(1)

A Characterization of Dobrushin's Coefficient of Ergodicity

R. KÜHNE and A. RHODIUS

Es wird bewiesen, daß ein zu einer Vektornorm des Rⁿ gehörender Ergodizitätskoeffizient r genau-dann die Ungleichung $\tau(P) \leq 1$ für alle stochastischen Matrizen P der Ordnung n erfüllt, wenn er der Dobrushinsche Ergodizitätskoeffizient ist.

Доказывается, что для коэффициента эргодичности т относительно некоторой нормы в \mathbb{R}^n выполнено перавенство $\tau(P) \leq 1$ для всех стохастических матриц P порядка n тогда и только тогда когда он является коэффициентом эргодичности Добружина.

It is proved that the ergodicity coefficient τ corresponding to any vector norm on \mathbb{R}^n fulfils the inequality $\tau(P) \leq 1$ for all $n \times n$ stochastic matrices P iff it is the Dobrushin ergodicity coefficient.

Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^n and S_n $(n \geq 2)$ the set of all $n \times n$ stochastic matrices. In [4] E. SENETA has introduced a general concept of coefficients of ergodicity τ for $P \in S_n$ with respect to $\|\cdot\|$:

$$
\tau(P) = \sup \{ ||xP|| : x \in H, ||x|| = 1 \} \qquad (P \in S_n),
$$

where $H = \{x = (x_1, ..., x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\}$. For the l_1 -norm $||\cdot||_1$, $||x||_1$ = $|x_1|$ + ... + $|x_n|$ ($x \in \mathbb{R}^n$), the ergodicity coefficient denoted by τ_1 is the wellknown Dobrushin coefficient

$$
\tau_1(P) = \frac{1}{2} \max_{\mathbf{i}j} \sum_{k=1}^n |p_{ik} - p_{jk}| \qquad (P \in S_n)
$$
 (2)

with $P = (p_{ij})_{i,j=1}^n$ (see the remark following Lemma 2). The coefficients $\tau(P)$ are bounds on all non-unit eigenvalues of P. For τ_1 the inequality $\tau_1(P) \leq 1$. $(P \in S_n)$ holds. In our note we show that τ_1 is the only ergodicity coefficient τ satisfying this inequality. The proof points out the role of certain extremal points.

Denote K, S, K₁ and S₁ the set of all $x \in \mathbb{R}^n$ with $||x|| \le 1$, $||x|| = 1$, $||x||_1 \le 1$ and $||x||_1 = 1$, respectively. For $i, j \in \{1, ..., n\}$, $i \neq j$, let $e_{ij} = (x_1, ..., x_n)$ with $x_i = -x_j$
= 1/2 and $x_l = 0$ for $l \neq i, j$, and denote $E_1 = \{e_{ij}\}_i$. Let $x^+ = \max(x, 0)$ and $x^- = \max(-x, 0)$ for $x \in \mathbb{R}$. Finally, for a li norms $|\cdot|_i$ on L denote B_i the corresponding unit balls and Ex B_i the set of their extremal points $(i = 1, 2)$.

Lemma 1: For $\lambda > 0$ the following assertions are equivalent: (i) $|x|_1 = \lambda |x|_2$ $(x \in L)$; (ii) $\lambda = \sup |x|_1$ and $|e|_2 = 1/\lambda$ $(e \in \mathbb{E} \times B_1)$.

Proof: The implication (i) \Rightarrow (ii) is obvious. (ii) \Rightarrow (i): The relation $\lambda = \sup |x|_1$

yields $|x|_1 \leq \lambda |x|_2$ ($x \in L$). On the other hand, if $x \in L$ by the Krein-Milman Theorem, there are $e_i \in \mathbb{E}_X B_1$ and $\lambda_i \in \mathbb{R}$ $(i = 1, ..., k)$ with $\lambda_i \geq 0$, $\lambda_1 + \cdots + \lambda_k = 1$ such that $x = |x|_1 \sum \lambda_i e_i$. Thus, by $|e'_i|_2 = 1/\lambda$ the inequality $|x|_2 \leq (1/\lambda) |x|_1$ follows

R. KÜHNE and A. RHODIUS

Lemma 2: The equality $\operatorname{Ex}(K_1 \cap H) = E_1$ is true.

Proof: Clearly, $\operatorname{Ex}(K_1 \cap H) \subseteq S_1 \cap H$. Since $x = (\sum_i x_i^{\dagger})^{-2}$
 H), each $x \in S_1 \cap H$ is a convex combination of elements of E_1 . Proof: Clearly, $\operatorname{Ex}(K_1 \cap H) \subseteq S_1 \cap H$. Since $x = \left(\sum_i x_i^*\right)^{-2} \sum_{ij} x_i^+ x_j^- e_{ij} \ (x \in S)$ nH , each $x \in S_1 \cap H$ is a convex combination of elements of E_1 . Therefore, we have $A \cap H$), each $x \in S_1 \cap H$ is a convex combination of elements of E_1 . Therefore, we have $\mathbb{E}_X (K_1 \cap H) \subset E_1$. On the other hand, let $e_{kl} = \lambda x + (1 - \lambda) y$ with $x, y \in K_1 \cap H$. Froof: Clearly, $\operatorname{Ex}(K_1 \cap H) \subseteq S_1 \cap H$. Since $x = \left(\sum_i x_i^+\right)^{-2} \sum_{ij} x_i^+ x_j^- e_{ij} \ (x \in S_1 \cap H)$, each $x \in S_1 \cap H$ is a convex combination of elements of E_1 . Therefore, we have $\operatorname{Ex}(K_1 \cap H) \subseteq E_1$. On the other hand, let Ex $(K_1 \cap H) \subset E_1$. On the other hand, let $e_{kl} = \lambda x + (1 - \lambda) y$ with $x, y \in K_1 \cap$
and $0 < \lambda < 1$. Since $\lambda x_k + (1 - \lambda) y_k = 1/2$, $\lambda x_l + (1 - \lambda) y_l = -1/2$ and $\sum x_i^+ = \sum x_i^- = 1/2 ||x||_1 \leq 1/2$, $\sum y_i^+ = \sum y_i^- = 1/2 ||y||_1 \leq 1/2$ we have

I

Remark: Using Lemma 2 and (1) one can easily prove (2). Indeed, for each $P \in S_n$ the $\lim_{n \to \infty}$ if $\lim_{n \to \infty}$ is a convex functional on $K_1 \cap H$ assuming its maximum at a point of Ex $(K_1 \cap H)$. $y_k = 1/2$, $x_l = y_l = -1/2$, and therefore $x = y = e_{kl}$. Thus, $E_1 \subset$

Remark: Using Lemma 2 and (1) one can easily prove (2). Indee

norm $||P||_1$ is a convex functional on $K_1 \cap H$ assuming its maximum at a

Therefore, one ob

therefore, one obtains
$$
\tau_1(P) = \sup_{K_1 \cap H} ||xP||_1 = \max_{E_1} ||eP||_1 = \frac{1}{2} \max_{i} \sum_{i} |p_{ik} - p_{jk}|
$$
.

Theorem: Let *r* be an ergodicity coefficient with respect to the norm $\|\cdot\|$ satisfying $\tau(P) \leq 1$ *for all* $P \in S_n$. Then erefore, one obtains $\tau_1(P) = \sup_{K_1 \cap H} ||xP||_1 = \max_{E_1} ||eP||_1 = \frac{1}{2} \max_{i} \sum_{i} |p_{ik} - p_{jk}|$.

Theorem: Let τ be an ergodicity coefficient with respect to the norm $||\cdot||$ satisfying
 $P) \leq 1$ for all $P \in S_n$. Then

(i) $\$

(i)
$$
\tau(P) = \tau_1(P)
$$
 for all $P \in S_n$; (ii) $\lambda ||x|| = ||x||_1$ ($x \in H$) for some $\lambda > 0$.

For $\|\cdot P\|_1$ is a convex functional on $K_1 \cap H$ assuming its maximum at a point of $\text{Ex}(K_1 \cap H)$.

Theorem: $\text{Let } \tau$ be an ergodicity coefficient with respect to the norm $\|\cdot\|$ satisfying $\tau(P) \leq 1$ for all $P \in S_n$ Remark: Using Lemma 2 and (1) one can casily prove (2). Indeed, for each $P \in S_n$ the
norm $||P||_1$ is a convex functional on $K_1 \cap H$ assuming its maximum at a point of $Ex (K_1 \cap H)$.
Therefore, one obtains $\tau_1(P) = \sup_{K \cap H} ||$ (i) $\tau(P) = \tau_1(P)$ for all $P \in S_n$; (ii) $\lambda ||x|| = ||x||_1$ ($x \in H$) for some $\lambda > 0$.

Proof: Since $||\cdot||_1$ is a continuous functional on the compact set $S \cap H$, there is
 $\alpha y \in S \cap H$ with $||y||_1 = \max ||x||_1 = \lambda$. For $j, k \in \{1, ..., n$ $a \ y \in S \cap H$ with $||y||_1 = \max ||x||_1 = \lambda$. For y

be defined by $p_{mj} = 1$ for $y_{m}^+ > 0$ and p_{mk}
 $= ||y||_1 e_{jk}$. Therefore, $\tau(P) \leq 1$ $(P \in S_n)$

of λ , $1 = ||e_{jk}||_1 \leq \lambda ||e_{jk}||$, so that $||e_{jk}|| = 1$

and (i) directly foll $1/\lambda$. Thus, Lemmata 2 and 1 imply (ii), and (i) directly follows \blacksquare **Proof:** Since $||\cdot||_1$ is a continuous functional on the compact set S n

a $y \in S \cap H$ with $||y||_1 = \max ||x||_1 = \lambda$. For $j, k \in \{1, ..., n\}, j \neq k$, let $P_{j,k} =$

be defined by $p_{mj} = 1$ for $y_{mj}^+ > 0$ and $p_{mk} = 1$ for $y_{mj}^+ = 0$

Remark : After we had finished the first form of this paper we has been informed by A. Remark: After we had finished the first form of this paper we has been informed by A
Lesanovský that he has obtained independently the result of the theorem [2]. However hi
proof does not use the aspect of extremal points. proof does not use the aspect of extremal points. and (i) directly follows \blacksquare

Remark: After we had finished the first form of this paper

Lešanovský that he has obtained independently the result of the

proof does not use the aspect of extremal points.

(1) DOBRUS Nemark: After we had finished the first form of this paper we has be
anovsky that he has obtained independently the result of the theorer
of does not use the aspect of extremal points.

TERENCES

DOBRUSHIN, R. L.: Central

• -

• •

•

- [1] DOBRUSHIN, R. L.: Central limit theorem for non-stationary Markov chains, I and II. REFERENCES

[1] DOBRUSHIN, R. L.: Central limit theorem for non-stationary Markov chains, I and II.

Theory Prob. Appl. 1 (1956), 65-80 and 329-383.

[2] LEŠANOVSKÝ, A.: Coefficients of ergodicity generated by non-symmetri $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
[1]
[2]
[3] RETERENCES

(1) DOBRUSHIN, R. L.: Central limit theorem for

Theory Prob. Appl. 1 (1956), 65–80 and 329–

[2] LEŠANOVSKÝ, A.: Coefficients of ergodicity gen

Czech. Math. J. (submitted).

[3] RHOUUS, A.: The maximal value
	- Czech. Math. J. (submitted):
	- [3] **RHODIUS,** A: The maximal value for coefficients of ergodicity. Stoch. Process. AppI. 29 $(1988), 141-145.$
- • [4] **SENETA,** E.: Coefficients,, of ergodicity: structure and applications. Adv. AppI. Prob. **¹¹** • Czech. Mathematik der TU

19 Rinotus, A.: The maximal value for coefficients of ergodicity. Stoch. Pr. (1998), 141-145.

19 SENETA, E.: Coefficients of ergodicity: structure and applications. Adv.

19 SENETA, E.: Coeffic Manuskripteingang: 29.06.1988; in revidients of expository. Stoch. Process. A

13. E.: Coefficients of ergodicity: structure and applications. Adv. Appl. Process. A

15. E.: Coefficients of ergodicity: structure and applic + 102000, 102000, 102000, 102000, 102000, 102000, 102000, 102000, 102000, 102000, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10200, 10329,
	- [5] SENETA, E.: Spectrum localization by ergodicity coefficients for stochastic matrices. Lin.
Multilin. Alg. 14 (1983), 343–347.
	- [6] TAN, C. P.: A functional form for a particular coefficient of ergodicity. J. Appl. Prob. 19,-
(1982), 858–863.

Manuskripteingang: 29. 06. 1988; in revidierter Fassung 25. 11. 1988

VERFASSER:

141 – 145.
 A, E.: Coefficients of ergodicity: s

576 – 590.
 A, E.: Spectrum localization by er
 n. Alg. 14 (1983), 343 – 347.

1. P.: A functional form for a part.

858 – 863.

Manuskripteingang: 29. 06. 1988; i

V

, Dr. ADOLF RHODIUS
Sektion Mathematik der PH

-

S

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$