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In elnem Gebiet, das ein kleines Tellgeblet Q enthilt, wird ein Rundwertproblem zweiter Ord-
. -nung mit Kopplungsbedmgungen auf dem Rand von £2, gestellt. Fir seine Lésung wird eine
. asympbotlsche Enthcklung bezughch des nach 0 gehenden Durchmessers von §2, konstruiert. .

’

B o6nactu couepmameﬁ maiyio noxo6iaactb Q CTABUTCA Kpaeaaﬂ 3aja4a BTOPOro TIOpALKa
. C NIEPEXO/HHIM, YCIIOBHEM HA rpaHuue Q,. JIJm eé peleHusn c'rpouTcn "aCHMNTOTHKA OTHOCH-
TeNbHO nna\ic'rpa Q2.7 “CTPEMALLErocA K nymo . . ’
. .
Ina domam whlch contains a small subdomam Q, a boundary value problem of second order '
; ,Wwith transition conditions on the boundary 'of ©2, is posed. For its solution an asymptotic expan- .
“sion is constructed wnth respect to t,he dmmeter of 2, tendmg to zero.- ’ :

s r o s t NN

For ‘the last decades, several phenomena in’ physical science-and engmeermg have
- given raise to models of mathematical analyms ‘which are concerned with domains with
m'egular boundaries (e.g., porous meédia or perforated walls) and therefore, especially
" since about ten years, to a literature referring to this. ‘Within this topic, it seems A. M.
Il’in had been thefirst to mvestlgate to some extent, a fundamental type of problems/
namely, boundary value problems in'domains with one small hole: From a bounded
~ domain G, a small subset £, of diameter ¢ is removed, and the so}utlon of a boundary
. value problem in G is perturbed by imposing additional boundary conditions on the
- boundary I.of Q. A M. Ilin constracted. representations. of such perturbed solu- .
' tions u, in G, = G\, which are asymptotic with respect to tending to.zero (e.g:.
[4—6]). A simplified method for simpler but most important cases in appllcat,lons'
was proposed by the author in [2]. Also numerical solutlons have been given for spe:
cial cases (e.g. [8]).
Up to now, however, concernmg the local asymptotic beha.vnour apparently only
. fixed boundary conditions have been considered at the bounda.ry of the hole, though
‘transition (couphng) conditions could also’ be significant. We imagine, e.g., a
temperature field in a domain occupled by a body with thermal conductivity A+
which contains but a little 'inclusion @, filled with material of another conductibility
2. Therefore we shall descrlbe by means of the first stages of approximation, a method
to construct .an a.sympbotlc expansion, above all, for a threé-dimensional ‘model -
problem — Poisson’s equatlon further it is shown that the method will also work in .
" the two-dimensional case and, on prmcnple, for more general equations. Finally, in
; ,the special case of a spheérical inclusion, a more direct procedure can be used, takmg

its pattern from [2, 3]. — For proving the asymptotic character of the expansions
obtained a variant of the maximum principle is applied which admlts jumps of the
. flrst derivatives. ! |

It should be remarked that there are investigations of related problems for, e. g .
+  bodies including thm sheets with material constants growmg toinfinity whxle their
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thickness tends to zero (e.g.; [1, 8]); the very interesting results consist in global, -
rather weak .convergence statements, but without precise description of the local
behaviour, and of course, phe methods used are quite dlfferent from ours.

* 1. Formulation of the. model problem
Let G S R¥be a bounded domaln containing the origin 0 and % a smooth functlon
defined in @. The boundary S = 8@ of G should be smooth enough to permlt classx-
_cal solutions of the Dirichlet problem- . - _ . :

LG —Bw = (@), Siw=ga) = S (1)

'

for continuous boundary values g. Let, further, 2 be another bounded domain in R3

‘containing 0, with smooth boundary I'=00.8et Q, =eQ = {x:a/e€ &}, I, = el
= 88,,and G, = G\ 2,, which'is a domain with a small hole (provided. is suffxclently"

. small). (1) can be regarded as a system governing a stationary temperature distribu-
tion w in & body with constant thermal conductivity 2* = 1. Now, within the subset
2., the. material is displaced by another one with different conductibility A~ = 7> 0.
In that way the temperature will vary, at least locally; the perturbed temberature
u = u, is subject to the conditions . ]

G —Bu=h), Stu=g), ' ‘ S

O —A0u =h(z), | S . 2)-

Fiw —ut =0, (=0, ~ - - . P
where ~ ~ B o o .
o fut@ for z€G, ou- | dut L

“ A_.iu‘(x)’—i{u‘(x) for ze 0 . fu) =4 on  on’ '

n denotes the outer normal with respect to Q.. (For existence eonfer, e.g., [9].)’

: . o .
2, Construétion of an asymptotic expansion

Wesetu =w 4 v and ask for an asymptotxc expansnon for e — +0, of the dxfference
v which is solutlon of the following problem

\G’ —Av =0, 'S:v=0, . .
‘ "QE:—;.Au:(z—1)Aw'_(1—))h - . (3)
I';:v — vt =0, l(v):(l—) ow[on.

_ Now the boundary condition on § i is omitted, we only demand the (e\tended) solution-
" to be regular at infinity. So the exact difference v is changed to an approximation .
Next the two mhomogemtles in (3) are removed for a jump of ¥ along I, by
. P -

_ . 0 = _ for z.€G,, )
, =vwt+ @ @) = {(1 A tw(z) for z€ L, . T (4)
after which ' ' ' ) .

G.: —Avo—O Qi —Avg=0" - ‘ e

, o ! . (5) .
. ,F vym — v —()—l)i lu,, l(vg) =0 .. .



- and vy(o0) = 0. A; third step we set
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s [Wv] () for ';1:6 G.'y:A‘ S N
) —{).-IW[W] (@) for z€0, - | "

wheré W[y] denotes the double layer potential with density yon I',, so that all con-
ditions of (5), except the third one, will be satisfied automatically. As it will be more
favoura,ble for the following, we mtroduce the stretched variables

£ — e | \ o T

~ and, corresponding, €] =0 = rje = |:c|/e, ) that the potential W is now given on

‘the fu\ed boundary Iof the prototype domain Q by - o .

-

W[q»](s>=f;ﬁ¢(r>ae—l/an,da.,, T )
. . r. . .

<

. where ¢(t) = y(er). Adequately, we also rewrite the function vg°as a functlon of &,

too: vy(¢) = wo(z/e). Using the jump property of W at I" _ o
W”(E) = 27p(§) + W(§), W) = —2np(f) + W(E), ‘

wflere W+, W~ are the limits from-the outside and from the msxde, respectwely, ‘
while W (&) denotes the value on I’ itself, we obtain the integral equ&tlon for the den-
sity ¢, - _ _

2np(8) — 70— Wlod () = 15 w(e£) PR o ®

"~ on the. surface I, with weakly smgular kernel. Because the homogeneous adJomt
integral equation turns.out to provide, but as a smgle layer potential V, a solution

of (5) with w replaced by 0, regular at’ mflmty, from the lemma below (maximum
principle) ‘it will follow that this solution is necessarily the trivial one. Therefore (8) .
will always be solvable; the solution will depend continuously on the right-hand side.

"Since a-double layer potential will decrease for g = |£| — 00, accordmg to ¢ 2, we

Y

- obtain for .
C o~ /-_ Wie] (z/e) for. z¢€ Gt,' .
- UO(E.),_ ‘vo(x/e) = {;'-1 \I’V[(p](xle) for z€ Q, 9)
the estimate - ~/ T
o(afe)] < Cetfre | ©(10)

with a constant C independent of ¢, for ¢ will be bounded from the uniform bounded-
ness of the’ nght -hand side of (8). With the function v, just constructed the appro-

ximate difference 7 in (4) satifies the conditions (3) exactly except that on S: there
will be 7 = v, = O(¢?): By the lemma already mentioned it'will turn out that

w(z) = B(z) + B@) + vlzle) + e(x) . o (1'1)

w1th 2, bounded in G, 1ndependently of &.

The further procedure in order to get higher approxnmatlons is apparent The
function 2, will be e\panded

- . \

zl\—wl—}—wl—*-v,—{-ezz, A - S .(12)

where w, is the solution of (1) with k=0, g = -—'uf',/e-2 (in orderto compensate tlvie

. deviation of the boundary values on § induced by vy), w, is defined analogously by
: pai0gousLy |

4
\ o . \ . V- .
. . A}

- N -~
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. \ S
(4) with w, instead of w, and v, is obtained by (5), (8), and (9) with w replaced by w;
just as done for vy, and soon. Summmg up we have

Theorem 1 The solutzon u of the perturbed problem (2) admits an asymptotw expan-
sion

) =§ o) + o) + olefl) + B i), (19)

where wy = w is the solution of the unperturbed problem (1) wy (k‘g 1) the solution of
(l)wuhh_O g = —Uyfe, ‘ .'

) . \

_ {0 o /or x€ G;,
LB =00 ) i) for e, ,
' ..(E); W) cforeteC., . a -
R PRV 15 for e£ € 2., : ,

W= W[q),,] the double layer polentwl on I wzth denszty P whzck isa solutwn o/ tke
mtegml equatzon » ) y _ .
Wig:) (5)

. : 1— .
T 2mpk<s) - +; wk<e5), e,

1 + 1+ 2 . o .
o. o )
and’ Zmyy 88 bounded in all o/ G, zndependently of e.

Re mark The functions v, depend contmuously ong because the correspondmg solu-
.tions ¢, of the integral equation (8) will do. Of course one’ could expand the right-hand
~ side of (8) and obtain, for each v, an expansion” with powers of ¢, the coefficient

functlons dependmg on ¢ = z/e only.

-

¢ . . " - ) . Lo

\

© 3.The maximum principle .

In order to estimate tHe remainder Zny Of the expa.hsiori (13), and for the proof of
solvability of the mtegral equation (8), we use the following variant of the maximum
prmcxple ’ S ' ' h

Lemmas: Let 2, Z € C(@) n CYG) 0 C1@0) 0 C(2).0 C1(2,),

: S\ ou~ ou*
Ltu = —Zi\A =i — — A
u u + c(z)u, lu - A '
where. ¢ € C(G) is nonnegative, A=, 2* are poszlwe constants, n is the outszde normal

(with respect to 2,). 1f
G.:|L*2)| S L*Z, S:|2| £Z, _
0 |LA L2, L[l <iZ, -
then|z|SZznallo/G’ . - ;? B - - .

The proof conSJSts in the- usual apphcatlon of the followmg proposztz(m to the
differences v = 4z — Z, with apparently correspondmg notations:”

LetG, S G, & - & G +== G be bounded domains in IR" with smooth bounda.rles
S; = 60 Whlch do not intersect each other. In the closure of each D; = @; \ G;. 1
(t=1,..,m; G, empty set) a linear uniformly elliptic posxtlve operator- L; of second

o order, Wlth bounded coefficients, is defined for which the strong maximum pnnmple

4 /

A -



Supplemem The assertion of the lemma w1]l be maintained if there is a surface (e. g .
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is'valid. Let v be continuous in G, with » <0 on S = S = 9@, v(x) =.7; (x) for

x € D;, and, in each D;, be'a classical solution’of L;v; < 0 with first derivatives con- -

tinuous.up to the boundaries. In any point of a _boundary S; separating D; and D;,,,
for the ‘outer normal derivatives the transition condition: shall be fulfilled :

*) If dv;,/on < 0, then dv;/on < 0.. L -
Then v cannot assume a posrtwe ma\umum in'the mtenor of G. Apparently it is only
to be shown that v cannbt attain a positivé maximum at a point z; of a boundary
S; (i'< m = 1). But if this should be the case, and v;,, not a constant, then dv,,,/én
< 0in z;, and (*) would entail still greater values of » = v; in D;.-If v;,, = const, the

' argument may be repeated wrth respect to the boundary S,“, and soon R

a sphere) in G, where Z has only contmuous derivatives of first order. A

In-order to apply the lemma to prove that 28 in (11) is bounded we state the contl- '
, nuity of z, at I, and L o

G:—Az, =0, S: izll—l—vo/ezlSC
Q. .—/'LAzl—O Ii:lz,=0. . : .

Apparently Z’= C = const will be an upper bound for |211 Precedmg a step (m = 1)

we have to estlms.te 2z, from (12). Insertmg the definitions or properties of w;, @,, v,, ~
and z, we see that z, is continuous in G'and satisfies a system like (14), w1th voreplaced -

by v,. Thus,’ by induction, the general assertion can be\proved

As to the solvability of the integral equation (8); it is to-be shown that a solutlon of -

. (8), with w = 0,. represented by a single layer potential, must vanish identically.

For this sake, the domain is extended to a ball of arbitrary radius; on its surface the

potentla.l will be as small as one likes a,nd according to the lemma, also in.the-ball
: and in the included domain G’ -

Ve
v

4. 'I‘he two-d:mensnona.l case . . " N

~

;o

v

* The assertlons of Theorem 1 w1ll appa.rently be maintained, with obvnous modlflca.-

. ("14)

.

tions, for space dimensions greater than three. ‘Also for dimension. two one expects -

for the present, the formal expansion procedure torun quite similar: In the expansion

- (13) the powers €** are to be replaced by ¢¥ — corresponding to the fact’ that the v,(&),

glven by double layer potentlals will now decrease with order O(|£|~1) only —, and
in the integral equat:non (8) 27 18 substituted by ». Further.on, the existence of. a

.. uniform bound for z,,; in the remainder ¢™+1z,,,,-can be proved as just done by the
lemma. But it cannot be.applied immediately, as at the end of Section 3, to. the proof

of the solvablhty of (8): The function v sa.tlsfymg (5) (with w = 0), since genera.ted by

a single layer, cannot be supposed here, avprlorl to bend to zero at mfmnty, whlch .

had been essentnal above. )

But we can conclude as follows: If u(é) = V[x](§)isa smgle layer potential which
will-fulfil & = 0 at I" for a solution y of the adJomt equatlon e (1 - A+ }.)‘
X 6V[7]/6n = 0, then  ~

o) = {v(e)+W[¢] © for Fgo,
(e + Wigl () for §€Q

\wnth the double layer potential W[e], <p_ = —(1/27:) (l — Ao, passes r cont.muously
mcludmg its first derivatives. Therefore ?) isa potentla] function in all the plane IR2,

(15)

naly
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with logarlthmlc growth.at infinity, at most, but. bounded from above or below —and
such a singularity must -be a removable one: § = ¢ = const. Now (15) shows that
v(£) = ¢ + O(l£]"1) as |&] — oo, and by the lemma v(¢) — ¢ = 0 will follow. Espe-
cially, dv/dn = 0 on T, and, therefore, 7 = 0 guarantees solvability of the mtegral
equation (8) also in this case.. L

.Theorem 2: In a plane domain G with inclusion Q, the solution u of the perturbed
problem (2) admits an asymptotic expansion - ‘
s Zm et b e sy

* . k= . . , = .
with functions w;, wk, Ve defmed lzke in Theorem 1, but u,,, (Ic = 1) solution of (1) with
Tg = —v, e and v (&) = v(zle) = Wlg] (£) given by the zntegral equation ‘on I

_ 1 — 7 ' o .
() — + W[%] &) =173 (85) . - CHN
5. Remarks on the case —A +ec
- 4 - - \
The problem will now read S - A _
G: —Aw + c(x) w = h(z), S:w = g(z) . T +(16) .

and the perturbed problem is )
G.: —Au + c(z)u = h(z), S: u = g(z),

: : : (17)
L, —)Au-{-c(:z:)u—-h(x), TFe:uw —ut =0, lu=0

with a nonnegatlve continuous Tunction ¢ in @, @, Q are bounded domains in R3 as,
in Section 1, 2, = e.Q I'. = eI' = 8Q,. In addition, for technical reasons, £ is to be
supposed star-shaped with respect to a ball centered at the ongm ‘As leading térms
of an asymptotic approximation, the same functions as'defined in (4), (9) ) for the sim-
pler model above turn out to be also suited in this case. The difference v = u — w-
" will here satisfy the conditions corresponding to (3) — the differential‘equations in.
- G;and Q, augmented by ¢(x) v on the left-hand side. But as approumatmg difference

v we w111 again choose the solution, regular at infinity, of .
: IR3\Q£. “AT =0, Q:~-2A=(—1)Aw . (18)
S Te% — 5t =0, 5= (1—2) owon. -

The’reforé wgset, combining (4) and (9),_ \ - o o .
BRI, h L s Wil le) .
<L) = )+ ) = {(1 — )2 ) + W) (ae) o

for z € G, or x € ,, respectively, where g is the solution of the integral equation (8) '
The remainder z; in u = w 4 W + vy 4 2o Will now be submitted to . -

G.: —Az +czg = —cvy, S:iz= — v, ) ‘ .
Qi =3Bz 4 b2y = —c[(1 = DA w Fv], ' (20,
T . Iz —2t =0, Iz,=0. ‘



-in .Q Thus we obtain, in elther case . , . LS

~

\ ~

..
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As vis given by a double layer potential W with bounded density, we will have, '

| —cvel < Clefr)? - in @,

\ |—c[(1 — 2)2- 1w+vo]|SC' in 2, . e
- l-whsCe - on s 7 ' |

If G Q.are contamed in balls of radu R and — eg. — 2, then

- Cet In (R/r) o for 7 > 2, B
*~ |\ Cle? In (R)2¢) + 1/2(4.s2 — 72)] for <2 ;

is contmuously differéntiable in IR3 and, for sultable constant C will maJorlze %o
in the sense of the lemma, possrbly with exceptlon of the last condltlon onl,: |

’
. L

lzg) =0 S lz = C'(l — A) er-15(z), _
where s(z): denotes the scalar product between the outer umt norma,l natzel,
and the normed radius vector OI/’I‘ As Q is assumed star- shaped s() will be strictly

. positive on T’,; and therqfore the lemma can be applied if 4 < 1.

The case 1 > 1 requires a modlflcatlon Let ¢ be the harmonic funcﬁlon defined
outside 0, regilar at infinity, and equal to 1 on I'. There ensts a positive constant o

s0 that, on I', 9g/on < ~co. Then. S
glzfe) for’ z € R3\ 2, o . R
Q(x) { for ze O, : . o \

: - i22)»>«

.

»

has the properties AQ =0 in 2, and outside 2,, Q > 0, bbundecl and I1Q = cyfe.

" Therefore Z' = = Z + ¢,£%Q with Z from {(22) has all majorizing properties claimed by

the lemma, especially, -

1z = (4001 — ))82/7—}—006,8) @20 . o
ife; = 4(,2 — 1) C/r,, where 7, is the radius of a ball, centered‘at 0, which is contamed'

. A
/

70 < Ce2 |l e]. : e , @),

In order to raise the degree.of approximation, ne}\t we have to expand zo =w, + 7,
+ z,, where w, is the solution of an unperturbed problem which compensates the
values of v, on the outer bounda.ry S. Lookmg at the problem (20) for z, we see that it

- can be mterpreted as perturbation (like (2) in proportion to (1)) -of the problem

b@q: —Awl +oew, = —clvge+ W), S:w;, ="—v;. - _ . (24)

Therefore the constructlon Just carried out can be repeated, with —¢c(v, -+ wl mstea.d

of b, —v, instead of g, and in (18), (19) ¥ v, w, W; vy replaced by 7,, w,, &, (cf. (4)), v},

respectrve]y For the remainder 2z, in 2z, = w, + W, + v, -+ z; we now obtain, ana-
logously,.again (20), with 2y,-v;, wy instead of z,, vy, wy = w. As the estimate (2‘3) for
zy will also hold, the more, for w, (using the lemma with 2= = A* = 1), the right-hand
sides of (18), (19), and (8), rewritten with the new quantities, will be of order O(&*In ¢]),
the estrmatron a,bove, applled to zy, ylelds ' ) . )

.
' d

4 2 -
|z,1 < Ce (In e) o
14 Analysis Bd. 9, Heft 3 (1090) .
- ’ . . N . - ‘ /

(25)
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Proposition. 1': The solution u of the perturbed problem (17) admits expansions

u_wo+wo+vo+zo o
—w0+1‘/o+”0+w1+w1+?)1+21 .

wzlh wo = ~ w solution of the unperturbed problem (16) W + vy and W, + v, (¢f. (19))
correclwns previously in the vicinity of 2., while w, (cf. (24)) corrects on S; the remam- .
ders 20, 2, are uniformly bounded\accordmg to (23), (25).

6. Sphériéal inclhsioné" - ,

‘ Fmally, 1t should be remarked that i in the special case ‘where £, is a ball K, of radius
¢, centered-at 0, an asymptotic’ expansnon of the solution of the model problem (2)
* would better be established more’ dlrectly, based on the Taylor eapansxon of the un-

" perturbed solutiori w, at'z = 0 ) .
R : ’ - ) '

. w'=w°+w,~°x,+2‘ u,,xz-*— ’
where w,® = ow/ax,, taken at & = 0, and analogously As a first approximation to -
the equations (3) for the difference v = u — w turns out to be reasona.ble with regard

to the estxmatlon of the remamder - !

"G,: —Av =0 . . ) ;
m:—uw_u—amm a—nAmm ' (26)
61\ - — v = 0 b= (/ — 1) [wdzi/r + u? xx,/r]

with' v(oo) =0. Su1table expansion functlons will be, for & = »* in G’,, lmear combl-
nations of derivatives of the principal solution, and for & '=.5~ in the ball Ke, homo-
geneous polynomlals, some of which solve the approximating equation on K,, and

", the other ones are harmonic. F01 the latter it is best to take those which arise in the

“nominators H(z) of the deriv atives just mentioned if they are represented by H(z)[r™.
After inserting these ansatzés into (26) and equating at 7 — ¢ the polynomials, or
" nominator polynomials, respectxvely, of the same order, some calculations will provide ,

o the exact solution of (26), in the three- dlmcnsmnal case: N
‘ 1= [MO) L, 3422 ' .
o vt = 3+ 35 [—3 3 + — 2+ 3w|0x + 0 w;)z T')} y
§ o= .
- 1 — 7 [RO) 3422 o I(O) 2 v
, T = — | —= £ i L T i 1 - ’
’ 3+m[ #t gy im0 =)

o ! ' . . (27)
\

‘where g= s/r Tt should be pointed out that in #* the principal solution 1/r does not
appear itself. This will hold alsb for other dimensions; especially for n. = 2 no loga- o
rithmic term will ‘trouble — and this will confirm the fact stated above, in Section 4,
““that the expansion procedure will also run in the two-dimensional case. .
In order to estimate the degree of approumatlon to u glven by w —+— vitis estab- ,
llshed for z=u — (w+ ), ..
{GP7&=O,S¢=OM) o 0
N | » S (@)
Ky —i0z=0(), K.z —z" =0, lz=0(: o

\



, N ) ' _ ] ;' D
. Pertarbation of Temperature Fields - 211

A majorant function Z which satisfies the condmons of the lemma, e\cept that on S
wxll be. gwen by o

.. 7 - Z* = Cyllr, )
S A lz- 1/6018(62 = 7%) + Cof? -

with proper constants C,, O Merely to be able to apply the lemma formally a func-
. tion 2w, must be added to v, where :

l—iw.x,
2+A \r“.'

G: —A{l}l =O, S. wl =

Then in (28) we will havez = O(e ) on S — the other condltlons are not concerned —
and Z is now an admissible majorant function. :

Pro position 2: In thecasen = 3 and zf the inclusionw occupies the ball 1( o an asymp-
- totic expanszon of the solution of (2) is

Ly

u(x)=w(z5 ol + @) /" o)

u,zth ? gnen by (27) and ]zl(x el =C min {efr, 1}.

i ]f higher appm\lmatlons are, dcs:red then of course, the function w, compcnsatmg
" on the outer boundary S, w111 be essentxal and must, further, be cxpanded 1tself simi-
larly as w. . : .

§ R.er-n.;uk The limit_case i = oo where the- temperature « must be constadtﬁn K,
has been treated in’ [2] the result there proves to be the limit, for A = oo, of (29),
(27) : .

/
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Addedin proof: Solvmg (8), at first, only for the constant term of Ta.ylor s expan-‘

sion of the right-hand side, the properties of double layer potentlal W, with constant -

N ‘ (_lcns1ty (Gauss’ integral — e.g., vanishing outside £,!), will allow the constant C
- in the basic estimate (10) to be replaced by C -, so tha.t, all powers of ¢, in the sequel;
" can be lifted respectively; especially, (13)is true even with 3% instead of 82" and in
(13’). & may be rcplaced by 2k, - .
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