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•0, 

Es wird bewiesen, daB ein zu einer Vektornorm des 1R 5 gehorender Ergodizitatskoeffizient• t 
genáu-dann die Unglichung i(P) 1 für alto stochastischen Matrizn 'p der Qrdnung n Cr-
füllt, wenn er deIDobrushinsche Ergodizitätskoeffizient ist. 
L0Ha3blBaeTcn, iTO AJIR 10l44111AHeHTa apr0Jki4440Cll T 0TH0CI1T01bH0 Ile}{oTopofl HopMu. 

B R" Biinornieo HepaneucTBo T(P) ^ 1 nsi acex cToxac'rlaqecK}ix MaTpnu -P nopgIa , n 
Torfa H TOJlbHo Tora Horita oil aujIHeTca ioa4lILueuT0M pr0n'1H0CT1f Jo6pyniiHa. 

It is proved that the ergodicity coefficient tcorresponding to any vector norm on lRfulfils 
the inequality r(P)	1 for all n X  stochastic matrics P iff it is the. . Dobfushin ergodicity 
cofficient.:  

Let Jl•fl be . an arbitrary norm on R n and 5 (n the set of all n x it 'stochastic 
matrices. In (4] E. SENETA has introduced a general 8oncept of coefficients 'of ero-'-
dicityt -for PE 5,, with respect to 11.11:  

= sup {llzP li : x E H, fl xJl = 1' ' (P € 8,,),	 (1) 

where H '{x = (x 1 , ..., x,,) €'lR: x 1 + -• + 5x, = O}'. For the 1 1-n6m fl . , 11x111 
lxii +.•• +\l Xfli (x € R"), the ergodicity coefficientdenoted by	is the well-

known J)obrushincOefficient  

=	max E lPk - PjkI	'(P € 8,,)	 .	:	(2) 
•	 .	 2	ki  

•	with"P =	(see the remark follo'ving Lemma 2). The, coefficients t(P) are 
bounds on all non-unit eigenvalues of P. For tI the inequality r 1 (P)	1.(P € 8,,) 

• ,

	

	 holds. In our note we show that'r 1 is the only ergodicity. coefficient -r satisfying1tii 
'inequality. The proof points out the role of certain extremal points. 

Dehote K, 8, K 1 and 8 the set of all x € IR" with j jxjj , I, IlxlI = 1, lIzlI ^5 1 and 
liz]! '1 = 1, respectively. For' i, j E {1, ..., it), i == j, let c 1, = (x 1 , ..., x,,) with x = —x 
= 1/2 and x 1 = 0 for 1 + i, f, and denote B 1 =	Let x = max (x, 0) and 

= ma (—x, 0) forx € R. Finally, for a linear subspace L IR" I, +.{0}, and 
io, i-ms 1 . 1 i on L denote Bi the correspori'dirg unit Halls and Ex B 1 the, set' of their 
extremal points , (i = 1, 2).	 .	'	,	•. 

L em in a 1: Poi 2 > 0 . the following assertions are equivalent: 
(i) lxii = 2 x1 2 (x € L);	(ii) 2	sup i x l1 aid J e 12 = 1/2(e E Ex B1).  

Proof: The implication (i)	(ii) is obvious. (ii)	'(i): Th relation 2 = sup Ixl1 

yields I x ij	2 1 x 12 (x € L). On the other hand, if . x € L by the Kein-Milman Theorem, 
there are e 1 E Ex B, and -2 1 E1R (I =1,..., k) with ;. j ;j^ 0, A l +	±2 =1 such 

•	that x = lxii E 2 ie. Thus, by •]e] 2 = 1/). the inequality II2	(1/2) ]x] 1 follows I
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Lemma 2 :The equality Ex (K 1 i' H) = E 1 is true.	 I 

Proof Clearly, - Lx (K1 n H) S, n H Since x 
= (' 

x1+)_ E x,x,e,, (x E S 
nH), each x E 51'n H is a convex combination of elements of E 1 . Therefore, we have 
Ex (K1 nH) E1 . On the other hand, let e = Ax + (1 - A) y with x,,y E K 1 nH. 

- and O<A< 1. Since Ak+(1-2)yk=1/2, Axi+(1'—A)yg	—1/2 and 
' x1 =	xi- = 1/2 flx]li < 1/2, Z y = E y . = 1/2 llyII :E^: 1/2 we have Xk 

y = 112, x i = y,	—1/2, and therefore x = y ek:. Thus, E 1 Ex (K 1 c H) I'

Remark: Using Lemma 2 and (1) one can easily prove (2). Indeed; for each P E S. the 
norm j j•P jIi is a convex functional on K1 n 11 assuming its maximum at point of Ex (K1 n Ii). 

1 •	Therefore, one obtains r1 (P) = sup I!xPIP1 = max 1 jeP11, = - max ,' p 
•	 K,nhf.	 - B,	-	 ij k==i 

Theorem: Let r be an ergodicily coefficient with respect to the norm HI satisfying 
T(P) < 1 for all  ES,,. Then  

(i) r(P) =r1 (P) for all  E. Sn;	(ii) A lx ii = JJxjJ 1 (x E H) for some 2>0. 
S	-	Proof: Since flJi ' is a continuous functidnal on the compact set S n H, there is 

ay €8 nHwithjiyil 1 = max li xili = A.Forj, k E {1, :.., n},j	k,letPIk = (pm)E Sn 
S	 Sn,!	.,	 S 

•	be defined by Vmj =1 for ym' >0 arid.pm =1' for y+ 0. TheiiyPjk	2 EYijk - 
= flyjj 1 Cjk. Therefore, 'r(P)	1 (PE 5 8,,) yields Jie k]I ;5 l /JI yJii = i/A. By definition 
of 2, 1 = Il e k1I1	A iiekJI, so' that lI e,kJI	1/2. Thus, Lemmata 2 and 1 imply (ii), 
and (i) directly follows I  

Remark After we had finished the first form of this piper we his been informed by A 
Leanovsk that he has obtained independently the result of the theorem [2]. However hi 

• proof does not use the aspect of extremal points. - 
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