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Es werdn mit Hilfe von finiten Dreieckselementen auf einem zveidimensionalen Gebiet Funk-
tionenräume vom Besov-Typ eingefuhrt unduntersucht. Diese Räume ermoglichen einen syste-
matischn Zugang zu den grundlegenden Approximationsabschätzungen fur finite Elemente in 
Besov-Sobolev-Normen, zum Problem der Approximationsverbesserung durch angepaBte Wahl 
der Triangulation und zuasyptotischcn Fehlerschitzungen für elliptische Randwertprobleme. 
BBCeHN u ncciegoaiiu uexoropiie 4yuluuloHa3IbHaie npocTpaHC'rna Tuna Becosaiia 
OCHOBe TpeyroJII,HMX H0I1e'IIILIX 3JIeMeHToB B lByxMepH0fl o6JlacTll. aTl1 npôcTpaucTsa 
nOanOJrnloT clicTeMaTu qecKu 110)x0)111Tb 14 OCHOBIISIM I1CBHCTBM TCOpitH annpoKcuMaunu 
Honeq IlalMIl ajieetiTan a HopMax IcJlaccon Tuna Becona-Coüoiieua, H npoüJleMe yiy'iIueflu1n 

•	11pu6JntxeHuu 3a c'leT noxóiiuero BhlGopa TpHallryJlnIlHu II ii oEeHHaM OUIHfIHH JIJ1H 
jIJiunTuqecKux HpaeBbrx 3aJa'1. 

•	•Certaih function spaces of Besov type based on triangula finite elenienth in a two-diniensiondl 
domain are introduced and investigated. These spaces allow a systematic approach to the main - 

•

	

	estimates of finite element approximation theory in Besov-Sobolev norms, to the problem-of 
improving the rate of approximation by-choosing appropriate triangulations, and to asymptotic 

- error-esiimates for elliptic boundary value problems.	 -, 

• - 'L'he aim of this paper is to clescrib some results oil fiiiitè-element approimation in 
Resoy-Sobolev norms. For simplicity, we concentrate on C°-eldments of type ,(k) 
over regular triangulations of a hounded plane polygonal domain. Starting from a 
finite element approximation scheme corresponding to a'certain sequence of quasi-

- .

	

	iiniforiii triangulations of G, we introduce a scale of approximation spaces yliich 
allow a direct approachto questions of finit element 5approximation theory. It tunis 
out that this scale is closely related to the usual Besov-Sobolev spaces.	-. 

In this way we are able to give straightforward proofs of some basic inequalities 
used in the finiLe element error estimation theor y . Moreover, sonic new results on 
improve(l-rates for nonlinear-approximation by finite elements with- "free" triangtila- - -- 
tion arc included. We close with a short discussion of applications to error estimates	- -\ 

/ for the finite' element method for elliptic boundary value problems. - -	-	 - -. 

J• Finite element approximation schemes and function spaces	 - S 

Let G be a hounded polygonal domain in RI and denote bSrd1 and a 1 the sides and the 
interior angles (0 < w	2r), m:espectiveiy. .A. finite set T 'of nondcge,nerate closed • •	tiiangles K- with pairwise disjoint interiors is called triangulation of G. if Y K = 0 

-	-

 

Mid if the intersection of any two triangles df T is either empty or a common vertex 
- or It common side (for the used finite element' terminology we refer to C1ARLT [21) - 

Set h1 = diani K, h = h(T) =max h, dnd r1 = max fdiani B: B K1, B. is It
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cirle}. The triangulation T is called y-regular and y'-quãsiuni/orrn if max {h,/r,} 

and max (h/r) }	y' (2	y	y' <oc), respectively. To any triangulation T of 

0 and. any fixed k € IN we correspond the ftnzté element space S(T) consisting of 
all (continuous) functio'ns on 19, whose restrictions to'the triangles K, are polynomials 
of total degree at most k. Let Q, j = 1, ...,	denote the usual Lagrange points 

• corresponding to T (cf. Figure 1); and introduce by the properties B' E St )(T), Tj B(Q) =	j, j' = 1, . . .,	the standard basis functions of S(k)(T). Cleailv,
MT ( = (link S(k)(T) 

-Let us mention- that any triangulation T induces in a natural way a partition 
of the boundary 0 of 0 and that Stk)(T) = span {B T.G : Q j € aG} defines 'the 
corresponding finite element spade on 00 with respect t.o'this partition.-. 

In the following we consider finite element approximation schemes {S(k)(T1)} 
generated -by a sequence (T i ) of triangulation of G satisfTing the properties (i € No) 

(a) S(k)(T0)	S((T	S(k) ( T +1)	..	 - 
• (b) Tj are y'-quasiuniform for some fixed constant-y'.  

•	(c) ci 21	M = M 1	c22°1for some constants 61 , c2 > 0.	• 

For instance, if T0 is any fixed initial triangulation of G, ' an'd the T(i E N) are 6b-
-tamed from T0 by standard dyadic, subdivision of the triangles (cf. Figure 2) then 
the corresponding finite element approximation scheme satisfies these properties. 
Furthermore, if (b) is fulfilled then (c) is also equivalent to	 . S 

•	 . (e)' c 1 '2 1 :!:^ h(T)	c2'2	for some constants c 1 ', c2' > 0.	 S 

	

Now, we associate to the above introduced approximation scheme some scale of	- - 
functjôn spaces. Here, and in the following, let 0 < p, q	oo, and L(G), 1, (lenotc. 

•	
. the usual Lebesgue space. Let s	0.	 . 

•	 Fig. 1. The standard Lagrange points for elements of type (k)	. 

.	 •0	'	 •	 ••	 • .
	 j.1	.5	

•	 12	 • 

	

Fig. 2. The triangulations Tj generated by dyadic subdivision	- 
J	 •	
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-Definition: A function / € L(G) belongs to A,,({Stk)(T))) en'A if there exists 
a representation  

•	 '	.a	 '	 S.. = ' g 1 ,	g €S(T1 )	 s	(1) 
1=0 

•	converging in L(U) Where "	...•	 .	-	- 

	

II{0IIp.q;8	II1 2i3 II9IL,}II1 < 00.	 .(2) 

In this case, set	 - 

	

II/II A a;k = inf {l{g i } .II p :q;s : {gj satisfies (1), (2)).	 (3) 

Remarks: 1. This definition o.f.A ,q spaces (8> 0) when applied to subspaces of trigono-5 
metric polynomials 'of order 2 on TN or to subspaces of entire analytic functions of most 
exponential type 21 on R N leads to one of the classical definitions of Besov spaces-on T"or &' 
(cf. Nnoi.sx1ij [10: 5.6]).	 . 

2. It is easy to observe that the case 8 = 0 makes sense only for 0 < q 6 mm (p, 1) 
where A isometrically coincides with L(G) (Q< p < 00) and C(0) (p = 00), respectively.. 

3. Introducing the best approximations E 1 )(/) = inf (Ill - 9I L9 : g € 8)(T 1 )}, i E N0, one 
shows as in NIK0LsKIJ [10: 5.6] that for 8	0	 .	. 

=. I(2"Ei (f)p}II iq + lit Iii,, X i/li A k	 .	 (4) - 

	

As'kp,q
(equivalence Up to constants depending' on p, q, 8 ,only) and that	ar quasiBaach spaces p,q

•	for all considered parameters (Banach spaces iff 1	p, q	oc). For instance, setting for ab- 
•	brevity x	and 6' = mm (p, q, 1) we have- lit + gui"	li/Il" - u gh" (f, g E X) for 

any of the above considered equivalent quasinorms and arbitrary values of parameters. 
4. Replacing (S( k)(T 1 )} by (a8 k (Tj)} we can analogously- define a scale of function spaces 

0A q({e)(Tj)})L* L(G) on the boundary of G. 

The next Lemma follows from the fact that finite elemenf approximation schmes 
have, in contrast to other approximation schemes, locally supported basis functions 
B 'l'	B 1 which are eay to handle with.,-

L ê mm a 1: Let {S(k)(T 1)} be a finite element approximation scheme satisfying pro-
pertie,s(a)—(è). Then, for any  

	

= E	€ S( k)(T.)	• i € No, • 	 •	' • 

we -have	•	 S	 ,	 '	 .	 '	 '	 S 

	

c3 :1g L9	;5 C 4 Ilg IllL,-	 '	 -	 (6) 

where  •	 /	M)	\i/p	 .	.	•	.	. 
-	S	 -	12_21	a iIl p )	,	 0 <p < co,	 . . .	- 

-	Ua.hIi =	' 1='	i	 .	 (7) 

	

max I a 1,i : - j . = I, ..., •]3f(k)}, • p	co  

(here, and in the following, the positive constants c (1 = 3, 4, ...) depend on the approxi-
mation scheme (more precisely, on k, c 1, c 1 ', (1 = 1, 2) and y') and on further parameters	-• 
such asp, q, s, ..., but are 'independent of i € No and of the fu?ction.s under con.sidera- . 
tion).  

Proof: In the proof we drop the indication of k in t!e notations. Observe that 
- any restriction IK	' a 11BaIK, K € Ti , coincides with some polynomial of 

•	:	 ):Q,K
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most tota1 degree k. Transforming . K by an affine map onto a fixed reference-tri-
angle K0 one shows in a standard way, that, according to (b), (c),  

Hg IIL9(K) X 12-EL E a17IPV'P,'	mx {Iae,1} 
j:Q,,eK  

•	(equivalence up to constants) for 0 <p < cc and p	cc, repectivel. Simniing 
up-with respect to K E T1 we obtain (6) I	S 

By Leal the following characterization of A nirn	 is obvious. 

Corollary 1: Let {$'(l)(T)}.satisfy. (a).—c). Then	 •. 

IItiI A Sk	inf {II{2	JIaj.JJj}Ij}	•'	
H T. 

p.q	 - 

where the ii'ifimum is taken with respect to all representations (1), (2) of the functionf 
(cf. (5)) is an equivalent quasinorm, on	for all possible choices of parameters. 

PIq 

Corollar y 2:Let0 <p <.p' :!E^oo,s>0,0 <q	oc, and s' =s-2(l/p—l/p').
Then we have the (continuous) embedd2ng8

'ifs' >0,	(8) 

L	(p <cc) A	C (p = cc) if s = 0	(9)

Proof. Re1tion (6) immecli'itelv yields a Nikolskijtype inequality 

IilL ' <c522lh1p-.1/p')i IIg;t9 ,	0 <p < p' < cc,.	•. 

• for arbitrary g i E T1); i € -N0. Thus, (8) as well as (9) (for p' I or p' = no) are 
obvious by definition of the spaces. Finally; the proof of (9)' for 1 < p' < øà can be 

• carried out by arguments as in [12: Theorem 7] I' - 

Remarks:' 5. The following more elementary, embeddings 

if 0 < 2' q, q'	, <s ' .< , 
A4c-. A4	 ^ .	if0<poo,0<qq'c,o,s>0,	 '(11) 

•	 A8p/q if0<p'<poo,0<q	>O 
can be combined with (8), (9) in order to obtain all possiblecases of cmbeddings between the 

•	above defined spaces.  6. Analogous results can be stated for the spaces dAn. For, we have to restrict all represen 
tations to the finite element spaces dS)(T) and their basis functions Mk) Bck?I 0 where 

E aG defined on the boundary and to make the changes in the exponc* nUl corresponding to 
the fact that dim S(k)(T) >,'2'.	 - 

We finish this Section by statingsome results on the trace to the boundary of 
•

	

	functions belonging to	According to [10: 6.41 and [1: 20] for our situation of a 
'plane polygonal domaiii.thefollo*inglefinition will apply. Let d = d1 be axiy. side 
of G ind fix some eloe(Itriangle k with d as its Si(le (vitlout loss of generality, 
suppose that d lies on the x 1 -axis and K in the upper half-pl.ane as' shown by ]figure 
3). Then, a measurable function h defined on d is called the trace of the measurable - - • ' funtion / clef med on 0 if, for some 0 <p < cc, there exists a function/ 1 defined on 

•	such that Ii = / a.e. on , /1 = h a.e. on d, the restriction of f to any segment..
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V	x2  

 Fig. 3  

d(x2) = {(x 1 , x 2) (xp x2 ) E ..R} is L integrable (x2	0) and 

limV	f 1f1(x , x2 ) — f1(x1,0)l P dx1 = 0 
x,+a+ aixi  

V where (x2) = Ix,:* (x 1 , 0) E d and (x1 , x2 ) € d(x2)}. Finally h defined on a G isthe trace 
V 

•	of f if h1d is the trace of f with respect to d for any side d ofG. The so-defined- trace 
V '(if it exists) is unique and docsnot depend (for f,belopging to some L space) on the - 

particular choice of the triangles . It will be denoted by O f. OVbViOU5lY, forcontinuous ..	V 

functions the trace exists and Of = flac .	
V 

Thebrem 1: Let 0< p, q ;5; oc, s > I/p. Then any function / €	has a trace 
V a, .€ aA' 1 ", and	 CII/II:k Moreover, the inverse statement also holds' : p.q

V

 

For. arbitrary h € aA-, iP I there exists a junction / € A	such that h	f and If IIASk 
• c7 IIflIØ A a—l1p :k -	

V	
V	 -	

V	

-	 V	 • 

Proof: The proof adapts the corres 'ponding argumentfrom the RN_ 	[10:, 
6.5—'61. Let / E A,s >. 1 /p; and consider any iepresentation (1),(2). Let d and P-q
be as above First we show that on the segments d(x2 ) the represent'tion	g 1 con 

. yerges also in L(d(x2 )) for-anyreasonable 2 ^ 0. For, observe that the tri angulation 
Pi induces on the segment d(x2 ) a certain onc-dime'nsonal partition with maximal - - • 

•stepsize c2. Thus, h Lemma 1 and its one-dimensional analogue, we have	- 

	

IIiII(dcz,)) 
V	

c2	
V	

E Ia. 1 I	c2' Ilg i lI PL, (12) -. -; -• -	--	 KET:K-nd(z,)*S Q,.,€K  

- and, thus,  -	 •	V	 - , : .	 .	 V 

00	 .00 

	

IJIIILP(d(Z ))	c' (21/P IIg,IILY	c II{g,}II	 / 

where'in the last stp we explored fhe elementary-but useful inequality  
• •
	 ;S c02_	II{2 i8ail i>n II 1,	 •.	 -	 (13)	-	V 

- ..	 which ho1cl with a constant independent of n € N0 and thb secjuec {a 1 } whenever 
—'oo•<b < s < oo and 0 < q,Vq'	 co. This shows the desired convergence,,-By (1')	- . -



.48	P. OSWALD

co 

and the above estimates it is easy to show that the limit function E g 6 (x1 , x2) = 
'/1(x1,x2), which isdefiñed forany reasonable .X2 ^0ond(x2 ) arid, therefore, on k, does 

not depend (in the sense of L(d(x2 ))) on the particular choice of Ahe representation	- 
(1),(2). Furthermore, Fubini's theorem implies that /I considered as a function on 
coincides a.e. with: f . Since the functions g i are co'ntinuous, for any n E N we can find 
.x2(n) > 0 such that for sufficiently small 0 < x2	x2(n) we have the estimates 

Y( , X) - fi( , O)IIaz) 
00	 00 

^ g,( , x2) - g,( O)II(a(Z))	i/n +	(IIg$Il,(d(Z)) + 'IgS,(d(o))) 

1/n ' +	 IIgIL9}I>flhJ	1/n +	 II{gi}II.p.q 

	

00
-	-	-	-.	

/ 

(cf. (12), (13)). This finally prOves that of = Z Og i = 	gilOG (convergence-in the 

	

1=0	s=0	 0 

sense of L(G)) defines the trace of the function / E- A if s > i/p. Moreover, from 
(12) it follows that	 .	.	/	 -• 

•	 . .	
. II2 3-	I g elIL;G)I1Q	c 1 1f2i, J j9i1jL, )jj1,  

.and by-definition of the spaces A and	we get Of E	as well as the con-



p.q

tinuity of the trace operator. 
'In order to prove the inverse statement., let h E aA IPk be given and consider 

-a corresponding representation 

-	Jo =	h, - h 1 =	E 08(T) = S()(T) - 
1=0	 - 

satisfying 11 (2i(8-1/v) II1iIILpG)}1Iq	c Ih IIaA 8_iIp:k Extending tie functions h to the 
- -	-	whole domain 0 by defining	-	pq  

d i . j if Q1, E 00,	- 
= E a, ,B,,	a, 

= 10/ otherwise ise 

we have Ilgdi, x 2-1/P I1h IJL(G), ag 1 = h1. Thus,! =
g i belongs to A (s > I/p) 

and satisfies 11111A8;k 	IhIJ8_;k. Furthermore, by our construction and the above - 
p4 -	- p4  

- -	- proved first part of Theorem 1 we have a = h I 
•	Corollary 3: Let Pc ao be a closed subset of the boundary which is the union 
- of (.some) segments contained in aT0 . Then, for 0 <p, q cc and s> i/p the sub-
spaces = {/ E A: Of = 0 on 1'} can equivalently be defined as approximation 
spaces A({S(k)(T1)}) (cf. the correspoiding definition above) where Sr(Tt) 

{gE S(k)(T):gJ r = 0), i E N0 . -	 - 
- Proof: Clearly, both definitions make sense and, obviousl y, A8q({Sp(k)(Tj)}) - 

a;k-* A.1. In order to establish the inverse embedding, suppose that s > i /p and 

- 1€ A, f = 0 on r, and consider any representation (1), (2). Let s	and 
define 	E Sr(Tn) by setting	- -	--	 . -	1=0 

=	
(n E N0) 

	

•	 0	 .
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Since, by Lemma 1 and (13),  
fco'•	\i/O	. 

Rg- -7 8-11L'_ 5 c2" I8 fl hIL9(r )	c2 1 ' I'iliIIL(r)) 

0	 c21P 11{2i/P 110L,}1>flhI,6	c2	II{23' II9eIIL 9 }1>flIJ	 - 

we get with the notation go = .1, g, =	n € N, from (1) (1) that the reresenta-



t.ionjZ g i , g i E S r ( k)(Ti) holds in the sense of L. Furthermore, we can estimate 

(cf. (13) and set s_	r_ 1 =O)asfollows:	., . 

I{ g i}1I1q.s + II(sa —  P . +	—	—i}l11g,s	

. 

c lif i(s_1IP) II{2'	IIgrHL)i.>iIIIo}I, 

	

- 
5: c 1{i11 28 IIg r!1L9}r >ll'Q}Ij	c I(9dII,1q,8	 S - 

Thus, / € Aq({Sr(k)(T)}) with the corresponding inequality for the quasinornis! 

Remarks: 7. Tleorem 1 and Corollary 3 enable hs to deal with finite element methods for 
boundary value problems. in particular, the.spaces	A({Sr(k)(T)}), s > l/p, are 
adapted to second order elliptic problems with Dirichiet conditions on the part F of the bound-	V 

V	 .	

0 

S. For 0 < s < i/p one can prove Aq(Sr(k)(Tj)})	A. 

	

V	 V	 V 

2	and Besov Sobolev spates	 -& 

In order to translate the approximation estimates given - below - in tens of 
quasinorms into the more familiar terminology of Besov-Sobolev quasinorrns we 
first clarify the corresponding relationships between the spaces itselves. 

For, the Besov spates on 0 we use the inner descri'ptiort by moduli-of continuity . 
•	(or, what i reallS' equivalent, by differences) as the basic definition: Let 0, < p, q 

• ^ 00, .5 > 0, and 1 € N be given. Then a functibn / E L belongs to the Besov spa,ce 
B',iff	 S. 

II/II8:1 - II/t, V+V II{2 i8(0 I(2_ i,1)p }II l .< 00 
P. 

here a(t, /) = sup fijzl' IIJL9(G): hI:!^; 1) is the total l-th order modulus of continu-
V	 ity of f in L (h = (h 1 , hi), IhI denotes itsEuclideañ norm, G,h = {x — (x 1 , x2 ) € 0: 

[x, x + lh] d 0), and	/(x) =	( ) (l)'- f(x l- ih)). From the well-known iO \.i/	 V	 0 

saturation properties of the moduli of continuity there ,follows that for s	I — 1 
+ 1f	 — (exept the case s . 1 — 1 + 116,-q = 00) this definition leads to the trivial 
class of polynomials of total degree smaller than 1 on G. Informations about other 
possible definitions and a lot of equivalent quasinorms can be found in, e.g., BESOV, 
WIN and NIK0LsKIJ [1] or TRIEBEL [19] fór 1	p,q oo and iii TRIEBEL [18, 201 
Mr the general case.	 0 -	

-	 V	 5 

The Sobolev-Slobodezkij spaces W, I	p < 00, S > 'O, are defined by

 

W m = {i € L, (G	 11I1L9 + E arn//ax m 3x m ilL9 < 

O	

04 

- Analysis, Bd. 9, heft 1(1090)	• -	
0	 V	

0	

•	 - 

f_S	 S	 -	 S 

I	 -
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for integer 9 = rn and by W = B for non-integer s > 0 (the integer' 1 > scan 
arbitrarily be chosen). We refer again to the above cited monographs, a detailed 
discussion of Sobolev spaces on plane polygonal domains canhe found in GRISVABD 
[6]: Let us mention that for p = 2 the Sobolev-Slobodezkij spaces can equivalently 
he characterized as Lebesgue spaces with a somewhat different definition (for details 
on these HP S.spaces as well as on the more general scale of Lizoi'kin-Triebel spaces 

we kfer to [18-20]). However, , for our.purposes itis sufficient to observe that 
the Soholev-Slobodezkij and the Lebesgue spaces are iniheciclecl betveen appro-
priate Besov spaces. To be precise, for 1 p < oo we have 

Bp.mincp.2>	Wp8; H	Bmax(p2),	0 < <1 ,.	 (14)

Sometimes we also use the elementary imbdding relaion 
•W" c +'B,	(1	p < cc, rn = 1, ..., 1) . .	 (14)' 

Assertions of this kind are proved in [19: 4.6.1, 4.4.2],'and [1: Theorem 18.91. As %' ve
 show below, 'these enibeddings are sufficient for obtaining most of the Sobolev norm 

estimates from the corresponding ones for Besov norms. Our point of view is that. 
1esov spaces are natural for approximation problems and more sirnple.to deal with. 

The o rem1 2: Let 0 <p, q < cc, kEN, and 0 <s <k+ ho (also s = k+  1/0 
:i/q = co) be given. Then B' 'A,and	 :ki l

 if  <1 ± i/p. 
Remarks: 9. The restriction s < 1 + I/p for the second embedding is natural because the 

difference properties of finite clement functions are characterized by wk+l( t , 90 X gl+i/P, 
- 0 (gi € $(k)(T)) if g i does not coincide with a polynomial of total degree	k. 

S.	10. As a corollary to Therem 2 w have for' k € N 
A , (0' p,q	co, 0< s .< I ± J/p)..	 . .	(15) 

p.q

•

	

	The proof. of Theorem 2 folk	in a standard way (cf., e.g., the considerations in
[12: Theorem .6]) froth the following two lemmas. 

Lemma 2: Fork E N, 0 <p < cc, and / E L we have the Jackson-type inequality. 
cswk_I(2_t, /),	'i 'E. N o	.	\	'	(16) 

Lem ma 3: Fork. E N, 9 <p	oo, and g, € S(k)(T) , i E No, we have the Bernstein-
type inequality	S	 . 

•	
cJik+I(t, g	£ mm {(t . 2i)1+h/P, 11 IIgIIL,.	0 < t	I	-	(17) 

and the inverse inequality (i € N0 )	. •(	 . 

Wk+1( 2 ', /) ^ c2''1P 
(r	

2T(l+IbEr(/)pO + 

Proof of Lemma-emn 3: Since the inverse inequality is a standard conseq uence of 
(17), we concentrate on' the case t ^ 2-i. in (17) (for t-> 2- the assertion is trivial) '_ 

• .	First consider any basis function B ,1 . Let 0 < JhJ	t	2- i . According to (b) and 
(c)' we have	 .	 .	 . 

^ c hi ma.	B-	c h12, x  E 
'I4 hk B(x)J	r=1.2 f1i DX,.	

11
J .

 -	 = o . '	 x  Gk+Ih\E; 

where E denotes the set of all those x € Gk,, , ,, for Nvh ich the segment [x, x + (k + 1) hi 
•	intersects at least one ideof some.triangle K E T with K	supp B ,j . Since mes B 

S	 .

(•
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:!9 ch 2 we obtain the estimate	 •,	
V	 -	 V 

iiJ k+lB j J IlL	= lzl hk+ iB ,J ll L,(E)	c(hl 2o)1+h1P2-2u1P 

which  yields (17) for g = B,, (cf. Lemma' 1). Now, let g 1 = E	€ 130)(T 1 ) be 
Vi 

:arbitrary. Since the sum	=	 a1, h!c + lB j,j (x), for any 'x € Gk +l,, consists

of .af mostc nonero summands, where t'heconstantc is independent Of j and hi  
•	.we can continue by	 V.	

V	 V I 

c 
V	

V	 3	•,	 V	 /	:-

;5 c(h 2 1)"" lla ,.Ii,	 ,-	 V 

V	 '	 c(h 2')P+' iig Ii, 0 < I hI < 2- i . L 

This yields (17), and Lmma 3 is established I 
Proof of Lemma 2: The idea is first to construct by-Whitney type estimates a 

piecewise polynomial function of total degree kwith respect to Tj which suitably V 

approxiniates tin 'L(G) but does not belong to C(G). After' this, it remains to smooth	V 

this piecewise polynomial in order to get a good approxiniant fronì S.'(T). The 
required Whitney ty'peestimate.read as foll&ws. Let 0 < p 

<V	 k € N0 . , For any 
V 

V 

triangle K €'T1, i € N0, and / € L(K) there exists a polynomial Pk pk(; /, K, p) 
• of total degree k which satisfies  

ill — PkIiL,,(K)	c1, 2' f 'iIh	i 11 1'%(K..,..) dh	 V	

-	 V	

•	 V 

V	

:	 V	

V	 hI2"	
V	

•	 'V	

V	 -	 4 

(with an obvious modification if p = oc). Since the term at the right-hand side of	V 

V 

VS V 

• V this inequality is equivalent to the pth power of the modulus of cobtinuity. of order 
k + 1 of the function fin L(K) (with £ = 2)this is only another form of the usual	V 

Whitney type result. For a proof, which covers the general case 0 <.p	oo, see	-. 

	

V 
SToR0ENKo.[16 ', 171 and the literature cited therein (the case of.,tringles reduces by	

V 

V affine transformation and , a simple extension argument to the case . of ' quares con- 
V	

V	 • 

- sidered in [17]). For 1 :5.' p	co there is a lot of further references, cf. e.g. [4, 81.	
V	 - 

- In the following we concentrate on the case 0 <p < co;the obvious modifications	- 
• in the notation forp = oo'are left to the reader. Defining, for a given function/ € L(G)	 V 

the piecewise polynomial function pp, (with respect to T) by pp(x) = pk(x; /, K, p)., 
(x € K, K €_ T,) we obtain	V	

V	

-	 V	 V	

V 

73 
=,Z 

j,	1.11'	\7	 -	 V 

/	PPI I,	 / - Pkv I,	P) L9(K) 
KET1  

V	 '	
V	

V	
V	

'c22' f	2 iiL\tiV'	.  
/	

—	 " ' Lp(Ak+,.) dh 
hi 2l KET,	 V V 

V *	 c22' f iIh /Ii L,(Gk+ , d' ^ CW^,(2', /)P,	i E N.	
V - 

V	

h	2'  
Moreover, by the definition of the differences this 'yields  

• /	- 22j f	kf lppP (C	dh	. '.	I •	 ,	
' 

V V	 , 

 

V	
V ^.c22' f (ii Ahkfh/if p(c k+ ,,) + iii	pp Ii 9) dh 

V	

,	 V V

	 -	 ,	 • ,

	 V 

--	 hj	 V 

^c22' f 	CWI(2 	/)P	V	 , -	 '	

•	 V: - 

V 

ihI2:'	,	.	,	-V .	 •	 V	 ',	 '	 V 

4 *	-	 .	 V	
VV	 .	 V	

-	 V



'	52	P. Oswu.D 
• •

Thus, inordertô finish the ar'gueit it suffices to construct a function g i E 
such that 

Ipp - g U	c f .IIhkpp jI jPLp(Gk+ , ) dh.	 (18) 

- For, we define q, b	 - 

= (n) 1 'E Pk(Q.; ; I ' K, p).,	j = 1, . . ., 1l1, 
s	 -K€T:Q,.,€K  

where n ij is the number of triangles K E Tj which contain the Lagrange point Q,,. 
Clearly, the n 1,1 are bounded from above by some absolute constant only depending 
on y'. Thus (cf. the. proof of Lenima 1),	 • - '	 .	 '	 . - 

IIpp - 'g II;	c	. (2:2i	Jpk(Q,; f, K, p)	g(Q1,)lP 

KET \	j:Q,.,€K	- 

C	2-2i E IPk(QI.1 /, K, p) - Pk(Q, /, Ku-, AP, 
deD	j:Q1.,€d  

where-D i is the st of all sides, d	3G of the triangles K E T i , and Ka; Kd denote 
•	 the two triangles in .T 1 for which d € D 1 is the comthon side . (cf. Figure 4). Now, for 

any ' h E &2, hJ	2- i , consider the set	..	 .	.	• 

K h {xEKd :[x;x+(k+ 1)h]	 •	 •	 S	 - 

K d. u K d , [x + h, x + (k + 1) h] Kd} 

Observd that there exists a measurable se,t	Kd (e . g . some 6losed triangle) 
such that més Hd ^ c2 2 where H d - {h: lht 5 2-t 'and Ed	K h} and, for any 
polynom ia l p of , total degree k, IIIIL,(4 ')	c IIP j IL9(K4 )• This gives,', when applied 
to	= Pk(; /, Kd , P)	Pk(, /, K, p), the estimates	 S	 -	 •	 • 

2-21 E	, /, K, P) - Pk(Q1 /, Kj, p)1P 

-	-•	 •	 -	

0	 •	 - 

	

-	 :s—^C I1 p I j ( K4 )	C,IIPp(Ed+)	c (mes lid)1 f 1k+Ip1P	dh  
-	

.	 -	S	 S	 •	

-	 H,,	-	'	-	 '	-• 

• 0

	 -	

c22 f IIhkpp1I;(( Kd.uxd_lk,,.,, ) dh	 -	 - - 
•	 -	 5	

-	 -	 .	 - 

Since, by construction of Ed c K+ h c (Kd u Kd_ )k^ i,h,.J hk ,+Ipp j (x) = (x), € E4 . , • 

•	
- -After summing up with respect to d E, D i we get (1) I 

Ed
Fig. 4
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• Coro1Iar 4: Let k € IN, 1	p < Co. Then, for the Sobolev and Leb'esgue spaces, 
the following ernbeddings hold:	'	--	 •' 

WP 8 ,	 A s: k ax 

	

P.M (p,2) if O\ <S <.k + 1,	 -. 

WP 
k^i	H' CL* w 8 11 8 if 0 < s < 1 + i/p. 

Relarks: 11. For p= 2 one has	 W	H2 H8; 0< s< 3/2. According 
to. Corollary 3 we also have H	A;SG A(S(T)), 1/2 < s < 3/2, where H' is the sub- 

•	spac of H' consisting of all those functions / with / = 0 on aa (or, what is equivalent for the 
indicated values of s,, the closure of (G) with respect to the H' norm).	-	-

12. Analogous characterizations in terms of Besov-Sobolev spaces can be given for the spaces 
•	defined on the boundary of C. -	 - 

•	13.- The proofs of 'Lemmas 2and 3 which are of independent interest remain valid also for 
arbitrary y'-quasiuniform triangula ,tion (with h(T) instead of 2). The case of more general 

- triangulations seems to be, in contrast to the corresponding one-dimensional results, more - 
complicated.  

	

• 3. Approximation estimates	 - 

in this section, we prove in terms of the above introduced A s :k	some basic
estimates of finite element approximation theory for quasiuniform triangulations 

• belonging to some sequence (T i) satisfying the assumptions (a)—(0). Although this 
is not 'the most generaI case-of triangulations we might be interested in the results 

• indicate that our approach might be very useful if dealing with finite element approxi-' 
ination estimates in various function spaces and quasinorm. \ 

Generally, denote by -	- 
E. = inf {If 

Sgjx• g € S(T)}, . fl € IN 0 ,	' '	•. 

the best approximations of f E X with .respct to S(k)(T). Here, X stands for some 
•	qtiasinormed function space on C.

	

s:k• Theorem 3: Let X =	and Y =	be g	 Y '—k 

	

given such that the embedding	X 
holds. Then E Uo )(/)x 15 c 122_T	Y, n+ € No, where a	max (0, .20/p — lip')). 

Proof: The assumption Y L* X yields s —s' — a ^ 0 (cf. (8), (9), and (11)). The 
cases — s' — a	0 is obvious since E(f)1	IfIIx (fE. X, n € NO ). For s — s'- — 

- > 0 we. introduce the intermediate space Y'	A T;; k (i.e Y -•-- F' c. X) and con-
- sider any representation (1), (2) of / € F'. Since, by (13),  

f — E g	12'8 lgIiL}> IL 

•	I-.	 c2_'	 , t 

	

II(g i)lp'.q;s-8	 . 
-'	we get after-taking the infirnum with respect to all thoe representations (1), (2) 

^ c2_	 c288'	II/Iiy fo,t any / E F I	-	• • 

Theorem 4: Let 0 <p,p',q, q'	a = niax . (0, 2(1/p — l/p')), and s, s' 
•	The?, /orany g € S(T), we have	-	 - 

-	 -	I28_8	•	"8' ± a —' s > 0, 

•	g1I'	S5 C 1 3 II9gk (n + l) max (01 I9' 1Q ) ,	s' •+ a — S = 0, 

	

•	
.-.	s'+,a_s.O:-- 

-	•	 •	 •
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• Proof: First observe that for g € S(k)(T) we have 

I	 n	1	 -	 - inf. {II{9i}inIIp4 ,8: g =	91	C41911A3;k.	 (19) 
1=0 J	 PQ	 - 

Indeed, consider any representation (1), (2) of g € S(k)(T)A and set = ,' g. 

	

n	 P.q
in+1 Since	= g - ' y j € S(k)(T) and IIHL9	jI{IIgIIJL9}1>I16	c2" {gj}p\q;8 weim 

	

I0	 -	 n—i 
mediately get (19) (for, consider the representation.g =	g +- (g + )). Finally, 
•by . tlie Nikolskij-type inequality (10)we obtain	I0	

0 

• II ' .	II'q	
0 

-	 II{2'	IIiIlLp}inhIIq;	 0	
/ 

—	 -'	 2n(8'+-8),	 s' -f--	- s > 
00,	

0 

	

c 1{2t8 IIIILP}1flIIQ (n + 1)max(0.IIq'_lIq),	s'. +OC - s	0, 

•	 /	 1,	 .	 S+x—s<O. . 

	

0	

•• 

This,together with (19),-proves the theorem. I	 - 

Now, let I(k): C(G) —> S(k)(T) be the interpolation projection defined by
J(k)/(Q(k)) .= /(Q),	= 1, ..., Mt).	 - 

0 

The apprximiition properties of this' projection are mostimportant for. collocation 
•	methods with finite elements. Moreover, in the finite element literature, inequalities 

• for / - J(k)/ in various Sobolev norms ire' as a rule, the starting point for investiga-
•	tions on error estimates.  

Theorem 5: Let Y.=	X=	where 0 <p, q, p', q" 00, 8,8' > 0 

	

p,q
(s — s' — N =f^ 0), be given. Suppose that s > 21p. Then, br any / E Y, we have	'. 
It	mn/IJx	ci,2—n(8_8'_a) Itlk, n € NQ .	 -	0 

O 

/	Proof: Consider any representation (1),(2) of / E . Y. Since s >2/p we have Y 
_ C(G), and this representation also converges uniformly. Therefore,	 ' 0 

O	 I(k)/_=	=	Ui+ g.,	
g. = J(k) (

	

g) E S(k)(T) 

	

1=0	 1=0	 o	in+i 

Thus, we can estimate	0	
0 

0	
• •	- I/	^ c(2n8'	+ 1I{218 IdILp}I>nIII.). 

While the second term in the right-hand side can be handled as above (cf. Theorem 
3), the considerations for the first term run as follows. For any Lagrange point Q,, 

M, • and any i =m + 1, n + 2,".. we fix some triangle K ,j ; j € T 
containing Q,,. Let us observe that, for arbitrary fixed i, the maximal' number of 
Lagrange points which corresponding triangles coincides is bounded by some abso-
lute constant. Since, obviously,	

0	

0	 •	 / 

•	 Ig(Q)I .	c tiJLoo(Kn.j;i)' ^ c21IP IIL9(K 1 )	•	 -	 '
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•	we obtain	 - 

I gnIILp —	
', ^ c28'	p 

	

InIIi	 / .	 S 

•	 ':	/	/00 •	)P)I1P 

•	 15: c2"(''2Ip)(' ( 
$	

' q (Q)1	 . 

• S

	 2'1P) (E. 11{22u1P iIL(Kfl.I)}1>Il::) 

	

^ c2H (
	

(E	
)	 S - 

•	
-	 —n(8—s'—P) 1{2i8 IIgeIIL9}1>nII1 

(with 2/p < < s, añd obvious modifications if p = cc). This yields th desired 

• estimate for the first term 	 'S 

Clearly, by Theorem 2 and Corollary 4, the results formulated in the Theorems of 
this section call no% be translated into estimates for Besov-Sobolev quasinoims. For 

instance, this Yields	••	 S	 • 

Corollary 5: Let k€N, 1 p,p' <oo and 0 s' <5 --a be given where 

•	s' k± 1,s' < 1 + I/p. Then, /or any /unction /E W 8	W8 ', we have 

c6h(T _'	II/iIw .	n E N0,  

and in the case s > 2/p also	 -	 0 

II - . J(k)/15 ^ c 17h(T)8_8 '	II/IIw9'	fl E N0.  

	

Proof:  By Corollary 4 we have	:5,- cE 1 (/), II/II y' C f lw,,' where 

•-	
y_!AaxP,	s<k+.1, 

	

148p 
min(p ) ' > 0	-	 s =k + 1	- 

•	Since s' < s - has been supposed, the assumptions of Theorem 3.and o are ful-

filled which yields the corollary (recall that h(T) x 2) I	I' 
•	 -	 The formulation of further corollaries, e.g. for Besov quasinorms or concerning the 

in 	inequalities' (Theorem 4), is left to the reader.  

Remarks: 14. Analogous statements can be given for the rate of approximation for fine-
tiOflS(lefiflod on the boundary aG when using the spaces	or for functions belonging to. 

-	 .s > i/p (cf. Corollary 3)	 . 
• 5. Corollary 5 is contained in [2: Theorems 3.1.4.6] for more general partitions but with 

so, ne additional restrictions-on s, s'. The results for Besov spaces (although they are closely 
related to those , for Soholev norms) as well as the approach via approximation spaces as. in 
troduced above seem to be new. The motivation for in'cluding the nonclassial case p < 1 
comes from applications to the approximation of functions with singularities (see the following 

• •

	 sections).' I 
• It should also be mentioned that the indicated ranges of parameters as well as the exponent 

(• - - ) occuring in the estimates cannot be improved. However, improvemento Cof the 
asymptotic rate of aproximaion are possible if we approximate by finite element functions 

	

with variable triangulations consisting of giyen number of , triangles (instead of approximat-	• 

itig with respect to a given sequence of triangulations). The use -of the tiiangulation a additio-

	

nal degrees of freedom leads to it crtain nonlinear approximation problem which will be dis-	• 

•	ci:sed in' the next section.	 'S	 - •	 -	 •	 '
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4. Nonlinear finite clement approximation (variable triangulations).	/	
.5 

One of the strategies for iniprving the accuracy of finite element approximations 
to make a proper-choice of the underlying triangulation, e.g. by adapting the tr i

-angulation. to the singularities of the functions-to be approximated, without essen-
• tially increasing the dimension of the corresponding finite element space. From a 

theoretical point ofview, this question leads to a cert a in nonlinear approximation 
problem, i.e. to cstimatesforthe nonlinear best approxiniations 

S	

- e(k)(/) = inf	inf J/ — gJJx •	-	-'	-	-	(20) 
S	 .	 Tn QES (k) (T)	 . 

where jT denotes the lumber of triangles in T. Below, these quantities will be esti-. 
• mated.i the case that / E Y c_* X where X = Y = A, and 0 s' <s — a 

(as a consequence of theorem  and Corollary 4, this yields the corresponding results 
for Besov-Sobolev spaces). Throughout this section, we suppose for simplicity that 

- the triangulations T, used in the definition of the approximation spaces are obtained
by the standard dyadic subdivision procedure from sonic initial triangulation T0., 

Following the idea in[3], instead of e n (k)(/)x we first consider similar nonlinear best 
approximations	 - 

-.	(/)X = "if {J!/ — gffx : g € 9(k)}	n € N	 (21)
where S(k)1s the set of all linear combinations of at most n arbitrary ba s

is functions 
i.e. g = '	' a ,1B E S(k) if a	0 for at most n pairs of indices (i,j). -	i=Oj=1	 S 

Theorem 6: Let X = Az., Y = A 8- 1' where 0< p- p' q, q' 00,0 8' <s - -- cx 
(a = max- (0;'2(1/p H up'))). Then, /or anyf € -Y,we have e,j (k)(/)x ^5 C1fl8'2 I/II}', •	n	no	 -	 S	 - 

•

	

	Proof: The case -,% = 0, _ i.e. p' ^S p, is a trivial consequence of Theorem 3. Thus,
I we concentrate on  <. p'. According to the asymptotic nature of the inequality it is 

sufficint to prove,ë(/)1.. c2_1181 Il/lb' for somc,sequence of integers n	c22r, 

•

	

	Let = -(2 ± e)/p,	'= ---s	, where e >0 will be fixed later on. Considci' 
any rpresentation (1), (2), (5) of / € Y; i.e.  

oo M1  
•	

-	 / = L' g, 
='	

' a 1 ,B 1 , where 11(2" Ila1..lIiIIi, < 00. 
1=0	t=0 ,=I	 . 

•	.	 For given r € No we define	 -	•	.	 . . 

-	.	•	
-	

if i >	and fae,,! f.5 c(/) 2flT ,	 •	- 

.-	•	• 
•	 a	- elsewhere. 	 •	- . 

•	(the constant c(/) > 0 will be specified below). First we estimate from aboye the • 

-	nuniber flrof pairs of indices (i, j) such that a'} ='0. By the above definition of the - 
•	coefficieta w have	

•	

S - 

•	-	 _	 •	M,	•	•	 - 

' M ± !' (c(/) 2T)_P E ja i ,j I ll •	 .	 • 
1=0	i=r-f-1	 -	7=1	-	 -5	 • 

--	 ^ c(22r ± c(/) P 2(2+T 
II{2 '	lI1IlLp}>TlIp)	 - 

-	
2r(1 + c(/) - P 11(2 18 IIg illi5)i>r)	C2	 - -	 -	• - 

by defining c(/) =; 
JJ{2i8 I9IlL}>,Il1 and -using once more (13).
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S	 -	 S 

On the Other hand, if we denote	 - 

-	.w	- 

	

' a  B1,1 and f(r) =	' g 1 '(E •S')), 
S	 S	 S	

S	 'S	

S 

then, for p'. < co, we can estimate as follows:	
0 

lit -	J{2i8	Yi(T)IILPS}IIlqS 
S	

S	 -. 

c.

 

<2(82/)(	Ja1JP'\'/P'	 S 

0	

,:Iai.,21+Prey)	/	Lr ii
iql 

•	
c (f)//P'2(1i.PjP')r	

OS 

•	 -	

S	 /. M 

12 i(8' -x	 21P'+fl'(1_P/P)) ( E a1fP)  
\j .=1	/	J,>r q ' .	

S 

S	
cc(f)'P/P' 2P(i_P(P')T 

• 11(2 '(8'+P '(1 P/P,))P,/.p	
q'P IP,

 

	

S	 P1P 2-P1P')T	 - S 

S	

x 2_r(3(fl'0_p1p')p'Ip)pIp' 
1I{2 18 lIilILp1irII'	

S 

S	

cc(/) 2-(3-)r :5c2_(8s)r. Ii{}Itp.q;s	S 

where the use of (13) in the above estimates requires a choice of e satisfying 0 < 

	

•	 < (s - s'	- I/p') which is-possible by the assumptions. The niodifica ,-
tiojis for_the case p' =	are obvious. It remains tp take the infimum with respect 
to all considered representations of / E Y U	 .	S 

Remarks: 16. The above construction also gunianteesa certain smoothness of the aproxi-
in,uits-: 1/(r)11	 r € N0.	 S 

17. The construction of the approximant.s really depends on /, .s, p, ind e, only. Thus, we get 
•	simultaneous approximation estimates for a lot of quhsinorms I .II, e.g. if O< p ' " q, q' 

•	and 0 ;5 8' _-c^ 80' where .9' < 8 - a . is a fixed roil number.	 -	S 

The above result partly holds for s' =s — a, too. 
Now, let us show how the considerations can be slightly mbdified in order to esti-

mate the quantities (20) and to get sonic further information on 66 underlying tr i-

angulations. The idea is to p1e that for the function /(r) introdu'ced in the proof of 
Theorem 6 there exists a centain , triangiilation T' of.G intooat most c22r triangles 
tich thit •f (r) E S(k)(T(r)), r E N. Furthermore, it can be shown that the T(T) are 

yreguha-r for sonic y :5: cy ' ..	 S	 S	 S 

Theorem  7: Let . 0< p, p', q, q' ^S oo and .0 i—,s <s —. a where a = max (0,

	

:	2,(1/p - l/p')). Denote X = Az., Y = Ax,- and consider any /€ Y(L+ X). Then, 
for .n	__ Ai0 ), there exist triangulations T* and finite element functions 	€ 
S((T*) satisfying the following properties:	 5- 

S -	 5 

(i) T' consists of at most n triangles and is .y-regular for some constant y ^5 i9Y'• 
Furthermore, h(T*)	112.	 S	

5	

55 

(ii) pCk)(f)vs	Il/ - NIX	C271-(8-8'u/2 IltIly-
 

(iii) 1jI	^ C. 11/11i;-'	
.	S	

-	 S Proof: We consider the functions /(r) defined in hc proof Theorem 6. For the 
construction of the corresponding triangulations T(r) we introduce the .following



Fig. 5. The construction of T M

0) 

P: OSWALD	
0 

• terminology: Let K € Tj for some 1 6 N0 and put-T_i = T0 . The unique triangle 
.K' € T_ 1 containing K we denote by P-'(K), and by F(K) we denote the set of all 
triangles K" € Ti ,, contained in' K (thus,P 1 (P(K)) = . K). Let O(r) be the set of all 
triangles K either belonging to Tr or satisfying, for.somei > r, the following condi-

• tion :.K € T) and there exists some j' such that	0 and K supp B1.. 
Now we construct in a canonical way a new set of closed triangles 0	0(r)

• satisfying the following propertis: 
1. If K € ë(r) , then for some I = 1(K) L, r we have K € T. 

•	 2. If K, K' E	), and some sided of'K is contained in some side dof K' (i.e. K and 
K' are neighbors or coincide), then 0	1(K) - i(K')	1. 

3. if K € 0(t) , then'P(P_ 1 (K)) c	too.	 . 
For this reason, define 10 r by the requirenients T n 0(t) = 0 for I > i0 , and 

n 0(t) = 0. if i0 =r then 0(r ) = (r) =	= TV). If j0 >, r, hn put	= 0'8. 
and construct by induction 0,-. .;0(r ). Theinduction step conists in the follow-
ing procedure: Let 01(t) be already defined for some 1 = 10 , .. ., r + 1. First extend	- 
0(r). by adding all those triangles K' €	\ 01( for which there exists some tri-



angle K E T i (r) possessing a common side with K and satisfying P(K) 
This extended set of triangles will be denoted by	After this, put 

= O) u(u((P'(K) uP(P'(K))) K € Q(r) n T,)) 

It can easily be observed that (r) Or (r) satisfies the properties 1-3 from above 
(Figure 5 illustrates the construction for a fictive set 0(t) with i0 . = 3, r = 0 where G 
is a square and-T0 consists of two triangles as indicated). 

.Furthermore, if 1(T) and 7i,m denotes the number of triangles belonging-to 0(t) 
fl Tj and 0(t) n T (i = r, r + 1, . .., ia), -respectively, then according to the above 
construction and to the estimates of Vr in the proof of Theorem 7 we get for the nuni, 

6 0)	 •	
910)	 .• 

kY/H kZHT1. ki71 
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,bei' i;of triangles* •' 

7n r	
1•	 1•	i.	•	 S 

•	 •	 =' n"	c(2T),+ j'	(r) 

-	\	i=r+1 j=si 

•

	

	

+ E (i - r) c(f) 9 2(2 + e)r 21(8p-1)

i=r+I 

'N	c22r(1 + C(/l' II{2 IIYI1L,}1>4I,)	c2	 • 

Now, in order- to define T(r), we consider all those t i: iangles K' €	which do not.
contain triangles K" E (r) with i(K") > i(K') but possess a neighboring triangle 

- -

	

	K with i(K) > i(K'), i.e. there exists some -K €	such that K' ii K '= d is a side
of K and z(K) = i(K ) + 1 (cf. piopeity 2) Such triangles K ill be subdi ideci into 
2 or 3'or.4 new triangles (which will be added tO	>) in such a way that, aftth' delet- 

	

•	ing from T) all triangles which are further subdivided,' we obtain a triangulation 
(cf. Figure 5). This triangulatioii is the 'required' T. Obviously, /( T ).E $(k)(T(n)), 
and Tin consists of at most 4ir ( c22r ) triangles and is y-regular for some y	cy'.
This proves (i), the  statements (ii) and (iii) are contained in Theorem 6'(cf.' Remar k 

' 16, too) I 
Remarks: 18. For 0 < p < p' ^ , the asymptotic estimate (ii) improves the estimate' 

	

•	from Theorem 3. More precisely, for approximating a function I € Y	X by' finite element,- 
functions with respect to the' quasinorm of X, a proper choice of the triangulation gives an 

, • improvement of the asymptotic rate of approximation by the factor n" in comparision with' 
the corresponding approximation On a quasiuniform,trianulation' with the same number of 
triangles (as above, oc = max (0,'2(1/p - l/p'))). Thus, in applications to a pproximation esti-
mates in 'X = Ax., we should be interested in verifying /S€ Y = where s is as large as - 
possible. For this reason, p,can be taken arbitrarily small but satisfying the imbedding IC -4. X. 
Such a situation is typical for i functions with singularities. For intance,,let  

/ = to	( 
r7 j ' in (r7 )Jfli via(97i)	 (22) 

where / € W;r1 , pi are local polar coordinates (cf. Figure 6) and	€ C0°°([0,co)) cut-off 

	

P.functions with respect to the corner P, j =1, ..., N. Furthermore, 1jj € C([O,w]), and',	•.	 • 

fl7 g	0 a, e real constants. It can easily be checked that for _p	Po satisfying the inequality - - - •	 mm (ji) 5. k+ 1 - 2/p we have /€ Bt:	= V. Then, fora given X =	 can' 
• • estimate e0(k)(/)1 C (k+18')/2 

1111. n ^ n0, whenever Ic ± 1 - s' '> 2(1/p - 1/p'). Thus, 
when choosing the parameter p,, we should satisfy the inequalities Ic + I - s' + 2/p"> 2/p 
> k +1 - ' and p p0 .whichis possible iff mm (, Ic + 1 - 2/Po) > s"— 2/p'. This result 
covers, for instance, the particular but important case 0 < p	p' = q' = 2, s' = I 'which will 
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be applied with some modification in Section 5 below: 
e,,U1(/) 111 ^S cn—k/ IIfIIy= 'O(n.—k12),	fl -+ Co.	 (23) 

Thus, by defining appropriate triangulations, it is possible to approximate the functions (22) 
•	\\vhich are not Sufficiently smooth in the L2 sense with asymp,totically high accurracy in the 

ènergy norm (as well as in other 'norms based on L2 smoothness).  
19. If one needs results for functions which vanish at part of the boundary (e.g. for H8) the 

analogous theory for can be applied without substantial changes. To this end, use the 
description of these spaces given in Corollary. 3, cf. also Remark 8. Some special cases ha'e 
been already discussed without; detailed proofs in [5].	..	'. 

5.Finite clement error estimates for elliptic problems in plyonal domains	- 

For simplicity, let us consider the Poisson equation.-- 

-	='/	in G, 	1( 24) 
U 0	on F 'AG; au/a,.= 0 oiaG\FJ 

With homogeneous J)irichlet and Neumann boundary cQnditiuns on I' and 5 ac \ I', 
respectively, where F is assunieci to be the union of some sides d1 of the polygonal 
domain G (hence, the value w 1 = j is allowed, cf. Figure 7). Suppose that P + ft - 
r Il1 e model problem (24) POSSCSSCS a unique' weak solution u = u1 € H 11 = {v € I-I': -, 
av = 0 on;'F} under rather general assumptions on / (say, / € L, for some p > 1), 

a solution of the problem:  

NW7W7	 C 

W5 

P5 

Fig 7
 

'	-Find u E Hr' such that a(u, it) = (/, v) V v.E H 1'	 ..	(25)
where  

.	.	
I 

f
/au-av	&i a\ 	 fa(u,v) =	 I'--+---ldx,	(f,v) =/vx.
 a1	ax, bx21	•	 -  

-	G	- 

For a given triangulation T of G, denote by	 -•	.	 . 

51(T) 
= S'(T) n H)	{VT € S(T): v rlj' = 0} -	- 

the conforming finite element space corresponding to (25). Then, the 'finite elenient. 
solution of the problem (25) is defined by: ' ..	- . • S	 S 

-	 Find UT E S 1(k)(T) such that a( T, VT) = U, VT) V VT € S1(k)(T) .	'.	(26)	.1 

•	
.5	

5
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The well-kriovn Lax-Milgrani theoreni implies the unique solvability of (26). Mre-
cver, by the Cea lemma we have 

lu	UTIIHI ^5 c(G)inf {Il' - vrllH . : VT	Sr (T)}	 (27') 

an(l, by the Nitsche-Aubin lemma, also 

lu	UTllL	c(0) 11U - UTIIHI( sup	inf	lug - V7'lIH l\ .	 (28) 
•	 \IIDz,, 1 VrESF( Ti  

where u denotes the solution of(25) with respect to the inhionioenity g E L2'in:' 
•	stead off (for these results, see [2: 2.4 and 3.2]). 

Thus, the inequalities (27),-(28) reduce the problem of error estimating in,the 
energy and L2 norm to the study of certain bes approximations. First we discuss the 

'application of the standard results of Section 3. Consider T = T, i EN0 (for sim- 
'plicity, suppose that each Corner paint P, of G .already coincides with the vertex of 
some triangle belonging othe initial triangulation T0 , cf. Figure 7). According to 
(27) (28) the relevant best appro'cim'ttlons to be estimated 'tie 

L (v) 41'L	inf {llw - vIl 4 1.k: v 1 € S 1-(T 1 )},	 (29) 
'22 

where w = u = u1 and'w = u0 (for-g E L2 ) belongs to Hr'A.1' . Thus; the results 
Of Section 3 apply and lead to 0(h(T 1 )') error estimates for i--k oo with some t >O 
if we can prove regularity properties of the solutions of (25). A detailed investigation 
of the regularity theory for elliptic problems inplane polygonal domains is-given in 
(4RIsvARD [6]. For our purposes, we quote fronL [6: Theorem 5.1.3.51 the following' 
assertion:  

Let f'€ ,W m for some I < p 2 and mE N0. Set 0 j = 0 or 0 j = 42 if on the 
sided1 Neumann or Dirichiet boundary COfl(litiOfls are given, respectively, j = 1, . . ., N. 
Furthermore, define' numbers 1 E N, by = (1 - 1/2) 4w1 OF, A( = 14w 1 in 
dependence on whether or nof the type of the boundary conditions changes at P1. 
Then, if the condition

	

- mci, - 2(1 - 1/)w)/	j = 1,..., N	(30)

'is fulfilled, the solution u = u1 of (25) can be represned as 
R 

S •
	 U	Ureg + 2'	E	CI .IS .I	 "	._	 , (31) 

j=i 1,.<m+2-21p	 - 

Ureg € Wm+2,	llurcglIw^i	C ll/IIw9"	C1•j € IR,	' l C ,jl ^c llf!!vpm 

and  
Cos 

S,(x) = ,t(x).rAJ.1	='.• -	
if ).	.. 

3 .	•,	 /	'	cos tin	- w1 sin t .	if	E Z, 

wheie,as above, 7, 1 , 9) j denote'the local'oIar coordinates andjt 1 the cutoff functions 
corresponding to P1 , j= 1, .. ., N.  

This result shows that, in general, the solution u of (5) belongs to W,8 only for 
small a. According to [6: Theorem 1.4.5.3] the precise restrictions are  < s = min 

(2/p ± )) and s rn ± 2: Further results of this type , for elliptic boundary value 
pr(Thlems are eo11taiflc('in KUFNER and SANDIG [9]. 

, In order.to illustrate this situation, we shall consider a 'L.shaped domain and mixed bound-



ary conditions as indicated in Figure 8 (1' = . 00  \ d1 ). For this example we have A,, = 1/3,
= 2, j = 2, .'.., 5, and A8 = 1. Checking the assumptions to be fulfilled for the representa-

-	 I
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P3	P2

uO 
u-Oj

	

au 0 .	 .	 - 
•	 ,.	 , p1	p6 

/ u-O - 
-	 . Fig. 8. Example of an L-shaped domain with bound-

P4	P5 	conditions  
u0  

tion(31) inthecase m==O(ie for/ELy 1<p2)weobtain' 

' U- *	k1.11. 	6/5 < p . < 2,  
T Ureg + 

10	1 <p < 
This immediately yields uE W2 for 1 <p < 6/5and'u E IVP8 fore <2/p + 1/3 and /5 5 p 

2. Now, by the results of thepreceding sections we can estimate the quantities (29). To-
gether-with (27), this yields	.	 .	. 

Ju	UT ,1111, :5^ cEI(u)I,k  
2.2I'  

,	•.	 .	

.	 ^	J 2 i(2_1 '_ 2 ( h i'/_ h I2) ) , IIuJIy9 ,	I < p"< 6/5,	' ..	, 
l2_i(81_1_h,'2)) IIu lIw . , 5< 2/p + 1/3, 6/5 < p ;5 2,	. 

0	

iti .	 11(	
Jh(T 1 ) 2(I - 1 /P ) , 1 < p < 6/5, 

-	 -	9th(T i )1/37c, 6/5  	2 
Analogous considerations show that for m € N we generally have	.	S 

IJ U	urjl jp	c2 1 ") IIIIIW,	ch(Tj)113—t II/IIWm  

where e-O is arbitrary, i € N. Thus, due to the corner singularities (here mainly to that at 
the corner P1 ), the asymptotic error estimate in the energy norm is far from the -theoretical 
possible O(h(T 1 )') estimate where 1 = mm (k, m ± 1). This effect is also present in practical 

' computations based on thestaidard conforming finite element method with uniform or quasi-
uniform triangulations (such as the above considered triangulationsT 1 , i € N0). 

There are several possibilities for avoiding this situation. For instance, special elements or 
- special trial functions which model the singularities at the corner points can be included into 

t-he'finite element space. Another strategy is based on refinements of the underlying triangula-
tions near the corners. A brief discussion' of these techniques is contained in [6: 8:4], see also 

• '
	 [21].  

We show that the results of Section 4 (especially the yariant of Theorem 7 for the - .	spaces A.r, and Remark 18) yield, the following,-in some sense optimal, asymptotic P.q
error estimate.  

Theorem 8: Leif € J4' for. some m € No and 1 <p 2. Then, for 	n, there
exist triangulations T0* satisfying property (i) from Theorem 8 sfch that for the sot utione 
u and u 0	UTe of (25) and (26) the' estimate	:	• -	 •	 .	 . - 

IIu- Ujj'	C22fl_2 IIfIwm ;5 c0h(T*)z IfIw,	- 	(32) 

holds wherel=-min(m'.-l- 1,'k).	 - • --	 - 

•	 We,outlin the proof of this assertion. Without loss of generality, let m + 1	k, - 
and 1 < p	2 satisfy (30) (if the latter condition. is not fulfilled, then considei some 

-, -	• smaller p - e < <p satisfying (30) and obserse, that the argument given below -	- -
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leads to the - required estimates if e > 0 is sufficiently small). According to (31), we 
• :	see that the solution u of (25) has exactly the form of. the functions (22) considered in 

Remark 18, where Po = p and	= nun A j, , ^i nun 4(2w ) ) ^! 1/4. Now; choosing 
p* such that 2/(m + 2) <p* <2/(m + 7/4) ad p	p we guarantee, on the one
hand, the inclusion 

UE Bk,1 = {v E Bj'" avl = O} -* Y = AJJ' 

where I1uIIycII11I v9 and, ontiie other hand, that with this Y and X =	an, 
•	analogon of Theorem * 7 holds (observe that (m + 2)	1 > 2(1/p - 1/2) by con-



struction). This implies the existence of triangulations T,,* satisfying property (i) from 
• Theorem 8and	 .,	 .	 . 

Ilu - unllii	C inf {lIu — vnllx v,, € S()(T*)} 

cn(m+-1)I lully ^ Cfl—(m+1)12 Il/Il w9",	 -no. 
This actually proves (32) I	 - 

•

	

	Remark: 20. By-some additional arguments one can also showS that under the assumptions 
of Theorem' 8 we have the L2 error estimate  

•	 lie — US IIL,	c23n ( 1 + I )/2 l1111w, ^5 C 3h(T*) 1 + 1 1I11Iw.	 (33) 

It should be mentioned that (32), (33) are known for p = 2 where the corresponding triangula-
tions can be determined explicitly (cf. [11, 14], or [6: 8.4]). 

6. Further comments  

The approach presented in the preeeeding sections could serve, in some sense, as the methodical 
basis for-dealing with estimates for more general local approximation schemes. Below we 
briefly discuss some possible extensions and fields for further in'vestigations. 

First of all let us point out that according to (4) (cf. Remark 3) thespaces A,.can equi-
valently be described by the finite element L, best approximations. Descriptions of this kind 

- have been. used by. several authors for characterizing Lipschitz and Besov spaces on special 
domains by spline and piecewise polynomial best approximations (see, e.g., [7, 8, 12,'l 5]).. 

The use of'the representmtion'(l), (2)'which is an •ai\alogon of the Nikolskij representation in 
the trigonometric case-seems to be a new idea for aralyzing spline and finite' element approxi-
mation schemes in a unified and systematic way. The most important reqLiisitcs for such an 
approach are the existence of suitable locally supported systems of basis functions for the appro-
ximating subspaces (satisfying an analogon Of rLemma 1), and, in order to relate the (Approxi- 
mation) spaces by embedding theorems to the standard function spaces, e.g. to the S,obolev 

• spaces,' inequalities of Jackson and Bernstein type for the best approximations with respect 
to the approximating êubspaces (Lemma 2 and3). Implicitly, this approach has been already 
explored in [ ,13] we nonlinear spline approximation problems (variable partitions) have been 

- considered for certain'splihe schemes in one and several dimensions.	 - 
- The above theory can be extended, without substantial diffi8ulties, to finite elements of 
type (k) in higher dimensions:A further possible generalization which is slightly more complicat- 
edconcerns the case of finite element schemes of higher smoothness order or the case of iso-
parametric elements (see [2] for the corresponding definitions).	 - 

Another interesting question is to relate our results to recent research on spline systems and 
spline representations in function spaces of Besov .Hnrdy . Sobolev type (for some results and 
references, cf.[20: 212.3], [3]).	 •	 , 

o FOr applications, it is important not only to includc'uuore general elements but to give esti-
mates for concrete apprOximation processes used in numerical analysis .such as Galerkin-Ritz 
projections orcollocationresp. interpolation methods for elliptic differential and integral equa- 

•	tions. Let us also mention the problem of obtaining realistic bounds of the'constants occuring' 
in the asymptotic estimates,	 •	 •	 •	 -	

• /
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