Zeitschrift für Analysis und ihre Anwendungen Bd. 9 (2) 1990, S. 165-176

Self-Duality and C*-Reflexivity of Hilbert C*-Moduli

M. FRANK

Gegenstand dieses Artikels sind eine neue Definition des Begriffes "selbstdualer Hilbert- C^* -Modul" als ein Kategoriebegriff der Banach- C^* -Moduln und die Bedingungen für einige Hilbert- C^* -Moduln, selbstdual oder C^* -reflexiv zu sein. Es wird die Isomorphie zweier beliebiger Hilbertstrukturen auf einem gegebenen selbstdualen Hilbert- C^* -Modul gezeigt, die äquivalente Normen zur gegebenen Norm induzieren. Ein topologisches Kriterium der Selbstdualität und C^* :Reflexivität von Hilbert- W^* -Moduln wird bewiesen. Weiterhin wird ein Kriterium der Selbstdualität des abzählbar erzeugten Hilbert- C^* -Möduls $l_2((\mathfrak{A}))$ für beliebige C^* -Algebren \mathfrak{A} gezeigt. Als eine Anwendung wird die Klassifikation der abzählbar erzeugten selbstdualen Hilbert- W^* -Moduln durch deren Struktur gegeben.

Предметом стати является новое определение понятия "автодуальный гильбертов C^* -модуль" как понятие категории банаховых C^* -модулей и условия для некоторых гильбертовых C^* -модулей быть автодуальными или C^* -рефлексивными. Показана изоморфность любых двух гильбертовых структур на заданном автодуальном гильбертовом C^* -модуле, если они индуцируют нормы эквивалентные к заданной. Доказан топологический критерий автодуальности и C^* -рефлексивности гильбертовых W^* -модулей. Далее, сформулирован критерий автодуальности счетно порожденного гильбертового \mathfrak{A} -модуля l_2 (\mathfrak{A}) для любых C^* -алгебр \mathfrak{A} . В качестве приложения дана классификация счетно порожденных гильбертовых W^* -модулей их структурой.

The subject of this paper are a new definition of the notion "self-dual Hilbert C^* -module" as a categorical concept of Banach C^* -moduli, and the conditions for some Hilbert C^* -module to be self-dual or C^* -reflexive. The isomorphism of any two Hilbert structures on a given selfdual Hilbert C^* -module inducing equivalent norms to the given one is stated. A topological criterion of self-duality and C^* -reflexivity of Hilbert W^* -moduli is proved. A criterion of selfduality of the countably generated Hilbert \mathfrak{A} -module $l_2(\mathfrak{A})$ is stated for arbitrary C^* -algebras \mathfrak{A} . As an application the classification of countably generated Hilbert W^* -moduli by their structure is given.

§1 Introduction

At the beginning we fix some denotations and give certain facts and examples from the literature: All moduli in this paper are left moduli by definition. A *pre-Hilbert* \mathfrak{A} -module over a certain C*-algebra \mathfrak{A} is an \mathfrak{A} -module M equipped with a conjugate bilinear mapping $\langle \cdot, \cdot \rangle \colon \mathbb{M} \times \mathbb{M} \to \mathfrak{A}$ satisfying

(i) $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ for any $\mathbf{x} \in \mathbf{M}$,

(ii) $\langle x, x \rangle = 0$ if and only if x = 0,

(iii)
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle^*$$
 for any $\mathbf{x}, \mathbf{y} \in \mathbf{M}$,

(iv)
$$\langle a\mathbf{x}, \mathbf{y} \rangle = a \langle \mathbf{x}, \mathbf{y} \rangle$$
 for any $a \in \mathfrak{A}, \mathbf{x}, \mathbf{y} \in \mathbf{M}$.

The map $\langle \cdot, \cdot \rangle$ is called the \mathfrak{A} -valued inner product on \mathbf{M} . Let us remark that we will write "pre-Hilbert C*-module" instead of "pre-Hilbert \mathfrak{A} -module over the C*-algebra \mathfrak{A} " whenever the concrete properties of the underlying C*-algebra \mathfrak{A} are unimportant in the context. A pre-Hilbert C*-module is Hilbert if it is complete with respect to the norm $\|\cdot\| = \|\langle \cdot, \cdot \rangle\|_{\mathfrak{A}}^{1/2}$. Two Hilbert \mathfrak{A} -moduli $\{\mathbf{M}, \langle \cdot, \cdot \rangle_{\mathbf{M}}\}$, $\{\mathbf{N}, \langle \cdot, \cdot \rangle_{\mathbf{N}}\}$ over a certain fixed C*-algebra \mathfrak{A} are isomorphic if there exists a bijective \mathfrak{A} -linear bounded map $B: \mathbf{M} \to \mathbf{N}$ such that $\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{M}} = \langle B(\mathbf{x}), B(\mathbf{y}) \rangle_{\mathbf{N}}$ for any $\mathbf{x}, \mathbf{y} \in \mathbf{M}$. A Hilbert \mathfrak{A} module over a certain C^* -algebra \mathfrak{A} is called *finitely* (resp., countably, countably infinitely) generated if it is finitely (resp., countably, countably infinitely) generated if it is finitely (resp., countably, countably infinitely) generated if $(\mathbf{N}, \langle \cdot, \cdot \rangle)$ is a Hilbert C*-module $\{\mathbf{N}, \langle \cdot, \cdot \rangle\}$ is a Hilbert C*-submodule of \mathbf{N} if $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ is a Hilbert C*-module. A pre-Hilbert C*submodule $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ of a certain pre-Hilbert C*-module $\{\mathbf{N}, \langle \cdot, \cdot \rangle\}$ is a direct summand of \mathbf{N} if any element of \mathbf{N} has a (unique) decomposition into the sum of an element of \mathbf{M} and an element of the orthogonal with respect to $\langle \cdot, \cdot \rangle$ complement of \mathbf{M} .

Let us consider some examples.

(i) Any C*-algebra \mathfrak{A} becomes a Hilbert \mathfrak{A} -module with the inner product $\langle \cdot, \cdot \rangle_{\mathfrak{A}}$ being defined by $\langle a, b \rangle_{\mathfrak{A}} = ab^*$ for any $a, b \in \mathfrak{A}$.

(ii) Any Hilbert space is a Hilbert C^* -module over the C^* -algebra \mathbb{C} .

(iii) Let *I* be an index set and let $\{\mathfrak{D}_{a}\}_{a \in I}$ be a collection of left ideals of a certain O*-algebra \mathfrak{A} indexed by *I*. Then the set of all *I*-tuples $\mathbf{x} = \{x_{a}\}_{a \in I}$ for which the sum $\sum x_{a}x_{a}^{*}$ converges with respect to the \mathfrak{A} -norm is a pre-Hilbert \mathfrak{A} -module.

(iv) Let H be a Hilbert space and \mathfrak{A} be a C^* -algebra. The algebraic tensor product $\mathfrak{A} \otimes H$ becomes a pre-Hilbert \mathfrak{A} -module with the inner product $\langle \cdot, \cdot \rangle$ defined on elementary tensors by $\langle a \otimes \xi, b \otimes \eta \rangle = ab^* \langle \xi, \eta \rangle_{H}$. Obviously, if the Hilbert space H is finite-dimensional, then $\mathfrak{A} \otimes \mathbb{C}^n$ is isomorphic to the set \mathfrak{A}^n of *n*-tuples of elements of \mathfrak{A} . Let us remark that the normclosure of $\mathfrak{A} \otimes l_T$ is denoted by $l_2(\mathfrak{A})$, and it plays an important role describing properties of arbitrary countably generated Hilbert \mathfrak{A} -moduli, cf. [9: Th. 2].

(v) Let $\xi = (E, p, K, H)$ be a locally trivial Hilbert bundle over a compact space K. Denote by $\Gamma(\xi)$ the set of all continuous sections of this bundle. Then $\Gamma(\xi)$ becomes in a natural way a Hilbert C(K)-module splitting the inner products of the fibres $H_x, x \in K$, cf. [2: p. 48–49].

We denote by M' the set of all bounded module maps $f: \mathbf{M} \to \mathfrak{A}$. Following W. L. PASCHKE [14] a Hilbert C^* -module M is called *self-dual* if every map $r \in \mathbf{M}'$ is of the form $\langle \cdot, \mathbf{a}_r \rangle$ for some $\mathbf{a}_r \in \mathbf{M}$. W. L. Paschke proved that in the case of \mathfrak{A} being a W^* algebra the \mathfrak{A} -valued inner product on a pre-Hilbert \mathfrak{A} -module $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ lifts to an \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle_D$ on the Banach \mathfrak{A} -module M' turning $\{\mathbf{M}', \langle \cdot, \cdot \rangle_D\}$ into a self-dual Hilbert \mathfrak{A} -module, cf. [14: Th. 3.2]. A. S. MIŠČENKO showed that every finitely generated Hilbert C*-module is self-dual, cf. [12]. P. P. SAWOROTNOW got the result that every Hilbert \mathfrak{A} -module over a finite-dimensional C*-algebra \mathfrak{A} is selfdual; cf. [19: Th. 3].

Denote by M'' the A-module of all bounded module maps from \dot{M}' into A. Let q be the module map $q: M \to M''$ defined by $q(m).[r] = (r(m))^*$ for each $m \in M$, any $r \in M'$. A Banach C*-module M over A is called C*-reflexive (or A-reflexive) if the module map q is a module isomorphism, cf. [13]. For a Hilbert C*-module the map qis automatically an isometry [13: Cor. 1.1]. It turns out that for Hilbert W*-moduli the C*-reflexivity is equivalent to the self-duality [14: Th. 3.2]. W. L. PASCHKE [16] proved that for any Hilbert A-module M over a certain C*-algebra A the A-valued inner product can be extended to the A-bidual Banach A-module M'' turning it into a C*-reflexive Hilbert A-module.

The paper is organized as follows: The second part is concerned with the definition of the notion "self-dual Hilbert C^* -module". We show that the property of a Hilbert C^* -module to be self-dual (in the sense of [14]) depends not on the *structure* of the given inner product, but only on the *existence* of an inner product on the underlying Banach C^* -module inducing an equivalent Hilbert norm and realizing the condition of self-duality (Proposition 2.2). A new definition of this notion is given (Definition 2.1) describing it on the category of Banach C^* -moduli. As a consequence we get that on self-dual Hilbert C^* -moduli any two Hilbert structures inducing equivalent norms to the given one are isomorphic (Theorem 2.6). We prove that any selfdual Hilbert C^* -submodule of an arbitrary pre-Hilbert C^* -module is a direct summand (Theorem 2.7).

In the third part Hilbert W^* -moduli are treated. We characterize C^* -reflexive (and hence, self-dual) Hilbert W^* -moduli by their inner topological properties (Theorem 3.2). Also an example of a non- C^* -reflexive Hilbert \mathfrak{A} -module over a certain commutative unital W^* -algebra \mathfrak{A} is given (Example 3.6) contradicting [13: Th. 2.1].

The fourth part of this paper is concerned with the Hilbert \mathfrak{A} -module $l_2(\mathfrak{A})$ over certain C^* -algebras \mathfrak{A} , $l_2(\mathfrak{A})$ being standard for all countably generated Hilbert \mathfrak{A} moduli in the sense of [9: Th. 2]. We give a criterion of self-duality of $l_2(\mathfrak{A})$ (Theorem 4.3). Moreover, we show that every Hilbert \mathfrak{A} -module over a certain C^* -algebra \mathfrak{A} is self-dual if and only if \mathfrak{A} is finite-dimensional (Proposition 4.4). As an application we get the classification of all countably generated self-dual Hilbert W^* -moduli by their structure (Proposition 4.7).

§2 The notion "self-dual Hilbert C^* -module" — a category concept

W. L. PASCHKE [14] and other authors [12, 18] have defined that a Hilbert \mathfrak{A} -module $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ over a certain C^* -algebra \mathfrak{A} is self-dual if and only if every bounded module map $f \in \mathbf{M}'$ is of the form $\langle \cdot, \mathbf{a}_f \rangle$ for some $\mathbf{a}_f \in \mathbf{M}$. We give another definition.

Definition 2.1: A Banach A-module M over a certain C^* -algebra A is called a' self-dual Hilbert A-module over A if there exists an A-valued inner product $\langle \cdot, \cdot \rangle$ on M with the properties:

(i) The norm induced on \mathbf{M} by the \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle$ is equivalent to the given norm on \mathbf{M} .

(ii) The map $\varphi \colon \mathbf{M} \to \mathbf{M}'$ defined by the formula $\varphi(\mathbf{a}) = \langle \cdot, \mathbf{a} \rangle$ $(\mathbf{a} \in \mathbf{M})$ is surjective.

This definition seems to be weaker than the other one. In the following, however, we prove the equivalence of both definitions. As a result we can show the categorical sense of the notion for the category of Banach C^* -moduli.

Proposition 2.2: Let \mathfrak{A} be a C*-algebra. Let \mathfrak{M} be an \mathfrak{A} -module turning into a selfdual (in the sense of [14]) Hilbert \mathfrak{A} -module with the \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle_1$, and turning into a Hilbert \mathfrak{A} -module with the \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle_2$. We suppose the 'equivalence of the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on \mathfrak{M} and the completeness of \mathfrak{M} with respect to 'them.

Then $\{M, \langle \cdot, \cdot \rangle_2\}$ is a self-dual (in the sense of [14]) Hilbert A-module and there exists a bounded A-linear operator $B: \mathbb{M} \to \mathbb{M}$ with the following properties:

(i) $\langle \mathbf{b}, \mathbf{a} \rangle_2 = \langle \mathbf{b}, B(\mathbf{a}) \rangle_1$ for any $\mathbf{a}, \mathbf{b} \in \mathbf{M}$.

(ii) B is one-to-one and, in addition, self-adjoint and positive on both $\{M, \langle \cdot, \cdot \rangle_1\}$ and $\{M, \langle \cdot, \cdot \rangle_2\}$.

(iii) B has an inverse B^{-1} , which is bounded and \mathfrak{A} -linear. For B^{-1} the properties of item (ii) are valid and $\langle \mathbf{b}, \mathbf{a} \rangle_1 = \langle \mathbf{b}, B^{-1}(\mathbf{a}) \rangle_2$ for any $\mathbf{a}, \mathbf{b} \in \mathbf{M}$.

Proof: (i) Since $\{\mathbf{M}, \langle \cdot, \cdot \rangle_1\}$ is self-dual, for each $\mathbf{a} \in \mathbf{M}$ there exists an element $B(\mathbf{a}) \in \mathbf{M}$ such that $\langle \cdot, \mathbf{a} \rangle_2 = \langle \cdot, B(\mathbf{a}) \rangle_1$ on \mathbf{M} . The map B is \mathfrak{A} -linear. Since the inequality

 $\|\mathbf{a}\|_{1} \leq k \|\mathbf{a}\|_{2} \leq l \|\mathbf{a}\|_{1} \quad (k, l \in (0, +\infty))^{j}$

(1)

168 M. FRANK

is valid for any $a \in M$ by supposition, and because of the inequality

$$||B(\mathbf{a})||_1^2 = ||\langle B(\mathbf{a}), B(\mathbf{a})\rangle_1||_{\mathfrak{V}} = ||\langle B(\mathbf{a}); \mathbf{a}\rangle_2||_{\mathfrak{V}}$$

$$\leq \|B(\mathbf{a})\|_2 \|\mathbf{a}\|_2 \leq l^2 \|B(\mathbf{a})\|_1 \|\mathbf{a}\|_1$$

(cf. [14: Prop. 2.3] and (1)) we get the boundedness of B. It does not depend on the inner product.

(ii) We state the equalities $(a, b \in M)$

$$\langle \vec{B}(\mathbf{a}), \mathbf{b} \rangle_1 = \langle \mathbf{b}, \mathbf{B}(\mathbf{a}) \rangle_1^* = \langle \mathbf{b}, \mathbf{a} \rangle_2^* = \langle \mathbf{a}, \mathbf{b} \rangle_2 = \langle \mathbf{a}, \mathbf{B}(\mathbf{b}) \rangle_1,$$

$$\langle \vec{B}(\mathbf{a}), \mathbf{b} \rangle_2 = \langle \vec{B}(\mathbf{a}), \vec{B}(\mathbf{b}) \rangle_2 = \langle \mathbf{a}, \vec{B}^2(\mathbf{b}) \rangle_2 = \langle \mathbf{a}, \vec{B}^2(\mathbf{b}) \rangle_2$$

This is enough to show $B = B^*$ with respect to both inner products. The other properties of B are trivial deductions now. In particular, we get that B is a one-to-one mapping.

(iii) Because of the inequality

$$\|\mathbf{a}\|_{1}^{2} \leq k^{2} \|\mathbf{a}\|_{2}^{2} = k^{2} \|\langle \mathbf{a}, \mathbf{a} \rangle_{2}\|_{\mathfrak{A}} = k^{2} \|\langle \mathbf{a}, B(\mathbf{a}) \rangle_{1}\|_{\mathfrak{A}} \leq k^{2} \|B(\mathbf{a})\|_{1} \|\mathbf{a}\|_{1}$$

being valid for any $a \in M$ (cf. (1) and [14: Prop. 2.3]), we get the connection

$$\|\mathbf{a}\|_{1} \leq k^{2} \|B(\mathbf{a})\|_{1} \leq k^{2} \|B\|_{0p,1} \|\mathbf{a}\|_{1}$$
 for any $\mathbf{a} \in \mathbf{M}$.

Since B is bounded this means that every norm-fundamental sequence of the range of B has a (unique) norm-fundamental sequence of M as its pre-image. Moreover, B maps the limit of this pre-image sequence into the limit of the sequence taken in the range of B. Consequently, since B is \mathfrak{A} -linear the range Im (B) is a norm-closed \mathfrak{A} -submodule of M independent of the inner product. The Banach \mathfrak{A} -module Im (B) becomes a Hilbert \mathfrak{A} -submodule of M with both inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$. Now there are three possibilities how Im (B) can be related to the Hilbert \mathfrak{A} -module M:

(a) $\operatorname{Im}(B) \neq M$, $\operatorname{Im}(B)^{\perp} \neq \{0\}$.

(b) Im (B)
$$\equiv$$
 M, Im (B) ^{\perp} \equiv {0}.

(c) $\operatorname{Im}(B) \equiv \mathbf{M}$.

We will show that, in fact, only (c) can be. To rule out the first possibility we take an element $\mathbf{b} \in \text{Im} (B)^{\perp}$ with respect to $\langle \cdot, \cdot \rangle_1$, $\mathbf{b} \neq \mathbf{0}$. Then we get $\langle \mathbf{b}, \mathbf{b} \rangle_2 = \langle \mathbf{b}, B(\mathbf{b}) \rangle_1$ = 0 and, therefore, $\mathbf{b} = \mathbf{0}$. This is a contradiction. The same happens if we take $\mathbf{b} \in \text{Im} (B)^{\perp}$ with respect to $\langle \cdot, \cdot \rangle_2$, $\mathbf{b} \neq \mathbf{0}$. We get $\mathbf{0} = \langle B(\mathbf{b}), \mathbf{b} \rangle_2 = \langle B(\mathbf{b}), B(\mathbf{b}) \rangle_1$ and, therefore, $B(\mathbf{b}) = \mathbf{0}$. Since B is injective, $\mathbf{b} = \mathbf{0}$ in contradiction to our choice of \mathbf{b} . To drop the second possibility we use the fact that the canonical embedding of a Hilbert \mathfrak{A} -module $\{\mathbf{N}, \langle \cdot, \cdot \rangle\}$ over a certain C^* -algebra \mathfrak{A} into its \mathfrak{A} -bidual Banach \mathfrak{A} -module \mathbf{N}'' does not depend on the structure of the \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle$ by definition. Using on \mathbf{M} the inner product $\langle \cdot, \cdot \rangle_1$ we get $\mathbf{M}'' \equiv \mathbf{M}$ and $\mathrm{Im} (B)'' \equiv \mathbf{M}$ as Banach \mathfrak{A} -moduli. Now we define on $\mathrm{Im} (B)$ a third \mathfrak{A} -valued inner product by the $\langle \mathbf{f}$ formula $\langle \mathbf{a}, \mathbf{b} \rangle_3 = \langle B^{-1}(\mathbf{a}), B^{-1}(\mathbf{b}) \rangle_1$ for any $\mathbf{a}, \mathbf{b} \in \mathrm{Im} (B)$. It is well defined since B is a one-to-one, surjective, \mathfrak{A} -linear, bounded mapping from \mathbf{M} onto $\mathrm{Im} (B)$. Because of (3) we get that {Im $(B), \langle \cdot, \cdot \rangle_3$ is a Hilbert \mathfrak{A} -module, which is, moreover, self-dual in the sense of [14]. Using the inner product $\langle \cdot, \cdot \rangle_3$ we consider $\mathrm{Im} (B)'' \equiv \mathrm{Im} (B)$. This means $\mathrm{Im} (B) \equiv \mathbf{M}$ in contradiction to (b).

Therefore, only the relation $\mathbf{M} \equiv \mathrm{Im}(B)$ is possible. Moreover, the bounded \mathfrak{A} -linear operator B^{-1} : $\mathbf{M} \to \mathbf{M}$, which is inverse to B, exists and satisfies the conditions of the items (ii) and (iii). Finally, we show the self-duality of $\{\mathbf{M}; \langle \cdot, \cdot \rangle_2\}$ in the

(2)

sense of [14]. We choose an $r \in M'$ arbitrarily. By supposition there exists an element $\mathbf{b}_r \in \mathbf{M}$ such that $r(\cdot) \equiv \langle \cdot, \mathbf{b}_r \rangle_1$ on \mathbf{M} . We define $\mathbf{c}_r = B^{-1}(\mathbf{b}_r) \in \mathbf{M}$ and get $r(\cdot) \equiv \langle \cdot, \mathbf{c} \rangle_2$ on \mathbf{M} . Since $r \in \mathbf{M}'$ is choosen arbitrarily, we are done \blacksquare

 \checkmark Corollary 2.3: Let $\{\mathbf{M}; \langle \cdot, \cdot \rangle\}$ be a self-dual Hilbert A-module over a C*-algebra A. Then for any A-valued inner product $\langle \cdot, \cdot \rangle_0$ on M inducing an equivalent norm to the given one there exists one and only one bounded A-linear invertible positive operator B_0 on $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ with the property $\langle \cdot, \cdot \rangle_0 \equiv \langle \cdot, B_0(\cdot) \rangle$ on M. And vice versa.

This follows from [10: Lemma 2, Th. 3] and from Proposition 2.2.

Corollary 2.4: Under the suppositions formulated in Proposition 2.2 beside the inequality (1) there holds the inequality

$$\langle \mathbf{a}, \mathbf{a} \rangle_1 \leq C \langle \mathbf{a}, \mathbf{a} \rangle_2 \leq D \langle \mathbf{a}, \mathbf{a} \rangle_1$$

for some constants $C, D \in (0, +\infty)$ and for any $a \in M$.

Proof: We have, $\langle \mathbf{a}, \mathbf{a} \rangle_2 = \langle \mathbf{a}, B(\mathbf{a}) \rangle_1 = \langle B^{1/2}(\mathbf{a}), B^{1/2}(\mathbf{a}) \rangle_1 \leq ||B^{1/2}||_{0p,1}^2 \langle \mathbf{a}, \mathbf{a} \rangle_1$ = $||B||_{0p,1} \langle \mathbf{a}, \mathbf{a} \rangle_1$ for any $\mathbf{a} \in \mathbf{M}$ (cf. [14: Prop. 2.8]). In the same way we get $\langle \mathbf{a}, \mathbf{a} \rangle_1$ $\leq ||B^{-1}||_{0p,2} \langle \mathbf{a}, \mathbf{a} \rangle_2$ for any $\mathbf{a} \in \mathbf{M}$.

Corollary 2.5: The operator described in Proposition 2.2 has the property $k^{-2} \leq ||B||_{\text{Op},1} \leq l^2$, where $k, l \in \mathbb{R}$ are taken from (1).

This follows from (2) and (3). The following corollary is suggested from [13: Th. 1.1, Cor. 1.2], where a special case of it is stated.

Theorem 2.6: Let \mathfrak{A} be a C*-algebra and $\{\mathbf{M}, \langle \cdot, \cdot \rangle_1\}$ be a self-dual Hilbert \mathfrak{A} -module. Then every \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle_2$ on \mathbf{M} , the norm induced from which is equivalent to the given norm, defines a Hilbert structure on \mathbf{M} isomorphic to the Hilbert structure given by the \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle_1$.

Proof: By Proposition 2.2 there exists a bounded \mathcal{A} -linear invertible self-adjoint positive operator $B: \mathbb{M} \to \mathbb{M}$ satisfying the equality $\langle a, b \rangle_2 = \langle a, B(b) \rangle_1$ for any $a, b \in \mathbb{M}$. The set of all bounded \mathcal{A} -linear operators on a self-dual Hilbert \mathcal{A} -module is a C^* -algebra by [14: Cor. 3.5], and an operator B is positive on the Hilbert \mathcal{A} -module dule if and only if it is positive as an element of this C^* -algebra by [10: Lemma 2, Th. 3]. So we can find a bounded \mathcal{A} -linear invertible self-adjoint positive operator $C: \mathbb{M} \to \mathbb{M}$ satisfying the equality $\langle a, b \rangle_2 = \langle C(a), C(b) \rangle_1$ for any $a, b \in \mathbb{M}$

Remark 2.7: If the underlying C^* -algebra \mathfrak{A} is commutative, then any Hilbert \mathfrak{A} -module has a unique (up to isomorphism) Hilbert structure, i.e. the property to be self-dual is omittable in this case. This fact can be drawn from the investigations of M. J. DUPRÉ and R. M. GILLETTE [3: pp. 48-49]. However, if we drop the commutativity condition on \mathfrak{A} , the analogous problem of uniqueness is still open. There seems to be some hope to solve it affirmatively.

Now we are able to obtain a very important property of self-dual Hilbert C^* -moduli. Let us previously remark that not any Hilbert C^* -submodule of a pre-Hilbert C^* module has to be a direct summand, in general.

Theorem 2.8: Let \mathfrak{A} be a C^* -algebra, $\{N, \langle \cdot, \cdot \rangle\}$ be any pre-Hilbert \mathfrak{A} -module and $M \subseteq N$ be a self-dual Hilbert \mathfrak{A} -submodule. Then $N \equiv M \bigoplus M^{\perp}$.

Proof: We take the \mathfrak{A} -valued inner product on M given by that one on N reduced to $\mathbb{M} \subseteq \mathbb{N}$. By [14: Prop. 3.4] the injective isometric \mathfrak{A} -linear embedding $T: \mathbb{M} \to \mathbb{N}$ has

an adjoint \mathfrak{A} -linear bounded operator $T^* \colon \mathbb{N} \to \mathbb{M}$ defined on \mathbb{N} such that

$$\langle T(\mathbf{m}), \mathbf{n} \rangle_{\mathbf{N}} = \langle \mathbf{m}, T^{*}(\mathbf{n}) \rangle_{\mathbf{M}}$$

for any $\mathbf{m} \in \mathbf{M}$, any $\mathbf{n} \in \mathbf{N}$. Because of the choice of the Hilbert structure on \mathbf{M} and since T is isometric we can rewrite (4) as $\langle T(\mathbf{m}), \mathbf{n} - T(T^*(\mathbf{n})) \rangle_{\mathbf{N}} = O$ for any $\mathbf{n} \in \mathbf{N}$, any $\mathbf{m} \in \mathbf{M}$. That is, any element $\mathbf{n} \in \mathbf{N}$ can be decomposed $\mathbf{n} = TT^*(\mathbf{n})$ $+ (\mathbf{n} - TT^*(\mathbf{n}))$, where $TT^*(\mathbf{n}) \in \mathbf{M} \subseteq \mathbf{N}$ and $(\mathbf{n} - TT^*(\mathbf{n})) \in \mathbf{M}^{\perp}$. This decomposition is unique

Finishing this paragraph we list some results from the literature to illustrate the importance of Theorem 2.8.

Corollary 2.9 [13: Cor. 1.4], [2: Prop. 1], [8]: The following is true:

(i) Let \mathfrak{A} be any C^* -algebra. Let $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ be a finitely generated Hilbert \mathfrak{A} -submodule of an arbitrary pre-Hilbert \mathfrak{A} -module $\{\mathbf{N}, \langle \cdot, \cdot \rangle\}$. Then $\mathbf{N} = \mathbf{M} \bigoplus \mathbf{M}^{\perp}$.

(ii) Let \mathfrak{A} be a finite-dimensional C*-algebra: Let $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ be a Hilbert \mathfrak{A} -submodule of an arbitrary pre-Hilbert \mathfrak{A} -module $\{\mathbf{N}, \langle \cdot, \cdot \rangle\}$. Then $\mathbf{N} = \mathbf{M} \bigoplus \mathbf{M}^{\perp}$.

§3[†] A topological characterization of self-dual and C*-reflexive Hilbert W*-moduli

The aim of the present paragraph is to characterize self-duality and C^* -reflexivity for a special class of *Hilbert C*-moduli*, namely, for Hilbert W*-moduli, by their inner topological properties. The possibility of such a characterization is based either on Theorem 2.6 for self-duality or on the definition of the notion for C^* -reflexivity. The ideas for the following investigations arise from the proving technics and from the mental background of two papers of W. L. PASCHKE [14, 16].

Definition 3.1: Let \mathfrak{A} be a W^* -algebra, $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ be a pre-Hilbert \mathfrak{A} -module and P be the set of all normal states on \mathfrak{A} . The topology induced on \mathbf{M} by the seminorms

$$f(\langle \cdot, \cdot
angle)^{1/2}, f \in P,$$

is denoted by τ_1 . The topology induced on M by the linear functionals $f(\langle \cdot, y \rangle), f \in P$, $y \in M$, is denoted by τ_2 .

Let us remark that the topology τ_2 was already explicitly defined by W. L. PASCHKE in [14]: Remark 3.9], whereas the topology τ_1 was suggested to the author by the proving technics of [16: Lemma 2.3]. If we define an \mathfrak{A} -valued inner product on the W^* algebra \mathfrak{A} by the formula $\langle a, b \rangle_{\mathfrak{A}} \doteq ab^*$, $a, b \in \mathfrak{A}$, the topology τ_2 coincides with the weak* topology on \mathfrak{A} . In the case of \mathfrak{A} being \mathbb{C} and \mathbb{M} being an arbitrary Hilbert space the topology τ_1 is the Hilbert topology on \mathbb{M} , but the topology τ_2 is the weak and weak* topology on \mathbb{M} . That is, they do not coincide, in general.

Theorem 3.2: Let \mathfrak{A} be a W^* -algebra and $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ be a Hilbert \mathfrak{A} -module. The following conditions for \mathbf{M} are equivalent:

- (i) M is self-dual.
- (ii) M is A-reflexive.
- (iii) The unit ball of M is τ_1 -complete.
- (iv) The unit ball of M is τ_2 -complete.

Proof: (i) \Leftrightarrow (ii) follows from the definitions and from [14: Th. 3.2]. (i) \Rightarrow (iii): Assume that the unit ball of a self-dual Hilbert \mathcal{X} -module **M** is not complete relative to the topology τ_1 . Denote by **L** the linear hull of the completion of the unit ball of

(4)

Self-Duality and C*-Reflexivity of Hilbert C* Moduli . 171

M relative to the topology τ_1 . For the extensions of the semi-norms (5) from M to L' we use the same denotations. By assumption there exists an $r \in \mathbf{L} \setminus \mathbf{M}$ and a normbounded net $\{y_{\alpha}\}_{\alpha \in I} \subset \mathbf{M}$ such that for every $f \in P$ and for each $\varepsilon > O$ there is an $\alpha \in I$ with $f(\langle r - y_{\beta}, r - y_{\beta} \rangle) < \varepsilon$ for any $\beta \geq \alpha$. We fix $f \in P$, $\varepsilon > O$, $\alpha \in I$ and an arbitrary $\mathbf{x} \in \mathbf{M}$. Then

$$|f(\langle \mathbf{x}, \mathbf{y}_{\beta} \rangle) - f(\langle \mathbf{x}, \mathbf{y}_{\gamma} \rangle)| = |f(\langle \mathbf{x}, \mathbf{y}_{\beta} - \mathbf{y}_{\gamma} \rangle)|$$

$$\leq f(\langle \mathbf{x}, \mathbf{x} \rangle)^{1/2} f(\langle \mathbf{y}_{\beta} - \mathbf{y}_{\gamma}, \mathbf{y}_{\beta} - \mathbf{y}_{\gamma} \rangle)^{1/2} \leq (2\varepsilon f(\langle \mathbf{x}, \mathbf{x} \rangle))^{1/2}$$

for any $\beta, \gamma \geq \alpha$. Consequently, there exists

$$w^* - \lim \{\langle \mathbf{x}, \mathbf{y}_a \rangle \colon \alpha \in I\} = R(\mathbf{x})$$

for each $\mathbf{x} \in \mathbf{M}$. Furthermore, the inequality

$$|f(\langle \mathbf{x}, \mathbf{y}_{\beta} \rangle)| \leq ||\mathbf{x}|| \sup \{||\mathbf{y}_{\alpha}|| : \alpha \in I\} , (\beta \in I) \}$$

shows the boundedness of the map $R: \mathbb{M} \to \mathfrak{A}$ defined by (6). The \mathfrak{A} -linearity of R is obvious. Thus, (6) defines a bounded module map R. By assumption there exists an element $z \in \mathbb{M}$ such that $R(x) = \langle x, z \rangle$ for any $x \in \mathbb{M}$. Consequently, we arrive at $w^* - \lim \langle \langle x, y_\beta \rangle \colon \beta \in I \rangle = \langle x, z \rangle$ for any $x \in \mathbb{M}$, $z \in \mathbb{M}$ being the τ_1 -limit of the normbounded net $\{y_a\}$. This means $r = z \in \mathbb{M}$ in contradiction to our assumption.

(ii) \Rightarrow (i): We take an arbitrary $r \in \mathbf{M}'$ and we suppose the τ_1 -completeness of the unit ball of M. By [14: Th. 3.2] we can lift the \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle$ from M to M' turning M' into a self-dual Hilbert \mathfrak{A} -module and satisfying the following properties for the lifted inner product $\langle \cdot, \cdot \rangle_{\mathcal{D}}$:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle_D$$
 if $\mathbf{x}, \mathbf{y} \in \mathbf{M}$,
 $r(\mathbf{x}) = \langle \varphi(\mathbf{x}), r \rangle_D$ if $\mathbf{x} \in \mathbf{M}, r \in \mathbf{M}' \setminus \mathbf{M}$,

where $\varphi(\mathbf{y}) \doteq \langle \cdot, \mathbf{y} \rangle$ for any $\mathbf{y} \in \mathbf{M}$. Furthermore, $\langle \mathbf{M}, \mathbf{M} \rangle$ and $\langle \mathbf{M}', \mathbf{M}' \rangle_D$ are W^* -algebras, $\langle \mathbf{M}, \mathbf{M} \rangle$ being a two-sided *-ideal in $\langle \mathbf{M}', \mathbf{M}' \rangle_D$. Therefore, they coincide because of the properties of the lifted inner product, and $\langle r, r \rangle_D$ belongs to $\langle \mathbf{M}, \mathbf{M} \rangle$. First, let \mathfrak{A} be σ -finite and let $g \in P$ be a faithful normal state on \mathfrak{A} , which exists according to [1: p. 94, Prop. 2.3.6]. Let $\{H, \pi, \Omega\}$ be the cyclic representation associated with g. The vector $\Omega \in H$ is both cyclic and separating. The linear space \mathbf{M} equipped with the inner product $g(\langle \cdot, \cdot \rangle)$ turns into a pre-Hilbert space. The map $g(r(\cdot)) \colon \mathbf{M} \to \mathbb{C}$ is a linear functional on it. Consequently, there exists an element r_g in the completion of \mathbf{M} relative to the norm $g(\langle \cdot, \cdot \rangle)^{1/2}$ such that $g(\langle \mathbf{x}, r_g \rangle) = g(r(\mathbf{x}))$ for any $\mathbf{x} \in \mathbf{M}$. That means there exists a sequence $\{\mathbf{x}_i\}_{i\in\mathbf{N}} \subset \mathbf{M}$ such that

$$0 = \lim_{i \to \infty} g(\langle \mathbf{x}_i - r_g, \mathbf{x}_i - r_g \rangle)$$

=
$$\lim_{i \to \infty} g(\langle \varphi(\mathbf{x}_i) - r, \varphi(\mathbf{x}_i) - r \rangle_D)$$

=
$$\lim_{i \to \infty} \|[\pi(\langle \varphi(\mathbf{x}_i) - r, \varphi(\mathbf{x}_i) - r \rangle_D)]^{1/2} \Omega\|^2.$$

Since the vector $\Omega \in H$ is both cyclic and separating there exists $w^* - \lim_i \langle \varphi(\mathbf{x}_i) - r, \varphi(\mathbf{x}_i) - r \rangle_D = 0$ by [1: Lemma 2.5.38, Lemma 2.5.39]. This proves the implication in the case of \mathfrak{A} being σ -finite.

If \mathfrak{A} is not σ -finite, there exists an increasing directed net of projections $\{p_{\mathfrak{a}}\}_{\mathfrak{a}\in I}$ $\subset \mathfrak{A}$ such that $p_{\mathfrak{a}}\mathfrak{A}p_{\mathfrak{a}}$ is a σ -finite W*-algebra for each $\alpha \in I$ and $w^* - \lim p_{\mathfrak{a}} = \mathfrak{1}_{\mathfrak{A}}$.

(cf. [1: p. 164]). Observing $p_{a}\mathfrak{A}p_{a}$ and $(p_{a}r) \in \mathbf{M}'$ for each $\alpha \in I$ we conclude that $(p_{a}r) \in \mathbf{M}$ for each $\alpha \in I$ since $\langle p_{a}r, p_{a}r \rangle_{D} = p_{a} \langle r, r \rangle_{D} p_{a}$ and the latter belongs to $p_a \mathfrak{U} p_a$ for each $\alpha \in I$. Consequently, the τ_1 -limit of the bounded net $\{p_a r\}_{a \in I}$ belongs to M and it is equal to $r \in M'$. So the self-duality of M'turns out.

(iii) \Leftrightarrow (iv): First, if the unit ball of M is τ_1 -complete, then M must be self-dual as shown above. By [14: Prop. 3.8, Remark 3.9] there follows that M is a conjugate space with weak* topology τ_2 . Therefore, the unit ball of M is τ_2 -complete. Secondly, let $\{\mathbf{x}_{s}\}_{s \in I} \subset \mathbf{M}$ be a norm-bounded τ_1 -fundamental net and let the unit ball of \mathbf{M} be τ_2 -complete. Then, for any $y \in \mathbf{M}$, $f \in P$, $\beta, \gamma \in I$,

$$|f(\langle \mathbf{x}_{\beta}, \mathbf{y} \rangle) - f(\langle \mathbf{x}_{\gamma}, \mathbf{y} \rangle)|^{2} \leq f(\langle \mathbf{x}_{\beta} - \mathbf{x}_{\gamma}, \mathbf{x}_{\beta} - \mathbf{x}_{\gamma} \rangle) f(\langle \mathbf{y}, \mathbf{y} \rangle).$$
⁽⁷⁾

Denote by L the linear hull of the τ_1 -completion of the unit ball of M. The limit $\tau_1 - \lim x_a = t$ exists in L. From the inequality (7) we get that the net $\{x_a\}$ is also τ_2 -fundamental and so the τ_2 -limit $x \in M$ exists by assumption. Recall that L = M'and that the A-valued inner product lifts from M to M' turning M' into a self-dual Hilbert A-module. Thus, $t = \tau_1 - \lim x_a = \tau_2 - \lim x_a = x \in M$

Remark 3.3: Let \mathfrak{A} be an infinite-dimensional σ -finite W*-algebra and $\{\mathbf{M}, \langle \cdot, \cdot \rangle\}$ be a Hilbert \mathfrak{A} -module. If g is a faithful normal state on \mathfrak{A} , the Hilbert completion of the pre-Hilbert space $\{M, g(\langle \cdot, \cdot \rangle)\}$ does not coincide with the Hilbert \mathfrak{A} -module M, in general.

Corollary 3.4: If A is a W*-algebra and M is a self-dual Hilbert A-module, then the C*-algebra $\langle M, M \rangle$ is a W*-subalgebra of A and a two-sided ideal in A.

The converse is not true, in general, as will be shown on the example of $l_2(\mathfrak{A})$ in § 4 of the present paper.

Corollary 3.5: Let A be an infinite-dimensional C*-algebra having a W*-subalgebra $\mathfrak B$ as its two-sided ideal. Let M be a finitely generated Hilbert $\mathfrak A$ -module and N be an arbitrary Hilbert \mathfrak{B} -module. Then the direct sum $\mathbb{M} \oplus \mathbb{N}'$ becomes a self-dual Hilbert A-module.

Proof: First, we note that N is a Hilbert A-module, too, since B is a two-sided ideal in \mathfrak{A} . Furthermore, the set of bounded module maps $f: \mathbb{N} \to \mathfrak{A}$ coincides with \mathbb{N}' because $f(n) = f(1_{\mathfrak{B}}n) = 1_{\mathfrak{B}}f(n) \in \mathfrak{B}$ for any $n \in \mathbb{N}$. We know from [12] that M is self-dual. N' is also self-dual as it was shown in [14: Th. 3.2]

Example 3.6: Take $\mathfrak{A} = l_{\infty}$, $\mathbf{M} = c_0$ with the \mathfrak{A} -valued inner product $\langle a, b \rangle_{\mathfrak{A}}$ $= ab^*$ for $a, b \in c_0$. Easy computations show that $\mathbf{M}' = l_{\infty}$ and $\mathbf{M}'' = l_{\infty}$. This is an elegant counter-example to [13: Th. 2.1].

For the completeness of the present paragraph we reproduce a result of W. L. PASCHKE concerning another criterion of self-duality and C^* -reflexivity of Hilbert W^* -moduli.

Definition 3.7 [14]: Let \mathfrak{A} be a W^* -algebra, I be an index set and $\{\mathbf{M}_a, \langle \cdot, \cdot \rangle\}_{a \in I}$ be a collection of pre-Hilbert \mathfrak{A} -moduli indexed by I. Let F denote the set of finite subsets of I, directed upwards by inclusion. For I tuples $\mathbf{x} = \{\mathbf{x}_a\}, \mathbf{y} = \{\mathbf{y}_a\}$ $(\mathbf{x}_a, \mathbf{y}_a \in \mathbf{M}_a)$ and $S \in F$ we set

$$\langle \mathbf{x}, \mathbf{y} \rangle_S = \sum_{\alpha \in S} \langle \mathbf{x}_{\alpha}, \mathbf{y}_{\alpha} \rangle.$$

Let M denote the set of I-tuples $\mathbf{x} = \{\mathbf{x}_a\}$ such that $\sup \{\langle \mathbf{x}, \mathbf{x} \rangle_S \colon S \in F\}$ is finite. Notice that for $\mathbf{x} \in \mathbf{M}$ the net $\{\langle \mathbf{x}, \mathbf{x} \rangle_{S}\}_{S \in F}$ is bounded in norm and increasingly directed. We let $\langle \mathbf{x}, \mathbf{x} \rangle$ denote its least upper bound. The net $\{\langle x, y \rangle_S\}_{S \in F}$ is also bounded and w*-convergent for any $x, y \in M$. We denote by $\langle x, y \rangle$ its w*-limit. Under co-ordinatewise operations M is a left, \mathfrak{A} -module, and $\langle \cdot, \cdot \rangle$ defined as above is an \mathfrak{A} -valued inner product on M. We call the pre-Hilbert \mathfrak{A} -module $\{M, \langle \cdot, \cdot \rangle\}$ the ultraweak direct sum of the moduli $\{M_{\alpha}, \langle \cdot, \cdot \rangle\}$ and write $M = UDS \{M_{\alpha}: \alpha \in I\}$.

172

Theorem 3.8 [14: Th. 3.12]: Let \mathfrak{A} be a W^* -algebra and M be a Hilbert \mathfrak{A} -module. Then the following two conditions for M are equivalent:

(i) M is self-dual.

(ii) There is a collection $\{p_{\alpha}\}_{\alpha \in I}$ of (not necessary distinct) non-zero projections of \mathfrak{A} such that **M** and UDS $\{\mathfrak{A}p_{\alpha}: \alpha \in I\}$ are isomorphic as Hilbert \mathfrak{A} -moduli.

Remark 3.9: This theorem suggests a possibility to construct other useful topologies on self-dual Hilbert W^* -moduli M in the following way: One must take a topology on the underlying W^* -algebra \mathfrak{A} with respect to which the unit ball of \mathfrak{A} is complete. Then one has to combine this topology either with the map $\langle \cdot, \cdot \rangle$ on $M \times M$ or with all \mathfrak{A} -linear bounded functionals of M'. We could get topologies on M with respect to which the unit ball of M would be complete.

§4 A criterion of self-duality of $l_2(\mathfrak{A})$. Applications

Let \mathfrak{A} be an arbitrary C^* -algebra. We consider the Hilbert \mathfrak{A} -module $l_2(\mathfrak{A})$ mentioned in the introduction. It is representable as the set of all sequences $\mathbf{a} = \{a_i\}_{i \in \mathbb{N}} \subset \mathfrak{A}$ for which the series $\sum a_i a_i^*$ converges relative to the norm topology in \mathfrak{A} . The inner product on it is defined as $\langle \mathbf{a}, \mathbf{b} \rangle = \sum a_i b_i^*$ for any $\mathbf{a}, \mathbf{b} \in l_2(\mathfrak{A})$. If \mathfrak{A} has an identity then $l_2(\mathfrak{A})$ is countably generated. The Hilbert \mathfrak{A} -module is standard for all countably generated Hilbert \mathfrak{A} -moduli in the sense of G. G. KASPAROV'S Stabilisation theorem [9:,Th. 2]. Let us describe the inner structure of $l_2(\mathfrak{A})$. Denote by $\{\mathbf{e}_i\}_{i \in \mathbb{N}}$ the canonical orthonormal basis of $l_2(\mathfrak{A})$.

Lemma 4.1: Let \mathfrak{A} be a C*-algebra with identity and $l_2(\mathfrak{A})$ be the standard countably generated Hilbert \mathfrak{A} -module. Then the map $\psi: f \in l_2(\mathfrak{A})' \to \{f(\mathbf{e}_i)^*\}_{i \in \mathbb{N}}$ is a bijection between $l_2(\mathfrak{A})'$ and the set of all sequences $\mathbf{a} = \{a_i\}_{i \in \mathbb{N}} \subset \mathfrak{A}$ with the property $\sup ||a_1a_1^* + \cdots$

 $+ a_N a_N^* || < +\infty$. Moreover, ψ maps all bounded module maps of the form $\varphi(\mathbf{a}) = \langle \cdot, \mathbf{a} \rangle$, $\mathbf{a} \in l_2(\mathfrak{A})$, into the characterizing element \mathbf{a} and vice versa.

Corollary 4.2: We have $||f||^2 = \lim_{N} \left\| \sum_{i=1}^{N} f(\mathbf{e}_i)^* f(\mathbf{e}_i) \right\|_{\mathfrak{A}}^{\vee}$ for any $f \in l_2(\mathfrak{A})'$.

The statements of Lemma 4.1 and Corollary 4.2 are mentioned by [16] and by [5] without proof. Since the proof is easy it will be omitted. The following theorem is an extension of [6: Prop. 3, Prop. 4] to the non-commutative case. It was first proved by, the author [7: Th. 22] with global C^* -algebraical methods and, independently, by O. G. FILTPOV [5] considering maximal commutative C^* -subalgebras. We reproduce here the proof from [7] in an ameliorated variant.

Theorem 4.3: Let A be a C*-algebra. The following conditions are equivalent:

(i) A is finite-dimensional.

(ii) $l_2(\mathfrak{A})$ is self-dual.

(iii) For each $\mathbf{a} \in l_2(\mathfrak{A})$ the series $\sum ||a_i||^{\mathfrak{A}_2}$ converges.

Proof: We start with a simple observation. If the C^* -algebra \mathfrak{A} is finite-dimensional, it contains an identity. If $l_2(\mathfrak{A})$ is self-dual, then the bounded module map h defined by the formula $h(\mathbf{a}) = a_1$ for any $\mathbf{a} = \{a_i\}_{i \in \mathbb{N}} \in l_2(\mathfrak{A})$ belongs to $l_2(\mathfrak{A}) \subseteq l_2(\mathfrak{A})'$. Thus, \mathfrak{A} must contain an identity.

Assume now that \mathfrak{A} contains an identity. The Hilbert \mathfrak{A} -module $l_2(\mathfrak{A})$ is self-dual if and only if any norm-bounded increasing directed sequence of self-adjoint positive elements of \mathfrak{A} is fundamental relative to the norm-topology of \mathfrak{A} , cf. Lemma 4.1. Equivalent to this condition is that all linear positive functionals on \mathfrak{A} are normal, i.e., that the universal representation of \mathfrak{A} is normal and, equivalently, that \mathfrak{A} is reflexive as a Banach space. The latter is true if and only if X is finite-dimensional. The equivalence of the conditions (i) and (iii) follows from a proposition of A. Dvo-RETZKY and C. A. ROGERS [4], which can be found in [17: Prop. 3.4.1, Prop. 1.6.2]

As a corollary we can extend [19: Th. 3] to these criteria:

Proposition 4.4: Let \mathfrak{A} be a C^* -algebra. The following conditions are equivalent: (i) `A is finite-dimensional.

(ii) Any Hilbert A-module M is self-dual.

Moreover, if the C*-algebra U is commutative and unital (or, respectively, is a W*-algebra), there exists a third equivalent condition:

(iii) Any Hilbert A-module M is A-reflexive.

Proof: The first item follows from [19: Th. 2] and from Theorem 4.3 above. To prove the second one we consider a compact space K consisting of infinitely many points. We denote by C(K) the set of all continuous complex-valued functions on K and, respectively, by $C_0(K)$ the set of all $f \in C(K)$ satisfying f(x) = 0 at a certain fixed accumulation point $x \in K$. The sets C(K) and $C_0(K)$ are both C*-algebras, where the latter is a two-sided ideal in C(K). We define on C(K) the usual inner product $\langle \cdot, \cdot \rangle_{\mathfrak{A}}$. Then $\mathfrak{M} = \{C_0(K), \langle \cdot, \cdot \rangle_{\mathfrak{A}}\}$ turns into a Hilbert C(K)-module for which the connection $\mathbf{M}' = \mathbf{M}'' = C(K)$ holds. Hence, $C_0(K)$ is not \mathfrak{A} -reflexive.

If I is an infinite-dimensional W*-algebra, the counter-example is given by Theorem 3.2 and Theorem 4.3

Proposition 4.5: Let \mathfrak{A} be a W*-algebra or, respectively, a commutative unital C* algebra. The following two conditions are equivalent:

(i) A is finite-dimensional.

(ii) For any Hilbert A-module N and any Hilbert A-submodule $M \subseteq N$ there holds $\mathbf{N} = \mathbf{M} \oplus \mathbf{M}^{\perp}$

Proof: If \mathfrak{A} is an infinite-dimensional W*-algebra, both $l_2(\mathfrak{A})$ and $l_2(\mathfrak{A})'$ are noncoinciding Hilbert \mathfrak{A} -moduli, where $l_2(\mathfrak{A}) \subset l_2(\mathfrak{A})'$ and $l_2(\mathfrak{A})^\perp = \{0\}$. If $\mathfrak{A} = C(K)$ is a commutative unital C*-algebra, the Hilbert \mathfrak{A} -module $\{C_0(K), \langle \cdot, \cdot \rangle_{\mathfrak{A}}\}$ described in the proof of Proposition 4.4 can be viewed as a Hilbert A-submodule of A. But, $C_0(K)^{\perp} = \{0\}$ in this case and they do not coincide. Referring to [19: Th. 1, Lemma 3] we finish the proof \blacksquare

Corollary 4.6: If A is a C*-algebra with an infinite-dimensional two-sided W*ideal, the standard countably generated Hilbert \mathfrak{A} -module $l_2(\mathfrak{A})$ is neither self-dual nor A-reflexive.

This follows from Theorem 3.2 and Theorem 4.3. As a further application we describe below the structure of self-dual and C^{*1} reflexive countably generated Hilbert W^* -moduli. That any finitely generated Hilbert C^* -module is self-dual was recalled in Corollary 2.9. Similarly, any Hilbert C*-module over a finite-dimensional C*-algebra is self-dual, cf. Corollary, 2.9.

Proposition 4.7: Let A be an W*-algebra and M be a C*-reflexive (and, hence, selfdual) countably generated Hilbert A-module. There are two possibilities for the structure of M and of A:

(i) **M** is finitely generated and **A** is arbitrary.

(ii) M is the direct sum of a finitely generated Hilbert \mathfrak{A} -module and of a countably generated Hilbert \mathfrak{B} -module, where \mathfrak{B} is a finite-dimensional two-sided C^* -ideal in \mathfrak{A} .

If the W^* -algebra \mathfrak{A} has no finite-dimensional two-sided C^* -ideals, any countably infinitely generated Hilbert A-module is non-self-dual and non-C*-reflexive.

Proof: Let $\{\mathbf{x}_i\}_{i\in\mathbb{N}}$ be the system of generators of M as \mathfrak{A} -module. By [14: Prop. 3.11] and [18: Lemma 6.7] there exists another system of generators $\{\mathbf{y}_i\}_{i\in\mathbb{N}}$ of M deduced from the first one such that $\langle y_i, y_i \rangle = p_i = p_i^2 \neq 0$ and $\langle y_i, y_j \rangle = 0$ for any $i \neq j$. Denote by $L_{\mathfrak{A}}(\mathbf{y}_i)$ the norm-closed \mathfrak{A} -linear hull of \mathbf{y}_i . The Hilbert \mathfrak{A} -module $\{L_{\mathfrak{A}}(\mathbf{y}_i), \langle \cdot, \cdot \rangle\}$ is self-dual. Therefore, it is isomorphic to $\{\mathfrak{A}p_i, \langle \cdot, \cdot \rangle_{\mathfrak{A}}\}$ by Theorem 3.8 and $\langle L_{\mathfrak{A}}(\mathbf{y}_i), L_{\mathfrak{A}}(\mathbf{y}_i)\rangle$ is a two-sided W^* -ideal in \mathfrak{A} for any $i \in \mathbb{N}$. Consequently, we get that M is isomorphic to the Hilbert \mathfrak{A} -module

$$\mathbf{N} = \{\mathbf{x} = \{x_i\}_{i \in \mathbf{N}} : x_i \in \mathfrak{A}p_i, \sum x_i x_i^* \text{ is } \|\cdot\|_{\mathfrak{A}}\text{-coverging}\}.$$

Now we try to reach a situation in which the product of any two projections p_i, p_j (i < j) of our choice is a projection r if and only if $r = p_j \neq 0$. For this end we use an inductive process of construction. First, fix the projection p_1 and check all products $r_k = p_1 p_k$ $(k \in \mathbb{N})$. If r_k is a projection for a certain $k \in \mathbb{N}$ and if $r_k \neq 0$, then replace p_1 by the sum $(p_1 + p_k - r_k)$ and p_k by r_k . If $r_k = 0$, then replace p_1 by $(p_1 + p_k)$ and exclude p_k from our choice. Finishing this first step we deal with the pairwise products $r_k' = p_2 p_k'$ $(k \in \mathbb{N})$ with the first factor p_2 in the same way. This process is continued by induction. We remark that the claimed inductive process on the projections $\{p_k: k \in \mathbb{N}\}$ of \mathfrak{A} is compatible with the module operations inside N and M, respectiyely.

Suppose now there exist more than finitely many two-sided W^* -ideals $\langle \mathfrak{A}p_i, \mathfrak{A}p_i \rangle$ of our reconstructed choice being infinite-dimensional. Then $\mathbf{M}' \neq \mathbf{M}$ by Theorem 3.8 and Theorem 4.3. Suppose there exists no finite-dimensional two-sided C^* -ideal \mathfrak{B} in \mathfrak{A} containing all finite-dimensional W^* -ideals $\langle \mathfrak{A}p_i, \mathfrak{A}p_i \rangle$ of our reconstructed choice. Then $\mathbf{M}' \neq \mathbf{M}$ by Theorem 3.8 and Theorem 4.3

Finally, we state the main problem arising if these results are to be extended to the case when \mathfrak{A} is not necessarily a W^* -algebra. W. L. PASCHKE [14: Th. 3.2] noted without proof referring to [20] that the \mathfrak{A} -valued inner product of a Hilbert \mathfrak{A} -module lifts on to the dual Banach \mathfrak{A} -module even if \mathfrak{A} is a commutative $\mathcal{A}W^*$ -algebra. The question is: What are the conditions needed that this can be done for any Hilbert \mathfrak{A} -module over a certain C^* -algebra \mathfrak{A} ? One condition is that \mathfrak{A} must be an $\mathcal{A}W^*$ algebra [16: Prop. 1.1]. It seems to be necessary that \mathfrak{A} must be monotonically complete and possess an analogy of the w^* -topology coinciding with the topology of order convergence on bounded directed nets of self-adjoint elements of \mathfrak{A} , cf. Theorem 4.3. Solving this problem one could get general criteria of self-duality and C^* -reflexivity of Hilbert C^* -moduli.

REFERENCES

- [1] BRATTELI, O., and D. W. ROBINSON: Operator algebras and quantum statistical mechanics, part 1 (Texts and Monographs in Physics). New York—Heidelberg—Berlin: Springer-Verlag 1979.
- [2] DUPRÉ, M. J., and P. A. FILLMORE: Triviality theorems for Hilbert modules. In: Topics in modern operator theory (Timisoara/Herculane 1980; eds.: C. Apostol, R. G. Douglas, B. Sz. – Nagy and D. Voiculescu) (Operator theory: Adv. Appl., 2). Basel-Boston, Mass.: Birkhäuser Verlag 1981, p. 71-79.
- [3] DUPRÉ, M. J., and R. M. GILLETTE: Banach bundles, Banach modules and automorphisms of C*-algebras (Research Notes in Mathematics 92). Boston – London – Melbourne: Pitman Adv. Publ. Program/1983.
- [4] DVORETZERY, A., and C. A. ROGERS: Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. USA 36 (1950), 192-197.

175

- [5] Филиппов, О. Г.: О С*-алгебрах А, над которыми гильбертов модуль l₂(A) автолуален. Вестник Моск. Гос. Ун-та. Серия I: Математика. Механика 4 (1987), 74-76.
- [6] FRANK, M.: A set of maps from K to $\operatorname{End}_{A}(l_{2}(A))$ isomorphic to $\operatorname{End}_{A(K)}((l_{2}A(K)))$. Applications. Annals Global Anal. Geom. 3 (1985); 155-171.
- [7] FRANK, M.: Self-duality and C*-reflexivity of Hilbert C*-moduli. KMU-CLG-proprint Leipzig: Karl-Marx-Universität 1986.
- [8] GOLDSTINE, H. H., and L. P. HORWITZ: Hilbert space with non-associative scalars, 11. Math. Ann. 164 (1966), 291-316.
- [9] KASPAROV, G. G.: Hilbert C*-modules: Theorems of Stinesspring and Voiculescu. J. Oper. Theory 4 (1980), 133-150.
- [10] LOYNES, R. M.: Linear operators in VH-spaces. Trans. Amer. Math. Soc. 166 (1965), 167 to 180.
- [11] Мищенко, А. С., и А. Т. Фоменко: Индекс эллиптических операторов над C*алгебрами. Изв. Акад. Наук СССР, Серия мат., 43 (1979), 831—859.
- [12] Мищенко, А. С.: Банаховы алгебры, псевдодифференциальные операторы и нах приложения к К-теории. Успехи мат. наук 34 (1979) 6, 67-79.
- [13] Мищенко, А. С.: Представления компактных групп в гильбертовых модулях над С*-алгебрами. Тр. мат. ин-та Акад. Наук СССР 166 (1984), 161—176.
- [14] PASCHKE, W. L.: Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 182 (1973), 443-468.
- [15] PASCHKE, W. L.: The double B-dual of an inner product module over a C*-algébra B. Can. J. Math. 26 (1974), 1272-1280.
- [16] PASCHKE, W. L.: Inner product modules arising from compact automorphism groups of von Neumann algebras. Trans. Amer. Math. Soc. 224 (1976), 87-102.
- [17] PIETSCH, A.: Nukleare lokalkonvexe Räume. Berlin: Akademie-Verlag 1969.
- [18] RIEFFEL, M. A.: Morita equivalence for C*-algebras and W*-algebras. J. Pure Appl. Alg. 5 (1974), 51-96.
- [19] SAWOROTNOW, P. P.: A generalized Hilbert space. Duke Math. J. 35 (1968), 191-197.

[20] WIDOM, H.: Embedding in algebras of type I. Duke Math. J. 23 (1956), 309-324.

Manuskripteingang: 22. 03. 1988; in revidierter Fassung 01. 03. 1989

VERFASSER:

Dr. MICHAEL FRANK Sektion Mathematik der Karl

Sektion Mathematik der Karl-Marx-Universität Karl-Marx-Platz DDR - 7027 Leipzig

176