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On the Existence of Solutions of a Semili.near Elliptic Boundary 
• Value Problem with Superlinear Noñlinearities 

P. DRBEK and T. R'uNs'r	.	 . 

Wir beschaftigen uns 'mit der Lösbarkeit eines semilinearen Randwertproblems mitsuper- 
linearer Nichtlinearität in Räumen vom Besov- und Triebel-Lizorkm-Typ. S 

Mbi LaecJieJJ.yeM pa3peuiuMqcTh oaiiofl no -lyJiIiHeuIIot% D.IlllRTll4CCH0fl ipaenofl aaan 
cyrIepJIIi Heft Hofl lIejIiIIefllIocTbio B IlpocTpaucTBax Tlina B.econa it 'l'p116e2lb-.H uaopKHhIa.. 

We study the solvability, of it sernilinear ielliptic boundary value problem with superlinear non- 
linearity in spaces of Besov and Triebel-Lizorkin type.)	 .	. 

1. Introduction  

-	The a.i?ii of this paper is-the study of the following superlinear problem: . 

Lit = —g(u) ± /(x) + t in Q',	u = 0 on Q,	 (1)

'vhre L is a uniformly elliptic second order differential operator and I € R 1 . More- - 
over, let g. b6 a sufficiently smooth function defined on R 1 and satisfying the fellow- 
ing conditions: 	' . 

(I) g(x)	0 if x	0 , and g(0) = 0,	••'	. 
(II) The function g(x) + ) 1 x, where > 0 is the first eigenvalue of L, is bounded 

from below.	 . 
We consider problems of this _form in the framework of real Besov spaces	q(Q) 
and Triebel-Lizorkin spaces .F q(Q) on bounded C--domains Q	H,,, where sis
large enough. Roughly speaking, we shall prove that for each fixed / theie exits 
1(/) € H 1 'such that .	 . 

(1) has at least one solution if I >t(/)	 . 
(1) has no solution if I < t(/).  

furthermore we are interested in non-xigative solutions of (1). Problems of this type 
were considered by many authors (see e.g. H. AMANN '[1] and the references given 

- there) and arise for example in the theory of nonlinear chiffuion processes ancl.in 
reactor theory. Questions of existence and smoothness of solutions of (I) are educed 
to-.problems involving nonlinear mappings.in the spaces considered here ( 2.3) and 
a maximum principle principle ( 2.2).'  

N 6nlinear elliptic equations in the framework of Besov and Triebel-Lizorkin spaces 
were first considered by H. TRIEBEL [17]. Further results in this direction may b 
found in P. E. EDMUNDS and H. TRIEBEL [2], andcJ. FRAIKE and T. RIJNST [5, 61:



'- 106	P. DRABEK and T. RUNST  

2 Preliminaries 

2.1 Spaèes. Let R be the real Euclidean n-spaces. The thedry of the spaces Bq(Rn) 
and F, q(Rn) was developed in H:'PRIEBEL [16]. We do not need the full theory, but 
only some properties, which we list in the sequel.	 - 

-Let S be the Schwart 5 space of all complex-valued rapidly decreasing infinitely 
differentiable functions on R, 5' the set of all tempered distributions on %,J" arid 

the Fourier transform and its inverse on S'(R), respect i vely. Nd .y let ip E S be 
a real-valued function such that (x)	(—x) if x  supp jp	(yE R, lI ^5 2) and 
99(x)	1 if Ix!	1. Then we define a sequence	of functions by 

	

0(x) = (x),	(x) = (2'x) --(2- i )	(f 	1)'	- 

for each -x E R. -We have 920(x) + p 1 (x) + ...'. =1 (x E It). If --oo< .s < cc, 
0 <p, q <00, then by definition	. I 

—
IN	1 •	 B,q(,Rn) = fE 5' tX	Q) 

	

L(R n)M< oo	 (2) 
-	I.	•,	 )•	--

\and	-	•'•	

-	 -	 -	 -	

' 

	

I	/oo-	-	I/q'	 -.	1 
1, q (Rn) =	E S	(	'	jJ-',Y/( ) q)	L(It) <	 ('3) 

•	 -	 \.=O	-	S	
- 

• (usual modification if p= cc and/or q = oc).-	 S 

It can be shown (of. H. TRIEBEL [16]) that with the respective quasi-norms B(R.) 
• and F:q(Rn) are quasi-Banah spa'ccs; moreover,-they are independent of the parti- 
•cular choice of 99 (equivalent quasi-norms).  

Remark-l: By means of the fact that q is a real-valued even function we can introduce the 
- -	real part of the spaces BS q(R,,), etc., denoted by B q(R), ... (for exact definitions sc6 J. FRAN-

XE and T. RIJNST [5: Subsection 3.2]).  

Remark 2: These two scales of function spaces-include many well -known dlassical spaces. 
Equi'.aent quai-noms for these , spaces may be found in H. TRIEBEL [161, for instance 
B(R) = '8(R) (Zygmund spaces) if s> 0.  

Nexi we define the corresponding spaces on open seth. Let Q be a bounded C°°-
•	domain with boundary aQ. Then one can introduce the spaces B ,q() and F,,q(aQ) 

•	by standard procedure via local- charts, cf. H. TRIEBEL [16: Subsection 3.2.2]. The 
spaces B(Q) and F,;q(Q) are defined as usual by the restriction method, of. H-. 

/ TRIEBEL [16: Subsection 3.2.2]: if —cc <S	cc and 0 <p q	cc, then for in-



stance  

B .q(Q)	/ E Y(Q) l. g € B .q (Rn ) with g I Q	I),	
4) 

S	 It B ,q(Q)( = iuf II	B(R5)M, 	
( 

where the-infimum' is taken over all g € B;q(R n ) in the sense of (4). Similailyone can 
define the spaces F,q(Q).  

2.2 Traces and linear elliptic differential operators. Let Q e a bounded C- -domai ii

 in'R and let/ be a function defined in Q . and belonging to some functión'spaces of the 
•	above type. fl denotes the restriction operator given by f/ =f dQ. The following 

results are well-known for 0 . < q :!_^-oc and s > (n --- 1) (1/mm (p, -1) — 1) + l/p	- - - 
(for the proof see J. FRANKE [4] and H. TRIEBEL[16: Subsection3.3.3]:  

-	 :	 •	 S	 -,
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If 0 <p no, then cfl is' a 4inear and continuous mapping from B q(Q) onto 

If 0 <p < 00, then 31, is a linear and continuous mapping from F(Q) onto 
• P IP
	 V	 - 

Mabo,ve, Q denotes a bounded C--domain in R with boundary aD. Let L, 

a(x) Du(x) + . a(x) Du(x),	 .	(5) 
II =2 V	 V 

x E Q a E O0(Q) if al	2 (i.e.  the a are real C functions) be a second order
uniformly elliptic operator:/ 

a(x) y^ c yj 2 > 0,	y.E R. 1 y 4 0.	 .	 = 

	

V	

V	 Ii=2	
V 

In this 
paper we only consider the corresponding homogeneous Dirichlet problem. 

' We - introduce . -the notations (for admissible couples (s, p))	. 

• B 20(Q) = {/ E B(Q)j /jaQ . = 01  
and	

V	 ' S •V	 V	 - 'S 

• F q o(Q)	 € F(Q)1 tI 0 } .	 .	V. . 

By S } UIK [7 Theorem 34 10] we obtain the follocs ing result If ) denotes the small- 
est eigenalue of L In (Q) with IDirichiet condition, then 1 > 0 Furthermore, 

/ there exists a unique normed positive eigenfunction i'' E O°°(Q) to2 1 with 

f *()2 dx '= 1*(x) ^ 0 if x € Q	 (6) 

I .	 9*'j áQ=.0;. - 'L92* = V 2 1 *	•	 V	 - V 

•,,	
V 

(cf e g M G KREI". and M. M A RvTMA' [9] M A KRAS\OSELSKI [8]) Then the

	

V	
following' may be fOud in J. FRANKE [41'(see also H. TRI .EBEL [16: Subsection 3.3.3]) 
for 0 < q	bo and s>V(n - 1) ((1/miii(p, 1) - 1));+ 1/p_ 2:	 . 

If 0 <p	no, then L yields an iomorphic' mapping.	..	S	

V 

from B 0(Q) onto B (Q)	 J 

	

-	 . 
V If 0 <p < no then L yields an isomorphic mapping.	•• V 

from F 0 (Q) onto F 5(Q)	 - 

	

MI.

V	
In order to prove our main result we, need some results about stibsolutions and	

V 

supersolutions.	. .	 •	 .	 •	..	V	 •,	 •. 

Definition 1 A distribution 'ip € D (Q) is said to be non negative it i,() ^ 0 for 
any q7. € b(Q) with	0:  

-Here D(S2) '= C°(Q) denotes- as usual the collection- of all complex-valued in- . ' • 

•	finitely differentiable functions tin R with supp /	Q, an1 D'(Q) is thedual space.	S 
V 

	

• V	The set of non-negatise distributions is a(D'(Q), D(Q))-closecl. •	 -	
S 

V 

/	"1)efinition 2: A function 'it E O(Q) is said td 6 a subsolution(upersolution) of	• 

•	(1) if Iiu ^ -_-g(u.) + f(x) + t (Lu	—g (U ) ± 1(x) + t)-in £2 in the above sense arid .	• 

	

• .	 uJ a92	0. S	•	 '	 i1	.	
-	V •	 • V 

Furthermore, h(Q) denotes the completion of D(Q) . iri BI (Q). In Section 3 we '. 
shall use the following	 ,	 •	 • - V	 •	 -	 .	 ..	 . S
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Lemma 1: Let v E u{E(Q): e> 0} and u> 0. 1/vI Q = 0andLv . +w 0 
(in the sense of distributions), then v ^ 0.  

	

Proof:Step1. Letw E	0 < e < 1,'be nori-nega1ive...If E C(Q), ip I c9Q= 0,
then V E B(Q). We prove that if ip is noii-negative, then can be approximated in 

j'(Q) by non-negative C-functions. To do this, we apply the method used in the 
proof of H. T1IEBEL[16 : Subsect. 3.4.3]: Without loss of generality we may.assune that 
Q =	.= {x E It,, x = (x', x,,), x,, > 01. We define the extension operator by	- - 

i f 
if x,, > 0	S 

• '.	 .... .. ..	 x)t
v(x"

=

	

-	 ..	 •-	 -	 . 

-	 —x,,) f x,, <0.-

By our assiimptions'it holds that the characteristic function is'a multiplier in 
(cf. H. TRIEBEL [16: Subsection 2.8.7]: hence we obtain 

•	 .	 .

 

J JYV I	jr(R)M	IT I B I— (R.) l	 ,, 	c 11V IB(R,,)jI. 

•	
, 'Now let	be a s ystem, of lion-negative C-fu 	with	—O iii D'(R,,.); 

where 6 is the Dirac distribution. Then the system {}, v j =	*	is the desired
approximation:  

	

Step 2 Thus (w) is	11 defined (for the dual 'space of B 1 -j (Q) (B 1 "j (Q))
= B(Q) and non-negative. The result (B q(Q))' = B q (Q), .where - 1 <p < oc, 

•	1-<q<, 11p<s<oc, s—l/p-N,' 11p+11p'=1/q- .1/q'=1, may be 
foiiial in' H. TRIEBEL [15: Subsection 4.8.21, but it holds also if p	1. Let 

--.E .D"a(x) - .' Da(x)  

• (6f ..(5)). If E O(Q) is nonegative, then there exists a non-Iiegativeg E C(Q) with 
O, Lg.-- g= /'(cf..S. Fu1K [7: chapter 34]). According to f.ip(x)f(x)clx 

=f (x) q(x) dx we obtain the following If	E O(Q) then the unique solu 

tion ip'of L* +	= , ip I	0 is' non-negatiyc if 99 is. 
Step 3. !et v be the same as in t-he ' forthulatinof Lemma 1. Let 99 E C(Q) be 

nbn-negative, 99 = L + ,up with V E C(Q) non-negat.ke and bQ = 0. Then an 
easy limiting argument . proves  

•	

. 
f (x)v(x) dx = f {(L + ) (x)} v(x) dx f) (Lv(x) '+ v) dx 0 I 

'2.3 Mapping propeities. In this suhsectioii we list some results which maybe found 
in T. RuNsT [14: Subsection 5.4]. En the following, let Q he a bounded C-doniain 
in R,,, 'while C' denotes as usual the classiciiJ Holder space -if Q > 0 is not 'an integer - 
and the well-known Banach space 'of differentiable functionsif 0 > 0. is an integer. 

(R,,) = '(R. ,,) if o. > 0. For real we puts = [sJ_ ± {s} As mentioned above, Be	 , - 
• .	 [s]_ integer, 0< s}	1.,  

Lemma 2 (T. RUNST [14: Subsection . 5.4]: Let 0 < ^cc, s> n(l/min (p, 1)' 
—.1), > na•x (1, s) and U- O(u(Q)). Then	-	 .	-:	• 

.(i)if 0 <p < oo, then  
lei-

IIU(u) I„11	11g(u) I L	± ci	EsuP Ig('(u(x))l 1 ju I F ,qII lu I L.11`1-	. 
(1=1 xeQ	.	' 

+ II q I C'(u(Q))II 1 ju I F 'I Ilu I LIle	II I Co (u(Q))II In I F” VII)
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and
-	IIg(u)'l Lll ;5 j ig I C'(u(Q))lI 1 ju I L1 ]j	(u E P ,q (Q) a L00(Q)); 

(ii) if  <. p	oo, then. 

11g(u) I Bp ,q M	11 g(u) I LP II -F- c	' sup lg (u(x))l lu I B,,QU llu I Lll'' 
c ,

 
(1=1 XED	 - 

and	
F- lu I Ce(u(P))lI lu B qIl lu I Ll 1e' + I q I Ce(u(0)) lu B qll) 

llu() I L,,ll < lIu I C'(u(P))II lu I LV II	(u E B (P) n L(P)) 

The following result is a consequence of Lemma 2. 

Corollary: Let 0 <p < o (0 <'p	oo), 0 <q	no and s > n/p. 
(i) Let g E	> max (Ic s) :Then there exists a function y,	: [0, 'oo) -	, no), 

which is independent of .0 such that	 - 

'llu(u)l R.qll	g(llu I F,qll) llu I F.lI for all	E P5(Q)  

(llq(u) I J3, il	yg(lIu	B all) lu I B'Mil for all u E fl, q(P)) 

(ii) Let u EO', o > wax I, s). Then u— g(u) is a continuows mapping front, 

F, 5(Q) into 1' .q((.?) (from B q(Q) into B.q(Q)). 

Proof: Step 1. We prove (i).,Tliis is a consequence of Lemma 2 and the continuous 
inibedding F q(Q) -+ L(Q) (B.q(Q) c- L(Q)) if s  

Step 2. We can extend Lemma 2 and consequently part (i) of the above, corollary 
to the case G E C, G: JIm -* 11 1 ,.m = 1,2,... Let g: i — g(u) for u E F q(Q). We 
put b(x,y) = (g(x) _g(y))f(x — y) (x, y E R. 1 ). Then for 

b(u v) () = b(u() v()) = 
q(u)	g(v)	 - 

we 'obtain that llb(u, v) I F ,ll	YOU F qiI, lIt' I F, q I D holds, where the mapping
Y: (x, y),, y > O} — [0, no) is indepenclexit of u, v E l"(Q). Hence we get 

• Ilg (u)	g(v) I P%ll	y'(llu I F )l, Ilv I F ll) llu — v I F ,qil,	 (9) 

which yields the continuity: (9) follow from the fact that P ,q(P) is.a multiplication 
algebra if s > n/p, cf. H. TRIEBEL [16: Subsection 33.2], J. FANKE [3: Subsection 
3.3], and T. RUNST [14: Subsection 5.31. The proofs in the case Blp.q are'alrnost the 
sariie  

Remark 3: Res Its in this-direction vcre also proved by J. PEETR [13] in thd case 
s > n/p, I ^ p, q	oo,by Y. MEYER [11, 12] in the case fl p8 , 1 <p < 00 1 S > fl]p, M. YAMA' 
ZAKI [18] and J.MAR5CHALL [10].  

S	 ••	 .•	-•;-,	', 

3. The main result
 

'	•''	 . 

Let Qbc a bouddedC°°-doma.in in .Rand let 

Lu	—g(u) ± /(x) ± tin Q,	u = 0 on 00	 ,(10) 

be a second order elliptic botiñdry'value problem, where L is' a uniformly elliptic - 
second order differential Operator as described by (5) and't E R 1 .	 S 

-	 -	 .	 -

M
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•	
.. Theoren: Let 0 <p, q :5 cc, s > n/p,'t € R 1 and let g € Ce '(R1 ), o > max (1, ); 

satisfy the conditions (I) g(x) 2' 0 if x	0 and g(0) = 0, (II) the /unction g(x) + ) 1 x, -. 
where 2 > 0 is the first eigenmilue of L, is bounded from below. 

(i) Let p < cc and f € P2(Q) n L(Q). Then there existsa to(f)E R 1 such that 
problem (10) has at least one solution u E P q(Q) if t > t0 and has no solution if I '< 1. 

(ii) Let / € 7,2(Q) n L(Q). Then there exists a t(f) E Jt such that problem (10) 'has, 
at least one solution u € B 0(Q), i/.t> to and has no solution if t < t. 

Proof We prove (i) The proof of (ii) is the same 

	

Step 1. First of all we remark- that the Dirichiet problem Lu = ).0 in, .Q, ,u	0 On 
Q has a unique normed positive . eigenfunction	correponding t& the smalles t

eigenvalue 2 > 0, see (6). It. is known that * > 0 in Q and . 

a*/av <c <.0 on en,	 (11) 

see S.FuÔIK [7: Subsectioñs34.IO-34.12]. -.	 . 
Step 2. We have / € P2(Q) n L(Q). Hence we can choose t '0 SQ large that - 

/(x) + I > 0 holds for x € Q. Then u1 = 0 is a subsolution of (10). Here we used the 
• -	 fact that g(0) = 0. We fix such a I.	 - 

Step 3. Because of /€ F 21 (Q) n L(Q) and the properties of L (see (7)"(8)) there 
• exists a function wE F, 0(Q) such that Lw > /(x).+ tin Q and w = 0, on ab. Notice 

'that F(Q) c- C(Q) if s> n/p. Now w7e choose r> 0 such that w ' + r92*  > 0 in 17 
holds. ThCréfore we apply (11) and the same arguments as in' S. Fu1K [7: Subsc- 
tions 34.11 and 34.12]. Then u 2 = w ± r* is a supersolutiOn of (10) ecause of u2 >—g(u2 ) + /(x) + t in'Q, u2 = 0on Q. Here we used property (1) of the func-
tion.g. We have u2 > u in'Q.  

Step 4 In what folloss e show: If u is a subsolution and u2 a supersolution of (10) 
And u 1 (x) ' 5 u2 (x), x E 17, then there exists a function u E F, 0(Q) such that u 

U 2 in Q and (10) holds. This result is a, generalization of 1-1. AMANN [1], see also 
S. FUóIK [7: Subsection 34.7]. We apply the (same argumens_asJ. FRANKE and.' 
T. RIJN5T [6: Subsection 3.4]. The, above conditions yield u 2 E C(Q). Let w> 0 be.' 

•	such that	' .	• .

	

.	 .	 '	 .	 •	 . 

g'() > 0 for any E[	
Q 

mih u 1 (x), max u2 (x) .'	- 
•	 ,••	 •	 '	 LXE.	XE	 . 

Let T be the 'operator which assigns to each u E O(Q) the unique. solution 
v E U {(Q): e> 0}i of  

Lv + wv = f(x) + £ - g(u) + era in 17',	v'— 0  on OS2.	 (12)

The definition of 'T is correct with respect to (V > 0 and theproperties of L. We put 
• U, (k) Tkui and u2 t = Tku2, wheie as. usual T',= T, Tfl" = T1Tk . In analogy to 

S. FUJÔIK [7:-SubsectiOn 34.7] we can show that T is monotone, i.e. if u v in 17, 
then Tu :!E^ Tv in 17. For this we apply Lemma 1 (maximum principle in the sense of 

• distributions). By induction we get a monotonically decreasing squence, 

5u1 f^ u1 111 15: U, (2) u22) u2 0) u2 (13) 

From (8), the Corollary in Subsection 2.3 and u12 € L(Q) w6 deduce by (12) the 
'inequality u'F qII 'c1 + c2 ftu I F I. The imbedding C(Q) -- P(Q) and .2	p

(13). yield	
.5	

'	 /	'	5,	 •	 '	 •.	 . / 

IIu ' I F'q j	a c max (IIuj I Cl 11u2 I CII) < C 

:	•	 •	 --	 S	 '	 '	 'S	 '	'
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Applying the well known inequality 1 1w I F II	ô 11 w I F II + c8 w F Il, it 
follows that lu	I F	c4 .± 2:1 IIu IF .q Il. B induction we get 

ll4 T l'.qIl	C,	C > max (2c, lI'i'i l""qII ' ft'2 I FlI) 

Because of F,q(Q) c^ C(Q), s > n/p the pointise limits 

u(x)	 1.2(X)	-	 (14) 

both exist NQ\s we apply the same arguments as J FRA'KE and T Rursr [6 Sub 
-	section 3.4]. Let ? be the coreti action constructed i4 J. FRAKE [3 Subsection 4 1] 

•: We may assume that supp YT is uniforiTily bounded for all 99. The construction .-of Y. 
yields u,(x) - Yu(x) pointwiseIcbèsgue's theorem proves that this holds also. 
for the weak a(S .Rn ), S'(R))-thpology. Applying the Fatou.property (ci. J. FRANKE 

[3 Subsection 2.6]) we get u E P, 1(Q) By means o'f F, q(Q) C-' O(Q) if S > n/p it 
follows that u± O(Q) Finally Dini's theorem yields that (14) holds in C(Q) Now it 
is not hard to check that u are solutions of (10).	 - 

Step 5. Here 've prove the following: If (10)is solvable for some 1 E R 1 , then it is, 
also solvable for all I > 1. Let 12 > 1 1 . The solution of (10) with I = t j is denoted by 

•	Then Lu 1 < —g(u 1 ) + /(x) ± 1 in_fl and u 1 = 0 onQ. Henee, u 1 is a subsolution 
•

	

	of (10) With ' t = 12 . Let us choose v E F ,q(Q) such thaLv > /() ± t2 in Q and v = 0
on aQ and f > 0 such that v ± iq > u1 in Q. Therefore.we use the same 'arguments 
as in Step 3. Then u2	v+	is a .supersolution of (10) with I = 1 2 . Ih analogy to 
Step 4 there exists an E F(Q) satisfying u	'2 and ha = —g(u) + /(x) +12
inQ,u0onQ.  

Step 6.- ,We put to = inf {t E R1 I (10) is —solvable). We remark that; by Step 4, 
to	00. •,  

• .
	 Step 7,. We show that ta '> —00 holds. According to the properties of g the function 

8	—g(s) -	 - (1 

is bounded from above Let u be 'a solution or (10) for some I E R1 Then we get 

• .

	 Lu - ). 1 u	—g(u) - 2 1u± /(i) +linQ.	'	. •' 

Note that the adjoint problem to Lp -	= 0 'in Q, _= 0 on 09 has-.also only 
•

	

	
, a ' one-dimensional space',of solutions generated by a positive function p" E C(Q)

with  p*(x)2dx = 1 and ip*(x) 0 if x  Q (ci S FuIK [7 Subsection 34 12]) 

Hence it follows from (16) that  
.1	 -/ 

0 = f(Lu_ i Au) (x) ip*(x)dx	,	•, .
	 j	i.	.	' 

	

9	 ,	..•	. 

==f (— g ( a) - ) 1 u) (x) *(x) dx + f 	dx + t  ,p*(x) dx 

• which together with the bouncledness of 15) implies that I =/(/)holds I' 
Remarks: 4 A corresponding result holds also in the case Jiu = g(u) -f- ' /(x).± t in fl, 

u = 0 o dQ 5. 'If u.E F, q(Q) are solutions of Lu = —g(u) + t() in Q, •u— 0 on Q, 
= 1; 2,'then/1 512 1mpliesu 1	u2. 6. Note that the above proof yields the following fesult: 

• for each .1 e i,:(Q ' ii Lc,,(Q) there ex* ists a	t(/) such that (10) has a positive solution 
•	for all t > t(/).	,'	 •	.'	.	 .	 , 

/	.	 ,-	 .	 ,	 ,,	.	•	S	
''	

'O
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