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Bifurcation and Stability of Capillary-Gravity Waves	 - 

K. QUASTHOFF	 -

.'	\ 

Es werden dridimensionale Kapillar-Schwercwellen bei der stationären Stromung ciner Flüs- 
•	sigkeit endlicher Tiefe über ebenem Boden betrachtet. Für die kleinsten kritischen Froude-	- 

	

• -	Zahlei't zweigt einé zweidimensionale Welle von der trivialen Oberflächenform ab. 

MccJ1eLyIoTcn 'rpëx1epHbie rpaBuTauuoullble IanuJLJIap1Ihie BOJIHbI B cTaIUioHapIioM floToKe 
}a1gHOCT14 xoHe4Hofl IJly6uHbI iiag HJIOCHIIM AtioM. Jliia iianMeiibwiiX Hp11T1I4eCKLIX qflceJi 

•

	

	i)poya B03H1xaeT jnyepHaa BoJilla paaBeTBJinlouan ,cH .OT TpuBnaJibHoft xoH4mrypauHil 
noBepxlloc'rH.  

•	Tlree-dimensional capillary-gravity waves of a fluid of finite depth are considered. The fluid 
 moves stationary over a plane bottom. For smallest critical Froude numbers there is atwo-

dimensional wave bifurcating from the trivial surface configuration.	 - 

1. Introduction  

1.1. Introductory remarks. Starting with ZEIDLER[7], where a large class of-ave 
S - '

prpblems in two dimensions is studied by one method (conform -dl mapping on the 
unit circle), we will give an example treating uniformly three-dimensioial problems. - 
Consider the three-dimensional irrotational stationary motion of aninviscid incom-

	

S	

pressible fluid of.constant density and of finite depth B in the presence of gravity 
• (0, 0, —g) with surface tensiofffl acting atthe free surface F. Atrivi1 configuration 

of F for cbnstant velocity (U, 0 0) is a horizontal plane, which we take as Z = 0. 
We - are seeking for periodic and small amphtudc functions Z = H(X, Y) assolutions 

	

•	for F. To do this, we formulate the variational problem for the boundary value prob-
lem with given surface F. By normalization the solution	is uiiqueIy dermned. 

• Inserting P in the energy functional B: H -* E(H) .of the system with free surface, 

	

•	we getequilibrium states by minimization of E in dèendcnce on H.'We will seethat 
stationary points of E satisfy the Bernoulli equation of the bouiidàry valueproblem 
• with free 1. With vanishing second variation we get tle set of ciitical Fro'ude numbers 

F and'critical Bond numbers b. In two dimenèions, this set was stuc1ied0by Kncn 
OASSNER [1]. For uncritical Froude numbers'F anciBond numbers b, the problem in 
three dimensions but in the case of periodic bottom was studied by SHINBROT [5]. 
We are studying the smallest critical .'roude'numbers. With the resuitsof ; BYER 

•	[2] we show: in the corresponding Sobolev spaces the minimum of B and its first and 
• second variation are analytic in a small neighbourhood of critical points. We get the - 
bifurcation equation via Ljapunov-Schmiclt procedure. The symmetriesunderlying 

• the physical problem give a nice structure .of the quation. So we can solve it only 

	

•	• with 'the Implicit Function Theorem. The solution is a two-dimensional wave H(X)
= a(e, ) cos (mX/i + 5) with a depending on small parametrs describing a neigh- . 

	

•	bourhoucl of b, b = b(1 - ), and	= F(1 + ); mis determined by b, 1'
follows from the starting periodicity 27ti of H(X, Y), and  is free as the consequence
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ofymmetry properties. 13ut our variational approach also gives local stability results. 
We find that the second variation is positive if I el and are small enough and if the 
wave-length 117A is less than the product of the mean depth B and a constant c 4/5 

1.2. The boundary value problem. We have to solve the boundary value problem 
•	 ..	 .	. 

AO = 0 for —B <Z < H(X, Y),  
S	

.	
( 1) 

	

x"x +.- YflY P 'On I', • and	--- O for Z= —B. 

Moreover, on P\ve have to fulfil the Bernoulli equation (V = (a/u, /a-Y, a/aZ) and 
V''= (a/aX, /aY))	.	.	•	 . S	 .	 S 

-	

V1 2/2g ± H - div (V'H/1 + JV'f2) /g = eonst..	/	(2) 
LetZ denote the integers and &' the positive real numbers. For fixed 1, k E R. we 
define a'- lattice A, = {w' = k 1 w 1 ' + k2 (02 ': k 1 , k2 € }, w 1 ' = 2x1(1, 0). and 

2Jik(0, 1). Let I'?' he the rectangle whickisformed by (Ut ' and w2 ' and let JR'l be its 
area. The dual lattice A of A' is given by A = {w: w'w/2 € Z for all (,o ' E A'}. A 
basis in A is 	.	.	.	S	 ,,	

'0	 055• 

Co,=(0,J)/k. . and	6)2= (I, 0)/I.	 -	 () 
11m denotes the Sobolev space of '-periodic functions II(, Y) =	H ciwx where

'oA wx = (t) I X ± w 2 V for w =-(w 1 , w 2), ivith finite norm IJHII.2 = 11o 2 + E_k'i1 2 IH.12. 
For the sake of incompressibility we assume	 O(A 

f H(x, Y) dX d 	0	 .	. ,.	-	(4) 

Let (X, Y '. Z) -=. &(O-(X ' Y, Z) + X) and assulile to 'he 1'-periqdic, which means • 
that the X-axis has common direction with the mean floss U =f V_ II(x y ) dX d Y/ 
IR'I, hence, U = Jul. So we consider our, proble'ni onl y . in Q = R' x{—B < Z - •	< IJ(X, Y)}. By the tra.usformatioh X = Bx 1 , V = Bx2 , Z = B(x3 + v(x 1 , x2 , x3)), 
where  

-	 v(x1, x21 x3) - E h. e'	sinh (1 o 1 + _' o)), x3)/sinh lwl, 1	.	S 

-	

-'  H(X, Y)=B h(x 1 , x2 ), ,	( X,Y, Z) = B	2, 3)	
(5)

(x 1 , x x, 

we ap the fluid region Q on- . a region S = R x —1 <x 3 O (R denotes the red-
tangle for ned by w 1 'B 'tnd w 1 B) 's ith fixed boundary and handle with (lIIIieflslon 
less quantities. We remark that v belongs to some function class (later, see theproof 
of Lemma 2), whereas a simpler transformation v(x, x2 ) = E he1", for instance, 
would no have this property. The transformed dual lattice we call A = {w (m/l, 
n/k)/B: rn, n E }: Then h belongs to 11m ' the corresponding Sobolev space over the 

• transformed lattice A'. We forcethe uniqueness of the solution of (1) by normalizing 
-• f	x21 0) dx1 dx2 ='O (SHINthoT [ 5 1) . Finally we define the Bond number 

-'	0	5	 0	 - 

	

h =fi/gB2 and the Froude number F = U2 /g13.	'	.. 

-	0	 ,	 '•J	 ,	 /	
5'	 -
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2. Ehergy functional, properties and variations.  

2.1.4he equivalent variational problem. The potential energy of our physical system . 
is qE with	 ..	.	. 

	

= bB2 
f 

Vi + V HJ 2 dX d Y +f- dX d Y + 2U2f
	

dZ dX dY 

where k(X, V Z) = Y Z) + X) is assumed to be A'-periodic. and has has to 
solve-tlie boundary value problem (1) for given H E 11m• Then-E defines a functional 
over Hm. For t € R we consider a family of surfacesF: Z = II(X, Y) + tX, Y) - 
with 1' = I', where is A'-p'eriodic and satisfies (4). The potentials we call . agajn - 
and write a(X, , Z, t)/at = (X, Y, Z,t). As first, variation of E we then have-

	

-	' (E,.denoting the Gateaux derivat. iye)	 .•	 -. 

= dE(H	1)1d1I10 = bW f V'H V'/j/i ± IV'H 2 dX1Y 
•	.	 .	 -	 H'	•	 - 

+J H dX dY + FB/(2U 
R 

ç JVcJ) ,IX d  

+FB/OfVV(PdZdXdY	 / 

Because  
II(X,Y)	-	 -. 

	

0 -=f c/aX f bxJdZdXdY = f (rP - Pø)dV	- 
H'	-B	.	 0 

(	 ±fThbx(bxdXdY 

partial integration-gives  

KH	 (_bB2 div (v H/J'! +V JJ2)	H L (FB/(2U 2) II 2)) dXdY 
R  

—fPzl._ndXdY 

where a/an denotes the deri ati e in normal direction. Since 0 solves (1), the integrals. 
•	.	containing 0 are .vanishing. So by suitable choice for the e'üation (Ek, ) = 0 

implies (2) (see also WHITHAM[6: p. 435ff.]). 
• . . Finally we note E, the transformed energy functional divided by 0gB4 . In the, 

following we write 3//ax 1 = fl fol' i = 1, 2, 3. Since there can be no confusion, we 
call (3/0x 1 , 3/3x2 , 3/8x3) = V and (3/x 1 , 3/3x,) = V' again: The relation (5) tins- 

- forms the problem E - min-into the problem  

/	
I = b fTIl + IV h 2 dx1 dx2 +	dx1 dv2 + hJ - nun	(6)
 2 f 

where. 	.	.  
2J	f (VI 2 (1 +v ) - 2Vv V	+ 1Vv12 2 (1 ± V )) 

dV 

- 2 f (x 1 , x21 Q) h , , dx 1 dx2	 • '':	 • 

H	
•	

V/ 

with dv = dx 1 dx2 dx3. Taking (1) into account- with (X, Y) = B(xç, x2 ) 1 the 
transformed first variation is /	 •.	•,	 ,	V	 - - 

V 
(En, ) = f (- b cliv (v'hIy i + lVhI 2 )± h) dx1 dx2 + (Jh, ) .. 	( 7)' 

4	H
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2.2. Critical points. We compute the second variation of Eat h =' O.. From the stabi-' 
lity theory it is cleart. hat bifurcations-may occur at pointswhere the second variation 
looses its positiyity. We have 

)Ih=o = f (b JVI + 2) dx 1 dx2 - FJhh(, )lh=o 
Il	 -	 - 

•	vit.li  
•'hh(, )lh=o-= f !Yi I dv. — 2 f (x1 x2, 0) C, dx1 dx2 ,	 (8) 

•	 .	
-	 S	 R 

s heie q is deter mined by the Euler equation —fip zlq,, dV + f	- ) dx dx2, 
S	 R 

whose solution Js q,, = ' jw e 1 1 01.. = ,iw1 cosh (ku l x3+ wI)/(JwI sinh ko D, and 
from now on cox w1x1 +w2x2 . This we put ih66(8), obtaining 

Ehh ( C)!h=o =	/(b F , *-(,)) 	I2 

	

-	- - WEA	 - 

•	with y(b, F, w) = 1 + b kuI 2 - w 2(coth J wj )/.I w J . IDente P = (oj (1 + b 1w12) 
- . x (tanh w J)/w 1 2, then Ehh(, )Ih=o remains positively definite, until F< F = 

inin-F(w): w E A \ {0}}. For tIese F the trivial solution of (6), h = 0, is stable with, 
respect to the A'-periodie perturbations. Since the linear map L = EhhIF. may  
possess nontrivial kernel N(L), we call the F critical. Here we are only studying F 
described by	 .-	•	 .	- 

•	 -	 Lemma 1:The.following assrtions are true:  
(i)If b > 1/3, N(E) is trivial aid ; Fe' = 1.	 . 

• (ii)	b. < . 1/3, P attains its minimrn only at points (r, 0),. r =m/(Bl), m E.. 
Every r	0 uniquely determines the critical point&	- •	 . 

- sinh (2r) - 2r	-	4 sinh 2 r	
(9) - -	

C - r2(inh (2r) ± 2r)	. 
C — r(sinh (2r) ± 2r) '	•, 

and h
1 = eiT and h2	ex, are a basis.in N(L).  

•	(iii)	 wi	r, then y(wI, b(r), F(r)) > 0.  

	

•	Proof: P ttäins is minimum forw1 2 = w 2 . So we are studying the case w = (s, 0),
s E_ &. Consider  

= aPjs = ((b82	1) sinh.(2s) + (hs2 - 1) 2s) /(28 2 cosh  s).	- 

Cp(0) is a minimum of F if P8 (0) = 2(b —1/3) > 0. So F, ^_ P(0, b) = 1 for all 
-. b > 1/3 N(L) has the basic elements e", with w. E Aand'' )(b, F, co) = 0. 

	

• .	a)b >1/3:.We have y(b,1,0)	0.'Taking the power series expansion of the 
hyperbolic functions, we get y(b, 1; (w 1 , w2 )) sinh r ^ y(b, 1, (w 1 , 0)) sinh r	E w112
XS((4n2 + IOn + 6) b — 2n— 1)/(2n ± 3)!->.,f  w I 2 (4n2 ± 4n +, 3)/(3(2n . + 3)!): 
Soow 1 = 0 is the only solution of y(b; I,(w 1 , a 2 ))	0. Remarking that the incom- 
pressibrlitv condition (4) holds	have (i) 

.b) b .< 1/3: VanishinP3 for s + 0 'determines b = b, whence F F follows,	• 

- and power series, expansionof the second derivative gives F83 (s) > 0. In correspond-
ence witlr(i) the limit cases -* 0 gives b -= 1/3 and F = 1. In order to ge N(L) we 
set Iwi = w. Hence, 1(w) .=_ y(b, F, w) Z^ (const) 2 (w2(sinh (2s) .- 2s) + s2 (sinh (2.9) 
+ 2s) + 2ws(1 - cosh (2s)) coth w).. But y(b ) F, s) = 0 and /, = (g(s) - g(w))/w 
with g(w) = (const) 2 ( +sinli (2i)-- 2w)/(w sinh2 w). Since g is a- strictly thonotone • 

-I,-
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decreasing function, s = w is the only solution of v(b, F, w) = 0. Firther, Fe(s) is 
- a strictly monotone decreasing lunction. So different s really give different F. Thi 

completes (ii). Since g is decreasing, / is increasing (decreasing) for w > s (w < s). 

	

• \	Therefore, y(bc, Fe(s), co) > Oifw 4 s. The restrictionw = (s, 0) E Agi"ess = m/(Bl) 
with m  71 I •	 ' 5 

/

	

	
Remark: Consider in' 	as a con'tinuo'us parameter. Then (9) describes a cure 

C parametrized with respect to r (Figure 1). Below C the trivial solution h'= 0 of 
(1), (2) is stable, no bifurcations occur. At points F =1, b > 1/3 by ou'radditiohal 

	

S.	 incompresibility condition (4) the bifurcating waves h.= const areeliminated. So	•- - 
the bifurcation points F, 	1 and b < 1/3 have to be studied 

FCH	
IF 

1/3	 b	Fig. 1 
S	 S	 S	 - 

2.3.Propertiesof the energy functional. Studying the energy-'functional andit.s first 
and second variation as mapsin Sobolev spaces, we can use some results of BEYER- 

S [1]. We need some definitions given also in [1 . : § 3]. Let Urn bC'the subspace of 11m, 
whose functions satisfy (4) For my open inteival I on the x3 axis we denote by IIIi 
the norm bf T in L2(I). Lets	

S	 •, S 

	

* S	

•.	

Wmj	{ € L2 (I 1 Hm): 9'( m)	bm9'/ax3rn € L2 (I, H0)}'	

-	 S 

- be theSoloIev space of A'-periodicjupctions 9 (x1 ;x2 , x3) = E (x3 ) e	with dis-



tributional derivatives iip to order m in L(R x I). The derivatives up to order. m - 1 
should, be A'-periodic, too. Let II,.i . = jj 9'o II i2 + X (I w I 2 '	II +	(m2) he the 

- norm in W, ,1 . If m7	1, we further define	 S 

S	 V'm.I	{9'.E 2Y,(I, Hrn): 9'1.(rn) E L 2(1 1 H0)}  

•	with the norm 1991 2.1 = I'IIi + Z. (1_1 2 IIMI2 +	( m )11 12) Henceforth, we set' 
.5	 5	 -wil	

S 

b = b(1 - ) and F= F(1 + s). So weset E = E(h, e, IL).
 

• L e th ma 2: Assirne s 5/2. Then
 

	

•	(i)E(h, a, e) maps a neighbourhood-of (0, 0,0) E H x1R 2 analytically znto1R,	. S 

(ii) Eh(h z, e) considered as a map from 118 x 1R2 into 11 8 -2 is analytic at (0 0 0), 
'(iii) Ehh(h, IL' e) - originally considered as a map. on H, x. H,	is continuous on 

H 1 x111 , and iti'continous extensin on H x H as a map from 1 3 x JR2 into - 
1(H x 11 IR) is analytic at (0, 0, % 

Proof: Setting	 S • •	 :	• 
S	.	 I	 S	 S 

/	—79,v + 9 .3. VV + (Vv V91 - [ Vv 1 2 91.3/( l + V.3)) (0 0, 1) 

S	/	.	
S	 •S	

•	
-	•,S	-	•	 .5
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and transforriing the variational equaton .f VO Vip dZdX d  = 0 we get 

•	 f pfd  =fV'VdV—fv(0)h 1 dxi dx2 '	for all V E V,. 
S	 S	 R	 5 

If we take =99, + with	= 0 in S, 99, 3 = h . I at x3 = 0 and	= 0 at
= —1, then T, is given by' 1 .in Subsection 2.2 and 

f Vp/ dV = f Vq5 VV d  for all	€ V 1 w ith / = / (q) -r / ()	(10)

For the Fourier series / = ' 1 5 (x3 ) eix this implies 

f	+ W1 2 jjdx3 =f (/	- iw/) dx3.  
/	•'I	 '	-	 1' 

Choosing	= . and applying Schwarz's inequality*, we obtain -
1	11 2

 

•±	 1 2 11I2	MtH (!I.3M * k1	D• 

hence 1 3 I 2 + wJ 2	lI 2 ^2 iIt 2 : So, for m =O we have shown 'that the uni4ue 
solution E 'V1 of (10) belongs to Vm+ i and satisfies iIm4I C •IV j im, with c independent

•
 

of. /. Differentiating the Euler equation of (11) (rn 2 1) -times, we have _,(m+1) 

+ Iw2 5(m-i) = _ia.I/0(m-i) - f(m) for m > 0, whence 
•	 (m+I)II	1 1w12p.11-11 11 + Iiw2/(1_ 1 + I/(m)II

 

follows. With the same argument as for rn = 0 it follows that 
tI(mh)i2	3(H4 IJ1 I 2	JwJ l/(m_1)[J2 ± J/ 1 j 2 ):	S 

,Taking notice of	<_ const(	I (.+k)112 
± II(1 2/m_1) for >0, we get the 

proposition for rn> 0.	
0 

Let h E 11m+i/2 Obviously our transformation function v in (5) belongs to Vm2 i - - 
and as map of h it is analytic in 0: Notice that iIm+1	2 jhllm+i:12 . Since the TV., are
Banach algebra if s-> 3/2,  

(h, q' 1 , fl E llm +1 /2 X Vm+ i	Vni + i > /(h, T,, ) € Wm 
is analytic at (0,0,0) if m ^! 2. Sowe can solve (10) via a fixed point theorem for 

• irE Vrn+i, obtaining (h) analytic in 0, and then is analytic. Since J in-(6) depends'
• analytically on (, v) € V 1 x Vm+i , power series expansion of T and v gives the ana-



lyticity of J in h = 0. Obviously the other terms in E are anal ytic, too, which gives 
(i). Now it is time to'justify(7). The int .egrand in ,J is an aiialytie function in h, 
V;= 0 and vJ, =0 . Since Ix,-=0, VV Iz,=0 € Hm_ 1 12, the integrai'id belongs to H' 

- 1/2, 
too. The term due to the Bond number belongs to Hm _312 .,ThjS completes (ii). Propo-
sition (iii) is independent of the concrete problem: It follows solely froth the an'alyt'i-. 
city of Rh. Proposition (iii) is proved by estimating the coefficients of the power  series expansion'of Evia interpolation theory. The proof.is givenin-BEYE [1: Corol-
lary 2.21, so -we omit it I	 -. 

3'The bifurcation equatiOns	':	'	•'	 ' 

3.1. The Ljapunov-Schrnidt procedure. ' Let h € H. In a small neighbourhood of 
(h, ,, e)= (0, 0; 0) and for all C € II, we have to solve' (Eh(h, jz, ),	= 0. With (4)-



w&get,  
z, e)----Lh + AT(h, z,	 f:	• •,	 (12)
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where N(h, u, e) denotes the nonlinear part of Eh(h, u, s). Let Q be th'projection 
from H 3 onto the range of L. Then I - Q, with -I being the identity, -projects onto the 
orthogonal complement, of the range of L, that means onto N(L*). We have I Q 
= (., h) h1* + (., h2 ) h2* with h,'h2 E N(L) and , h 1 * , h2* E 7 T(L*). Recall that the 
norms inN(L) and'N(L*) are different. But, since L is formally seif-adjoint, the 
basic elements in N(L) and N(L) arethe same (h1 = h 1 * anclh2 =h2*) . ,Now, (12) 
is, equivalent to  

QEh(h, e) = 0	 I	 (13)
and

.	(I - Q) Eh(h, , e) =.	 .	S	 (14) -. 

•

	

	i)ecrnposing h h' + 71 with h' E N(L) and j € N(L), we find that (13) hasthe
unique solution (h', 1u, e). Recall from Lemma 2,that 17 is analytic. Inserting this in 

- (14), together with the linear independence of the h* we get (Eh (h' ± (h',a, e), z, 
= Ofor 4 i € N(L) with i = 1, 2. Then, regarding (L	) -. 0 for i	1,2 and (12) 

we get the bifurcation equations	 .	L 

G i	(N(h + (h i, r), z e) 
	
= 0 for , E N(L)	= 1, 2	(1. 5)

where -q,,has to be determined from  

(Li7, ) = —(QN(h' + 97, u, e),	 for all € N(L) ' . .	,.	(16) 

3.2. Symmetries. Since we are looking for . real h', set 1'	z ei0 + e'x, . where'
z ='a e16 with a, ô € IR. Taking into consideration the symmetries underlying the 

• physicalproblern, we ar able to say what terms am&6, m-E N and n	, only'can
occur. in our equation. Here we suppress the dependenee on the parameters in Eh. 

Definition We call (Eh(h) ) = 0 Eh acting in 'L Hilbert space, covariant with 
• •
	 respectto a unitary representation T g of a compact group Oif (Eh(h),'C) = (Eh(Tgh), Tg') 

forallg€G.	 .	.	- .. 
. In our case we consider the translations in the (x 1 ,X2 )-plane via a vector a with the 

representation Ta and the rotation through n with the representation 'ic. If g isan . 
• clenienf of the translation or rotation group, we take the representation (Th) (x1 , x2) 

= hg-'(x1;-x2). Consider (12) with Eh as analytic operator ovr a. Hilbert space. We 
have Eh(O, .0,0) = O. L is a, Fredholm operator of zero index. So we have the following. 

Lemma 3: [4: Theorem 4.4]. Lct(E4(h)) ) = 0 be covariant with respect to Tg , then 
(i) Tg leaves N(L) invariant;	 .	. 

-.

	

	(ii) L commutes with'Tg;	 .	 •' 
(iii) the bi/urcatibn equations are covariant with respect to the /inite-dimensional 

representation Tg restricted to N(L)'.  
• -	This we apply to prove the following. ''-	.	•._ 

Lemma 4: The bilurcation equations (15) are reduced to one-equation.. 

-.	 = ó, .	ôonstants.	•	S	 / 
•	

.	 rn+k±j>O	'	 .	.	.	.	 .	.	' •.	 S 

Proof Because of the analyticity of Eh and 77 (h') OL,Ir bifurcation equations (15) are 

G,	.^	!' g(/z e)	=, O	(z = 1, 2)	 (17) 
-	n>Ok+,n=n	.	 S	 .	 S	 •

/ 

•	 S	 •	 .	 .	 .	 . 

t	 .	 --



/ 
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The'action of T,,-restricted to N(L) is Tah t = e'°h1 and Th2 = e"°'h3. Applying 
this to the terms of nth order-in (17), we get 

ea E 

	

.9'k(/2, e) Zm	= 2' g(/z, e)e Ima( m_k) Zm.  
k+m=n	 k+m–,n	 S 

This must hold foj all a E & 2, whence m = k + 1follows.'So wehave G = ,f s) 

	

kO	'	S 

X a2'i = 0 (i = 1,2) with someg t . The covariance under T,, gives a relation between 
•G 1 and G The action of P. r'estrided to N(L) is Th1 = h2 and T,h2 = h1 . So Lemma, 

-	4/(iii) gives G2(h1 , h2) = (N(Th1 , Th2),'Tft2) =G1 (h2 , h1 ), which completes the 
'	proof	 -.	l	 ' /	 - 

•3.3. Concrete coefficients of the bifurcation equation. Here we will solve the bifurca-
tion equation. We will see that it is enough to know .the coefficients Cmkj Pp_ to M . + k 
+ j = 4.' At first '.'e have to compute some Fourier coefficients of the next 'ipproxi 
riia.tions of 'IF =	k(1).  

S	 '0	 / 

Leniñia 5: Let  
h	h ± u12 = z eImx + ez + (z2 e2u0x + 2 e21r)	 (18) 

and I X31 =u. Then for the power, series expansion	'	•'	'	' 
•	 p(h) = 9, 1 (h') + 912 ( 2 ) ± 92 2(h' 2) + 3 (72h') + 913(h'3)+ Z11 (k/'rn) S 

•	2k-4-m>3 
we get	 '	•-

(i) 91 (h')'= q, e'+jT9. C-1wx with	= iw cosh (u + r)/sinh r, W2(?12) = 9 2 e2v 
+ 2o e21wx, 2(h'2)  

(ii) 913(112k)- = 0 as Fourier coefficient of eIox in the Fourier expansion of 93 
(iii) the Fourier coefficient of c i ox at x3 = 'O 

 993(0).J., '0 = iz2 a) ( - sinli (4r)+. --, sinh(2r) + 2r)/sinha r. 

Proof: Transformation of (1) with (5) leads to (h.o.t. denotes higher order terms) 
= A(v) + B(v3) ± h1.o.t. in $ with  

A(qv) = 2v i q i + 2v	+ 2v,,9',,, - 99 ,1 IV + V 32 
'S	 B(v3) = 4v 1 v ,v + 52) v 13 + 

to 99,,=h , , + C(v) ± D(v3) + h.o.t. on x3	0 with C(qv)= 20 , v ,j	q,3v,3 and
D(v3) = 2V . , (V2 + vs),, and to 99 .5 = 0 on x3 = 1. The first approximation' of 
q with linear right sides is given in (11). We get 2 (h' 2) from	3(h12) = A(q 1 (h') v(h'))
in S and q 23(h' 2) = C(q i (h') v(h')) on x3 = 0. This implies (i) since the right sides are 

•	zero.  
With (18) equation (5) reads v(h) = v1 (h') -I- '2 (17 2 ) ± h.o.t. Solving 

3(h 2 ) --.A ( 'P2( 77 2' ) v j (h ' ) + ç 1 (h )v 2(ii2 ))	in 8, 
= c( 3 (772 ) v 1 (h') + i (h)v2 (i 2 )) 	n x3 = 0, 

O	notice that	= — v1 ,3 and Ti.3= v ,1 for i = 1, 2. This implies in that case A = C 
0, which gives (ii).	 0	 • 0	-' 

	

Finally the solution of	 0	 0 

i 3(V) = B(v3) = iw4z2 (5 cosh (3u -+- 3r) - 4 cosh (u + r))/sinh3 r•	• 
in S and 3(h 3) = D(v3) = —2iwz2 (3 + coth2 r) on x3 = 0 gives (iii) U
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Studying in which manner 71 from (16) contributes to the lower terms in the bifurca- 
-	tion equations (15), we will also justify (18) .	 .	..	 .. 

Lemma 6: ThS solution 71 =	' ,7 k1m(h +2eUm ) of (16) contains the terms 
•	 .	 '	 k4-t+m0  

cosh (2r) 
12 = ?)200	'(z2 e21c0x ± 2 e_210x)	j ' = — w	 - _____. sinh r cosh r + 2'tanh'r. - -3r' 

The nontrivial Fourier coefficients in 2210 and 7720, are only ( 77210)2,,, and 0120I)2 •	- 

Proof let il be the 'ipproimatIon of , depending on h1 2 Then =!'Pic(hk) 

and Th = h' + f + E 7k,m (h 35h,jm) . implies	= 1 (h') +	+ E k(hk). 
k+1+mQ  

Recall from (7) that (16) -is-	 . 

=

	

	F(l + s) ((JV 1 2 -. 2 1 3h' ), ) -. 

+ bi1 , ) + h.o.t. 

Lemria 5./(i) yields  

(Lii,	= (_F cw2 cosh (2r)/(2 sihh2 r) + O(r, C, /L)) (z c2ix 

+ 2 c21z, ) ± h.o.t.. 

with some U depending on e and p. So, .O determines only (201)2 and (210)2- The last 
'eqlation must hold for all € N(L) n H 3 . - Choosing = ^2w e21x + P

_ 2i-x we 
get -together with L()200)2,,' = (I + 4w2b - 2wF coth (2r)) (200)2 and with (9) 
?1200 = 1200 

At tlis time we have determined all unknown functions which are irnporiant for 
our bifurcation equation.	 .	 .	• 

Theorem, I: The /oUowin'assertions are true:	 . 
(i) The' bifurcation equation (15) reads as	 '	.. 

± e') + (w (r) + 41') a3	E Ckjma 3E'/	.,	 (19) 
•	 k-ft±,n>0	 •	 S 

where z' = (sinh (2r) - 2r) /w2; e'	2 sinh (2r)/w2, and-

3

S	 • 

•w(r) = --- (sinh (2r) - 2r) ± (7 sinh (4'r) - 4 sinh (2r)	8r)/sinh2 r. 

• (ii) The .nontriviçzl solution of (19), which only exists if r > r0 /r some i,	0.8, is 

•	a2	(C' ± IL')/(w(r) + 47') +	' a 1 et1u.	, •	 -	 - (20)
i+j>l  

Proof:-The  ifurction equation (15) with the concrete terms from (7) reads as	, -	• . -. 

((b,L c	h' + eF 1,1 ), i) + 3b((h1 12 ) h 1 ),	)	S	 •	 S 

= - F(( 1 ±	V2 - v123 - v21 , 3 ± v 1 v13), ) ± h.o.t., (21) 

where h:o.t. denotes higher order terms in a k with k 4. A simple computation with 
the functions given in Leninia 5 , and Lemma 6 and 'the b and F, from (9) together 
with Lemma 4 gives (i) . The I niplicit .Function. Theorem together with the condition 
w(r) > 0 finally gives (ii) I	,	. /	 '	 • 

9 Analysis Bd. 9, Heft 2 (1990) '	'	S	 S	 •
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Remark: We have considered our problem in three dimensions. However, ve' 
• hive shown that at smallest critical Fronde numbers the bifurcating \wave is .a two- 

dimensionalone, indeed, it,is that wave which was derivedin ZEIDLER'[7: Chapter 4]. 
Therefore2 'we have also justified the two-dimensional approach of [7]. 

Now, in analogy to Beyer [2], the variational approach gives the stability of the 
wave in a 'natural way.  

4 Stability	
I	 / 

4.1. The second variation of E Stability intervals we get by the positive definiteness - 
of the second variation of the potential; energy. By Lemma 2, EM has the structure • =	) ± ' E 2h'). if we set = + , 'where	€ N(L) and 2 

	

•	€ N(L),',this yields 1>0  
•	 '•-	'	 '-	 '	'.	 ' 

	

-	 '	Lemma 7: For Il and ltl small eñou'h the stability of the solution (20) is determined 
by the positive definiteness of  

E. = (L 2 2) + E 1 (42h) + E(2h ) 
where

	

	 -•	..• -	 '	 2	- 

X(&z+6 + e_0vâ) and 2 = X2( l(wX+ô) + e_21(wx+6)) 

Proof: 1. The inequality 	)	122 iolloys by Lemma 1/(iii). 2. Recall from 

	

-'	(21) that h'\ = 0(,-, u) as e,	- 0. Since iI	I2I1	 2. llll 2 + lI2M 2/'. where we take 
2 = e or 2	, respectively, together with Paift 1 we gCt lE2 ( 2h12 )1	c' 1112 (J 

+ ha) The same argument yields jE1 ( 2h )l	c (l e t + hal) (11111 2 + llill Ill') But 
integration of the eiklx terms. (k=1, 3) 'shows E1 ( 1 2h')	0. Hence, Enh(, )'is given
by the sum ofapositive part (L, ), I 2 ánd 'E N(L)', of E0, and of other terms 
of higher order if JEJ and hat are small enough. 3. With respect to translations through'	\- 
any a	(a 1 , a2) in the (x 1 , 'x2)-lane the covariance of Eh(h) was given by TaEh(h)
= Eh(Tah) = 0. For i' = 1 or i = 2 differentiating with respect to the parameters 
a 1 yields Ehh(Tah) b(Tah)Ieai = 0. Fr a 1	0' this is Ehh(h) h ,1 = 0: But that is the.
well-known Met (see SATTINGER [3]) that the covariance of Eh with respect to a 
- two-paameter Lie group yields two zero eigenvalues for EM, so stability in our case 

can only mean orbital stability. That is stability, over a subspaceof all E H,, with 
() h ,1 ) = 0 for J = 1,2 land h from (18). Let = X &' and X2 e26". 
Computing the' scalar product we find 5 = O' =45" I 

4.2. The stability interval. Next we compute E0. We know from the splitted Euler 
equation (15)and (16) that'  

E) = (L,	+ (N(h' + ),	+ '(N(h" + ) ,' i), ' ' .. -	-	' S S• 

-•	where C € N(L)'. (19) -and (21) taken into , accounf, this reads as	• -	' ' 

- (En, C) .= (,sinh (2r). - 6r + 4 t.anh r) 'z2X2 + 2 cosh (2r) a2X2	• 
1	

- (E' +') aX1 + w(r) a3X1 +4'a2X 1 + h.o.t.
 

• But variating h really means variating every Fourier coefficient. So we have to take 
a(t) = a + tX 1 and '(t) = ' ± tX2 , which yields E0 = EhaX i -F- Eh ,. Therefore, 

	

-	E0 '= CX 1 2 + 2C3X 1 X2 + C2 X,2 with Ci -=4(e' 1 ± ii'), C2'=2a2(sinh(2r)_ 6r 
-47 4 tanh r) and C3 = 4a3 This quadratic form is 'Positive definite if C1'+ C2 > 0 

	

S	 •	S	•	 .	•	/
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L_and C1 C2	C32> 0. The first condition is fulfilled for all E, ,u > 0, the' second means 
((sinh (2r) 1 2r)/sinh (2r)) ,u + 2 < g(r) with a function g, g(r) > 0 for. r	0 and 

• g(0) = 0, with r = m/(BI) where B is the mean depth and rn/I theave-1ength 
determined bythe choiceof the critical parameters. The inequality shows that for small 
wave-length the dependence on t.becomes important. This finally jields 

' Theorem 2: The bifurcating wave h = a(,-, y) Cos' (X,M/*(Pl) +.5) is 'stable with 
respect to perturbations, which belong to 11m, if I e' and Lu'I are small enough and if r > r0'. 
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