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The Bergman and Szegö Kernels for Separately Monógenic Functions 

P. CONSTALES  
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Es werden die Existenz des Bergman. 'und-Szegö-Kernes für separiert monögene Funkt.ionen 
in der Einheitskugel bewiesen und explizite Reihenent.wicklungen für these angegeben.' 

,LoHa3I,lnaeTeH cyluecruonaulle nep BeprMalla n Cere (JIfl oTe.IbHo-MoIIoI'eHHhIx iyiriuiif' 
it ejiLIn'nIo11 ivae.ii IlpI4noJl.nTcn ux BRibe paa.noHeHiIe B PFIA.

S 

The existence of the Bergman and Szego kernels for separately monogenic functions in the unit 
ball is pro yed and explicit series expansions are,obtained for them.	 S	 S 

1.. Preliminaries. Let n E N and let .	 S 

-	•S	
Jtfl _J{d	...	Rv	-	.	S	

..	

(1.1) 

he an orthogonal decomposition, where the d i are integers larger than . If Af is the 
Clifford algebra constructed over a real quadratic n-dimensional vector space, we 
can generat& itfrom an orthonormal basis (e 1 1 , . ..., e, e, ..., ................ cfl of . 

"Rn , where each set (e 1 ..., e) is an orthonorinal basis of a term in (1.1). To do so we 
dfiie the geometric product by the relation ej em" + emkejt = 2&kjm- Then A is 
a "-dithensional real associative algebra with a basis consisting of all products of 
different basis vectors e, taken in some fixed order. A trace A - II . : a -- (a)o i5 
defined by taking the coeffièient of the empty product in the linear combination of 
hàsiselements that represents . An involution A	is defined on A by .the axioms 
± = + , 8	, e = —e1 ,	 if 2 € K. A norm in A is given by 

I1-J02 = 2(a)o; we will often write H for	rlhe point x = (x 1 1 ,i..., x, x12....., 
S	 p	 d 

x 5 ) E it" is identified with E x, where xi = Z xj ie ji, so it" can be viewed as a sub-
• ' space of A. 

• •	• • The classical Cauchy-Riemann operator	is generalized to D =	 S 

S	

p	
-.	 o S 

_Y .Di . we also write D for	D. A function I E C'(Q, A), Q	it" being open, is called 
S	 S	 S 

•	monoge n-ic if DI = 0 holds in Q and separately nibnogenic if Df, = 0 in Q for i = 1, ..., 
p. Monogenic functions are a generalization of holomorphic functions of one complex 

•	variable; separately monogenic functions generalize holomorphic functions of • 
several complex variables. We refer to [2] for monogenic and to [3] for separately 
monogenic functions.	 • 

Function spaces having a reproducing kernel are of great relevance to function'. 
theory Certainly one of the most important examples of them is given by the space, 
of square integrable hojomorphic functions in the-unit ball of C" (see [7]).- We will 
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examine the case of separately monogenic functions in'the uni 't ball cf R. For the 
case of monogenic functions the reader is referred to [2]. Throughout this article we' 
shall use the notations and the results of [3] for separately monogenic functions.	•-

2. 'Existence of reproducing kernels. ML2 (B) is the right Hilbert A-module of all 
S	 monogenic functions f 'defined in the unit ball B. 6f li' such that	- 

IItIIfLi(B) 

=	

1111102 dV < 
V.

	

B 

	00, 

given the inner product (I, g) = '(l/V)'f Jg dv, where' V. is the Lebesgue measure 
B,, 

'of B. Similarly, ML2(B) is the right'Hulbert-A-module of all monogenic functions 
definedin Bh such that' -	 '	-•	 S 

IIIJhIL (SB,,) = lim-- --- f ]It(ru )JIo° dS < 00, 'rI W, J	 5 

with inner pioduet (/, g), lim	f (Jg) (ru) dS w being the area of S' 
•	 'S	 r-^i Wn	 - 

- '	 s,,-'	
'5	 - 

' 'Assuming 'a given decomposition (1.1) such that d 1 >2 for i	 we may 
•	consider the space SM(B) of separately monogenic functions defined in the unit ball. 

	

-.	
5	

Definition 1: The L spaces associated to the separately monogenic functions 
in the unit ball B,, of R" are SML2(B,,) ='ML(B,,) n SM(B,,) and SML2(B,,)' 
r=ML2 (u3B,,) ii SM(B,,). 	 '	 S 

The S;ego kernel for moi1ogenic functions, i-.e. the reproducing kernel for ML2(B,, 
is explicitly kn&.vn to equal (see 5 [2]) SML,B,,)(U, 0 = (1 + ui)/I1 + uIV'. We can per-
form the canonical expansion	-	 '	 •' 

SML (B,,)(U t) = ' P IL (B,,)(U 1),	 (2 1) 
.k=O  

where, for all k, PkM J (B is a monogenic polynomial of degree k in u By the ortho 
'gonality properties of spherical monogenics (see [2]) the polynomial Pk,.%fL,(aB,) must 
be the reproducing kernel for-the subspace ML2.k (3Bfl ) of hdmogeneous monogenic 
• polynomials of degree k in ML2(B,,).-In [4] ML2 (B,,) . and 'ML2 (eB,,) were shown to 

• -	 be right 'Hilbert A-modules with' reproducing kernel, by establishing, for all £ E B,,, 
• the existence of positive constants 'Ce, C( such that the estimates	,	• 

]It(t )1I	C 1/JIML,(B )	and	111(t)fl0 ;5i C llt1L,ii (B,)	 (2 2) 

hold for all monogenic functions defined in B,,. Furthermore, these constants can be 
chosen to depend Smoothly on 1, so sup'Ct and sup C' are finite for all compact 

tEK	-IEK	• 

subsets K oLB,,. By the very definition of SML2'(B) and SML2 (B,,), similar iiieuali- - 
ties hold for them; invoking [2] and Weierstrass' Theorem (see [3]) we, get 

	

S	
Theorem 1: 'l'hé spaces 'SML2 (B,,) and SML2 (B,,) are right Hubert A-modules-

with reproducing kernel.  

	

S	 •	 -	

•	 I-
- - 3. Series expansion of the Bergman and Szegö kernels. We now try to obtain a series 

expansion for .the reproducing kernels. This leads us to define on R e -a oordinate 
system associated to the chosen decomposition, as follows. Take the usual polar.



	

The Bergman and.Szego Kernels.	99 
•	 V-	 V.	 .	

. 

coordihates on each 
R' i and ball them r,, u4 where u4 stands for the (d, - l)-,dimen-

sional spherical part. Then clearly the set (r 1 , u', ..., r,	is 'a coordinate system on	- - 
R The following lemmas group some compiitatións required later on 

Lemma 2: The surface average Of JJ r, 1k, is given, by	- 

1 ffi r 21" dS	( JJ(d I/2)k) 1 (n/2)k±..±k,
 

where /or a E It andk EN, (a)k stands /or JJ:(a + j - 1).. •	 . 

Proof Consider 1 =f ( r) exp( — r 1 2 -	- r 5 )  dV As 
Rn 

i = ( 

fr1	+ 2k e'q) (—r ) dr ( f / r2ki dS) 

where r-=	±... + r;2 is the polar distance. on R; we find	 .	V	 . .. 

- / I = 1/21'(n/2 + 	L) f/1d8 

On the other hand,
/ 

I = fl ( 1 r1 k ep (—r 1 2 ) dV,\ 
Rdi /	 - 

= (  f r+_ t exp (—r 1 2 ) dr, f dS) =i	 + k) 

00-.	.	•-	0•.•	-•	 .	.	.	-V.	 •	 •	 •	 V., '. 

whence - .	.,	.	.	V •	 .	 ,-	 . 

f

TJr 2k	 f	k) F(df2 +\/(I'(n/2 i-E k
1=1	 • \=-,	T(d1/2) - )/
	

r(n12)	/ • V	 • . 

-  

W the sequel we will put -	.	 .	.	•	. .	 -	• 
1 ffl r 2 dS.	 .	 .	 (3.1),
3n 1=1	.	. V	 V 

—	 V	
V 

V	Lemma 3: The Vvolume averag of fJ r12k isgiven by  

/	
r2 dV = k,	+	k)

 

Bn 

Proof: Using polar coordinates in R, the integral equals .	V	- 

- (]r_t+ Ekidr) (!Lrs2kthsv) 

V and.the- result follows from the previouslemmal	 V	- V •	V 
7*	 'V
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Let us now consider the subspace SML2,(k,..9)(aB,l) SML2(B) of separately 
monogenic polynomials homogeneous of degree k1 in the variblesx 1 , ..., xd, for 
every i = 1, ...,p. This , honiogeneity and the orthogonality properties of spherical 
monogenics.ensure that these spaces aie pairwise orthogonal. - By the Taylor expan-
sion for separately morlogenic functions (see [3]) the span of all the SML2,jk 
is the whole of SML2 (aJ3). Hence SML2 (eB)_hasn orthogonal decomposition as 
direct Sum of the SML2(k......k)(B). But on each;SML2 (k...... kr)( B7 the reprodu- 

•	cing kernel can he computed as follows. Putting P, for the polynomials of the epan- 
sion (2.1) applied to R,	obtain	 . •	. 

Lemma 4: The reproducing kernel of SML 2.(k . ....... ) (B) 1s 
0	

.. 1	P 
-	-„)(u,t) =	fl r 1 kip.(uI , tt). 

-	 .	7k......k- i=i, 

;?roof: Clearly J' ...... k) ESML2,k ...... k9) (eBfl ). Any / E SML2.(k ...... k9) (aB,) is the 

V Ji(r 1u ) ) ., where	 V1 are b'ueter polynomials in ML2,k,(aBd) 
• 

sum of terms (.
	/	 . 

(see [31)- and , is a constant Clifford number. For such a teim, 

(P(k	k) JJ Vt(rut)i) 

..	 I	
[ fr(12k(?ti, I Vi (ui)); d.S 

•	 7	•	1=1  

=	I	f f (r, '	f F(u' I t ) J/t(t) dS\ ;MS •	 . 7k......
.5fl	

\ 

-1  Pi r121Vi(ti). dS
L-W	 -i  S. 

where- we have epioited the comniutativity of Pi uid ” sheii z	j andaveraged'
over each of the n.. This proves the reproducing property of P k ...... k) 

We now only, have to sum these kernels toobtaiti.the Szgo kernel for SML2(8B). 

Theorem 5: The Szegö kernel of SML 2 (aB) is given by 
CO 

/	'

	

SM	
-' 

L(kB) =	. o (kS......	i 
k =O,  

where the multiple series converges both in SLy! L 2 (aB) and uniformly on the compact	- 
subsets of B.  

Proof: We know iS,SMLsR) to exist; if, we decompose it with respect to the 
SML2.(4-......k9)(cBn) we get a series converging in SML2(B), for fixed t 

- . 5SML5B)(, I) =	k9)(U, I)	 . 
k..... .kO  

in which Qk ...... k9 ) must be the reproducing kernel for SMLk.....k)(aB). ut this 
kernel is unique, so Q(k.......k)(u, I) = Pk ...... k)(-u, t)almost everywhere, proving the series 

-expansion in SML2 (aB). Uniform convergence on compact subsets follow at once 
from the estimate (2.2) I	 •	•	-	 • 

,5	
.	 •	 •	 -
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-AlMerely replacing the constants 1k	, by 1k ' / ( + -s-- E / J in this section 

	

-	 I	-	=i	I 
we can prove a similar result forthe Bergman kernel BsMJ, (fi) , accordingto Lmm'a 3. 

Theorem,6: The Be'rgrnswi kernel is given by 
2	\- 

SJL ,(u, 1) = L'	(1 + - E
P 

L) P' B	 k	k)(U, t) 
•	 .	 k...,k9=O \	i=t.	/  
• .1/ic series converging both in SML 2 (B) and uniformly on all compact si.bsets'of Ba.' 

•	'	These '. convergence properties allow us to prove the following result, where I',. is 
asin[2].-  

'Corollary. 7: The Bergman and Szego kernels for separaiely mOnogefliQ functions, 

	

- ,	in the unit ball of R' are related by BSfL,(B((U, 1)	(1	2n 1 f') SsicL,B)(u, t). 

4. Explicit formulas'  16rt.h reproducing -kernels. The Szgo kernel for rnoIogeuic -functions in 
'd is given by  

SMI(B)(u

 

0 =(l ±ut)/ll +utl d	u I  Bd 

Henceforth we shall write v	ut and C(v) = S wLBd ((u, 1). Notice that v	u 
+ u A I, where it At is a bkector and u - I is real. (We refer to'461 for the definition of	-	- 

'dot' and wedge products i n 'a Clifford algebra.) Furthermore, vv ,vv = u I 2 111 2 and 
1 ± v12'= (I ± v) (1 ±'). Let u and t be fixed. The subalgeb'ra of Ag'enerat,ed by. - 

Rand It A t will ,be written RUN ; from (u A 1)2 €R it follows that RUM = R ± (u A 1) R. 
• '	Also, v, T € RUN. We define the mapping : R UAi - C: a+ (u A I) b - * a	I lu A , 11 b. 

(This makes sense even if u At	0.)  
Le mm a 8: 99 has the following properties: for , all v 1 , v, E R,1,  

(v i ± v2 ) - (v) +'(v'2 ) ,	002) = (v 1 ) (v)  
(2) = A.if 2€ II,	()	(v1),'-"	(v)I = I v ;I,	,-	' '	(4.1) 

99(V,) = 0 0 v = 0.  
This q will now be used to relate the reproducing kernels with their values for 

complex arguments.  

	

Theorem 9: Let v	ut, u,t € Bd, then	 •	• '	 ' 0 

- C(v) = ') (d/2 - 1), (d/2)m (—l)"-' vIm/(j!m!)	.	 • 

	

•	 '	(,n&=O	 .	''	 '-

the series converging absolutely.	 •	 '	- •	:.	 •	 / 
Proof:-'elying oji the properties of obtained in Lemma 8,-we have
 

(C(v)\	I + (v)	I + (v) - 1 + (v)	• '	•
' ' I - j , + vI - Iw( 1 +, v) - 1 + (v) Id  

From now on, let us writs z'	(v), thenn IzI < 1 and  

I 
(l+z)(l±	

(1))	
()m
	1)1+ in 0 (d 

vljm

	

i=	2	2 ,	• tin. 
•	.	.1 	Id •	\ (d): V('iim

limq	 ( 	 fl'mk—too\I+nik \,	/	 2 rn	• Pm' !	•
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-.	
(....	•\.. 
=(i11n	

(--1)(--) 
(_l)1+m_i) 

•	 k- l+,k 2	2 m	l.m: 
-	 I	' Id	\ I d\	 vtiim\ ' '	•.	 =w( l 

	

(— —1) t---)	 ii),, 

	

fl \ 2 /	 .rn.1	 - 
where qand th'e limit can be exehangçd because of (4.1); this also ensures absolute 

• convergence. The theoem then follows from the injectivity of I 

	

Corollary 10: The Szego kernel can be expressed as a series:	 .	.•

viJ" 
Pk.ML,(sB)(u, t) =	' (d/2'- 1),. (d12)m (:— 1) l.m. 

Theorerñ ii: Let F(v, ) = Ecj;vIm, where Cim ER, be absolutely onvergent 
)	and let z =(v).. Them	Em =0	 0 

Rz,•	 ifitAt=0,. 
F(v,ii) = I	nAt UAt 1 

	

( - in A	
F(z ) +	(i + In A i)F( z) otherwise 

Proof: if It A I	0,v = = z = and the result is obvious. In the general case,
notice that for all v E RUM, 

- V = (((v) +	) — (u A i/l u A 1 l) i ((v) — PM)) /2 

•	and that (F(v, )) = F(z, ); F(z, ) = F(, z) I 
We apply these results to the computation 'of the reproducing kernels. To st grt, we 

add indices corresponding to the R, giving the notations v 1 = ut 1, u, v Bd1, 
•	 RUIAE ±C , zj = 1 (v); writing	= i2	p and 8(v) = 8sMLB)((u 1, •-., un), 
•-(t 1 ;..., tn)), we see that through repeated pplication of Theorem 11, explioitknow-

ledge of (8(v)) extends to 8(v). 
Relying on Theorem 5, we see that 

	

(8(v)) =	 (dJ2 — 1)1,(ds/2)m (-1)44. m (n 
1, .... E 9 ,m ,,....m=-0	2 )ZOO m) i=i	(di/2)1-i_'m	 l. in,1. 

conserging absolutely in the , set Iz i i + ... + 1z,i < 1 (cf. [5] for a general method to 
,obtain the convergence domain of such a se ,ries). In the special case where all z i are 
real, we obtain (through an elementary identity involving binomial coefficients) 

=	
)	

'/
	(di _1)k(—zj)kt0	

.	• • 
--	k	• • k,+ .. . ±k,, =-	(q,1 2)k,	l• 

= I A (m12; (d 1 - 1); (d 1/2) 0 ; (—z1)..1),. 

where PA stands for the generalized hypergeometric function of Lauricella type	- 

•P (b')k z •	•	-	,E(a; (6 1 ) 1 ; (c); (z 1)) =	.(a)k,+..:±k9	 . 

	

- k=0	 i=1 (C,)k1 I.	
0 

	

-: - Thisf'unction has the interesting property	 •0	 - 

L'	(1. \P	/ \P • / \P •	A a ,	i/i-i , C111 , z111 

= (i _
	

F (a; (c . 	b 1 ) _ 1 (c,). 1 (_zi/( 1 -	 (4.2)'



5,	

5-
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--	so  

(S(v))	(i +	FA (n/2 (1 - d,/2) 1 (d/2) 1 (Al +Zi 

which, if all.-dimensions di are even, is a rational function of the z,. We refer to [5] 
for a full treatment of these generalized hypergeometrie functions. Relying-on the 

•	properties of the beta function, we can now link., the Szego kernel for general argu-
ments to-this functions.	 5,	 -• 

Theorem 12 The Szego kernel for SML2 (aB) zs given by 

(S(v)) =	
1	f	f	jd,l - 2 (1 - 

	

S	
F1B(d1/2, d 1/2 - 1)	 - 

-	1=1	 S	
"	 • •••	 S 

>< F,,(n/2 (d,	(d,/2)11' 	(—t jz, - (1 - t) ')'..') dt 1	dt 

If all d 1 are even, one can apply the idntity (4.2) under the integral sign; the inte- 
-.	gral can then be computed explicitly, yielding an expression in terms of rational 

' functions and logarithms. As a consequence of Theorem 6 and because 1 11 

-	 -	 '- - 

(1 -f- (2/n) Y (l + nn ).) (fl/2)EIm,) = (n./2 + 1)EcI,+m)	-	S 

'	 —'	 .1.	.	•,	 •	 -	 S 

similar results for the Bergman kernel my , bepbtained by. substituting n + 2 for n in 
the-formulas of this section.  
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