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Perturbation of Tempeature Fields by a Small Inclusion.. . 

D.GöHDE  
S.

'-S 

In einem Oebiet, das ein kleines Teilgebiet Q5 enthält, wird ein Randwertproblem zweiter Ord-
nung mit Kopplungsbedingungen auf dem Rand von Lie gesteilt. Für seine Lasung wird eine 

- asymptotiedhe Entwicklu'ng'bezuglich des nach 0 gehenden Durchmessers von 92 5 konstfuiert. 

B o6iac coejmaiuen Maiyio noo6JlacT1, )Q5 cTanhlTcn t<paesan aaaqa soporo nopHHa 
C nepexwwblM, yCJ10BHeM Ha rparsiiue Q. )Iiin 'eë peuzesuin CT011TCH ' acllMnToTIlHa OTHOCH-
TeJibhlo J1aMeTpa ti,cTpeMflluerocn KHyJH0.	 . 

In a domain which contains a small subdoma'in Li a boundary value problem' of second order 
with transition conditions on the boundaryof Li 5 is'posed. For its solution an asymptotic expiiui- 
sion is constructed with respect to the diameter of .Q5 tending to zero.-./	 - 

For -the, last decades, several ' phenomena in' physical sciencè'and engineering have 
• . given raise to 6 models of mathematical analysis"which are concerned with domains with 

irregular boundaries (e.g., porous media ir perforated walls) and therefore, especially 
since about ten years, to a literature referring to this. Within this topic, it seems A. M. 
Il'in had been the'first to investigate, to some extent, a fundamentaI't,ype'ofproblems 
namely; boundary. value problems in' domains with one small hole: From a l5ounded 
domain 0, a small subset Li5 of diameter e is removed, and the solution of a boundary 

•	value probleth in G is perturbed by imposing additional boundary conditions on the 
• . .- boundary .r. of 92,. A. M. Iflin constriicted.representationsof such perturbed sol ,u-

• tions u5 in G,' = G\Q5 which are asymptotic with respect toe tending to,zero (e.g. 
[4-61): A simplified method for simpler but most important cases in applications - 
was proposed by the author in [2]. Also numerical solutions have been given for spe- . 
cial cases (e.g. [81).	-	 - 

Up to now, however, concerning the local asymptotic behaviour, apparently only 
- fixed boundary conditio ns have been considered at the boundary of the hole, though 
-transition (coupling) conditions could also' be significant. We imagine, e.g., a r 

- temperature field in a domain occupied by a body with thermal conductivity ). 
which contains but a little inclusion Li, filled with material of another conductibility 
2. Therefore we shall describe, by means of the first stages of approximation, a method 
to construct an asymptotic expansion, above all, for a three-dimensional , model 
problem - Poisson's equation; further it is shown that the method will also work-in 

- the two-dimensional case and, on principle; for more general equations. Finally, in 
,the' special case of a sphe'rical inclusion, a more direct procedure can be used, taking 
its pattern from [, 3]. - For proving the asymptotic character of the expansions 
obtained a variant of the maximum principle is applied which admits jumps of, the 

- first derivatives.  
• It should be remarked that there are investigations of related problems for, e. g., 
bodies including thin sheets with material constats growing to' infinity while thei-r	- - S	•,	 -	 .	 S	 -
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thickness tends to zero (e.g. ,,
'
 1, 8]); the very interesting results consist in global" 

rather weak convergence stateents, but without precise description of the local 
behaviour, and, of course, the methods used are quite different from ours. 

• 1. Formulation of the.model problem	S 

Let G 1R3-be a bounded domain 6ontaining the origin 0, and h a smooth function 
defined in G. The boundary S G of G should be smooth enough to permit classi- 
cal solutions of the Dirichletproblem.  

G: —tw = h(x), S:w =g(x) - (1) 

for continuous boundary vilués g. Let, further, Q be another bounded domain in 1R3 
• cont'aining 0, with smooth boundary P = an. Set £2, = eQ = {x: x/e E Q}, F, = ci' 
= EQ,, and G. = G \ Q,, which is a domain with a small hole (provided.e is sufficiently 
small). (1) can be regarded as a system governing a stationary temperature distribu-
tion w in a body with constant thermal conductivity 2 = 1. Now, within the suhst 
Q,, the-material is displaced by another one with different conçlu6tibility2 = > 0. 
In that way , the temperature will vary, at least locally; theperturbed temperature 

	

•	u = U, is subject to the conditions	 -	 - - 

G,: —u = h(x), 5: u = g(),'  

- -	 £7,: —Au=h(x),	 (2). 

	

•	 F,: u- - u = 0, 1(u)	0,	•	-	.	 .	-
where. 

-.	 I u(x) for x E 0, . .3u 
1(u) =,----; u(x) for XE Q, n	n' 	- 

n denotes ,the outer normal with respect to Q,. (For existence confe'r, e.g., [9].) 

2. Construction of an asymptotic expansion	•	• 

We set u = w + v and ask for an asymptotic expansion, fore +0, of the differene 
P which is solution of the following problem:	 S 

. 

G,: —Lv=0, 'S:v =0, -	- 

Q,: —2v = (2— 1)zw= (1— 2)h,	 • (3)

F,: v- .- v = 0, - 1(v) = (1 —2) sw/an. 

-

	

	Now the, boundary condition on S is omitted, we only demand the (extended) solution 
to be regular at infinity. So the ex'ac' t difference v is changed to an approximation U. 

' Next the two inhomOgenities in (3) are removed for a jump of U along T,-by 
•	 - .	 S	

-	 to	 - for	X.EG,, 
= V0 + zZ' z(x) = 1( 1 - 2) 21 w(x) for x E £7,,	-	(4) 

-	after which	. -	 .	-	.	 .	•	. 

	

•	-•	 G,: --iv0	0, Q,: —Lv0 = 0 -	•	-	
(5)-. 

F,: vo - .vo = (2	1) 2 1w, 1(v0) = 0 -. 

I	.	•	,.•	 1 

S	 •	 "\	
/
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and v0 (oo) = 0. As third step we set 

W[p] (x)	for x E G, v0(x) - 1).- I W[fl (x) for x E Qe, 

sherè W[V] denotes the double layer potential with density V , on F,, so that all con-

	

ditions of (5), except the third one, will be satisfied automatically. As it will be more	- 
favourable for the following, we introduce the stretched variables	-. 

XIE	 (6) 

and, corresponding, II	=	= I x Ie , so that the potential W is now given on
the fixed boundary F"of the prototype domain Q by 

W[q] () =	q,(r) ae -'/ando,, .	 .	 (7) 

where q(v)	(e). Adequately, we also rewrite the function v 0 'as a function of 
too: v0() = vo(x/e). Using the jump property of Wat P 

W') = 2z9) + W(), lV:() = —2n) + W(fl, 

where W, W are the limits fromthe outlide and from the inside, respectively, 
while W() denotes the value on P itself, we obtain tFe integral equation for the den-
sity q',  

-	W[] () = w(e)	 .	 (8) 

on the surface F, with weakly singular kernel. Because the homogeneous adjoiit 
'integral equation turns out to provide, but as a single layer potential V, a solution 
of (5) with w replaced by 0, regular at infinity, from .the lemma below (maximum 
principle) it will follow that this solution is necessarily the trivial 'one. Therefore (8) 
will always be solvable; the solution will depend continuously on the right-hand side. 
Since adouble layer potential will decrease for p =	—> oo, according to 2, we

• obtain for  

I W[?] W-0	for.. x E 0,; 
vo()	vo(xfe) = l?.W[](xfe) for x  Q,	 (9) 

the estimate .	-. 

-	Ivo@/e)I < ( 2/2	 .	'	 .	 ( 10) 

with a constant 5 C independent of e, for q will be bounded from the uniform bounded- 
• ness of the 'right-hand side of (8). With the function v0 just constructed the appro-

ximate difference U in (4) satifies the conditions (3) exactly except that on B: there 
will be U = v0 = O(E2 ): By the lemma already mentioned it'willtürn out that 

•	u(x) =w(x) + ?V̂(X) + v0(x/e) + e 2z 1 (x) -	'	 (11) 

with z 1 bounded in 0, independently of E. 
•	The further procedure in order to get higher approximations is apparent: The 

function z1 will be expanded , .	.	• 

- Z 1 W1 +	+ v 1 + 62 
Z2	 - ( 12) 

where'w 1 is the solution'of (1) with h-= 0, g = — v,/E2 (in order -to compensate the 
• deviation of the boundary values on S induced by v0 ), zV 1 is defined analogously by
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(4)with w1 instead of w,'and V 1 is obtained by (5), (8), and (9) with w replaced b'v1 
just as done for v0 , and soon. Summing up we have 

Theorem 1: The solution u of the perturbeçl problem (2) admits an asymptotic expan-
sion

U(X)	 52k	+ k(X) ± Vk(X/5)) + __11m +1)Zm+j(X),	 (13) k o 

'where w0 = w is the solution of the unperturbed problem (l), Wk (k	1) the solution of 
(1) with h =0, g = 

•	

-	

- J.0	 for x E G, 
- l,(1 - ) 4Wk(X) for x E Q, 

f()	'fors'EGf,
Vk() - lA'W() for e E Q, 

W	W[99k] the double layer potential on r with density 'pk which is a solution of the
integral equation 

• S

	

	 -	 2'k(E) - 1 + W[pk] () =	W(efl,	E'1, 

and Zm+1 is bounded in all of 0, independently ofe. 

Remark: The functions Vk depend continuously on E because the corresponding solu-
tions 97k of the integral equation (8) will do. Of course one could expand the right-hand 
side of (8) and obtain, for each Vk an expansion with powers of e, the coeffiient 
functions depending on	xis only.	- 

3. The maximum principle	 - 

In order to estimate the remainde Zm+i of the expansion (13), and for-the proof of 
•	solvability of the integral equation (8), we use the following variant of the maximum 

Principle. - 
=	 •	 -	

- SI	 -	S 

•	Lemma: Let z, Z E C(G) n C2 (0) n C1 (G) n,C2()r C1 (Q,), 

	

-	&-
•	 Lu = —2'u + c(x) u, lu = A - — A - •.	 - 

•	
-	 -	

- 

/ where. c E Q(G) is nonnegative,. A-, 2 are pOsitive constants, n is the outside normal 
(with respect to Q ) . If	-	•	 • 

G: I L L _ LZ , S: I z I !E^:Z, 

Q: Lz1	LZ, F,: J lzJ	lZ,	 -	•	••	
'I 

then Izi 15: Z in all of G.	 - •	 S.	 S ' 

The proof consists in the usual application of the following pro'position to the - 
• -	differences'v =	- Z, with apparently corresponding notations:'	-	•. 

Let 0	•.. c G,,,= 0 be bounded domains in R" with smooth boundaries	S - 

Si = a0 1 which do not intersect each other. In the closure of each D1 = 0 \ Gi 
•	(i = 1, ..., m; G mpty set) a linear , uniformly elliptic pbsitive operator-L, Of second 

order, with bounded coefficients, is defined for which the strong maximum principle 
•	 .5	

•\	-	-	I	
• 

/	 ••	S	 (
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• is valid. Let v be continuous in , with v :5,0 on S . = S. = bG, v(z) =.v1 (x) for 
X E D 1 , and, in each D1 , be'a classical solution of Lv :!-, 0 with first derivatives con-	- -
tinuous up to the boundaries. In any point of a boundary Si separating D, and D,,1, 
for theouter normal derivatives the transition condition shall be fulfilled: 

•	(*)	If av1, 1 Jan < 0, then avi lOn < 0. 

Then v cannot assume a positive maximum in the interior of G. Apparently it is only 
• to be shown that v cannbt attain a positive maximum at a point x, of a bundary 

S i (i :!E^ m - 1). But if this should be the case, and v11 not a constant, then av, 1 1 an 
<0 in , and (*) would entail still greater values of v = v in D . .-If v +1 = const, the 

• argument may be repeated with respect to the boundary	and so on I 
•	Supplement: The as 	of the lemma will be maintained if there is a surface (e.g., 

a sphere) in G, where Z has only continuous derivatives of first order. 
•	In order to apply the lemma to prove that z1 in (ii) is bounded we state the conti-

nuity of z1 at F and	 .	 . 

Ge: —z1	0, 8: 1 z i l =j —v0/e2 -	
•. 

•	Q:.—z1=0, r:lz1 =o.	 S	 - 

Apparentl Z r C eonst will be an upper bound for J z,J. Preceding a step (in	1)
we have to estimate z from (12). Inserting the definitions or properties of w1, w, v 1 , - 
and z1 we see that z2 is continuous in G'and satisfies a system like (14), with v0replaced 
by v 1 . Thus,' by induction, the general assertion can be\proved. 

• As to the solvability of the integral equation (8); it is to be shown that a solution of 
(5), with w = 0, represented by a single layer potential, must vanish identically. 
For this sake, the domain is extended .to a ball of arbitrary radius; on its surface the 
potential will be as small as one likes and, according to thip lemma, also in the ball 
and in the included domain G. 

4 The two-dimensional case  

The assertions of Theorem 1 will apparently be maintained, with obvious modifica-
tions, for space dimensions greater than three. Also for dimension two one expects, - 
for the present, the formal expansion procedure torun quite similar: In the expansion 

•	(13) the powers E2k are to be replaced by ek - corresponding to the fact that the Vk(), 
•	given by double layer potentials, will now decrease with order 0(II_ 1 ) only -, and 

in the integral equation (8) 27t is substituted by 7i. Further .on, the existence of a / 
uniform bound for Zm+I in the remainder em +izm+l can be proved as just done by the- 
lemma. But it cannot beapplied immediately, as at the end of Section 3, to the proof 
of the solvability of (8): The function v satisfying (5) (with w = 0), since generated by 
a single layer, cannot be supposed here, apriori, to tend to zero at infiniti, which 
had been essential above.  

But we ca' i c,oncludC as follows: If v() = V[3'] () is a single layer potential which 
• wilLfulfillv'= Oat f'for a solution o f the . adjoint euation	- (1 - 2)(1.+ A)-' 

X aV[71/efl = 0 1
 then	•	 S	 •	 • 

Jv(fl + W[p]()	for	'Q,' ',	
• 

	

).- lv() + W[] (): for	 15 EQ .	-	•	
'	 .• .	 - 

' With the double layer potential W[çJ, q,	_:(1121) (1 - 2) v, passes f cotinuously 
•	ncludng its first derivatives. Therefore 0 is a potential.f unction in all the -plane 1R2,
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with logarithmic growthat infirity, at most, butbounded from above or below - and 
such a singularity must be , a removable one: = c = const Now (15) shows that 
v() = c + O(II — ') as J -> cc, and by the lemma v(s) - c = 0 will follow. Espe-, 
cially, av/an = 0 on F, and, therefore, X = 0 guarantees . solvability of the integral 
equation (8) also in this case.	. 

Theorem 2: In a plane domain G with inclusion Q, the solution u of the perturbed 
problem (2) admits an asymptotic expansion 

u =Z(wk +Wk+ Vk )ek +em+1Zm+ l	 ( 13) 

with functions Wk, IN, vk defined like, in Theorem 1, but Wk (k	1) solution of (1) with 
g = - Vk_ l/E and Vk() = Vk(X/5) =W[9 k] () giien by the integral equation, on P 

	

- 
± W[] () = 1+2 Wk(e)	 (8) 

5. Remarks on the case —A + c	 - 

- The problem will now read	 - 

•	-	G: —w + c(x) w = h(x), S: w= g(x)	•'	 .	(16)

and the perturbed problem is 

G,: -	+ c(x)u = h(x), *9: u = g(x),	
(17)

.Q,:-A.u+c(x)u=h(x), P,:u — -u=O, lu=0,. 

with a nonnegative, continuous 'function a in G, G, Q are bounded domains in 1R3 as 
in Section 1, Q, = eQ, F, = eP = SQ,. In addition, for technical reasons, Q is to be 
supposed star-shaped with respect to a ball centered at the origin. As leading terms 
of an asymptotic approximation, the same functions as defined in (4), (9) for the sim-
pler model above turn out to be also suited in this case. The difference v u - w' 
will here satisfy the conditionscorresponding to (3) - the differential equations iii. 
G and Q, augmented by c(x) v on the left-hand side. But as approximating difference 
13 we will again choose the solution, regular at i ,nfinit.y, of 

•,lR3\Q,:- 'AT	 0, Q,:213=(,.-1)w.
'(18) 

• F,: V -	= 0, 113 = (1 - ,) aw/an..	 'S 

Therefore w'set, combining (4) and (9),	 . .	.	. 
.1	 '.  

v(x)	w(x) ± vo(x/e	
W[q] (xfe)

)	1(1	)	 w(x) + .'W[] (x/e)'	
(19) 

-7
 

- for x EG, or x E Q,, respectively, where is the solution of the integral equation (8). 

	

- The remainder Z in u = w + ' + v0 -f- z0 will now be submitted to	 - 

G, —z0 + cz0 = —cv0 , 8: z = —v0 ,	 •	.	 , 

Q,: —2. AZO + CZO = —c[(1	),))'w + vo},	• '.	 (20) 

-	0, 1z0 = 0.'  

I	.	•	.
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As v0 is given by a double layer potential W with bounded density, we will have, 

I—cvoI	C(e/r)2 -	 in G, 

I —c[( 1 - A)'A'w + o]j	C in Q,	 .	 (21) 

-	P—vOI\^ Ce2 	on S 

If G,Qare contained in balls of radii R and - e.g. - 2€, then 

	

I Ce2 In (R/r)	 for r > 2€,	 - Z%_1 C[e2 In (R/2ej + 1/2(4e2 - r2)] for r <2€ 
•	

(22) 

ig continuously differentiable in R3 and, for suitable constant C, will majorize z0 
in the sense Of the lemma, possibly with exception s of the last condition, on F1: 

liz0! = O':^,- lz = C(1 - A) 62r — ls(x),	 .	.. 

where s('x)t denotes the scalr product between the outer unit normal n at x E P, 
and the normed radius vector O/r. As I? is assumed star-shaped, s(-.) will be strictly 
positive on 1',, and there.fore the lemma can be applied if A	1. 

The case A.> 1 requires a modificatidn. Letq be the harmonic funpion defined 
- .	outside Q, reiIlar at infinity, and equal to 1 on I'. There exists a positive constant co 

•so that, on F, c94/an	—co. Then  

Q(x) 	Jq(x/e) for x  1R 3 \Q1 ,	••	 S	 .	 ' 

for xEQ. -	..	 . 

has the properties t,Q = 0 in Q. and outside Q,, Q > O, bounded, and IQ > c0/e. 
Therefore Z' = Z + c 1 e2Q with Z from (22) has all ma.jorizing properties claimed by 
the lemma, especially, •.	 S 

lZ'	(4C(1	A) e2/r -4- c0c 1€) s(x) ^.O  
if c	4(). - 1) C/r0, where r is the radius of a ball, centeredat 0, which is contained
in Q. Thus we obtain, in either case,

I;! 	Ce2 line!.  

In order to raise the degreesof approximation, next we have to expand z0 = w1 + i 
) + ;, where w1 is the solution of an unperturbed problem which compensates the 

values of v0 on the outer boundary S. Looking at the problem ,(20) for z0 we see that it 
• can be interpreted as peturbtion (like (2) in proportion to (1))of the problem 

G: --wi +cw 1 = —c(v0 + i2), 5: w1 = ,—V6. •	 •	 •	 (24) 

Therefore the°co'nstruction just carried out can be repeated, with —(v0 +	instead
of h, — v0 instead of g, and in (18), (19) i, w, 2; v0 replaced by U, w 1 , ib, (cf. (4)), v1, 

- - respectively. For the . remainder z 1 in z0 = w 1 ± zl i + v1 + z1 we now obtain, ana-
• logously,.again (20), with z1 , v 1 , w 1 instead of z0, v0 , w0 = w. As the estimate (23) for 

z0 will also hold, the more, for w1 (using the lemma with 2 = A+, = 1), the right-hand 
sides of (18), ('19), and (8), rewritten with the new quantities, will be of order O(E2 1 In el) 
the estimation above, applied to z 1 , yields	 •	 •	

•	 S	 - 

• .	 zl. :^-, C?(ln )2	 .	(25) 

14- Analysis Bd. 0, Heft 3 (1990)	 -•	 •	 S	
•	 -	 •
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Proposition 1: The solution u,of the perturbed problem (17) admits expansions 

U = W0 + ko ± V0 + Z0	 ..	-.
WO + )o'+ V0 + W 1 ±wl + V 1 + Z1, - 

S	
I 

with w0 = w solution of the unperturbed problem (16), 2 0 + v0 and + v 1 (cf. (19)) 

corrections; previously in the vicinity of Q,, while w 1 (Cf. (24)) corrects on 8; the remain-
ders z0 , z 1 are uniformly bounded according to (23), (25). 

6. Sphériéal inclusions	 -	 - 

Finally, it should be remarked that in the special case where Q, is a hail K, of radius 
E, centered at 0, an asymptotic expansion of the solution of the model problem (2) 
Would better be established more dfrectly; based on the Taylor expansion of the un-
perturbed solutioiw, at  =0,  

w=w0+wi0xi+w?jxix;+.,
 

where w° = taken at x = 0, and analogously. As a first approximation 10 
the equations (3) for the difference v = u - w turns out to be reasonable, with iegard 
to the estimation of the remainder, -

-'	G,: —M3=0  

K,: -	= (1— 2) h(0) = 0. - 1) Aw(0)	 (26)

h v - v = 0, 16 = (i - 1) [w 1 0x,/r + wx,xjr1 

with i5(00) = 0. Suitable expansion functions will be, for = in G, linear combi- 
nations of derivatives of theprincipal solution, and for i '=fr in the ball K,, homo-
geneous polynomials, some of which solve the approximating equation on K,, and 

, the other ones are harmonic. For the latter it is best to take those which arise in the 
nominators H(x) of the derivatives just mentioned if they are represented by H(x)/rm. 
After inserting these ansatzés into (26) and equating at r = e the polynomials, o'r 
nominator polynomials, respectively, of the same order, some calculation's will provide, 

- the exact solution of (26), in the three-dimensional case: 

1-2 [h(0)	3 + 22	 '•	 - 

v+= 3+22 L r23+ 9+230Xj+05Wijj, 
S	 1 - 2

 

[h(0)
3

3 ±22	 h(0) V 32) 5+ 2^20x±?11+2(1_) 
•	(27)	• 

where . = e/r. It should be pointed out that in the principal solution hr does not 
appear itself. This will hold also foji other dimensions; especially forn = 2 no loga-
rithmic term will trouble - and this will confirm the fact stated above, in Section 4, 
that the expansion procedure will also run in the two-dimensional case.	- 

In order to estimate the degree of approximation to u given by w + it is estab-
lished, for .z = u - (w + ), 

G,:--zz=0, 8:z=O( 3 )	 S 

,	 I	•-	.	 (28) 
K,: —2z=O(e),	K,:z'—z =0, lz=O(E2): - 	-
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A majorant function Z which satisfies the conditions of the lemma, except that on S, 
will , be given by	 .. 

0 

J Z+ = C841r,	 0 

•	 I Z = l/6Cj (e2 — r2 ) + C0&	 0 0 

with proper constants CO , C 1 . Merely to be able to apply the lerma; formally afunc-
tion s3w 1 must be added to b, where	 -	 - 

-	0	

l).w1ox1	 •0• 
0	 0: —tw1 = 0 S: w 1 = —	. -. 

	

2 + i r3	 0 

Then in (28) Nye will havez = O(E)on S - the otherconditiois are not concerned -, 
•	and Z is now an admisible majorant function.	 - 

P r  position 2: In the case n = 3 and it the inclusion occupies occupies the ball Ke, an a8mp-
• totic expansion of the solution 0/(2) is  

• •. ' 0

	

u(x) = w(x) + (x) ± E 3Z 1 (x, s) 0	

/ '	 '	 ( 29) 

with given by (27) and z,(x, e )I	C mm (/r, 1).	-	 •	. 

If higher approximations are,desired, then, of course, the function w1 compensating 
•	on the outer boundary 5, will be essential and must, further, be expanded itself simi-

larly as w.	 ,	•	 .	
0	

0 

00 Remark: The limitcase2 =	where the-temperature u must be eonstäntin K
has been treated in'[2]; the result there proves to be the limit, for A---> oo, of (29), 

0	
0	 (27).
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Added in proof: Solving (8), at first, only for the constant term of Taylor's expan-
sion of the right-hand side, the properties of double layer potential W, with constant 
density (Gauss' integral - e.g., vanishing outside Qe!), will allow the consta.it C 
in the basic estimate (10) to be replaced by C . r, so that all powers of a, in the sequel, 

- can be lifted respectively; especially, (13)is true even with 63k instead of e2k, and in 
•	 .	(13'). Ek may be replaced by a2k.	 •	 .	 - 
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