Whitney type result. For a proof, which covers the general case 0 <.p =< oo, see
. STOROZENKO,[16, 17] and the literature cited therein (the case of. triangles ledimes by

affine transfonmatlon and, a simple extension argument to the case of squares con- . |
- sidered in [17]). For 1 < p < co there is a lot of further references, cf. e.g. [4, 8].

_.In the following we concentrate on the case 0 < p < 0o, the obvious modifications
*in the notation for p = oo are left to the reader. Defining, for a given function f € L,(&)
- the piecewise polynomial function ppi (w1th respect to 7', ) by ppi(x) = pel(z; f, K p).
(zeK KQT)weobtam .

T — ppilll, =3 If — :pk(-; / K,p)ll’i,(x)
KeT, .

’ .
: é c22¢ f Z ”Ahk*'lfnllp(hk*l a) ah

1A 22! KeT, . . T !
<2 | nA,,M/].Lp(G‘W, dh = cansy (275 )P, i€ N,
Injse-t S~ o o

Moreover, by the definition of the differences this yields
;N

Ve
!

L - 92i f AR 1pp; “L,((‘m W dh . | .

Mlsz_( v ,. . . -' - ) ‘.
ggwwﬁmwmmw+w—mmyw L
T s , ¢

< oo f UA»"”/HL,(GH, ) dh < cwk+,(2 R I C
lhlé2' '

4%
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(S

[‘hus in order to finish tlle argumcnt, 1t, sufflces to constnuct a function g, € Sl""(Ti)
~such t,hat Py : : ) :

lppi — g4 II” Scf ._IIA:."*,‘ppaII’i,(cm.n) dh. IR (18)
. . iset ‘ o - :
For,l we d.efine‘ gi by - -7 4 ' 2 A
e \ . K .
‘ gi(Qi.i) = (ni,])_l Z pk(Ql ,,/ K p 7:‘ l’ sy Mn - . N
K€7'1 QuieK - R ! R

W here n, it the number of trlangles Kel;,w hlch contam the Laglange pomt Qi.;-
: Clearly, the n; ; are bounded from above by sonie absolute constant only (lepemlm;’ A

on y’. Thus (cf. the. pxoof of Lenima 1), e .
lppi — il S ¢ 2 (27 T 1p@usi [ Ko p) - 0:@)P)
KeT, B 701 €K :

. < 622 4 Z ka(le:f:Kd :P) “P&(Q:;,f Kd 3 )lp’\ .
. . © - deDy j:Qused o
where. D is the set of all sides d - 8@ of the tr’iangles K¢ T,, and K4 Ky denote - |
the two tnangles in T; for which d € D; is the common side-(cf. Flgmc 4). Now, for
any' h € R?, [h] = 274, consulen the set

Kd.,.—{xeKd [zx+< + 1) h] |
= K uK,,,[x+hx+(1c+ Vhl= K)o

) Observe thab there exists a measulable set Eqst < K4 (e.g. some closed tnanglc)
such that meés Hy = ¢2-% where Hy == [kl < 2-tand Eyf <Kj,) and, for any
polynomial 7 of total degree %, ”P”L»(Em = c||PllL, k- 'lhls glves, when appllctl
'. to p pk( f, Kd ’P) - pk( /’ Kd ’P) t’he estlmates

‘ 2 2‘ OZ‘ let(Qz;,f, Kdlyp) —pk(anj) Kd ,P)Iv
: 7 1.5€

=c ”PHL,(Km =c “p“L,(E() =c (meg Ha f ”Ah"”PP ”L,(Ea‘) dk

. © Hg L . &

‘~§ 022', J |14»"”7’Pi”1,;((nguK;)m.h) :
1h| <2 . T

' since, bv constructlon of BEf = K}, & (Kd Ky ),‘H W 'pp (x) = p(x),x € E,, .
.- After summmg up with respect to d € D; we get (18) I ,

* Fig. 4
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. Corollary 4: Let ke N,1 < p < co. Then, for the Sobolev and Leb‘esguq spaces,
_the following embeddings hold : N . ‘ ‘ P
‘WS, Hypt o A;‘,’fnax(p,e) if 0\\< s <.k + 1, ] L -
Wp""‘ ~ H ' o A',‘,_;”‘, A;"’fn.mp_z) < ~W',,’,\H,’,’ if0<s <1+ 1fp.
Remarks: 11. For p_= 2 one has A%% = Bgk+l = W2 = H,*= H*,0 < s < 3/2. According
o, .. ' bad . ° L >
to. Corollary 3 we also have H® = A%jg;ag %A;,z(s%m)), 1/2 < s < 3/2, where H? is the sub-
.. space of H? consisting of all those functions f with 9f = 0 on 9@ (or, what is equivalent for the
“indicated values of s, the closure of 2(G) with respect to the H® norm). .- o
. 12. Analogous characterizations in terms of Besov-Sobolev spaces can be given for the spaces .
. 3.4:,‘5 defined on the boundary of G. . o
18. The proofs of Lemmas 2.and 3 which are of independent interest remain valid also for
arbitrary y’-quasiuniform triangulitions (with A(T') instead of 2-1), The case of more general
. triangulations seems to be, in contrast to the corresponding one-dimensional results, more
complicated. ° ' o S ’ : :

E

.-

.

§

- 3. Apprbximation estimates N o

- . L

In this section, we prove in terms of the above introduced A% spaces some basic
estimates of finite element approximation theory for quasiuniform triangulations
.belonging to some sequence {T';} satisfying the assumptions (a)—(¢). Although ‘this
is not the most general case.of triangulations we miglit be interested in the results
_indicate that our approach might be very useful if dealing with finite element approxi- ’
. mation estimates in various function spaces and quasinorms. -~ '

Generally, denote by - L o :
By = inf (] Zgllxig € ST, . meN;, o )
the best appréximations of f € X with respéct to S®(T',). Here, X stands for some /". A
quasinormed function space on G. . ’ R

A

" Theorem 3: Let X = A%k and 'Y = AGY be given such that the embedding ¥ < X
holds. Then E,¥(f)x = €27 = ||/|ly,’n~€ Ny, where o = max (0, -2(1/p' — l/p')).

" Proof: The assumption ¥ & X yields s —s" — o 2 0 (cf. (8), (9), and (11)). The . -
cases — s — o =0is obvious since E,%(f)x = |Ifllx (f € X,n € Ny). Fors — . — &
. > 0 we.introduce the intermediate space Y’ = A%&¥ (i.e. Y & Y’ < X) and con-
" gider any representation (1), (2) of f € Y". Since, by (13), :

/= Lo, = @ sl

' . < cQ—nls—¢& —a) {2i(a—&)_||gi||L.p,}‘>,;”,' L . ‘
é 62‘"(’_—3'_.” ”{gi}np'.q;s—a o E

. we. get after-taking the infimum with rles—pect to all those iepre_sentabions (1), (2
EW(f)y < 2= = |lflly- < c27me= o' =) ||fly"for any f€ Y B IR

:"V'-'Theorem 4: Let 0 < p,p,9,¢ g'o;?, « = max;(0, 2(1/p — 1'/p')l)‘, and s, s go
Then, for any g € S¥(T,), we have R , D

7/

CB()x =

/-

-,

. ' 4 » :
L [emese-o s a—s>0,
”‘(IH(""‘ é C13 ”\(]”AGk (n + l)maxwfllq,'_”q)’ S’ + N — S = 0, v ~
e 4 o ) “
‘ 1, . s +a—8<0. -
. ’ N .
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Proof: First observe that for g € SW(T,) we have

.
<

. : -1

; inf{n{..<n|1pq,ngg}gc“ugu%.. )

: In(—leed' consider any represent;at,ion (1), (2) of‘g € S";’(T )= A%k and set §, = 3 g;.
i=’n_-f-l

Since §, =g — Zg € SO(Ta) and |igallz, = [[{llgillz, .>,.||16 = 27" [llgilllplg:s We im-

mediately get (19 (for consider the representation.g = Z gi 4 (92 + ). Finally,

-~ by the Nikolskij- type inequality (10) we obtain - i=0
| Il{2" 192y bisin e R
S 0 ” 2'(3 o ”gl”L, t<n”l . ' : . ¢ - 7
" (omarsan $ s>,
< o[l2 gz disall § (v + DRaxort0, g gy g =0,
/ ' o 1, : ' s + x—s<0.
e
This, together with (19),"proves the theorein. § - - N

Now, let 1,%:0(Q) — S""(T,,) be the interpolation projéction defined by *
' I m/(Qm = /(@ (k) = M., ‘ -

" The appro“matlon properties of this pro_]ectlon are most_important for. collocatlon
methods with finite elements. Moreover, in the finite element literature, inequalities

. forf — I,®f in various Sobolev norms are; as a rule, the startmg point for 1nvest1ga- )
t;lons on error estlmates :

. ~ ‘ ~
0\ heorcm 5: Let Y A""L>X Ay where O<p,q,p q Soo 5,8 =0

(s —s"—a=0) be qwen Suppose lkat s> 2/p. Then for any /6 Y . we have
Ilf =L ¥y = cjs2m e flys m € No.

s Proof: Consider any representatlon (1),(2) of f€ Y. Since s > 2/p we have Y
< C(G, and this rcpresentatlon also converges umform]y Therefore,

I,.‘*’f/= Z Iwyg, =.Z g;\+ Tnr  Gn = 1,® ( X g) € SW(T,).

=0 |-n+l

o Thus we can estimate

W~ Ll < c(2"~' 1Galz,, + ||{2'~ lgs ||L,,},>,,||,

Whlle the second term in thc right-hand side can be handled as above (cf. Theorem
3) bhe considetations for the first term run'as follows. For any Lagrange point @, ;,
j=1,..,M, and any ¢ =%+ l;n + 2,.. we fix some triangle K, ;;; € T
cunta.mmg Q..;- Let us obser ve that, for axbmary fixed 7, the maximal number of
- Lagrange points which corresponding tr langles coincides is bounde(l by some abso- '
lute constant. Since, obviously,

- t

9@ S ¢ 10l 1oty 1y S 277 gl

’
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we obtain i ot ‘
. : . . 7 . .
27 |gallo, = 2" | Galls, A - : -

. - \r\Yp
< 2 e —2p) (2 (.' 2 llgi(Qq.i)l) ) ,

. j \i=n+ . - o
= oz (D@ Mgl o atiall)

: ' . . ‘ 4 Up
. T —n(d—g’—a) isp [ B« )
< 62_, 5 - ( 2 2isp ( - ||9.||Lp(h,,,’~:,~)))

. , i=n+l1
-§/02_"(5~8';a) ”{2:’3 llgillp,}i>\”||lq o R

(with 2/p < § < s, and’ obvious modifications if p = oo). This yields thé desired

.

cstimate for the first term 8 ,
Clearly, by Theorem-z and Corollary 4, the results formulated in the Theorems of

t-hils section can now, be translated into estimates for Besov-SObole\{ quasinofms. For

instance, this yields : N -

Corollary 5: Let k€ N, 1 Lp,p <o and 0 s <s =« ~be given where
< k41,8 <1+ 1/p. Then, for any function f € W;* — Wi we have = |
"B () e = cr6h(T0)* =% = lfllw,e, n € No, ‘ '

p -

-

.a'n,(l-in the case s > 2/p also R .
I = La0fl 3 < cxrh(T=* == Wfle € N

“Proof: By Corollary 4 we ]\la\'e E,,“j’(/)“,‘i,"" < cEn‘_’"(F/),}, ifly < e 1l wﬁm-d .
X _ L, == A%, s =0, v - A;i’!‘mx(p,ap s <k + I,/
- : A’;;';.l;nin(p'.‘.!)‘, s >0, AkrLk \, .s.: E+ 1. -

p.oo

Since 8’ < s — o has been supposed, the assumptions of Theorem 3 and 5 are ful-

filled which yields the corollary (recall that A(T',) X 2-ny B T .
" The formulation of further corollaries, eg for Besov quasinorms or »con.cerning the

inverse inequalities (Theorem 4), is left to the reader. - : < ' ’

Remarks: 14. Analogous statements can be given for the rate of approximation for funec-
tions defined on the boundary 8¢ when using the spaces aA';;_’;.' or for functions belonging to
‘4}’;:.5:1" 8 > 1/p (cf. Corollary 3)[‘ . - T - ] : .

15. Corollary 5 is contained in [2: Theorems 3.1.4.6] for more general partitions.but with
some additional restrictions.on s, s’. The results for Besov spaces (although théy are closely
related to those for Sobolev norms) as well as the approach’ via approximation spaces as.in-

- troduced above seem to be new. The motivation for including the nonclassical case p < 1
comes from gpplicntrions to the approximation of functions with singularitics (see the following
scctions).™ . ’ ! .. . :

) It should also be mentioned that the indicated ranges of parameters as well as the exponent
(v — ¢" — &) oceuring: in the estimates cannot be improved. However, improvements®of the
asymptotic rate of approximation are possible if we approximate by finite element functions
with variable triangulations consisting of 4" given number of triangles (instead of approximat-
ing with respect to o given sequence of triangulations). The use of the triangulation as additio-
nul degrees of freedom leads to a certain nonlinear approximation problem which will be dis-

cussed in the next section. - : .
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4. Nonlinear finite element approximation (variable triangulations) .

‘One of thé strategies for improving the accuracy of finite element approximations is
. to make a proper-choice of the underlying triangulation, e.g. by adapting the tri-
angulation. to the singularities of the functions to be approximated, without essen-
-tially increasing the -dimension of the corresponding finite element space. From a
theoretical point of view, this question leads to a certain nonlinear approxir}.nation

problem, i.e. to estimates’for.the nonlinear best approximations
A

- . . ; \
Ce®(flx = inf inf |If — gllx .
' v\, ITISn geSONT) . ;

(20)

. where |T'| denotes the humber of triangles in 7'. Below, these quantities will be esti-
mated-in the case that f € ¥ < X where X = A%k, Y = A%% and 0 S s' <'s — &
" (as a consequence of Theorem' 2 and Corollary 4, this yields the.corresponding results
for Besov-Sobolev spaces). Throughout this section, we suppose for simplicity that
the triangulations 7'; vsed in the definition of the approximation spaces are obtained
~by the standard dyadic subdivision procedure from some initial triangulation T'., .
Following the idea in [13], instead of e,®)(f) we first consider similar nonlinear best

approximations - . S , : o

& = inf {If — glxg € S},  neN, T e

.

AU : . A
where §,%is the set of all linear combinations of at most » arbitrary basis functions

0o Mm - . B, R
B®,ie.g = ):0 2 ai ;B € S if ;5 = 0 for at most n pairs of indices 9.
. i=0 j=1 ' S - g .

Theorem 6: Let X = Ak Y = A*;,’; where 0 <'p','p’; é, ¢ =00,0=y <s5—a
- (&= max (0r2(1/p = 1/p"))). Then, for any [ € ¥, we-have &,%(f)y < c,yn-=¢V2 lf|y,
N = me =MW ‘ 4 ' . I ' : Lo

Proof: The case x = 0, i.e. P’ = p, is a trivial consequence of Theorem 3. Thus,
we concentrate onp < p’. According to the asymptotic nature.of- the inequality it is
sufficient to prove, & (f)x. < ¢277¢ =" ||f|ly* for some,sequence of integers n, < c2,
re Ngv . S . TR
" Let = =(2 + &)/p, B''= —s — B, where ¢ > 0 will be fixed later on. Consider

"any representation (1), (2), (5) of f€ ¥, ie. . K v o
’ . oo oo M ‘ “ ’ co - - .
f=2g9i=2 2 a;i;B,;, where |{€% lla; lI.,}||;, < oo-
- =0 iSoj= v S

_ For given'r € N, we define .
o {0 if ¢ > and Ja;,l < of) 255+,
S 8= ' ] ] .

a;; - elsewhere .

(the constant o(f) > 0" will be specified below). First we estimate from aboye the -
- nuniber 2, of pairs of indices (7, §) such that ) &="0. By the above definition of the
coefficielft-s’q‘,-'_} wé have :

S <. Cow SR :
D S XM+ X (clf) 28548) =0 Flag P : e
. ’ i=0 i=r-+1 ‘ j=1 . i : R : - :
< 6(22r + c(f)y=P 22+er ”{2.'(:4—:/;») ”g.”z,}i>r||f,,) ‘ - -
< 2(1 + o)™ 12 llgdls,bise|[}), < c2 ~ .
by (_léfining c(f) = ||{2% llg;”L,};?,",f and using o'nce__mort_e (13). :
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-On the other hand, if we denote }' :

]

‘ . i,
‘g = 3 afiB,, and g0 = z,"gwe S8,
. i=t ¢
then fm p < oo, we can estlmate as follo“s

K .-(nli)(f)X‘é fif — /")Il.r' < |Ke ”:‘Ii - gi(')”Lp'}”'q’ \ ’

.
c. {2i(a"—z/p')( oy las.;l"')”"'}
JilasE2Pi+8rey Jiselli,

lq
oo gCC(()l—‘p/p"zﬂ(lrx:[p')r A N

" <

% |{2i(s"_2/p’+ﬂ'(l—l)/?')) (Z la; ,[p) } v
. ' . j=1- i>rllg.

§ cc(f)l—p/p’ 2ﬂ(l—p./p’)r . . . L

- N

' L XA gy, }.>,||';";,,,, v .
L g cc (f)r—rlp 280~plp"r i e - .
1 . R

; 2—r(s—(ﬂ(1—p/p ))p/p)p/p ” 2., gill.,} '>r"1h’p

'.< ce(f) 2"(’ - < 2= Hgitlp.gis

where the use of (13) in t,he above estimates requires a choice of € satlsfymg 0 < e .

< (s — s — a)/(l/p — 1/p') which is- possnble by the assumptions. The modifica- .

tions for thc case p’ = oo are obvious. It remains tp take the mfunum with .respecb

toall consuleled Tepry esentationsof f€ Y B - X

Remarks: 16, The above constructlon also gunmnteesa certain smoothncss of the npprom-
mants: [|f]ly < ¢y [ifllp, 7 € Ny :

- 17. The construction of the approxlmants roally depends on f, s, p, and ¢, on]y Thus, we get | ‘

simultaneous appm“matlon estimates for a lot of quasinorms ||-||x, e.g. if 0-< p, 2,09 = oo,
and 0 < ¢ < 8y’ where s," < 8 — «.is a fixed redl number. . - .
« The above result purtly holds for " = & — &, too. ' ) ’

.
No\\ Ict us shu\\ how the unasnclcmtmns can be sllghtly modlfled in urdel to esti- -

mate thc quantities (20) and to get some further information on the underlying tri-
angulations. The idea is to prove that for the function f) introduced in the proof of
Theorem 6 there exists a certain, triangulation T of G into*at most ¢22r tr mngles
such’ that f0 € SW(T) » ¢ N,. Further morc, it can be:shown that the T -are
ywregular for some y < ¢y,

“Theorem 7: Let O<p,p q,q Soo and OS& < s —.« where a—max(O

2(1/p — 1/p")). Denote X = Azt Y = Ask, and consider any f€ Y (< X). Then,
for m = ng= J'[o“') there exist tnangulauons T.* and fmzte element functions f,,
SE(T * ‘saus/ ying the following properties:

()T, "‘ consists of at most n triangles and is y-regular for somé constant y S c.9y
Funhmmon’, h(T.*) R n-tl2

\

() Ny S W — fally S can=t6=5" |y ’
(iii) JI/nl.y Scalfly.

Proof: We consider the functions " (lcfmul in t.hc prOUf'Ih(,onem 6. F()l the '

construction of the concspun(lmg triangulations T we introduce the following

- - 1

-

~

s
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terminology: Let K € T; for some ¢ € Ny and put-7_; = T,. The unique trianglé
K €T, containing K we denote by P~}(K), and by P(K) we denote the set of all
triangles K" € T';,, contained in K (thus, P~ l(P(K ) K) Let @) be the set of all
triangles K either belonging to T, or satisfying, for.some ¢ > 7, the followmg condi--
tion: K' € T'; and there exists some j' such that e}, == 0 and K — supp B;;

~ Now we construct in a canonical way a new ’ set of closed brlangles 0"’ N O
: satlsfymg the following properties:

1. If K € &, then for some { = i(K) = r we have K € 7.

2. If K, K’ € O, and some sndc d of K is contained in some side d’ of K’ (i.e. K and

- .\ K’ are neighbors or coincide), then 0 < {(K) — ¢(K') < 1.

‘3. 1f K € O, then’ P(P 1(K))<: @(7) t00.

- For this reason, define ¢, = 7 by the requirements T'; n 0(” = O for{ > 4y, and

;00" %= F.1f i, ='r, then OV = @) = =T, =T If iy >r, then put o = on
v and construct by induction O ... ’0 ®. The mductlon step consists in the follow-
ing procedure: Let @, be already defined for, some ! =i,, ..., + 1. First extend -
O, by addmg all those tnangles K' ¢ T\ 0, for which thele exists some tri- -
angle K € T;n O possessing a common side with K and satisfying P(K) — 0,".
This extended set of trlangles will be (lenoted by O,". After this, put

o, = o,m U( ((P-y(K) u P(P~Y( K))) Ke 0, n T,))

It can ea51ly be observed that & = 0 (r) satlsfles the _properties 1—3 from above

(Flgule 5 illustrates the construction for a fictive set O with i5.= 3,7 = 0 w here ¢

s a square and T, consists of two triangles as indicated).

' Furthermore, if #; and 7" denotes the number of tnangles belonging-to O
AT, and @V nT; (i =r,7 + 1,...,1,), respectively, then according to the above

construction and to the estlmateq of n, in the proof of Theorem 7 we get for the num-.

. R
R =~

. o - . k. o
- 1 :
-
[} . \
° /
— N
© alo} : (0}
33 ) N 92 v
v
. d
8
A (0 ' ) 0
0 N ) . -
ol T r

- Fig. 5. The construction of 7(") : - B



ber 7, of brianglcs. in @
R \

Zn(')gc(2(')+ Z Zn(f)) . )
-‘ i=r |=r+1;—| .

" (2"' 1 3 (i — 1) off) =P 20+0r gien oy lgilf ) -
,‘ f=r+1 .

AN < 091 +c(/ -2 ||t 2wugnu,>,||,q) < c2r

h N

\*o“ in order to (lefme o, we consndel all those tr iangles K€ @ which do not.

.contain triangles K" € @ with i(K"') > i(K’) but possess a neighboring. t;nanglc
K with #(K) > i(K’), i.e. there exists some-K € O such that K'n K =d is a side

of K and i(K) = ¢(K') + 1 (cf.-property 2). Such triangles K’ will be subdivided'into .

. 2or3ord new triangles (which will be added té ©) in sucha w ay that after delet-

ing from @® all triangles which are further subdivided, we obtain a triangulation” .

(cf. Figure 5). This triangulation is the ‘required- 7). Obviously, fi.€ S“"(T"’)
. and T® consists of at most 4%, (< ¢2%) triangles and is y-regular for some y < ¢y

. This proves (i), the statements (ii) and (iii) are contamed in Theoxem 6 (cf Remark

186, too) I . P N :

~ .

Remarks: 18, For 0 < p < p’ < oo, the asymptotic estimate (ii) improves t,ho ostlmate‘ )
from Theorem 3. More precisely, for approximating a function f € Y& X by finite element

functions with respect to the quasinorm of X, a proper choice of the’ tnangulatlon glves an

improvement of the asymptotic rate of approximation by the factor »~¢ in comparision with-
the corresponding approximation on a quasiuniform, trlangulatlon with the same number of .

triangles (as above, o« = max (0, 2(1/p — 1/p’))). Thus, in applications to approximation csti-
mates in X = Ap D we should be interésted in verifying f € ¥ = A;’; where s is as large as
possible. For this reason, p.can be taken arbitrarily small but satlsfymg the 1mbedd|ng Yo X
Such a situation is typical for functions with singularities. For instance, let :

" where f, € W"° 5 7 <p, are local polar coordinates (cf Figure 6) and ; € C, ([0 o0)) cut-off
functions with respect to the corner P,, j=1,..., N. Furthermore, y;,; € C%([0,0;]); and &1

Bi/=0 arc real constants.” It can easily be’ checked that for_p < p, satisfying the mequahty

& = min (a 1) Sk + 1 —2/p we have /GB;“ #+1 = Y. Then, fora glvon X = Ap s we can”

.estimate e,,‘k’(f)x < on~k+1=8012 |Ifliy, n = g, whcncver k 4+ 1 — & > 2(1/p < 1/p’). Thus,
when choosing the parameter p, we should satlsfy the mequalntles k41— +2/p>"2p
>k +1 — o and p < p,. which'is possible iff min (x, k 4+ 1 — 2/p°) > §f— 2/p This result

covers, Tor instance, the particular but important case 0 < p < p’ ='¢’ = 2, ¢’ = 1 which will > ,

FRSE N

N H ' . ’ -7
/‘—’ fo + L 10 (Z"a““n (";)]ﬂ“'l’] I(W]) : - . i . A (22)

;
;
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. be apphed w1th some modlflcat,xon in Section 5 below: ,
&) S onk2 [flly = O(n=k),  m > oco. ' (23)

Thus, by defmmg appropriate tna.ngul.xtlons, it is possible to approxnmntc the functions (22)
A%vhlch are not sufflcxcntly smooth in the L, sense with asymptotically high accurracy in the
nergy norm (as well as in other norms based on L, smoothness).

19. If one needs results for.functions which vanish at part of the boundary (e g. for H’) the

analogous theory for’ A l‘ can be applied without substantial changes. To this end, use the
description of these spaces given in Corollary 3, cf. also Remark 8. Somc specnal cases have
becn aIrea.dy dlscussed wnthout detmled proofs in [5] .

v

~
.

. 5-.'I4_‘linite element error esti;nates for elliptic problems in "pofly'gonal d@n_iains
"For simplicity, let us consider the Poisson equation;

o Zme=f ing, T 2
L. wE0 on ' oG, 3u/6n=0 011‘86'\1" S :

‘with homogeneous Dmchlet and Neumann boumlzuy coxulltlux)s on I and 8G \ I,
blcspectwely, ‘wherée I' is assumed to be the union of some sides d; of the polygoml
domain G (hence, the value »; = = is allowed, cf. Figure 7). Suppose that I' &= 0.
‘The model problem (24) possesses a unique weak solution u = u, € Hpl' = fve H:
. ov = 0 onI"} under rather general assumpmom on f (say, f € L, for some p > 1),
i.e: a solution of the problem: T O

N

‘,‘.P1 o Py . P

Fmd % E H[‘ such that a(u v) ([, V v‘e H[‘
where

\ | . @

T ( " {ou-dv  Vu v
a(u, v) _ [(Ea—xl—%—mz 3x)dx’ / v) f/vdx
¢

\

‘ l‘or a ngen tr langulatlon T of G, denote by -
L= SAR(T) = SWYT) n H, fvr € S(’f’(T): vrlr = 0}

the conforming finite element space corlesponding to (25). Thcn, the Tinite element:
solutlon of the ploblem (25) is defined by: N ‘

Find uT €S ""(T) such t,hat a(uT, 1,7) = (f, vr) V vp € Sr“"(T) " (26)
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The ‘well- known Lax-Milgram theorem implies the unlque solv ablllty of (26). \{ore-
r)\ er, by the Cea lemma we have

.

X e — urlm < o(G) inf {Jlu — uT||,,. vr € STy ’ (27)
' ém(l; by the Nltsche-Aubm lemma, a]so - C o
S e el S @) = vl sup ind ey — vl (28)
. - ' |Iv|lz,,=l vreSroT) N

_where u, denotes the solutlon of (25) with respect to the mhomogembv g € Ly'in:
stead of f (for these results, see [2: 2.4 and 3.2]). '
Thus, the inequalities (27),-(28) reduce the problem of error estmlatmg in_the
© ¢nergy and L, norm to the study of certain best approximations. First we discuss the
" application of the standard results of Section 3. Consider T' = T}, i € N, (for sim-
"= plicity, suppose that each ¢orner point P; of Galready coincides with the vertex of
. some trianglé belonging t‘o‘thu initial tnangulatlon T,, cf. Figure 7). Accordmg to
- : ( 7, (28) the relevant best appro'nmamons to be estlmate(l are

)

T B g — inf {nw—v.w,l:k‘.v;eSr(_*)(Ti).. o N (29

1:
As’;

where w = u = = u, and'w = wu, (for'g € L,) belongs to H ! =2 A” r- Thus; the results
“of Section 3 apply and lead to O(h(T ) ) error .estimates for 1-— oo with some v >0 .
if wé can prove regularity properties of the solutions of (25). A detailed mvestlgatlon .
. of the regularity. theory for elliptic problems in"plane polygonal domains is‘given in
GGRISVARD [6]. Fox ouy purposes we quote from, [6: Theorem 5.1.3.5] the following: .

assertion:
Let f'e W™ for some 1 <p S 2 an(l m’e N,. Set ;=0 or P; = 3/2 if on the
sided; \‘eumann or Dirichlet boundary conditions arengen respecmvel) j=1,..,N.

l.‘mthermore, define’ numbers 2;;, 1 € N, by Z;; = ( — 1/2) afw; ot j, = n/w, in
. dependence on whether or not the type of the boundary conditions changes at P;.

Then if the condlblon : £ . - .
e (@101 — @ — mo, — 2(1 — I/'p) w)x 42, j=1,.,N " (30)
|sI fulf:lled the solutlon u = 1y of (25) cari be representcd as o,
o T | U —A“rcg + ): 'z C.;lSi.l" N - - (31) E
: i=1 ha<m+2=2lp . _ .
y Ureg € Wym™+2,  lisegliwymer S ollflwym,  cin € R, lejal S il

and .

‘Si.l(f”) = p{@) .

AN

. .. . - . ~ -
'OS it = )i.l(pl — qu.ﬂ : l‘f ;';'.l Q:Z,
v cos t Ing; — w; sm t. ifl,eZ,
. A
. whcre, as above, 7,, ?; denote ‘the local-polar: coordinates and. ! tlle cut—off functlons
J . corresponding to P, j'=1,..., N.
* - This result shows that, in genelal the solutlon u of (25) bclongs to W only for
smnll s. According to [6: Theorem 1.4.5. ‘3] the pleuse restrictions are s < s = mm

(2/p + 2;0) and s =m + 2. "Further results of this type for clliptic boundaly value
préblems are contained in KurNer and Sinprc [9). :

In order t,o illustrato this situation, we shall conslder a'L-shaped domain and mixed bound-
ary conditions as indicated in Flgure 8 (I'= 8G \\ d,). For this example we have 2, , = 1/3,

)'7.1 =2,j= 2,..., 5, and 44, = 1. Checklng the assumptions to be fulfllled for the representa- .

N ~ M . .
. I . . o
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u=0
P3 PZ )
‘ u=0’ X
4 - i du . .
v=0 k N 0o - . v o -
. ‘ A Ps ' o '
. : ) 7{u=0 - *

v » . ".  Fig.8. Example of an L- shaped domam with bound- .
: R G s ary conditions

u=0 : Y . Co

Y

_tion (31), in th(; case m = 0 (ie-for f € Ly, 1 < p'= 2) we obtain’
1S, 6/5<p<2, ' ) R -
o) - 1<p<és . ’

‘U= u,eg -+ { Py

. This 1mmedmtely ylelds ue Wyiiforl <p< 6/5 ‘and'u. € W2 for s < 2/p +1/3and 6/5 < p
= 2. Now, by the results of the preceding scctlons we can estlmate the quantities (29). To- "
gcther \nth (27), this yields :

e = - urllm £ cE; (u - o R
43 o1 )
] . . . - -

< e 2_.'(2_1I—2“/,‘)_”2)).“u”Wp' 1 < p < 6/": ) '». T
.= 2—i(s‘—1—"ulp 1) [l $ < 2/p + 1/3, 6/5 <p<2,

. ' , f —2ig-un h(T 20-1/p 1 <p< 6/5,
oo =elfll, ¢lifllz, _
. :(1/3 €) - (T, )1/3 e 6/5 < p = 2

<

co Analogous consndcmtlons show thnt for m € N we gencmlly have

.

flu — ur |l S 62“‘”““’ Aw,m = ch(T J1i3—e Ifllw e

where € >0 is arbitrary, 2 E N,. Thus, due to the corner singularities (here mamly to that at

¢ .. the corner P;), the asymptotic error estimate in the energy norm is far from the -theoretical
. possible O(h(T )’) estimate where I = min (k, m 3 1). This effect is also present in pmctmal
computations based on the'standard conforming finite element method: with uniform or qua.sn

-uniform triangulations (such as the above considered trlangulatlons T;, © € INy). - .

) There are several ;possibilities for avoiding this situation. For instance, special elements or:

- special trial functions which model the singularities at the corner points can be included into
the finite element space. Another strategy is based on refinements of the underlying triangula-
tlons near the corners, A bricf discussion of these tcchmques is contamed in [6 8.4], see also
et o . . , .

We show that thie results of Section 4 (especially the yariant of Theorem 7 for the

spaces A3* ., and Remark 18) yxeld the followmg, in some sense optimal, asymptotic
' error estimate. N ’ 4 _ ' .
- Theorem 8: Lef f E W for.some m € ]No and 1<p =2 Then, forn 2 Ny, there

exist trzangulatwns T.* satzs/ymg property (1) from Theorem 8 stich that /or the solutions
u and Uy = ur « of (25) and (26) the estimate

ll— ol < Copn T2 ll/llw,m_ = o (T *) Hfllw, '-(32)
holds where 1 =min (m + 1,'k). )

-~

‘We outline the proof of this assertion. Without loss of géneralit\' letm + 1=k,
fandl <p < < 2 satisfy (30) (if the latter condition.is not fulfilled, then consider some
smaller p —e <P < p satlsfymg (‘30) and observe that the algumcnt given below

’ . s
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lea(ls to the lequlred estimates lf e>0is suffncnently small). Accor(hng to (31), we

_see that the solution u of (25) has e\actly the form of the functions (22) considered in

- Remark .18, where p, = p and .& = min Z;; = min 1/(2«),) 1/4. Now; choosing

N

hancl the mclusnon _ ] » ;
. R o, ’ '
u € B;’,’,*czok!: ={ve B"‘” k1. oblr =0} & Y. = Amizkn .

-where {ully <c¢ Iflliy, and, onthe other hand, that with this ¥, and X = ;‘2”[.1 an.

V‘ThlS actuallv proves (32) 1 ' S ' e

6. Furfher comments . \

EERN

p* such that 2/(m" 4 2) < p* < 2/(m + 7/4) and p* < p we guarantee, on the one:

analogon of Theorem 7 holds (observe .that (m +2) = 1> 2(1/p — 1/2) by con-

struction). This implies blle e\lstence of trlangulatlons T * satlsfymg property (i) from

Theorem 8 an(l

\
‘

e = g < cinfrfllu — oylx: va € c 8,0(T,%) S

=cn” (""“"‘)/2 lully < en=m+ 02 {fllyn, 7 Zn.

~ Remark: 20. By-some addltlonul arguments one can also show that under the assumptlons )
of Theorem 8 we have the L, error estimate :

-,

L I = iz, S e Ry S %h(T DUl T (33).
It should be mentioned that (32), (33) are known for p = 2 where the correspondlng triangula-

tions can be determined explicitly (cf. [11, 14], or [6: 8.4]). (

The appro'xch presented in the prccecdmg sections could serve, in some sense, as the methodical
basis for-dealing with estimates for more:general local approxlmatnon schemes. Bclow we
briefly discuss somé possible extensions and fields for further mvesbxgatlons

First of all let 'us point out that according to (4) (cf. Remark 3) the spaces A; y can cqui-
valently be described by the finite element L, best approximations. Descriptions of this kind

domams by spline and piecewise polynomial best approximations (see, e.g., [7, 8, 12,'15]).

‘The use of the representation (1), (2)'which is an m\u.logon of the Nikolskij representa.t,lon in
the tngonometrlc case-seems to be a new idea for analyzing spline and' finite element approxi-
mation-schemes in a unified and systematic way. The most important requnsntcs for such an

- approach are the existence of suitable locally supported systems of basis functlons tor the appro-

ximating subspaces (satisfying an analogon of dlLemma 1), and, in order to relate the (Approxi-
atlon) spaces by embedding theorems to the standard function spaces, e.g. to the Sobolev
spaces,’ incqualities of Jackson and Bernstein type for the best approximations with respect
to the approximating subspaces (Lemma 2 and 3): Imphmtly, this approach has been already
explorcd in [13] where nonlincar splme approximation problems (variable partltlons) have been

" considered for certain® spline schemes in one and several dimensions. .

The above theory can be extended, without substantial diffidulties, to finite elements of
type (k) in higher dimensions.’ A further possible generalization which is slightly more complicat-
ed’concerns the case of finite element schemes of higher smoothness order or “the case of iso-
parametric clements (see [2] for the corresponding definitions).

"Another interesting question is to relate our results to recent, research on spline systems and .
spline reprcscnt.ttlon% in function spices of Besov- Hnrdy -Sobolev type (for some results and

references, cf. [20: 2!12.3), [3)).

For uppllcatlons, it is important not only to include'more general clcments but to give esti- ‘

mates for concrete approximation proccsses used in numerical analysis.such as Galerkin-Ritz
projections or collocation-resp. interpolation methods for elliptic differential and integral equa-

tions. Let us also mention the problem of obtaining realistic bounds of the’ constunts occurmg‘ k

in the .nsymptotlc estimates.

. - - /
‘ MR

" .have been.used by.several authors for chara.ctenzmg Lipschitz and Besov spaces on special
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