Zeitschrift für Analysis und ihre Anwendungen Bd. 9 (2) 1990, S. $165 - 176$

Self-Duality and C^* -Reflexivity of Hilbert C^* -Moduli

M. FRANK

Gegenstand dieses Artikels sind eine neue Definition des Begriffes "selbstdualer Hilbert-C*-Modul" als ein Kategoriebegriff der Banach-C*-Moduln und die Bedingungen für einige Hilbert-C^{*}-Moduln, selbstdual oder C^{*}-reflexiv zu sein. Es wird die Isomorphie zweier beliebiger Hilbertstrukturen auf einem gegebenen selbstdualen Hilbert-C^{*}-Modul gezeigt, die äquivalente Normen zur gegebenen Norm induzieren. Ein topologisches Kriterium der Selbstdualität und C*:Reflexivität von Hilbert-W*-Moduln wird bewiesen. Weiterhin wird ein Kriterium der Selbstdualität des abzählbar erzeugten Hilbert-C*-Moduls $l_2((\mathfrak{A})$ für beliebige C*-Algebren \mathfrak{A} gezeigt. Als eine Anwendung wird die Klassifikation der abzählbar erzeugten selbstdualen Hilbert-W^{*}-Moduln durch deren Struktur gegeben.

Предметом стати ивляется новое определение понятия "автодуальный гильбертов С*модуль" как понятие категории банаховых C^* -модулей и условия для некоторых гильбертовых С*-модулей быть автодуальными или С*-рефлексивными. Показана изоморфность любых двух гильбертовых структур на заданном автодуальном гильбертовом C^* -модуле, если они индуцируют нормы эквивалентные к заданной. Доказан топологический критерий автолуальности и С*-рефлексивности гильбертовых W*-модулей. Далее, сформулирован критерий автодуальности счетно порожденного гильбертового $\mathfrak A$ -модуля l_\bullet ($\mathfrak A$) для любых C^* -алгебр $\mathfrak A$. В качестве приложения дана классификация счетно порожденных гильбертовых W^* -модулей их структурой.

The subject of this paper are a new definition of the notion "self-dual Hilbert C^* -module" as a categorical concept of Banach C^* -moduli, and the conditions for some Hilbert C^* -moduli to be self-dual or C*-reflexive. The isomorphism of any two Hilbert structures on a given selfdual Hilbert C*-module inducing equivalent norms to the given one is stated. A topological criterion of self-duality and C^* -reflexivity of Hilbert W^* -moduli is proved. A criterion of selfduality of the countably generated Hilbert \mathfrak{A} -module $l_0(\mathfrak{A})$ is stated for arbitrary C^* -algebras \mathfrak{A} . As an application the classification of countably generated Hilbert W^* -moduli by their structure is given.

§1 Introduction

At the beginning we fix some denotations and give certain facts and examples from the literature: All moduli in this paper are left moduli by definition. A pre-Hilbert $\mathfrak{A}\text{-}module$ over a certain C^* -algebra $\mathfrak A$ is an $\mathfrak A\text{-}module$ M equipped with a conjugate bilinear mapping $\langle \cdot, \cdot \rangle \colon M \times M \to \mathfrak{A}$ satisfying

(i) $\langle x, x \rangle \ge 0$ for any $x \in M$,

(ii)
$$
\langle x, x \rangle = 0
$$
 if and only if $x = 0$,

(iii)
$$
\langle x, y \rangle = \langle y, x \rangle^*
$$
 for any $x, y \in M$,

(iv)
$$
\langle ax, y \rangle = a \langle x, y \rangle
$$
 for any $a \in \mathfrak{A}, x, y \in M$.

The map $\langle \cdot, \cdot \rangle$ is called the U-valued inner product on M. Let us remark that we will write "pre-Hilbert C^* -module" instead of "pre-Hilbert $\mathfrak A$ -module over the C^* -algebra \mathfrak{A}' whenever the concrete properties of the underlying C^* -algebra \mathfrak{A} are unimportant in the context. A pre-Hilbert C^* -module is *Hilbert* if it is complete with respect to the norm $\|\cdot\| = \|\langle \cdot, \cdot \rangle\|_{\mathcal{H}}^{1/2}$. Two Hilbert \mathcal{U} -moduli $\{M, \langle \cdot, \cdot \rangle_M\}$. $\{N, \langle \cdot, \cdot \rangle_N\}$ over a certain fixed C^* -algebra II are *isomorphic* if there exists a bijective II-linear bounded map $B: M \to N$ such that $\langle x, y \rangle_M = \langle B(x), B(y) \rangle_N$ for any $x, y \in M$. A Hilbert \mathfrak{A} module over a certain C^* -algebra $\mathfrak A$ is called *finitely* (resp., countably, countably in*finitely)* generated if it is finitely (resp., countably, countably infinitely) generated as an $\mathfrak A$ -module, cf. [9]. A C*-submodule M of a certain Hilbert C*-module $\langle N, \langle \cdot, \cdot \rangle \rangle$ is a *Hilbert C*-submodule of* N if $\langle M, \langle \cdot, \cdot \rangle \rangle$ is a Hilbert C*-module. A pre-Hilbert C*submodule $\{M, \langle \cdot, \cdot \rangle\}$ of a certain pre-Hilbert C^* -module $\{N, \langle \cdot, \cdot \rangle\}$ is a *direct summand* of N if any element of N has a (unique) decomposition into the sum of an element of **M** and an element of the orthogonal with respect to $\langle \cdot, \cdot \rangle$ complement of **M**.

Let us consider some examples.

(i) Any Ct-algebra $\mathfrak A$ becomes a Hilbert $\mathfrak A$ -module with the inner product $\langle \cdot, \cdot \rangle_{\mathfrak A}$ being defined by $\langle a, b \rangle_{\mathfrak{A}} = ab^*$ for any $a, b \in \mathfrak{A}$.

(ii) Any Hilbert space is a Hilbert C^* -module over the C^* -algebra $\mathbb C$.

(iii) Let I be an index set and let $\{\mathfrak{D}_s\}_{s\in I}$ be a collection of left ideals of a certain O^* -algebra U indexed by I. Then the set of all I-tuples $\mathbf{x} = {x_a}_{a \in I}$ for which the sum $\sum x_a x_a^*$ converges with respect to the 21-norm is a pre-Hilbert 21-module.

(iv) Let H be a Hilbert space and $\mathfrak A$ be a C^* algebra. The algebraic tensor product $\mathfrak A\otimes H$ becomes a pre-Hilbert $\mathfrak A$ -module with the inner product $\langle \cdot, \cdot \rangle$ defined on clementary tensors by $\langle a \otimes \xi, b \otimes \eta \rangle = ab^* \langle \xi, \eta \rangle_H$. Obviously, if the Hilbert space H is finite-dimensional, then $\mathfrak{A}\otimes \mathbb{C}^n$ is isomorphic to the set \mathfrak{A}^n of n tuples of elements of \mathfrak{A} . Let us remark that the normclosure of $\mathfrak{A} \otimes l_{\mathcal{F}}$ is denoted by $l_2(\mathfrak{A})$, and it plays an important role describing properties of arbitrary.countably generated Hilbert \!-moduli, cf. [9: Th. 2].

(v) Let $\xi = (E, p, K, H)$ be a locally trivial Hilbert bundle over a compact space K. Denote by $\Gamma(\xi)$ the set of all continuous sections of this bundle. Then $\Gamma(\xi)$ becomes in a natural way a Hilbert $C(K)$ -module splitting the inner products of the fibres H_x , $x \in K$, cf. [2: p. 48–49].

We denote by M' the set of all bounded module maps $f: M \to \mathfrak{A}$. Following W. L. PASCHKE [14] a Hilbert C^* -module M is called *self-dual* if every map $r \in M'$ is of the form $\langle \cdot, a_r \rangle$ for some $a_r \in M$. W. L. Paschke proved that in the case of $\mathfrak A$ being a W^* . algebra the $\mathfrak A$ -valued inner product on a pre-Hilbert $\mathfrak A$ -module $\{\mathbf M,\langle\cdot,\cdot\rangle\}$ lifts to an \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle_p$ on the Banach \mathfrak{A}^1 -module M' turning $\{M', \langle \cdot, \cdot \rangle_p\}$ into a self-dual Hilbert X-module, cf. [14: Th. 3.2]. A. S. Mıščenko showed that every finitely generated Hilbert C*-module is self-dual, cf. [12]. P. P. SAWOROTNOW got the result that every Hilbert $\mathfrak A$ -module over a finite-dimensional C^* -algebra $\mathfrak A$ is selfdual, cf. [19: Th. 3].

Denote by M'' the $\mathfrak A$ -module of all bounded module maps from M' into $\mathfrak A$. Let q be the module map q: $M \rightarrow M''$ defined by $q(m)$ $\{r\} = (r(m))^*$ for each $m \in M$, any $r \in M'$. A Banach C^{*}-module M over $\mathfrak A$ is called C^{*}-reflexive (or $\mathfrak A$ -reflexive) if the module map q is a module isomorphism, cf. [13]. For a Hilbert C^* -module the map q is automatically an isometry $[13:Cor. 1.1]$. It turns out that for Hilbert W^* -moduli the C^* -reflexivity is equivalent to the self-duality [14: Th. 3.2], W. L. PASCHKE [16] proved that for any Hilbert $\mathfrak A$ -module M over a certain C^* -algebra $\mathfrak A$ the $\mathfrak A$ -valued inner product can be extended to the *A*-bidual Banach *A*-module M''-turning it into $a \, C^*$ -reflexive Hilbert \mathfrak{A} -module.

The paper is organized as follows: The second part is concerned with the definition of the notion "self-dual Hilbert C*-module". We show that the property of a Hilbert C^* -module to be self-dual (in the sense of [14]) depends not on the *structure* of the given inner product, but only on the existence of an inner product on the under-

lying Banach C^* -module inducing an equivalent Hilbert norm and realizing the condition of self-duality (Proposition 2.2). A new definition of this notion is given (Definition 2.1). describing it on the category of Banach C^* moduli. As a consequence we get that on self-dual Hilbert. C^* -moduli any two Hilbert structures inducing equivalent norms to the given one are isomorphic (Theorem-2.6). We prove that any selfdual Hilbert C^* -submodule of an arbitrary pre-Hilbert C^* -module is a direct sum-Self-Duality and C^* -Reflexivity of Hilbert C^* -Moduli 167

lying Banach C^* -module inducing an equivalent Hilbert norm and realizing the con-

dition of self-duality (Proposition 2.2). A new definition of this noti

mand (Theorem 2.7).
In the third part Hilbert W^* -moduli are treated. We characterize C^* -reflexive (and • hence, self-dual) Hilbert W^* -moduli by their inner topological properties (Theorem 3.2). Also an example of a non- C^* -reflexive Hilbert $\mathfrak A$ -module:over a certain commutative unital W^* -algebra $\mathfrak A$ is given (Example 3.6) contradicting [13: Th. 2.1].

The fourth part of this paper is concerned with the Hilbert \mathfrak{A} -module $l_2(\mathfrak{A})$ over certain C^* -algebras \mathfrak{A} , $l_2(\mathfrak{A})$ being standard for all countably generated Hilbert \mathfrak{A} moduli in the sense of [9: Th. 2]. We give a criterion of self-duality of $l_2(\mathfrak{A})$ (Theorem 4.3). Moreover, we show that every Hilbert $\mathfrak A$ -module over a certain C^* -algebra $\mathfrak A$ intion 2.1). describing it is
nition 2.1). describing it is
get that on self-dual Hil
lent norms to the given
dual Hilbert C^* -submod
mand (Theorem 2.7).
In the third part Hilbert
hence, self-dual) Hilbert
3.2). Also an is self-dual if and only if $\mathfrak A$ is finite-dimensional (Proposition 4.4). As an application we get the classification of all countably generated self-dual Hilbert W^* -moduli by their structure (Propositión 4.7). 3.2). Also a tive unital
tive unital
time of the four-
ertain C^*
moduli in \leq
 \leq 4.3). More
is self-dual
we get the
their struce
 \leq 82 The no tive unital W^* -algebra $\mathfrak A$ is given (Example 3.6) contradicting [13: Th. 2.1].
The fourth part of this paper is concerned with the Hilbert $\mathfrak A$ -module l_2 (ecrtain C^* -algebras $\mathfrak A$, $l_2(\mathfrak A)$ being sta moduli in the sense of [9: Th. 2]. We give a criterion
4.3). Moreover, we show that every Hilbert $\mathfrak A$ mod
is self-dual if and only if $\mathfrak A$ is finite-dimensional (Pr
we get the classification of all countably genera

ρ + $'$

 $\$ 2 The notion "self-dual Hilbert C^* -module" $-$ a category concept
W. L. Paschke [14] and other authors [12, 18] have defined that a Hilbert $\mathfrak A$ -module $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ over a certain C^* -algebra $\mathfrak A$ is self-dual if and only if every bounded module map $f \in M'$ is of the form $\langle \cdot, a_f \rangle$ for some $a_f \in M$. We give another definition. is self-dual if and only if $\mathfrak A$ is finite-dimensional (Pr
 $\mathfrak e$ we get the classification of all countably generated

their structure (Proposition 4.7).
 \mathfrak{g}_2 The notion "self-dual Hilbert C^* -module" $-$ a

 $\mathbf{Definition\ 2.1: A\ \nBanach\ \mathfrak{A} \text{-module}\ \, \mathbf{M} \text{ over a certain C^*-algebra \mathfrak{A} is called a }$ *self-dual Hilbert* \mathfrak{A} *-module over* $\mathfrak A$ if there exists an $\mathfrak A$ -valued inner product $\langle \cdot, \cdot \rangle$ on

(i) The norm induced on M by the $\mathfrak A$ -valued inner product. $\langle \cdot, \cdot \rangle$ is equivalent to the

(ii) The map $\varphi \colon M \to M'$ defined by the formula $\varphi(a) = \langle \cdot, a \rangle$ ($a \in M$) is surjective.

This definition seems to be-weaker than the other one. In the following, however, vertex (ii) The map $\varphi: M \to M'$ defined by the formula $\varphi(a) = \langle \cdot, a \rangle$ $(a \in M)$ is surjective.
This definition seems to be weaker than the other one. In the following, however, we prove the equivalence of both definitions between the notion for the category of Banach C*-module
 M with the properties:

(i) The norm induced on M by the L-valued inner product $\langle \cdot, \cdot \rangle$

(given norm on M.

(ii) The map $\varphi \colon M \to M'$ defined by the formula

Proposition 2.2: Let X be a C^{*}-algebra. Let M be an X-module turning into a self*dual (in the sense of [14]) Hilbert* $\mathfrak A$ *-module with the* $\mathfrak A$ *-valued inner product* $\langle \cdot, \cdot \rangle$, and *turning into a Hilbert* \mathfrak{A} -module with the \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle_2$. We suppose the *equivalence of the norms* $\|\cdot\|_1$ *and* $\|\cdot\|_2$ *on* M *and the completeness of* M *with respect to* \cdot them. **Froposition 2**
 • dual (in the sense turning into a Hill
 • dual (in the sense turning into a Hill
 • depindence of the
 • them.
 Then $\{\mathbf{M}, \langle \cdot, \cdot \rangle_2\}$
 bounded \mathfrak{A} -linear (i).
 (i), $\langle \mathbf{b},$ *a n o oerator M* by the *M*-valued inner product. (...) is equivalent to the erise:
 $\mathbf{M} \rightarrow \mathbf{M}'$ defined by the formula $\varphi(\mathbf{a}) = \langle \cdot, \mathbf{a} \rangle$ ($\mathbf{a} \in \mathbf{M}$) is surjective
 $\mathbf{a} \in \mathbf{M}$.
 $\mathbf{a} \in \$ (i) The norm induced on M by the \mathfrak{A} -valued inner p

(given norm on M.

(ii) The map $\varphi \colon M \to M'$ defined by the formula φ (a

This definition seems to be weaker than the other compares

we prove the equivalence we prove the equivalence of both definitions. As a result we can show the categorical
sense of the notion for the category of Banach C^* -moduli.
Proposition 2.2: Let \mathfrak{A} be a C^* -algebra. Let \mathfrak{M} be an \math Proposition 2.2: Let \mathfrak{A} be a C^* -algebra. Let \mathfrak{M} be an \mathfrak{A} -module turning into a Hilbert \mathfrak{A} -module with the \mathfrak{A} -module inner product $\langle \cdot, \cdot \rangle$. We suita

durining into a Hilbert $\mathfrak{$ *If itself* u -module with the u -valued
 I dual with the u -valued inner product
 $\|u\|$ and $\|v\|$ on M and the complete
 I dual (in the sense of [14]) *Hilbert* \mathfrak{A}
 B: $M \rightarrow M$ with the following prop

Then $\{M, \langle \cdot, \cdot \rangle_2\}$ is a self-dual (in the sense of [14]) *Hilbert II-module and there exists a bounded II-linear operator* $B: M \to M$ with the following properties:

 $\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2}$

 $\{M, \langle \cdot, \cdot \rangle_{2}\}$.

item (ii) are valid and $\langle \mathbf{b}, \mathbf{a} \rangle_1 = \langle \mathbf{b}, B^{-1}(\mathbf{a}) \rangle_2$ for any $\mathbf{a}, \mathbf{b} \in \mathbf{M}$.

(iii) B has an inverse B^{-1} , which is bounded and \mathfrak{A} . For B^{-1} the properties of *item* (ii) are valid and $\langle \mathbf{b}, \mathbf{a} \rangle_1 = \langle \mathbf{b}, B^{-1}(\mathbf{a}) \rangle_2$ for any $\mathbf{a}, \mathbf{b} \in \mathbb{M}$.

Proof: (i) Since $\{ \math$ Proof: (i) Since $\{M, \langle \cdot, \cdot \rangle_i\}$ is self-dual, for each $a \in M$ there exists an element

(a) $\in M$ such that $\langle \cdot, a \rangle_2 = \langle \cdot, B(a) \rangle_1$ on M. The map B is \mathcal{U} -linear. Since the inequa-

ty
 $\|a\|_1 \leq k \|a\|_2 \leq l \|a\$ $B(a) \in M$ such that $\langle \cdot, a \rangle_2 = \langle \cdot, B(a) \rangle_1$ on M. The map B is \mathfrak{A} -linear. Since the inequa- $\begin{array}{l} \hbox{(ii)} \\ \hbox{(M, \langle \cdot, \cdot \rangle)} \\ \hbox{(iii)} \\ \hbox{(1)} \\$ $\text{A of: (i) Since } \{M, \langle \cdot, A \rangle\}$
 $\|\mathbf{a}\|_1 \leq k \|\mathbf{a}\|_2 \leq k$ *n m*. The

(0, $+\infty$). ⁰ • **'0'**

-7

0 -

1-

168° M. FRANK

is valid for any $a \in M$ by supposition, and because of the inequality

$$
||B(\mathbf{a})||_1^2 = ||\langle B(\mathbf{a}), B(\mathbf{a})\rangle_1||_{\mathfrak{A}} = ||\langle B(\mathbf{a}), \mathbf{a}\rangle_2||_{\mathfrak{A}}
$$

$$
\leq ||B(a)||_2 ||a||_2 \leq l^2 ||B(a)||_1 ||a||_1
$$

(cf. $[14: Prop. 2.3]$ and (1)) we get the boundedness of B. It does not depend on the inner product.

 (2)

(ii) We state the equalities $(a, b \in M)$

$$
\langle B(\mathbf{a}), \mathbf{b} \rangle_1 = \langle \mathbf{b}, B(\mathbf{a}) \rangle_1^* = \langle \mathbf{b}, \mathbf{a} \rangle_2^* = \langle \mathbf{a}, \mathbf{b} \rangle_2 = \langle \mathbf{a}, B(\mathbf{b}) \rangle_1,
$$

$$
\langle B(\mathbf{a}), \mathbf{b} \rangle_2 = \langle B(\mathbf{a}), B(\mathbf{b}) \rangle_1 = \langle \mathbf{a}, B^2(\mathbf{b}) \rangle_2 = \langle \mathbf{a}, B(\mathbf{b}) \rangle_2.
$$

This is enough to show $B = B^*$ with respect to both inner products. The other properties of B are trivial deductions now. In particular, we get that B is a one-to-one mapping.

(iii) Because of the inequality

$$
||a||_1^2 \leq k^2 ||a||_2^2 = k^2 ||\langle a, a \rangle_2||_{\mathfrak{A}} = k^2 ||\langle a, B(a) \rangle_1||_{\mathfrak{A}} \leq k^2 ||B(a)||_1 ||a||_1
$$

being valid for any $a \in M$ (cf. (1) and [14: Prop. 2.3]), we get the connection

$$
||a||_1 \leq k^2 ||B(a)||_1 \leq k^2 ||B||_{0p,1} ||a||_1 \text{ for any } a \in M.
$$

Since B is bounded this means that every norm-fundamental sequence of the range of B has a (unique) norm-fundamental sequence of M as its pre-image. Moreover, B maps the limit of this pre-image sequence into the limit of the sequence taken in the range of B. Consequently, since B is $\mathfrak A$ -linear the range Im (B) is a norm-closed \mathfrak{A} -submodule of M independent of the inner product. The Banach \mathfrak{A} -module Im (B) becomes a Hilbert \mathfrak{A} -submodule of M with both inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$. Now there are three possibilities how Im (B) can be related to the Hilbert $\mathfrak A$ -module M:

(a) $\text{Im}(B) \not\equiv M$, $\text{Im}(B)^{\perp} \not\equiv \{0\}$.

(b) Im
$$
(B) \not\equiv M
$$
, Im $(B)^{\perp} \equiv \{0\}$.

(c) Im $(B) \equiv M$.

We will show that, in fact, only (c) can be. To rule out the first possibility we take an element $b \in \text{Im}(B)^{\perp}$ with respect to $\langle \cdot, \cdot \rangle_1$, $b \neq 0$. Then we get $\langle b, b \rangle_2 = \langle b, B(b) \rangle_1$ $= 0$ and, therefore, $b = 0$. This is a contradiction. The same happens if we take $\mathbf{b} \in \text{Im}(B)^{\perp}$ with respect to $\langle \cdot, \cdot \rangle_2$, $\mathbf{b} = 0$. We get $0 = \langle B(\mathbf{b}), \mathbf{b} \rangle_2 = \langle B(\mathbf{b}), B(\mathbf{b}) \rangle_1$ and, therefore, $B(b) = 0$. Since B is injective, $b = 0$ in contradiction to our choice of b. To drop the second possibility we use the fact that the canonical embedding of a Hilbert $\mathfrak{A}\text{-module } \{N, \langle \cdot, \cdot \rangle\}$ over a certain C^* -algebra \mathfrak{A} into its $\mathfrak{A}\text{-bidual Banach}$ $\mathfrak{A}\text{-module } \mathbb{N}''$ does not depend on the structure of the $\mathfrak{A}\text{-valued inner product}\langle \cdot, \cdot \rangle$ by definition. Using on M the inner product $\langle \cdot, \cdot \rangle_1$ we get $M'' \equiv M$ and $\text{Im } (B)'' \equiv M$ as Banach $\mathfrak A$ -moduli. Now we define on Im (B) a third $\mathfrak A$ -valued inner product by the formula $\langle a, b \rangle_3 = \langle B^{-1}(a), B^{-1}(b) \rangle_1$ for any $a, b \in \text{Im}(B)$. It is well defined since B is a one-to-one, surjective, \mathfrak{A} -linear, bounded mapping from M onto Im (B). Because of (3) we get that $\{\text{Im}(B), \langle \cdot, \cdot \rangle_3\}$ is a Hilbert $\mathfrak A$ -module, which is, moreover, self-dual in the sense of [14]. Using the inner product $\langle \cdot, \cdot \rangle_3$ we consider Im $(B)'' \equiv \text{Im}(B)$. This means Im $(B) \equiv M$ in contradiction to (b).

Therefore, only the relation $M \equiv \text{Im}(B)$ is possible. Moreover, the bounded \mathfrak{A} -linear operator B^{-1} : $\mathfrak{M} \to \mathfrak{M}$, which is inverse to B, exists and satisfies the conditions of the items (ii) and (iii). Finally, we show the self-duality of $\{M, \langle \cdot, \cdot \rangle_2\}$ in the

Self Duality and C^* Reflexivity of Hilbert C^* Moduli, \sim 169
sense of [14]. We choose an $r \in M'$ arbitrarily. By supposition there exists an element
 $b_r \in M$ such that $r(\cdot) \equiv \langle \cdot, b_r \rangle_1$ on M. We define $c_r = B^{-1}(b_r$ Self-Duality and C^* -Reflexivity of Hilbert C^* -Moduli, \cdot 169

sense of [14]. We choose an $r \in M'$ arbitrarily. By supposition there exists an element
 $b_r \in M$ such that $r(\cdot) \equiv \langle \cdot, b_r \rangle_1$ on M. We define $c_r = B^{-1}($ on M. Since $r \in M'$ is choosen arbitrarily, we are done \blacksquare

 \geq Corollary 2.3: Let $\{M, \langle \cdot, \cdot \rangle\}$ be a self-dual Hilbert $\mathfrak A$ -module over a C*-algebra $\mathfrak A$. *Then for any* \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle_0$ on $\mathbf M$ inducing an equivalent norm to the given *one there exists one and only one bounded* \mathfrak{A} *-linear invertible positive opérator* B_0 *on* $\{M, \langle \cdot, \cdot \rangle\}$ *with the property* $\langle \cdot, \cdot \rangle_0 \equiv \langle \cdot, B_0(\cdot) \rangle$ *on* M. *And vice versa.* Self-Duality and C^* -Reflexivity of Hilbert C^* -Modu

sense of [14]. We choose an $r \in M$ arbitrarily. By supposition there exists

b, \mathbf{A} such that $r(\cdot) \equiv \langle \cdot, \mathbf{b}_r \rangle_1$ on M. We define $\mathbf{c}_r = B^{-1}(\mathbf{b}_r) \in$ *• Cord Then form is*
 $\frac{P}{P}$ Cord *Then form*
 $\{M, \langle ., . \rangle\}$
 Finis
 Cord quality
 Form f [14]. We choose an $r \in M'$ arbitrarily. By supposition there such that $r(\cdot) \equiv \langle \cdot, \mathbf{b}_r \rangle_1$ on M. We define $c_r = B^{-1}(\mathbf{b}_r) \in M$ and since $r \in M'$ is choosen arbitrarily, we are done **1**
 ollary 2.3: *Lèt* $\langle M,$ *IS* **IOPENDATE 12** *III* $\{M, \langle \cdot, \cdot \rangle\}$ be a self-dual Hilbert $\mathfrak{A}\cdot \text{mod}u$
 In for any $\mathfrak{A}\cdot \text{valued inner product } \langle \cdot, \cdot \rangle_0$ on M inducing an equitarities $\langle \cdot, \cdot \rangle$ with the property $\langle \cdot, \cdot \rangle_0 \equiv \langle \cdot, B_0(\cdot) \rangle$ on

This follows from $[10:$ Lemma 2, Th. 3] and from Proposition 2.2.

2.4: Under the suppositions formulaed in Proposition 2.2 *beside the ine-*

•

for some constants C, D \in $(0, +\infty)$ *and for any* $a \in M$.

Corollary 2.4: Under the suppositions formulated in Proposition 2.2 beside the inequality (1) there holds the inequality
 $\langle \mathbf{a}, \mathbf{a} \rangle_1 \leq C \langle \mathbf{a}, \mathbf{a} \rangle_2 \leq D \langle \mathbf{a}, \mathbf{a} \rangle_1$
 $\langle \mathbf{b} \rangle_1$ for some constants We have, $\langle \mathbf{a}, \mathbf{a} \rangle_2 = \langle \mathbf{a}, B(\mathbf{a}) \rangle_1 = \langle B^{1/2}(\mathbf{a}), B^{1/2}(\mathbf{a}) \rangle_1 \leq ||B^{1/2}||^2_{0,p,1} \langle \mathbf{a}, \mathbf{a} \rangle_1$ • *Corollary 2.4: Under the supposition of Delinear invertible positive opérator* B_0 on

{M, $\langle \cdot, \cdot \rangle$) with the property $\langle \cdot, \cdot \rangle_0 \equiv \langle \cdot, B_0(\cdot) \rangle$ on M. And vice versa.

This follows from [10: Lemma 2, Th. 3] a *IlBinon:* $\langle A, A \rangle_1 \leq P$, where $\langle A, A \rangle_2 \leq P$, $\langle B_0(\cdot) \rangle$ on M. And vice intervals $\langle A, A \rangle_1 \leq P$ and $\langle A, A \rangle_2 \leq P$, $\langle B_0(\cdot) \rangle$ on M. And vice intervals $\langle A, A \rangle_1 \leq P$ and $\langle A, A \rangle_2 \leq P$ and $\langle A, A \rangle_1 \leq P$ a $\langle \overline{a} \rangle_1^2$
 $\langle a \rangle_2^2$ as same w
2.2 has This follows from [10: Lemma 2, 1n. 3] and from Proposition 2.2.

Corollary 2.4: Under the suppositions formulated in Proposition 2.2 beside the in-

yiality (1) there holds the inequality
 $\langle a, a \rangle_1 \leq C\langle a, a \rangle_2 \leq D\langle a,$

S. $\leq ||B^{-1}||_{0p,2} \langle a, a \rangle_2$ for any $a \in M$ \blacksquare

Corollary 2.5: The operator described in Proposition 2.2 has the property k^{-2}
 $\leq ||B||_{0p,1} \leq l^2$, where $k, l \in \mathbb{R}$ are taken from (1).

This follows from (2) and

-
- 11 mi $= ||B||_{0p,1} \langle a, a \rangle_1$ for any $a \in M$ (cf. [14: Prop. 2.8]). In the same way we get $\langle a, a \rangle_1$
 $\leq ||B^{-1}||_{0p,2} \langle a, a \rangle_2$ for any $a \in M$ ■

Corollary 2.5: The operator described in Proposition 2.2 has the property k^{-2} *Find. 121, where a special case of it is stated.*
 Cor. 1.2], where a special case of it is stated.
 Theorem 2.6: Let \mathfrak{A} *be a C*-algebra and* $\{M, \langle \cdot, \cdot \rangle\}$ *be a self-dual Hilbert* \mathfrak{A} *-module*
 Chen Then every $\mathfrak A$ -valued inner product $\langle \cdot, \cdot \rangle_2$ on M, the norm induced from which is equiva-*•* for some constants $C, D \in (0, +\infty)$ and for any $a \in M$.
 Proof: We have, $\langle a, a \rangle_2 = \langle a, B(a) \rangle_1 = \langle B^{1/2}(a), B^{1/2}(a) \rangle_1 \leq ||B^{1/2}||_{\beta p,1}^2$ (a, $= ||B||_{\alpha p,1}$ (a, $a \rangle_1$ for any $a \in M$ (cf. [14: Prop. 2.8]). In the s

.. .

Proof: By Proposition 2.2 there exists a bounded $\mathfrak A$ -linear invertible self-adjoint positive operator *B*: **M** \rightarrow **M** satisfying the equality $\langle a, b \rangle_2 = \langle a, B(b) \rangle_1$ for any $a, b \in M$. The set of all bounded \mathfrak{A} -linear operators on a self-dual Hilbert \mathfrak{A} -module is a C^* -algebra by [14: Cor. 3.5], and an operator. B is positive on the Hilbert $\mathfrak A$ -m6-. dule-if and only if it is positive as an element of this C^* -algebra by [10: Lemma 2, Th. 3]. So we can find a bounded 21-linear invertible self-adjoint positive, operator *C*: $M \rightarrow M$ satisfying the equality $\langle a, b \rangle_2 = \langle C(a), C(b) \rangle_1$ for any $a, b \in M$ prium by the $\mathfrak{A}\rightarrow$ and inner product $\langle \cdot, \cdot \rangle$.

Proof: By Proposition 2.2 there exists a bounded $\mathfrak{A}\rightarrow \mathfrak{h}$ can invertible self-

positive operator $B: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the equality $\langle a, b \rangle_2 = \langle a,$

Remark 2.7: If the underlying C^* -algebra $\mathfrak A$ is commutative, then any Hilbert $\mathfrak A$ -module has a unique (up to isomorphism) Hilbert structure, i.e. the property to be self-dual is omittable in this case. This fact can be drawn from the investigations of M. J. Dupré and R. M. GILLETTE [3: pp. 48–49]. However, if we drop the commutativity condition on 91, the analogous problem of uniqueness is still open. There seems n, 'b ∈ M. The set of all bounded 21-linear operators on a self-dual Hilbert sa C^* -algebra by [14: Cor. 3.5], and an operator *B* is positive on the Hill
the if and only if it is positive as a dielement of this C^* -

Now we are able to obtain a very important property of self-dual Hilbert C^* -moduli: Let us previously remark that not any Hilbert C^* -submodule of a pre-Hilbert C^* -*-* • M. J. DUPRÉ and R. M. GILLETTE [3: pp. 48-49]. However, i
tivity condition on \mathfrak{A} , the analogous problem of uniqueness is
to be some hope to solve it affirmatively.
Now we are able to obtain a very important propert

module has to be a direct summand, in general.
Theorem 2.8: *Let* \mathfrak{A} *be a C**-algebra, $\{N, \langle \cdot, \cdot \rangle\}$ *be any pre*-
 $M \subseteq N$ *be a self-dual Hilbert* \mathfrak{A} *-submodule. Then* $N \equiv M \bigoplus M^{\perp}$. Theorem 2.8: Let $\mathfrak A$ be a C^* -algebra, $\{N, \langle \cdot, \cdot \rangle\}$ be any pre-Hilbert $\mathfrak A$ -module and \cdot Theorem 2.8: Let \mathfrak{A} be a C^* -algebra, $\{N, \langle \cdot, \cdot \rangle\}$ be any pre-Hilbert \mathfrak{A} -module and $M \subseteq N$ be a self-dual Hilbert \mathfrak{A} -submodule. Then $N \equiv M \oplus M^{\perp}$.
Prop. We take the \mathfrak{A} -valued inner pr

Proof: We take the U-valued inner product on M given by that one on N reduced to If given by that one on N require
 \mathfrak{A} -linear embedding $T: M \rightarrow N$

an adjoint $\mathfrak A$ -linear bounded operator $T^*: \mathbb N \to \mathbb M$ defined on $\mathbb N$ such that

$$
\langle T(\mathbf{m}),\,\mathbf{n}\rangle_{\mathbf{N}}=\langle\mathbf{m},\,T^*(\mathbf{n})\rangle_{\mathbf{M}}
$$

for any $m \in M$, any $n \in N$. Because of the choice of the Hilbert structure on M and since T is isometric we can rewrite (4) as $\langle T(m), n - T(T^*(n)) \rangle_N = 0$ for any $n \in N$, any $m \in M$. That is, any element $n \in N$ can be decomposed $n = TT^*(n)$ $+$ $(n - TT^{*}(n))$, where $TT^{*}(n) \in M \subseteq N$ and $(n - TT^{*}(n)) \in M^{T}$. This decomposition is unique I

Finishing this paragraph we list some results from the literature to illustrate the importance of Theorem 2.8.

Corollary 2.9 [13: Cor. 1.4], [2: Prop. 1], [8]: The following is true:

(i) Let $\mathfrak A$ be any C^{*}-algebra. Let $\{M, \langle \cdot, \cdot \rangle\}$ be a finitely generated Hilbert $\mathfrak A$ -submodule of an arbitrary pre-Hilbert $\mathfrak{A}\text{-module } \{N, \langle \cdot, \cdot \rangle\}$. Then $N = M \oplus M^{\perp}$.

(ii) Let $\mathfrak A$ be a finite-dimensional C*-algebra: Let $\{\mathbf M, \langle \cdot, \cdot \rangle\}$ be a Hilbert $\mathfrak A$ -submodule of an arbitrary pre-Hilbert $\mathfrak A$ -module $\{N, \langle \cdot, \cdot \rangle\}$. Then $N = M \oplus M^{\perp}$.

 $\$3^{\frac{1}{2}}$ A topological characterization of self-dual and C^* -reflexive Hilbert W^* -moduli

The aim of the present paragraph is to characterize self-duality and C^* -reflexivity for a special class of *Hilbert C*-moduli*, namely, for Hilbert W^* -moduli, by their inner topological properties. The possibility of such a characterization is based either on Theorem 2.6 for self-duality or on the definition of the notion for C^* -reflexivity. The ideas for the following investigations arise from the proving technics and from the mental background of two papers of W. L. PASCHKE [14, 16].

Definition 3.1: Let $\mathfrak A$ be a W^* -algebra, $\langle \mathbf M, \langle \cdot, \cdot \rangle \rangle$ be a pre-Hilbert $\mathfrak A$ -module and P be the set of all normal states on \mathfrak{A} . The topology induced on M by the seminorms

$$
f(\langle \cdot, \cdot \rangle)^{1/2}, \quad f \in P
$$
,

is denoted by τ_1 . The topology induced on M by the linear functionals $f(\langle \cdot, y \rangle), f \in P$, $y \in M$, is denoted by τ_2 .

Let us remark, that the topology τ_2 was already explicitly defined by W. L. PASCHKE in [14] Remark 3.9], whereas the topology τ_1 was suggested to the author by the proving technics of $[16:$ Lemma 2.3]. If we define an $\mathfrak A$ -valued inner product on the W^{*-} algebra II by the formula $\langle a, b \rangle_{\mathfrak{N}} = ab^*$, $a, b \in \mathfrak{A}$, the topology r_2 coincides with the weak* topology on U. In the case of U being C and M being an arbitrary Hilbert space the topology τ_1 is the Hilbert topology on M, but the topology τ_2 is the weak and weak* topology on M. That is, they do not coincide, in general.

Theorem 3.2: Let $\mathfrak A$ be a W^* -algebra and $\{M, \langle \cdot, \cdot \rangle\}$ be a Hilbert $\mathfrak A$ -module. The following conditions for M are equivalent:

- (i) M is self-dual.
- (ii) M is $\mathfrak A$ -reflexive.
- (iii) The unit ball of M is τ_1 -complete.

(iv) The unit ball of M is τ_2 -complete.

Proof: (i) \Leftrightarrow (ii) follows from the definitions and from [14: Th. 3.2]./(i) \Rightarrow (iii): Assume that the unit ball of a self-dual Hilbert V-module M is not complete relative to the topology τ_1 . Denote by L the linear hull of the completion of the unit ball of

Self-Duality and C^* -Reflexivity of Hilbert C^* -Moduli

M relative to the topology τ_1 . For the extensions of the semi-norms (5) from M to L we use the same denotations. By assumption there exists an $r \in L \setminus M$ and a normbounded net $\{y_a\}_{a \in I} \subset M$ such that for every $f \in P$ and for each $\varepsilon > 0$ there is an $\alpha \in I$ with $f((r - y_{\beta}, r - y_{\beta})) < \varepsilon$ for any $\beta \geq \alpha$. We fix $f \in P$, $\varepsilon > 0$, $\alpha \in I$ and an arbitrary $x \in M$. Then

$$
|f(\langle x, y_{\beta} \rangle) - f(\langle x, y_{\gamma} \rangle)| = |f(\langle x, y_{\beta} - y_{\gamma} \rangle)|
$$

\n
$$
\leq f(\langle x, x \rangle)^{1/2} f(\langle y_{\beta} - y_{\gamma}, y_{\beta} - y_{\gamma} \rangle)^{1/2} \leq (2\epsilon f(\langle x, x \rangle))^{1/2}
$$

for any $\beta, \gamma \geq \alpha$. Consequently, there exists

$$
w^* - \lim \{ \langle x, y_{\alpha} \rangle : \alpha \in I \} = R(x)
$$

for each $\dot{x} \in M$. Furthermore, the inequality

$$
|f(\langle x, y_{\beta} \rangle)| \leq ||x|| \sup \{||y_{\alpha}|| : \alpha \in I\} \quad (\beta \in I) \quad
$$

shows the boundedness of the map $R: M \to \mathfrak{A}$ defined by (6). The \mathfrak{A} -linearity of R is obvious. Thus, (6) defines a bounded module map R. By assumption there exists an element $z \in M$ such that $R(x) = \langle x, z \rangle$ for any $x \in M$. Consequently, we arrive at $w^* - \lim \{\langle x, y_s \rangle : \beta \in I\} = \langle x, z \rangle$ for any $x \in M$, $z \in M$ being the τ_1 -limit of the normbounded net $\{y_a\}$. This means $r = z \in M$ in contradiction to our assumption.

(ii) \Rightarrow (i): We take an arbitrary $r \in M'$ and we suppose the τ_1 -completeness of the unit ball of M. By [14: Th, 3.2] we can lift the U-valued inner product $\langle \cdot, \cdot \rangle$ from M to M' turning M' into a self-dual Hilbert Q-module and satisfying the following properties for the lifted inner product $\langle \cdot, \cdot \rangle_{\mathbf{D}}$:

$$
\langle x, y \rangle = \langle \varphi(x), \varphi(y) \rangle_D \quad \text{if} \quad x, y \in M,
$$

$$
\tau(x) = \langle \varphi(x), \tau \rangle_D \quad \text{if} \quad x \in M, \tau \in M' \setminus M,
$$

where $\varphi(y) = \langle \cdot, y \rangle$ for any $y \in M$. Furthermore, $\langle M, M \rangle$ and $\langle M', M' \rangle_D$ are W^* -algebras, $\langle M, M \rangle$ being a two-sided *-ideal in $\langle M', M' \rangle_{D}$. Therefore, they coincide because of the properties of the lifted inner product, and $\langle r, r \rangle_p$ belongs to $\langle M, M \rangle$. First, let $\mathfrak A$ be σ -finite and let $g \in P$ be a faithful normal state on \mathfrak{A} , which exists according to [1: p. 94, Prop. 2.3.6]. Let (H, π, Ω) be the cyclic representation associated with g. The vector $\Omega \in H$ is both cyclic and separating. The linear space M equipped with the inner product $g(\langle \cdot, \cdot \rangle)$ turns into a pre-Hilbert space. The map $g(r(\cdot))$: $\mathbb{N} \to \mathbb{C}$ is a linear functional on it. Consequently, there exists an element r_g in the completion of M relative to the norm $g(\langle \cdot, \cdot \rangle)^{1/2}$ such that $g(\langle x, r_g \rangle) = g(r(x))$ for any $x \in M$. That means there exists a sequence $\{x_i\}_{i\in\mathbb{N}}\subset\mathbb{M}$ such that

$$
0 = \lim_{i \to \infty} g(\langle x_i - r_g, x_i - r_g \rangle)
$$

=
$$
\lim_{i \to \infty} g(\langle \varphi(x_i) - r, \varphi(x_i) - r \rangle_D)
$$

=
$$
\lim_{i \to \infty} ||[\pi(\langle \varphi(x_i) - r, \varphi(x_i) - r \rangle_D)]^{1/2} \Omega||^2.
$$

Since the vector $\Omega \in H$ is both cyclic and separating there exists $w^* - \lim_{i} (\varphi(\mathbf{x}_i) - r$, $\varphi(x_i) - r$) = 0 by [1: Lemma 2.5.38, Lemma 2.5.39]. This proves the implication in the case of $\mathfrak A$ being σ -finite.

If $\mathfrak A$ is not σ -finite, there exists an increasing directed net of projections $\{p_a\}_{a \in I}$ $\subset \mathfrak{A}$ such that $p_{\alpha} \mathfrak{A} p_{\alpha}$ is a σ -finite W^{*}-algebra for each $\alpha \in I$ and $w^* - \lim p_{\alpha} = 1$ and

(cf. [1: p. 164]). Observing $p_a \mathfrak{A} p_a$ and $(p_a r) \in M'$ for each $\alpha \in I$ we conclude that $(p_a r) \in M$ for each $\alpha \in I$ since $\langle p_a r, p_a r \rangle_D = p_a \langle r, r \rangle_D p_a$ and the latter belongs to $p_a \mathfrak{A} (p_a)$ for each $\alpha \in I$. Consequently, the τ_1 -limit of the bounded net $\{p_a r\}_{a \in I}$ belongs to M and it is equal to $r \in M'$. So the self-duality of M'turns out.

(iii) \Leftrightarrow (iv)? First, if the unit ball of M is τ_1 -complete, then M must be self-dual as shown above. By $[14: Prop. 3.8, Remark 3.9]$ there follows that M is a conjugate space with weak* topology τ_2 . Therefore, the unit ball of M is τ_2 -complete. Secondly, let $\{x_{\alpha}\}_{\alpha\in I}\subset M$ be a norm-bounded τ_1 -fundamental net and let the unit ball of M be τ_2 -complete. Then, for any $y \in M$, $f \in P$, β , $\gamma \in I$, *f* 164]). Observing $p_a \mathfrak{A}(p_a r) \in M'$ for each $\alpha \in I$ we conclude that
for each $\alpha \in I$ since $\langle p_a r, p_a r \rangle_D = p_a \langle r, r \rangle_D p_a$ and the latter belongs to
reach $\alpha \in I$. Consequently, the τ_1 -limit of the bounded net $\{p$ ($p_x r$) $\in M$ for each $\alpha \in I$ since' $\langle p_x r, p_x r \rangle_D = p_a \langle r, r \rangle_D$ p_a and the latter belongs to $N_a \mathfrak{P}_2$ for each $\alpha \in I$. Consequently, the τ_1 -limit of the bounded net $\{p_x r\}_{x \in I}$ belongs to M and it is equal

$$
|f(\langle x_{\beta}, y \rangle) - f(\langle x_{\gamma}, y \rangle)|^2 \leq f(\langle x_{\beta} - x_{\gamma}, x_{\beta} - x_{\gamma} \rangle) f(\langle y, y \rangle).
$$
 (7)

Denote' by **L** the linear hull of the τ_1 -completion of the unit ball of **M**. The limit τ_1 - lim $x_a = t$ exists in **L**. From the inequality (7) we get that the net $\{x_a\}$ is also τ_2 -fundamental and so the τ_2 -limit $x \in M$ exists by assumption. Recall that $L = M'$ and that the $\mathfrak A$ -valued inner product lifts from M to M' turning M' into a self-dual Hilbert 24-module. Thus, $t = \tau_1 - \lim x_a = \tau_2 - \lim x_a = x \in \overline{M}$ Denote' by **L** the linear hull of the τ_1 -complett
 τ_1 - $\lim x_a = t$ exists in **L**. From the inequalit,
 τ_2 -fundamental and so the τ_2 -limit $x \in M$ exists

and that the \mathcal{U} -valued inner product lifts from

Remark 3.3: Let $\mathfrak A$ be an infinite-dimensional σ -finite W*-algebra and $\{M, \langle \cdot, \cdot \rangle\}$ be a Hilbert $\mathfrak A$ -module. If g is a faithful normal state on $\mathfrak A$, the Hilbert completion of the pre-Hilbert space $\{M, g(\langle \cdot, \cdot \rangle)\}$ does not coincide with the Hilbert \mathfrak{A} -module M, in general:

the C*-algebra (M, M) is a W^* -subalgebra of $\mathfrak A$ and a two-sided ideal in $\mathfrak A$. Corollary 3.4: If $\mathfrak A$ is a W^* -algebra and M is a self-dual Hilbert $\mathfrak A$ -module, then

The converse is not true, in general, as will be shown on the example of $l_2(\mathfrak{A})$ in § 4 of the present paper.

Corollary 3.5: Let $\mathfrak A$ be an *infinite-dimensional* C*-algebra having a W*-subalgebra as its two-sided ideal. Let M be a finitely generated Hilbert $\mathfrak A$ -module and N be an arbitrary Hilbert 9. module. Then the direct sum $M \oplus N'$ becomes a self-dual Hilbert 9. module.

The module of the present paper.
 \mathcal{D} as its two-sided ideal. Let M be a finitely generated Hilbert 9. module and N be *91-module.* Corollary 3.3: Let α be an infinite-dimensional C⁺-algebra having a W^* -subalgebra.
as its two-sided ideal. Let M be a finitely generated Hilbert \mathcal{U} -module and N be an
bitrary Hilbert \mathcal{Y} -module. The

Proof: First, we note that N is a Hilbert \mathfrak{A} -module, too, since \mathfrak{B} is a two-sided ideal in \mathfrak{A} . Furthermore, the set of bounded module maps $f: \mathbb{N} \to \mathfrak{A}$ coincides with N' arbitrary Hilbert \mathfrak{B} -module. Then the direct sum $M \oplus N'$ becomes a self-dual Hilbert \mathfrak{A} -module.

Proof: First, we note that N is a Hilbert \mathfrak{A} -module, too, since \mathfrak{B} is a two-sided ideal in \mathfr self-dual. N' is also self-dual as it was shown in $[14:$ Th. 3.2]

Example 3.6: Take $\mathfrak{A} = l_{\infty}$, $\mathbf{M} = c_0$ with the \mathfrak{A} -valued inner product $\langle a,b\rangle_{\mathfrak{A}}$ $= ab^*$ for $a, b \in c_0$. Easy computations show that $M' = l_{\infty}$ and $M'' = l_{\infty}$. This is an elegant counter-example to [13: Th. 2.1].

For the completeness of the present paragraph we reproduce a result of W. L. PASCHKE concerning another criterion of self-duality and C^* reflexivity of Hilbert W^* moduli.

Definition 3.7 [14]: Let $\mathfrak A$ be a W^* -algebra, *I* be an index set and $\{\mathbf M_{\alpha}, \langle \cdot, \cdot \rangle\}_{\alpha \in I}$ be a collection of pre-Hilbert 91-moduli indexed by *1.* Let *F* denote the set of finite subsets of *I,* directed upwards:by inclusion. For I-tuples $x = {x_a}$, $y = {y_a}$ $(x_a, y_a \in M_a)$ and $S \in F$ we set

$$
\langle \mathbf{x}, \mathbf{y} \rangle_S = \sum_{\alpha \in S} \langle \mathbf{x}_{\alpha}, \mathbf{y}_{\alpha} \rangle.
$$

Let M denote the set of I-tuples $x = {x_a}$ such that sup ${(x, x)_s : S \in F}$ is finite. Notice that for $x \in M$ the net $\{(x, x)_S\}_{S \in F}$ is bounded in norm and increasingly directed. We let (x, x) denote its least upper bound. The net $\{(x,y)\}\S_{\epsilon F}$ is also bounded and w^* -convergent for any $x, y \in M$. We denote by $\langle x, y \rangle$ its w*-limit. Under co-ordinatewise operations M is a left, U-module, and, $\langle \cdot, \cdot \rangle$ defined as above is an $\mathfrak A$ -valued inner product on M. We call the pre-Hilbert $\mathfrak A$ -module $\{M, \langle \cdot, \cdot \rangle\}$ the *ultraweak direct sum* of the moduli $\{M_a, \langle \cdot, \cdot \rangle\}$ and write $M = \text{UDS } \{M_a : \alpha \in I\}$.

- Self-Duality and C* . Reflexivity of Hubert C*Moduli 173 * - - Theorem 3.8114: Th. 312J: *Let 91 be a H*algebra and M be a Hubert 91-module. Then the following two conditions for M are equivalent:*

(1) M is set/-dual.

(ii) There is a collection ${p_a}_{a \in I}$ of (not necessary distinct) non-zero projections of $\mathfrak A$ such that M and UDS $\{\mathfrak{A}p_{\mathfrak{a}}:\alpha\in I\}$ are isomorphic as Hilbert $\mathfrak{A}\text{-moduli}.$

Remark 3.9: This theorem suggests a possibility to construct other useful topologies on self-dual Hilbert W^* -moduliM in the following way: One must take a topology on the underlying W^* -algebra 21 with respect to which the unit ball of $\mathfrak A$ is complete. Then one has to com-
bine this topology either with the map $\langle \cdot, \cdot \rangle$ on $M \times M$ or with all 21-linear bounded functionals
of M' . We co bine this topology either with the map $\langle \cdot, \cdot \rangle$ on $M \times M$ or with all \mathfrak{A} -linear bounded functionals of M' . We could get topologies on M with respect to which the unit ball of M would be complete. **Example 19**
 Example 19 Criterion 3.8-[14: Th. 3:12]: Let \mathfrak{A} be a W^* -algebra and M be a Hilbert $\mathfrak{A}(\cdot)$

(i) M is self-dual.

(ii) There is a collection $\{p_a\}_{a \in I}$ of (not necessary distinct) non-ze

Let $\mathfrak A$ be an arbitrary C^* -algebra. We consider the Hilbert $\mathfrak A$ -module $l_2(\mathfrak A)$ mentioned bine this topology either with the map $\langle \cdot, \cdot \rangle$ on $M \times M$ or with all \mathcal{U} -linear bounded functionals
of M' . We could get topologies on M with respect to which the unit ball of M would be complete.
Set M ar in the introduction. It is representable as the set of all sequences $\mathbf{a} = \{a_i\}_{i \in \mathbb{N}} \subset \mathfrak{A}$ for which the series $\sum a_i a_i^*$ converges relative to the norm topology in \mathfrak{A} . The inner product on it is defined as $\langle \mathbf{a}, \mathbf{b} \rangle = \sum a_i b_i^*$ for any $\mathbf{a}, \mathbf{b} \in l_2(\mathfrak{A})$. If \mathfrak{A} has an identity then $l_2(\mathfrak{A})$ is countably generated. The Hilbert \mathfrak{A} -module is standard for all countably \mathfrak{b} generated Hilbert 91-moduli in the sense of G. G. KASPAROV'S Stabilisation theorem $[9:Th. 2]$. Let us describe the inner structure of $l_2(\mathfrak{A})$. Denote by $\{e_i\}_{i\in\mathbb{N}}$ the canonical orthonormal basis of $l_2(\mathfrak{A})$. Let 2I be an arbitrary C^* -algebra. We consider the Hilbert 2I-module $l_2(21)$ mentioned
in the introduction. It is representable as the set of all sequences $\mathbf{a} = \{a_i\}_{i\in\mathbb{N}} \subset \mathfrak{A}$
for which the series $\sum a_i$ For which the series $\sum a_i a_i$,
product on it is defined as $\sum a_i a_i$,
product on it is defined as $\sum a_i a_i$,
then $l_2(\mathfrak{A})$ is countably gene
generated Hilbert \mathfrak{A} -modul
 $[9:$ Th. 2]. Let us describe the
orthonorma Self-Duality and C^* -Reflexivity of Hitbert C^* -Noduli

Theorem 3.8 [44; Th. 3.12]: Let \mathfrak{A} to a W^* -algebra and \mathfrak{A} be a Hilbert \mathfrak{A} -module. Then the

(b) mentric and CDS [16]: α (b) are coronl

Lemma 4.1: Let $\mathfrak A$ be a C^* -algebra with identity and $l_2(\mathfrak A)$ be the standard countably *generated Hilbert* $\mathfrak{A}\text{-}module$ *. Then the map* $\psi: f \in l_2(\mathfrak{A})' \to \{f(\mathfrak{e}_i)^*\}_{i \in \mathbb{N}}$ is a bijection between $l_2(\mathfrak{A})'$ and the set of all sequences $\mathbf{a} = \{a_i\}_{i \in \mathbb{N}} \subset \mathfrak{A}$ with the property sup $\|a_1a_1^* + \cdots$ **1.** Let \mathfrak{A} *Let* \mathfrak{A} *Let* \mathfrak{A} *Let* \mathfrak{A}' *Let C Learling exim*

 $\frac{1}{t} + a_N a_N^* \| < +\infty$. *Moreover, y maps all bounded module maps of the form* $\varphi(\mathbf{a})$ $= \langle \cdot, \mathbf{a} \rangle$, $\mathbf{a} \in l_2(\mathfrak{A})$, *into the characterizing element* a *and vice versa.*

nces $\mathbf{a} = \{a_i\}$
 $\forall y \text{ maps all}$
 $\text{racterizing} \text{ else}$
 $\left| \frac{2}{N} \right| = \lim_{N} \left| \sum_{i=1}^{N} \right|$
 $\left| \sum_{i=1}^{N} \right|$

without proof. Since the proof is easy it will be omitted. The following theorem is an. COTOILATY 4.2: We have $||f||^2 = \lim_{N} \left\| \sum_{i=1}^{N} f(e_i)^T f(e_i) \right\|_{\mathfrak{A}}$ for any $f \in I_2(\mathfrak{A})$.
The statements of Lemma 4.1 and Corollary 4.2 are mentioned by [16] and by [5] without proof. Since the proof is easy it wil extension of [6: Prop. 3, Prop. 4] to the non-commutative case. It was first proved
by, the author [7]: Th. 22] with global C^* -algebraical methods and, independently, by O. G. FILT FORM [5] considering maximal commutative C^* -subalgebras. We reproduce here the proof from[7] in an ameliorated variant. fractional the set of all sequences $\mathbf{a} = \{a_i\}_{i \in N} a_N \mathbf{A}^* \| < +\infty$. Moreover, ψ maps all \cdot , \mathbf{a} , $\mathbf{a} \in l_2(\mathfrak{A})$, into the characterizing elemorphics.
 $\mathbf{a} \cdot \mathbf{a}$, $\mathbf{a} \in l_2(\mathfrak{A})$, into th • $\begin{aligned}\n&+ a_N a_N^* \parallel < +\infty. \quad & Moreover, \quad & y \quad & \text{map} \\
&= \langle \cdot, \mathbf{a} \rangle, \mathbf{a} \in l_2(\mathfrak{A}), \text{ into the character} \text{iz}}\n\end{aligned}$ Corollary 4.2: We have $||f||^2 = \lim_{N \to \infty} \frac{N}{N}$ The statements of Lemma 4.1 and without proof. Since the proof is

Theorem 4.3: Let $\mathfrak A$ be a C*-algebra. The following conditions are equivalent:

(iii) For each $a \in l_2(\mathfrak{A})$ the series $\sum ||a_i||^{\mathfrak{A}2}$ converges.

ce here the proof from [7] in an ameliorated variant.

Theorem 4.3: Let $\mathfrak A$ be a C*-algebra. The following conditions are equivalent:

(i) $\mathfrak A$ is finite-dimensional,

(ii) $l_2(\mathfrak A)$ is self-dual.

(iii) For each it contains an identity. If $l_2(\mathfrak{A})$ is self-dual, then the bounded module map h defined by the formula $h(a) = a_1$ for any $a = \{a_i\}_{i \in \mathbb{N}} \in l_2(\mathfrak{A})$ belongs to $l_2(\mathfrak{A}) \subseteq l_2(\mathfrak{A})'$. Thus, 91 must contain an identity.

Assume now that $\mathfrak A$ contains an'identity. The Hilbert $\mathfrak A$ -module $l_2(\mathfrak A)$ is self-dual if and only if any norm-bounded increasing directed sequence of self-adjoint positive elements of $\mathfrak A$ is fundamental relative to the norm-topology of $\mathfrak A$, cf. Lemma 4.1. .Equivalent to this condition is that all linear positive functionals on 91 are normal,. i.e., that the universal representation of $\mathfrak A$ is normal and, equivalently, that $\mathfrak A$ is -

-- -

 $\frac{1}{2}$

•

•

reflexive as a Banach space. The latter is true if and only if $\mathfrak A$ is finite-dimensional. The equivalence of the conditions (i) and (iii) follows from a proposition of A. Dvo-RETZKY and C. A. ROGERS [4], which can be found in [17: Prop. 3.4.1, Prop. 1.6.2] 174 . M. FRANK

eflexive as a Banach space

che equivalence of the concernation

ETZKY and C. A. ROGERS [

As a corollary we can ext

Proposition 4.4: Let 2(

(i) 21 is finite-dimensions

(ii) Any Hilbert 21-module

Moreo *(4)* **(A) (A) (A)**

As a corollary we can extend [19: Th. 3] to these criteria:

Proposition 4.4: Let $\mathfrak A$ be a C^{*}-algebra. The following conditions are equivalent: (i) ['] $\mathfrak A$ *is finite-dimensional.*

(ii) Any Hubert 91-module M *is self-dual.*

Moreover, if the C-algebra Il is commutative and unital (or, respectively, is a W*-algebra), there exists a third equivalent condition:*

reflexive as a Banach space. The latter is true if and only if \mathfrak{A} is finite-dimensional.

The equivalence of the conditions (i) and (iii) follows from a proposition of A. Dvo-

RETZKY and C. A. ROGERS [4], which ca **Proof:** The first item follows from [19: Th. 2] and from Theorem 4.3 above. To prove the second one we consider a compact space \hat{K} consisting of infinitely many points. We denote by $C(K)$ the set of all continuous complex-valued functions on prove the second one we consider a compact space K consisting of infinitely many
points. We denote by $C(K)$ the set of all continuous complex-valued functions on
 K and, respectively, by $C_0(K)$ the set of all $f \in C(K)$ fixed accumulation point $x \in K$. The sets $C(K)$ and $C_0(K)$ are both C^* -algebras, where the latter is a two-sided ideal in $C(K)$. We define on $C(K)$ the usual inner product $\langle \cdot, \cdot \rangle_{\mathfrak{A}}$. Then $\mathbf{M} = \{C_0(K), \langle \cdot, \cdot \rangle_{\mathfrak{A}}\}$ turns into a Hilbert $C(K)$ -module for which the connection $M' = M'' = C(K)$ holds. Hence, $C_0(K)$ is not $\mathfrak A$ -reflexive.
If $\mathfrak A$ is an infinite-dimensional W^* -algebra, the counter-example is given by Theorem ints. We denote by $C(K)$ the set of all
and, respectively, by $C_0(K)$ the set of all
and, respectively, by $C_0(K)$ the set of a
ed accumulation point $x \in K$. The sets \hat{C}
black is a two-sided ideal in $C(K)$. W
 γ_2 . **Example 114** (A. Faxance of the conditions (i) and (iii) follows from a proposition of A. Dyometry and C. A. Roosens [4], which can be found in [47: Prop. 3.4.1, Prop. 1.0.2] **a**

As a corollary we can extend [19: Th. 3] 174 - M. Faster

reflexive a a Banach space. The latter is true of and orly if W is finite-dimensional. The equivalence of the conditions (i) and iii) follows from a proposition of A, D-Vo (1812) and a corollary we can e

3.2 and Theorem **4.3 I**

• Proposition 4.5: *Let 91 be a W*algebra or, respectively, a commutative unital ('*- algebra.' The following two conditions are equivalent:* i
ecti
.

 $\mathbf{N} = \mathbf{M} \oplus \mathbf{M}^{\perp}$. (i) $\mathfrak A$ *is finite-dimensional.*
(ii) For any Hilbert $\mathfrak A$ -module N and any Hilbert $\mathfrak A$ -submodule $\tilde{M} \subseteq N$ there holds

/

Proof: If $\mathfrak A$ is an infinite-dimensional W^* -algebra, both $l_2(\mathfrak A)$ and $l_2(\mathfrak A)'$ are non-
coinciding Hilbert $\mathfrak A$ -moduli, where $l_2(\mathfrak A) \subset l_2(\mathfrak A)'$ and $l_2(\mathfrak A)^{\perp} = \{0\}$. If $\mathfrak A = C(K)$ is a commutative unital C^* -algebra, the Hilbert \mathfrak{A} -module $\{C_0(K), \langle \cdot, \cdot \rangle_{\mathfrak{A}}\}$ described in the proof of Proposition 4.4 can be viewed as a Hilbert M-submodule of M. But, connection M'

If $\mathfrak A$ is an infi

3.2 and Theore

Propositio

algebra. The fol

(i) $\mathfrak A$ is finit

(ii) For any
 $N_r = M \bigoplus M^{\perp}$.

Proof: If $\mathfrak A$

coinciding Hill

a commutative

the, proof of P
 $C_0(K)^{\perp} = \$ $C_0(K)^{\perp} = \{0\}$ in this case and they do not coincide. Referring to [19: Th. 1, Lemma 3]' we finish the proof \blacksquare *• •• •• •• •• •• •• •• •• •• •• •• ••* **1 1** algebra. The following two conditions are equivalent:

(i) It is finite-dimensional.

(ii) For any Hilbert I-module N and any Hilbert I-submodule $\mathbf{M} \subseteq \mathbf{N}$ there holds
 $\mathbf{N} = \mathbf{M} \oplus \mathbf{M}^T$.
 $\mathbf{P} \text{ root } \mathbf{$

Corollary 4.6: If $\mathfrak A$ *is a C*-algebra with an infinite-dimensional two-sided W*-*
ideal, the standard countably generated Hilbert $\mathfrak A$ *-module* $l_2(\mathfrak A)$ *is neither self-dual nor ', 91-reflexive.*

This follows from Theorem 3.2 and Theorem 4.5. As a further application we describe below the structure of self-dual and C^* -reflexive countably generated Hilbert This follows from Theorem 3.2 and Theorem-4.3. As a further application we de- W^* -moduli. That any finitely generated Hilbert C^* -module is self-dual was recalled in Corollary 2.9. Similarly, any Hilbert C^* -module over a finite-dimensional C^* -algebra is self-dual, cf. Corollary,2.9. $K)^{\perp} = \{0\}$ in this case and they do not coincide. Referring to [19: Th. 1, Lemma 3]

finish the proof \blacksquare
 \Box orollary 4.6: If \mathfrak{A} is a C^* -algebra with an infinite-dimensional two-sided W*-
 $a, the standard countably generated Hilbert \mathfr$ This follows from Theorem 3.2 and Theorem 4.3. As a further applic seribe below the structure of self-dual and C^* -reflexive countably generated W^* -moduli. That any finitely generated Hilbert C^* -module is self-dua

Proposition 4.7: Let $\mathfrak A$ be an W^{*}-algebra and M be a C^{*}-reflexive (and, hence, self*dual) countably generated Hilbert 91-module. There are two possibilities for the structure* of **M** and of $\mathfrak{A}:$ **Proposition 4.7:** Let \mathbb{Y} be an W^* -algebra and \mathbb{M} be a C^* -reflexive (and, hence, self-
dual) countably generated Hilbert \mathbb{Y} -module. There are two possibilities for the structure
of \mathbb{M} and of

(ii). M *is the direct surn of 'a finitely generated Hilbert 91-module and of • a counlçibiy generated Hubert l3 module, where 93 is a finite dimensional two-sided C* -ideal in 91*

If the W-algebra Il has no finite-dimensional two-sided C*-ideals, any countably* infinitely generated Hilbert $\mathfrak A$ -module is non-self-dual and non-C^{*}-reflexive.

Proof: Let ${x_i}_{i \in \mathbb{N}}$ be the system of generators of M as $\mathfrak A$ -module. By [14: Prop. 3.11] and [18: Lemma 6.7] there exists another system of generators $\{y_i\}_{i\in\mathbb{N}}$ of M
deduced from the first one such that $\langle y_i, y_i \rangle = p_i^2 + 0$ and $\langle y_i, y_j \rangle = 0$ for any deduced from the first one such that $\langle y_i, y_i \rangle = p_i = p_i^2 + 0$ and $\langle y_i, y_j \rangle = 0$ for any $i + j$. Denote by $L_{\mathfrak{A}}(y_i)$ the norm-closed \mathfrak{A} -linear hull of y_i . The Hilbert \mathfrak{A} -module $\{L_{\mathfrak{A}}(y_i), \langle \cdot, \cdot \rangle\}$ is self-dual. Therefore, it is isomorphic to $\{\mathfrak{A}p_i, \langle \cdot, \cdot \rangle_{\mathfrak{A}}\}$ by Theorem 3.8 and $\langle L_3(f) \rangle$, $L_3(f)$ is seen and $\langle L_3(f) \rangle$, $L_4(f)$ is a two-sided W^* -ideal in $\mathfrak A$ for any $i \in \mathbb N$. Consequently, we get. Self-Duality and C^* -Reflexivity of Hilbert C^*

Proof: Let $\{x_i\}_{i\in \mathbb{N}}$ be the system of generators of M as \mathfrak{A} -module

3.11] and [18: Lemma 6.7] there exists another system of generat

deduced from the fi note by $L_{\mathfrak{A}}(y_i)$ the norm-closed \mathfrak{A} -linear hull of y_i . Then $\langle y_i, y_i \rangle$ is self-dual. Therefore, it is isomorphic to $\{\mathfrak{A}p_i, \langle y_i, y_i \rangle\}$ is a two-sided W^* -ideal in \mathfrak{A} for any $i \in \mathbb{N}$.
is

$$
N = \{x = \{x_i\}_{i \in \mathbb{N}} : x_i \in \mathfrak{A} p_i, \sum x_i x_i^* \text{ is } ||\cdot||_{\mathfrak{A}} \text{-covering} \}.
$$

Now we try to reach a situation in which the product of any two projections p_i , p_j . $(i < j)$ of our choice is a projection r if and only if $r = p_j \pm 0$. For this end we use an inductive process of construction. First, fix the projection p_{1} and check all products Now we try to reach a situation in which the product of any two projections p_i , p_j ,
 $(i < j)$ of our choice is a projection *r* if and only if $r = p_j + 0$. For this end we use
 \sim an inductive process of construction. F $r_k = p_i p_k$ ($k \in \mathbb{N}$). If r_k is a projection for a certain $k \in \mathbb{N}$ and if $r_k \neq 0$, then replace p_1 by the sum $(p_1 + p_k - r_k)$ and p_k by r_k . If $r_k = 0$, then replace p_1 by $(p_1 + p_k)$ and exclude p_k from our choice. Finishing this first step we deal with the pairwise products $\tau_k' = p_2p_k$ (k $\in \mathbb{N}$) with the first factor p_2 in the same way. This process is continued by induction. We remark that the claimed inductive process on the projections $\{p_k: k \in \mathbb{N}\}\$ of $\mathfrak A$ is compatible with the module operations inside N and M, respectiyely; an inductive process of construction. First, fix the projection p_1 and check all $p_k = p_1p_k$ by the sum $(p_1 + p_k - p_1)$ and p_k by r_k . If $r_k = 0$, then p_1 by the sum $(p_1 + p_k - p_1)$ and p_k by r_k . If $r_k = 0$, then

Suppose now there exist more than finitely many two-sided W^* -ideals $(\mathfrak{A}p_i, \mathfrak{A}p_i)$ of our reconstructed choice being infinite-dimensional. Then $M' + M$ by Theorem 3.8 and Theorem 4.3. Suppose there exists no finite-dimensional two-sided C^* -ideal $\mathfrak B$ in $\mathfrak A$ containing all finite-dimensional W^* -ideals $\langle \mathfrak A p_i, \mathfrak A p_i \rangle$ of our reconstructed choice. Then $M' \neq M$ by Theorem 3.8 and Theorem 4.3

Finally, we state the main problem arising if these results are to be extended to the case when $\mathfrak A$ is not necessarily a W*-algebra. W. L. PASCHKE [14: Th. 3.2] noted without, proof referring to [20] that the $\mathfrak A$ -valued inner product of a Hilbert $\mathfrak A$ -module lifts on to the dual Banach $\mathfrak A$ -module even if $\mathfrak A$ is a commutative AW^* -algebra. The question is: What are the conditions needed that this can be done for any Hilbert $\mathfrak{A}\text{-module over a certain } C^*$ -algebra \mathfrak{A} ? One condition is that \mathfrak{A} must be an AW^* -21-module over a certain C^* -algebra \mathcal{U} ? One condition is that \mathcal{U} must be an $A W^*$ -
algebra [16: Prop. 1.1]. It seems to be necessary that \mathcal{V} must be monotonically com-
plete and possess an analogy of plete and possess an analogy of the w^* -topology coinciding with the topology of order convergence on bounded directed nets of self-adjoint elements of \mathfrak{A} , cf. Theorem 4.3.
Solving this problem one could get general criteria of self-duality and C^* -reflexivity of our reconstructed choice being infinite-dimensional. Then $M' + M$ by
and Theorem 4.3. Suppose there exists no finite-dimensional two-sided
in M containing all finite-dimensional W^* -ideals $\langle \Psi_{Pi}, \Psi_{Pi} \rangle$ of our re Finally, we state the main problem arising if these results are the case when \mathfrak{A} is not necessarily a W^* -algebra. W. L. PASCHKE is without proof referring to [20] that the \mathfrak{A} -valued inner product of a lif bra [16: Prop. 1.1]. It seems to be necessary that $\mathfrak A$ must be monoto

e and possess an analogy of the w^* -topology coinciding with the topol

vergence on bounded directed nets of self-adjoint elements of $\mathfrak A$, c

•
•
•

- [1] BRATTELI, O., and D. W. ROBINSON: Operator algebras and quantum statistical mecha nies, part 1 (Texts and Monographs in Physics). New York—Heidelberg—Berlin: Springer
- [2] DUPRÉ, M. J., and P. A. FILLMORE: Triviality theorems for Hilbert modules. In: Topics in modern operator theory (Timisoara/Herculane 1980; eds.: C. Apostol, R. G. Douglas, B. Sz. — Nagy and D. Voiculescu) (Operator theory: Adv. Appl., 2). Basel—Boston, Mass.: Birkhi.user. Verlag 1981, p. *11-79.* FERENCES

BRATTELI, O., and D. W. ROBINSON: Operator algebras and quant

nies, part 1 (Texts and Monographs in Physics). New York—Heidelbe

Verlag 1979.

Durné, M. J., and P. A. FILLMORE: Triviality theorems for Hilbert

i HEATTELT, O., and D. W. ROBINSON: Operator algebras and quantum statistical mechanics, part 1 (Texts and Monographs in Physics). New York—Heidelberg—Berlin: Springer-
Verlag 1979.
Durne, M. J., and P. A. FILMORE: Trivialit
- [3] DUPRÉ, M. J., and R. M. GILLETTE: Banach bundles, Banach modules and automorphisms of C*-algebras (Research Notes in Mathematics 92). Boston—London—Melbourne: Pitman
Adv. Publ. Program/1983. neory: Adv
undles, Ban
5 92). Bosto
5 and uncour
1950), 192-
- *[4]* DVORETZIY, A.; and C. A. ROGERS: Absolute and unconditional convergence in nàrmed $\frac{[4]}{2}$ DV:
line linear spaces. Proc. Nat. Acad. Sci. USA 36 (1950), 192—197. ditional convergence in norme
-197.

- [5] Филиппов, О. Г.: О С*-алгебрах А, над которыми гильбертов модуль $l_2(A)$ автодуален. Вестник Моск. Гос. Ун-та. Серия I: Математика. Механика 4 (1987), 74-76.
- [6] FRANK, M.: A set of maps from K to End_A($l_2(A)$) isomorphic to End_{A(K)}($l_2A(K)$)). Applications. Annals Global Anal. Geom. 3 (1985); 155-171.
- [7] FRANK, M.: Self-duality and C*-reflexivity of Hilbert C*-moduli. KMU-CLG-preprint Leipzig: Karl-Marx-Universität 1986.
- [8] GOLDSTINE, H. H., and L. P. HORWITZ: Hilbert space with non-associative scalars, II. Math. Ann. 164 (1966), 291-316.
- [9] KASPAROV, G. G.: Hilbert C*-modules: Theorems of Stinesspring and Voiculescu. J. Oper. Theory 4 (1980), $133 - 150$. $\mathcal{C} \subset \mathcal{C}$.
- [10] LOYNES, R. M.: Linear operators in VH-spaces. Trans. Amer. Math. Soc. 166 (1965), 167 to 180.
- [11] Мищенко, А. С., и А. Т. Фоменко: Индекс эллиптических операторов над С* алгебрами. Изв. Акад. Наук СССР, Серин мат., 43 (1979), 831-859.
- [12] Мищенко, А. С.: Банаховы алгебры, псевдодифференциальные операторы и нах приложения к *К*-теории. Успехи мат. наук 34 (1979) 6, 67—79.
- [13] Мищенко, А. С.: Представления компактных групп в гильбертовых модулях над C^* -алгебрами. Тр. мат. ин-та Акад. Наук СССР 166 (1984), 161 - 176.
- [14] PASCHKE, W. L.: Inner product modules over B^* -algebras. Trans. Amer. Math. Soc. 182] $(1973), 443 - 468.$
- [15] PASCHKE, W. L.: The double B-dual of an inner product module over a C^* -algébra B. Can. J. Math. 26 (1974), $1272 - 1280$.
- [16] PASCHKE, W. L.: Inner product modules arising from compact automorphism groups of von Neumann algebras. Trans. Amer. Math. Soc. 224 (1976), 87-102.
- [17] PIETSCH, A.: Nukleare lokalkonvexe Räume. Berlin: Akademie-Verlag 1969.
- [18] RIEFFEL, M. A.: Morita equivalence for C*-algebras and W*-algebras. J. Pure Appl. Alg. $5(1974), 51-96.$
- [19] SAWOROTNOW, P. P.: A generalized Hilbert space. Duke Math. J. 35 (1968), 191-197.

[20] WIDOM, H.: Embedding in algebras of type I. Duke Math. J. 23 (1956), 309-324.

Manuskripteingang: 22. 03. 1988; in revidierter Fassung 01. 03. 1989

VERFASSER:

Dr. MICHAEL FRANK

Sektion Mathematik der Karl-Marx-Universität Karl-Marx-Platz DDR-7027 Leipzig