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Self Duality and C* - Reflexivity of Hubert C Moduli 

M.FRA1,IK,	 - 

( 

Gegenstand dieses Artikels sind eine ncue Definition des Begriffes ,selbstdiiah'r HilbcrtG* 
Modl" als ein Kategoriebegriff der Banich C Modimin mind die Bedingungen fur emnigc Hil 

•	bertC*Moduln, selbstdual oder C*reflexiv zu sein. Es wird die Isomorphie,zwéier beliebiger 
Hilbcrtstrukturen auf einem gegebenen selbstdualen Hilbert.C*.Modul gezeigt, di quivaY 
lente Normen zur gegebenen Norm induiieren Fin topologisches Krmterium der Selbstdu elitat 
und C*Reflexivität von Hubert. - W*Moduln wird bewiesen. Weiterhin vird ein Kriterium der 

•S1bstdua1ität des abzählbar erzeugten Hilbert.C*Mcdils 12((i) für beliebige C*- ' Algebren 1 
gezeigt. Als eine Anwendung wird die Klassifikation der abzählbar erzugtcn slbstduateh 

•	Hi1ber.tlV*Modulndurch deren Struktiir gegében.	 - 

• ' 1I pex 1i e rori cTaTu nejir-leTcH mioBoe onpee.memmile HOIIIITIIA ,,anToyaJ1bI1b!n rHJlb6epTOn C*- 
MO;(v.Ib" iam IlOiiHTmle m-caTeropuhl GaHaxoebix C-MoyJleü H Y60IOB11H j.in ileKOTOprix rujmb-
GepTomsbmx C* M e). y.TIeü ühmTli anToJLyaJJhmImrMn n;r'rm Ct ;pe4hr1emclrnhih!tri. lIoHa3aHa u3oMop()- 
l-IOCTb .im<6i,ix JHyX rHJlbüepToBhIX CT11T mma :raai1HOM am3ToyaJlbmroM. m'nJmb6epTomioM 
C*1o;Ly.ae,eclll 01111 ImHyumIl)yIoT HopMm1 amntIBaJremmTlmhle H 3a;LaFmHotl.- loHa3lmm Tono;io- \ 

• '-	ru'iecmuii mcpmiTepmr1 amlTotyaIhmmocTu ii G*pe(Iexdunl4oeTl1 .rm-lJle6epTosbmx lV*MO;tyJ1erm.	- -

• Lajiee, c4lopMyJlupoBalI HpHTel)l4ii aBTOyaJlbFmoCTim CieTH0 flOpOHCmiirOr0 rMJIhüepToBoro 

•

	

	.t-Moy.nJ1 12 (f) uir rlmot3hlx C*ajiret3p 91.1) a q ecTne mipimsmo-+enuri gamma mcJlaccalaHamtHH C'meT- 
110 .ElOpoacLeHHhix rJlJli5GepToBbmX lV*Moy.1ieii lix cTpyFTypotl.. 

The subject of this paper are a new dcfinitio'n of he notiori "self-dual Hubert C*-odule" as 
•- a- categrical concept of Banach C 5-moduli, and tlieonditions for some Hubert C-moduli 

to be self-dual or C*:reflexive. rIsheisornorphism of ,any two Hubert structures on a given self-
dual HilbertC-module inducing equivalent norms to the given one is stated. A topological. 
criterion of self-duality and C*reflexivity of Hubert W*moduIi is proved. A criterion of self-
duality Of the countably generatd Hubert 91-module 10(91) is stated for arbitrary C*algebras	• -

91. As an application the classification of countably generated Hilbert W*modimli by their 

	

•	structure is given.	•	•	 ' 

•	§ 1 Introduction	 -,	 •	 -	 .•	 , 

Athe begiiinirig we fix some de'miotations and give certain factsarld examples from 
the literature: All moduli in

 this this paper are left moduli by definition. A pre-Hilbert 
91-module over a, certain C*algobra 91 is in 9(-module -M equipped with a conjugate 

	

•	bilinear niappirig( . , •): 1I x M —'91 satisfying	,	 •	- '' 

•	(i) (x, x)	0 for any x E M,	•	
•	 •-	-	- • 

(ii) x,x)=0if arid only fx =0,	.,	•	 - -	 -	 -	 - 

	

-	 (iii) (x, y)	y , x) for any x,y E M,	 •	 • :	-	•	- •	-	 • 

•	- - - (iv) ax, y) = a.(x,- y) for any a E 91, x, Y. € M.	• •,	-	• 

	

-	-	•	 •	•	 ' 
•	 -.	 -	 -	 -	

-,	 -S	 •	

\.	

-S	 -•	 S
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The map ., - is called the91-vahed inner product n M. Let us'remark that wewiII 
write "preHilbert C*modu1e" inst.èd of "pre-Hilbeit 91-module over the C*a1. 
gebra 91" whenever the concrete properties of the underlying C*algebra 91 are unim-
portant in the context. A pre-Hilbert C*modu1e is Hubert if it is complete with respect 
to the norm jJ,. = K) 2 Two Hubert 9{-moduli {M, (-, •)),' {N, (•, - )N) - over a 
certain fixed C*algebra 91 are isomorphic if there exist a bijective 91-linear bounded 

	

•	map 13: M-±N such that (x,y) M =(B(x),'B(y))N forany x,y'E M A Hubert 91-

	

• -	module over 'a certain, C*-algebra 91 is alled . finitely (resp., countably, countably in- - 

	

•	- finitely) generated if it is finitely (resp., countably, aountably infinitely) generated 
as an 91-modu-le, cf. [9] A C*suhmodule M of acrtair Hubert C*module ;{N, ( •)}, 
is a Hubert C*submodule of N, if IM, ( . ,.)}.is a }-Iilbert C*module. A pre-Hilbert C*- 
subillodule {M, (, .))'of a' certain pre-.Hilbert C*_module {N,-(, •)} is a direct summand 
of N if any element of'\ has a (unijue) decomposition into the sum of an element 91 

	

•	M and an elehent of the orthogonal with respect 'to (.,.) complement of M. 

Let its consider some examples.  

(i) Any C-algebra 91 becomes a Hubert. 91-module with the the inner product (•, .)j being de. 
fined by K°, b)sj = ab* for any a, be 91.	 /	 S 

(ii) Any Hubert space is a Hubert C*mo'duIe over the C*.algebrac. 

	

•	(iii) Let I be an index.set and let (4Ei be a collection of left ideals of a certain C*algcbra 
91 indexed by I. Then the set of all 1-tuples x = {X }EJ for which the sum ' xx converges	. - 
with respect to the 91-norm is a pre-Hilbert 91-module.	 - 

(iv) Let 11 be a Hilbert spice and 9f be a C*algebra. The algebraic tensor product 21-0 If be-• 
comes a pre-Hilbert 91-module with the inner product (., .).defined on elenentary tensors by. 
K (D , b ® ) = ab*KE, Obviously, if the Hilbert space H is finite-dimensional, then 
91 ® C"js isomorphic to the set 91" of n-tuples of elements of 91. Let us remark that the norm-

	

.	closure of 91 Ølr-is denoted by -12M, and it plays an important role describing properties 6f -
arbitrary. countably generated Hubert 91-moduli, cf.[9: Th. 21.	 '	S 

. (v) Let = (E p K, 11) be a locally trivial Hubert bundle over a compact spce K. Denote 

	

- -'	by F(s) the set of all continuous sections of this bundle. Then I'() beconies in a natural way 
a Hubert C(K)-module splitting the inner products of the fibres H, x C K, cf. [2: p. 48-49]. 

We deote by M' the set of all oundcdrodule ñiaps f:-M'--.9i. FollowingW..L. 
PASCHKF [14] a Hilbert C*niodule M is called self-dual if every map r € M! is of the 

	

•	form (- a for some arE M. W. L. PasChke proved that in the case of 91 being-a W*. 
• algebra the 91-valued inner product on a pre-Hilbert 91-module (M, (., .)} lifts to an 

9tvalued inner product (., •) on the Banach 91module M' turning IM',.(', D} into 
a self-dual Hubert t-module, cf. [14: Th. 3.21. A. S. M1ENKO showed'that ever •	finitely generated Hubert C*_module is self-dual, cf. [12]. P. P. ,SAwoRo'rNow got 

•	-the result that every Hilbert 91-module over a finite-dimensional C*algebra 91 is self- . -. 

	

• .	dual; of. [19: Th. 3]. - •	 . 
Denote by. M"-the 91-module of all bounded module maps from M' into W. Let q be 

	

-	the module map q: M.— M" defined by q(m)jr] = (r(m))* for each in € M, any 
r E M'. A Banach C*modulc M over 91 is ëalled C*re/lexive (or 91-reflexive) if the mo-
dule map gis a module .isomorphism, cf. [13]. For a Hilbert C*module theTap q 
is automatically an isometry [13: . or: 1.1].'It turns out that for Hilbert W*_moduli . • - 
the C-reflexivit is-quivalentto the self-duality [14: Th. 3.21. W. L. PASCI-IKE [16] 
proved that for any Hilbert 91-module M over a certain C*alg'ebra 91 the 91-valued 

	

•	inner product can be extended to the 91-biduitl Banach 91-nIodule M"- turning it into 
aC'-refleive Hilbert 91module.	 -	 -	- 

The paper is organired as follows The second pal-,t is concerned with the defini 
tion of the notion "self-dual HilbertC*module". We show that the property of a 
Hubert C*modu1e to be self-dual (in the sense-of [14]) depends not on the structure of 

-- the given inner product, b,ut only on the-existence of an inner product on th, 6 under 

•	 '	

,	 .	 S	 •	 -

/
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lying -Banach C*module inducing an equivalent Hubert norm and realizing the con-
dition of self-duality (PrOposition 2.2). A new definition of this notion is given (Defi-
nition2.1).describing it on the category of Banach C*moduli. As a consequence we 
get that on sell-dual Hubert . C*moduli any two Hubert structures inducing equiva-
lent norms to the given -one are isomorphic (Theorem-2.6). We prove thatany self-
dual Hubert C*submodule of an arbitrary pre-Hilbert C*module is a direct sum-
•mand (Theorem 27).	 .	• I	'	- 

In the third part Hubert W*moduli are treated.- We characterize C*reflexive (and 
•	hence, self-dual) Hubert W*moduli by their inner topological properties (Theorem - 

3.2). Also an exampleof anonC*:reflexive Hubert 9{-module:ovra certain commuta-  
tive unital W*algebra 91 isgiven (Example 36) contradicting [13: Th. 2.11. 

The fourth part if this paper is concerned with the Hubert 91-module 12 (91) over 
— certain 9*algebras 91, 1(91) being standard for all countably generated Hubert 9(- •. 

moduli inithe sense of [9: Th. 2]. We give a criterion of self-duality of 12 (91) (Theorem 
4 .3)., Moreover, we show that every Hilbert 91-module over a'certáin C*algebra 91 
is self-dual if and only if 91 is finite-dimensiohal(Proposition 44). As an application 
- we get the classification of-all countably generated self-dual filbert 1"-moduli by 

their structure (Propositión47). 

/	-	 •,_' 

§2 The iiotion "sell-dual Hubert C*.rnodnle" — a category concept	- 

	

/ W. L. PASCHKE [14] and other authors [12, 18] have defined that a Hilbert 91-module	-. - 
over a certain C-algebra91 is sClf-dual if arid only if every bounded module 

map / E M i,of the form (., a1) for some a E M. We give another definitiOn. 
Definition 2.1: A Banach 91 module M over .a certain C* algebra 91 is called 'L 

self-dual' Hubert 9i-riodule over 91 if there exists an 91-valued inner prouct (., .) on 
M with the properties:	 - 

(i) The norm induced on M by the 91-valued inner product.( .) is equivalent to the 
•	'given norm on Al.	 . 

(ii) The map q: M - M' defined by thO formula q(a) ='(., a) (a E M) is surjective 
This definition seems to he-weaker than the other tone. In the following, however, 

• -	we' roie the euivalence of both definitions. As a ' result we can show the catgoriCal 
• sense of the notion for the category of Banach C*moduli.	S 

'Proposition-22: Let, W be a C"-algebra. Let 1L be an 91-module turning -into a sell-
dual (in the sense Of [14]) Hubert 91-module with the 91-valued inner product (-, •), and 
turning into a Hubert 91-module with the 91-valued inner product (-, •). We suppose the 
equivalence of the norms 11 .11 and 112 qn. M and the completeness of M with respect to 

•them.  

"J'hen.{M, (-, •)} is a self-dual (in the sense o/ [141) Hilbert 91-module and there exists a 
•	bounded 91-linear . oerator B: M - )[ with the /ollowiig properties:	 - 

•	(i). (b, à)2 ==(h,B(a))1'/or any a,hEM.	 0 - 

•	(ii) B is one-to-one and, in addition, self-ad joint and positive on both {M, (., .)} and 
.)2}:  

(iii) B has an inverse B', which is bounded(Ind 91-linear. For B- 1 the properties-of 
item (ii) are valid and(b, a) 1 = (b, B'(a)) 2 for any a, b E M.  

-Proof: (i) -Since {M, (-, .)} is self-dual, for each a .E M there exists an element

B(a) E M such that (., a)2	(., B(a)) 1 on M. The' map B is 91-linear. Since the inecjua- - - 
lity	 0	 . 

•	- - IaI 1 ^ k 4II2,	I 1 1all.	(k, I E (0, + oo))	 ',	(1) 
-7 

0	
/	

0	 •	'0'	 1-
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is valid for, any a E M by supposition, and because of the inequality 

ll .B ( a )111 2 = IKB(a), B(a)) 1 I1 t = 'IKB(a);a)2112t 

ll J3 ( a)II	1ai12 ;5 12 JIB(a )111 11all,	 (2) 

(cf. [14': Prop. 2.3] and (1)) we,get the boundediies of B. It do'es 1 iiot depend on the 
inner product.  

(ii) We state the equalities (a., b E M) 

(B(a), b) 1 = (b, B(a)) 1 * = (b, a)2 * = (a, h)2 = (a, B(b)),, 

/ (B(a), b)2 = .(B(a), B(b)), = (a, B2 (b)) 1 = '(a, Bb))2. 

,This is enough o show B = B* with respect to both inner products. The oth er pro- 
, perties of B are trivial deductions now. in particular, we get that B is a on-to-one 

mapping.  
(iii) Because of the inequality 

;5 k2 Iaj122' = k2 Ii( a , a)2 112L = 07 1 1(a, B(a)) 1 11 91	'k 1B(a)jj 1 I1aji1 

bing valid for any a EM (cf. (1) and [14: Prop: 23]), we get the connection 

-	llalI	k2 JIB (a)111 ^5 k2 J IBIlop. , Ii a Il	,for any	a E M.	 (3)_ 

Since B is bounded this means that every norm-fundamental scquiice of the range of 
B has a (unique) norm-fundamental sequence of M as. its pre-image. Moreover, B 
maps the limit of this pre-image sequ ence into the limit of the sequence taken in the 
'range of B. Consequently, since B is 91-linear the range ,lm (B) is a norm-closéd 
91-submodule of M independent of the inner product. r1he.1anach 21-module IM (B) 
becomes a Hubert 91-submodule of M with both inner products (.., .)' and (, )2' Now 
there are . three possibilities, how Tm (B) can be related to the Hilhert, 91-module M: 

'(a) 1m(B)	M, 1  (B) 	{O}.,  

'(b) Tm (B)=* M, I in (B)'	O}.  

(c) Tm (B) . ^= 3t.  

We will show that, in fact, only (c) can he. To rule out the first possibility we take 
an element b E Tm (B)' with respect to (., . +-- ), h0. Then we get (b, b) 2 = (b, B(b)), 
= 0 and, therefore, b = 0. This' is a coptradiction. Th&sam'é happens if we take 
b E Im (B)' with respect to (.,-"), h	0. We get O '= (B(h), b) 2 = (B(b), B(b)), and, 
therefore, 13(h)	0. Since B is injeetive, b = 0 in contradiction to our choice of b. 

To dropthe second possibility we use the fact that the canonical embedding of a 
Hilbrt 91-module {N; (., .)} over a certain C*algebra 9t,into its 91-hidual Banach 
91-module N' , does not depend on thcstructure of the 91-valued inner product.( . , •) by 
definition. Using on M the inner product (. •)' w6 get M" M and 1m.(B)" M as 
Banach 21-moduli. Now we define on Im (B) a third 91-valued inner, product by the-
formula (a, h) = (B(a), B- 1 (h)) 1 fbr any a, b E Jm'(B). It is well defined since B is 
a one -to-one, surjective, 91-linear, bounded niapping from M Onto Tm (B). Because of 
(3) we get that {Jm (B), (., )} is a Hilbert 91-module, which is, moreover, self-dual - in 
the sense of [14]. Using the inner product (.,	we consider Tm (B)" = Tm (B). This

means Im (B) - M in contradiction to (b). 

Therefore, only the relation M	Tm(B) is possible. Moreoer, the hounded

.9t-liner. operator B': M - M, which is inverse to B, exists and satisfies the condi-
tions of-the items (ii) and (iii). Finally, we show the self-duality of {M-, (.,	 the
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sense of [14]. We choose an rEM' arbitrarily.. By s * uppositioq there exists an element	- - 
br.E M such that r(.)	(:, hr) i . on M. We define c =B(br) E M and get r( . ) = (, C)2

onM. Since  e M' is choosen arbitrarily, we are done U . 

- ' Corollary 2.3: Let (M, be a self-dual Hubert 91-module oveia C*algebra 91. 
Then for any 91-valued inner product (, -) 0 on M inducing an equivalent norm to the given 
one there exists one and only one bounded .91-linear invertible positive operator B 0 on - 
M, (:, .)} with the property (, -)0 	(.., B0 ( . )) on. M. And vice versa. 

This follows fvom [10: Lemma 2,.'].'h. 3] and from Proposition 2.2. 

2.4: Under the suppositions formulaed in Proposition 2.2 beside the ine-
quality (1) there holds the inequality	 . .	.	 . 

• -	. (a, a) 1	C(a, a)2 	D(a, a)	 .	 . 

, /or some constants C, DE (0,-)-) and for any . a E M.  

•

	

	Proofs	We	have (a, a)2 = (a, B(a)) = (Bh 1 2 (a) , B112(a)) 1	II B" 2 II.1 (a, a)1

= iIB i!o,1 (a, a) 1 for any a € M (cf. [14: Prop. 2.8]). In the same way . we get (a, a)1 

IIB 'II6.2 (a, a)2 for any a € M . 1	 . 
S. 

•	Corollary 2.5: The operator described in Proposition 2.2 has (he property f	- 
•	IlBiIop;i	1 2 , where k, I E JR are tdken from (I).	.	

0 

•	This follows from (2) and (3). The following corollary is suggested from [13: Th. 1.1, 
Cor. 1.2],-where a special case of it is stated.	 -.	S 

- - 

Theorem 26 Let'21 be a C*algebra and {M, (., .)} be asell-dual Hilbert 91module. . •	- Then. every 91-valued ine product (,	on M, the norm induced front uhich is equiva-
lent tot he given norm, defines aHilbert structure on M isomorphic to the Hilbert structure 

•	given. by.the 91-valued inner product (. •.)	-	 -	..	 .. . 
Proof: By Proposition 2.2 there exists a hiinded 91-linear icivertihle self-adjoint 

positive operator B: M -± M satisfying the equality . (a h) 2 = (a, .B(b)) 1 for any 
a,b E M., The set of all hounded 91-linear operators on  self-dual Hilbert 2tmod,ile 
is a C*algehraby [14: Cór. 3.5], and an operator.B is positive on the Hilbert 91-rn6-. 

• diile-if and only if it is positive as an element of this C*algebra by [10: Lemrha 2, 
Th. 3]. So we can find a bounded 91-liiear invertible self-adjoinC positive, operator 
C:' 31 ->. M satisfying the equality (a, h)2 = (C(a), 6(b)) 1 for any a, h € M I 

Remark 217: If the tndeilying C*aigebra 91 is cQmmlltative, then any Hilbert - 
.91-module has a unique (up to isomorphism) Hilbert structure, i.e. the property to he 
self-dual is otnittable iii this case. This fact can be drawn from the investigations of 
M. J. DUPR1 and R. M. OrLLETTE [3: pp. 48--49]. .Howevei, if we drop the commuta-
tivity condition on 91, the analogous problem of uniqueness is still open. There seems 
to he some hope to solve it affirmatively.	 .	.	. 

ow we are able to obtain a very important property of self-dual H ilbert C*moduli 
Let is previously remark that not any .Hilbert C*silhmod,ile of a pre-Hilbert C* 

- •	module has to . he a direct summand, in general.	 •	--
S Theorem 2.8: Let 91 be a C*_algebra, JN, (.,	be any ple-Hilbert 91-module and 

•	M N be a self-dual Hilbert 91-submodule. Then N = M (D M 

Proof:.Wc take the 91-valued inner product on iI given by that one on N reduced to 
•	-	iI	N. By[ l4: Prop. 3.4] the injective isometric 91-linear embedding '11': M * N has • 

5	
5	 0	 0	 -
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an adjoirt 91-linear hounded operator T*: N - ill defined on N such that 
•	(T(m), fl)N = (in, PJ1*() 	-	-	

(4) 
for, any mE M, any n EN. Because of the choice of the Hilbert structure on* Al and 
since T is isometric we ca rewrite (4) as(T(m), n . 0 for any 
n  N, any, in E M. That' is, any element n E N can be decomposed n = TT(n) 
+ (n - TT*(n)) , where TT*(n) EM N and (ii L TT*(n)) E . 31 This decompo-  
sition is unique I  

Finishing thisparagiaph we list some results from the litetature to illustrate the 
importance of Theorem 2.8.  

Corollary2.9 [13: Cor..1.41, [2: Prop. '1], [8]: Thes following is true: 
(i) Let 9IIbe any C*algebra. Let {M,.( . , •)} be a finitely generated Iiilbert'91-submo-

dule of an arbitraryrpre-I-Iilbert 91-module N, (., '.)}. Then N = M	M'. 
(ii) Let 91 be a finite'-dimensional C*_algebra: Let {M, (.; .)} be aHilbert 91-submodule 

of an arbitrary pre-Hilbert 91-module {N, (., .)}. Then N	)L	M'.. 

'1	 -	 .	 .	 •'	 ' O 
§3 A topological characterization of self-dual and C*.reflexive Hubert HT*.J1oduhi 

• The aim of the-present paragraph is to characterize self-duality, and C*reflexivity 
/for a special class of Hilbert C*niodulu, namely, foiHilbert W*moduli, by their inner 
topological properties.:The possibility' of such. a characterization is based either on 
Theorem 2.6 for self-duality or on the definition of the notion 'for C*feflexivity . The 
ideas for the following investigations arise fro * 'in the proving techiiids and from the 
mental backg?ound of two papers of W. L. PASCHKE [14,16].	 . 

Definiti6n 3.1: Let 91 be a W*algebra, {M, be a pre-Hilbert 91-module and 
P be the set of all normal states on 91. The topoIog induced on M by the semi-' 
norms   

/ E p 	 .	.	.'	'	(5) 
is denoted by r. The tpo1ogy induced on M by the linear funcionals 'f(( . , y)), / E 1', 
y €M, is de'noted b' T2.  

Let us'reniark,that the topology r2 was alreadyexplicitly defined by W. L. PASCHKE 
in [14 Remark 3.9], whereas.the topology 'r 1 was suggested to the author by the prov- 
ing technics of [16: Lemma 2.3]. If we define.an'91-valued inner product on the W* 
algebra W. by the formula (a, b)' ab*, 4, b E 91, the topology r 2 coincides with the . 
weak' topology on 91. In the case 'of 91 being G. and 'Al being an arbitrary Hubert 
space the topology r is the Hilbert topology on M, but the topology y2 is the weak-,., 
and weak* topology on M. That i ,s, they do-got coincide, in general. 

Theren 3.2: Let 91 be a W*'alqebra and {M, (., .)} be a Hubert 91-module. The 
following co?idition forM are equivalent:	.	 . 

(i) Al is self-dual. . .	 •.	-	.	.	..'	 .	-. 
(ii) 1I is-91-reflexive.  

(iii) The unit ball of M is r, -complete.' 
(iv) The unit'ball of M is 'r2-complete..  
Proof:- (i) (ii) follows from the definitions and from [14: Th. 3.2]/(i) (iii): 

Assume that the unit ball.of a self-dual Hubert 91-module M is not complete relative 
to the topology , Denote by L the linear hull of the completion of the unit ball of 

I'
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M relative to the topology r 1 . For the extensions of the semi-norms (5) .from.31 to L' 
- we ,use the same denotations. By assumption there exists an ,r E L\ M and•á noim-. 
• bothided net {y}aJ M such that for every / E P an	for bach s> 0 there is n 
•a E I with /((r - y, r - yp))'< e for any	a. We fix /'E P, € > 0, x E I and an


arbitrary x E M. Then•'
 

a	-	
f((x y)) - /((x, y. )I = t(( ' Yft - Y))l	 -; 

	

</((', )P 1 /((	-	y—y ")) 1 1 2 ̂(28f((-x ,x)))hI 

for any', y	ex. Consequently, there exists  

	

--	-'	/	 ;•	 a	
S	 • 

w*Iim{(x,y,):xEJ} ==R(x)	 '	 '	(6) 

for each x E M. Furthermore,'th ineq'uality.	 •. 
jf((x, yp))j	lx ii sup {!iy lI: o, E I}. (# E ]) -\ ' 

shows'th boundedness of the map R: M -* t defined by (6).-The'1-linearity.of 1? is 
obvious. Thus, (6)'defines'a bdunded module map R. By assumption there exists an 
element z E M such that 1?(x) = (x, z)for any x E M. Consequently, we arrive at' 

•w.— urn (x, y / ): fl € 'I} = (x, z) for any x € M, z E M being the r 1 -limit of the norm-
,bounded net (yJ. This means r = z E M in contradiction to our assumption.'  
's (ii) (i): We take an arbitrary r E M"and we suppose the r 1-completeness of the 
unit b&l of M. By [14:'.Th, 3.2] we can lift the 9{-valued'inuier product (., .). from M 
to M' turning M' into a self-dual 1-lilbert 21-module and satisfying the following'pro-
perties for the lifted inner product (-, •)D:  

.'	 .(x, y) =(q(x), (Y))D i f	x,y € M .	, 

r(x) = (q), r)D	if x-E M,r € M' \Ill,  

where (y)	(., y) for any y € M. Furthermore, (M, M) and (M', M')n are W*alge 
•	

' bras, (Mc M) being a two-sided *ideal in (iII', M')D. Therefore, they coincide because -.-	S 

of the propertiçs df the lifted inner product, and (r, T)D belongs to (M, M):First, let ¶ 

	

• '

	be a-finite and let g E.,P be a faithful normal state on 11, which exists according to 
[1: pA4, Prop. 2.3.61. Let:{H, , Q} be the cyclic. representation associad with g, 

- •

	

	The vector Q E H is both cyclic and sepaiatiii', The linear space M equipped with 
• the inner product g(( . , '.)) turns into a'pre-Hilbert space. The map g(r( . )):'M —* C is a. 
• linear functional on it. Corsequently, there cists an element r in the completion of 

M relative to the norm g((., .))112 such that g((x, rg)) = g(r(x)) for any x E:M. That 
means	exists a sequence {x} jE	M such that	•	'	 • .•	 •	0 

0= hill g((x —	x — rg))	-	 •	•	' 

-	
•= iirng((q(x) -- r, (Ax) 7 7)D)	-	• •	 - 

• '= urn [r(((x) - r, (x ) -. r)D)]hI2QIl2. 

Sinc thevcctpf Q € H is both cyclic and separating there exists w	lirn ((x) ,L 
—	= 0 by. [1,: Lemma 2.5.38, Lemma 2.5.39]. This proves the implication 

in the case of 2t being or-finite.. •	 •	 • 
if 9( is not 'a-finite, there exists an increasing directed net of projections {p}j 

c 2t such that P9{Pa is t a-finite W*algebra for eadh cx € I and w — limp. = I, -
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'(ef. [1: p. 164]). Observing p91p and (per) EM' for each EJ we onc1ud&that 
(per) EM for each a E .1 since' pQr)fl = pr, r)D p and the latter belongs to 
p.91p for each a € 1. Consequently, the r 1 -limit of the bounded net {pr} 51 belongs 
to M and it is equal to r E M'. So the self-.duality of Mturns out. 

(iii) (iv) First, if the unit hail of M is r 1 -cornplete, then M must be self-dual as 
shown above. By [14: Prop. 3.8, Remark 3.9] there follows thatM is  conjugate space 
with ,weak* topology r2 . Therefore, the unit ball of M is r2 -complete. Secondly, let 

c M be a norm-hounded r 1 -fundamental net and let the unit ball of M be 
T2 -eomplete. Then, for any y E M, / E P, fl, y € I,  

ffa, y)) - /((x, ))I2 < f((x - x, xp - x i)) /((y, y)).	 '(7) 

•	Denote'by L the linèat bull of the t 1 -completion of the unit ball of M. The limit - 
Tj - lim x,, = I exists in L. From the inequality (7) we get that the net jx.j is also 
r2-fundamental and so the t2-limit x E M exists , by assumption. Recall 'that L = 
and that, the 9[-.valued inner product lifts from-31 to M' turning ill' into a' self-dual 
Hilbert 91-m6dule. Thus,! = 'r 1 - limx = r2 - urn x = X  M I 

Remark 3.3: Let 9[,e an infinite-dimensionala' -finite W*algebra and {M, (.,•) 
be a Hubert 91:module. If g is a faithful normal st'ateon 91, the Hubert completion of 
the pre-Hilbert space M, g( . , •))} does not coincide with 'the Hilbert 91-module M, 
in general:  

the	
3.4: If 91 is a W*a1gebra and M is a self-dual Hubert 91-module, then 


the C*algebra M, JU) is a W*suba1gebra of 91 and a two-sided ideal in W. 

The converse is not true, in general, as'will be shown on the example of 12 (91) in § 4 
of the present paper. '.	 . 

Corollary  3.5: Let 91 be. am infinite— dimensional C*alqebra having (t 1v*subalgebra T 
as its two-sided idel. Let ill he a finitely generated Hilbert 9f-module -and N be an - 

arbitrary Hubert 93-module. Then the direct sum M	N' becomes a self-dual Hubert 

91-module.  

Proof: }'irst we note that N is a Hilbert ' 91-rnodule too, since	is  two-sided

ideal in 91. Furthermore, the set of bounded module maps-f: N —.91 coincides with N' 
because- f(n) = /(I % it) = 1f(n) E	for any n E N. We kn61' from [12] that N is

self-dual. N' is also self-dual as it was shown in [14: Th. 3.2] I 

Example 3.6: Take' 91 = l, M = co with the 91-valued inner product (a,. 
= ab* for a, b  co. Easy computations show that M' = l and M" = l. This is an 
elegant counter-example to [13: Th. 2.1].  

For the completeness' of the present paragraph we reproduce a res'ult of W. L. PASCHX1 
concerning aiother criterion of self-duality and C . reflexivity. of Hubert W*rnoduli. 

Definition 3.7 [14]: Let 91 be a 11--algebra, I bean index set and. IM , ( . ;' . )}j be a collec-
tion of pre-Hilbert 91-moduli indexed by 1. Let F denote the set of finite subsets of I, directed 
upwards-,b' inclusion. For I . tuplcs x = {x,}, y = (YJ (x, y € M) and SE P we set 

(x,y)s=!(x,y).  
ES  

Lt M denote theset of I-tuples x = Ix.) such that sup {(x, x)s: S E F} is finite. Notice that for 
x € M the net {x, X)S)SE is bounded in norm and increasingly directed. We let (x, x) denote its 
least upper bound.' The net {(x,,y)s}s€F is also bounded and w*convergent for any x, y E M. 
We denote by (x, y) its w*.limit. Under co . ordinatewise operations M is a left9f-module, and, 

defined as above is'an 91-valued inner product on U. We call the pre-Hulbert 91-module 
IM,(., .)}' the' ultraweak direct um Of the moduli {iI, (., .)} and write M = UDS {M: a
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- Theorem 3.8114: Th. 312J: Let 91 be a H*algebra and M be a Hubert 91-module. Then the 
following two conditions for M are equivalent:  

(1) M is set/-dual.  
(ii) There is a collection IP}E/ of (not necesary distinct) non-zero projections of 91 such that M 

and UDS 12lp: a E I} are isomorphic as Hubert 91-moduli. - 

Rema'rk 3.9: This theorem suggestp a possibility to construct other useful topologies on 
self-dual Hubert lV*moduliM in the following way: One must take a topology on the under-
lying W*algebra 21 with respect to which the unit ball of 91 is cothplete. Thcnpne has to com-
bine this topology either with the map (., .) on Mx M or with all 21-linear bounded functionals 
of M \\ '. e could get topologies on M with respect to which the unit ball of M would be complete. 

	

S	 - 

§4 A criterion of self-duality Of 12(91). Applications	 - 

Let 91 he an arbitrary C*algebra . We consider the Hubert t-module 12 (91) mentioned 
in the introduction. It is representable as the set of all sequences 'a = {a 1 } 1	91 
for which the series aa converges relative to the norm topology in'91. The inner 
product 'on it is defined as (a, h) = E ab1 * for any a, b E 12 (91). If 91 has an ide/itity 
hn 12 (91) is countably generated. The Hilbert 91-module is standard for all coutitably 

generated Hilbert 91-moduli in the sense of G. G. KASPAROV'S Stabilisation theorem 
[9:Th. 2]..Let its describe the inner structure of 12 (91).' Denote by{e 1 } 1e;' the canonical 
orthonormal basis of 12(91).  

Lemma 4.1: Let 91 be a C*algebra with identity and 12 (91) be the standard countably 
generated Hilbert 91-module. 'I'heuihe map : / € 12(91) - /(e)*} 1€ is a bijection between 

•	12 (91) and the set of all sequences a =	- 91 with the property sup Ila iai * ±... 
•	 .	,	,'	 -	-	.	N 

± aNaN*M < +oe: : Moreover, ip maps all bounded module maps o/ the form (a) - 
= (., a), a € 12 (91), into the characterizing element a and 'vice versa. 

N	-	-	 -, 

Corollary 4.2: We have 1/11 2 = lim E f(e)*f(e 1 )	for any / E 12(91)'. 
-	 •	 -	

-	N 11i=i 
•

	

	Th statements of Lemma 4.1 and Corollary 4.2 are mentioned by'[16] and by[5] 

without proof. Since the proof is easy it will he omitted. The following theorem is an. 

•	extension of [6: Prop. 3, Prop. 41 to the non-commutative case. It was first proved 
by,theauthor [7': Th. 2] with global C*algebraical methods and, independently, 

• by 0. G.. 'FrLrvrov [5] considering maximal commutative C*subalgebras. We repro-
duce here the proof from[7] in an ameliorated variant.  

Theorem 4.3: Let 91 be a C*algebra. The following conditions are equivalent: 
(i) 91 is /in,ite-dimesisional. '	 I 

•	'	(ii) 12() is self-dual.	 ' 
(iii) For each a E 12 (91) the series L' lIai Il 2 converges.  
S	 -	 ••-,'..--- 	. Proof: We start witl a simple observation. If the C*algebra 9iis finite-dimensional, 

it contains an identity. if 12 (91) is self-dual, then the bounded module map h defined' 
by the formula h(a) = a 1 for any a = {a)€,. E 1(91) belongs to 12 (9.1) 12 (91)'. Thus, 
91 must contain an identity.  

• • 'Assume now that 91 contains an' identity. The Hilbert 91-module 1 2 (91).is self-dual 
if-arid only if any norm-hounded increasing directed seqUe nce of self-adjoint positive 
elementsof 91 is fundamental relative to the norm-topology of 91, cf. Lemma 4.1. 

' .Equivalent to this condition is that all linear positive functionals on 91 are normal,. 
i.e., that the' universal representation of 91 is normal and, equivalently, that 91 i
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-- -	 reflexive as a Banach space. The latter is true if and only if 91 is finitedimensional., 
['he equivalence of the conditions (i) and (iii) follows from a proposition of A Dvo 

RETZKY and C. A. ROGERS [4], which can be found in ['17: Prop 3.4.1, Prop. 1.6.2] I 

As a corollary we can extend [19: Th. 3] to these driteria: 
- Proposition 4.4: Let 91 be a C*algcbra. The following conditions are equivalent: 

(i) '91 is /ite-diniension1. - 
(ii) Any Hubert 91-module M is self-dual. 

Moreover, if the ('* aiqebra 91 is commutative and unztal (or, respectively is a W*_al 
gebra), there exists a third equivalent condition:  

(iii) Any Hubert 9lmodule M is'91-reflexive.	 T 

	

•	Proof:'The first item fllows from [19: Th. 2] and from Theorem 4.3 above. To 
- prove the - second one we consider a compact space K consisting of infinitely many 

	

• -	- points. We denote by ('(K) theset of all continuous cothplex-valued functions on, 

K and respectively, bj'C0(K) the set of all f E ('(K) satisfying f(x) = 0 at a certain 

• fixed accumulation point x E K. The sets C(i) and G0(K) are both C*algehras , where 
the latter is at\'o-sided ideal in ('(K). We define on'C(K) the usual innei-product 
( )	I hen 11	{C0(K) ( )} turns into a Hilbert ('(K) module for which the 
connection M	M =	= ('(K) holds Hence C0(K) is not 91 reflexive 

If 91 is an infinite-dimensional W*algehra, the counter-example is given by Theorem 
3.2 and Theorem 4.3 I  

•	Proposition 4.5: Let 91 be a W*algebra or, respectively, a commutative unital ('*- - 
-	algebra.' The following two conditions are equivalent:  

(i) 91 is finite-dimensional. '	•	
0	

/ 

•

	

	(ii). For any Hilbert 91-module N and any Hilbert 91-submodule .M 9 N there holds 

'\ =M(M 

Proof If 91 is an infinitedimensional W* algebra both 1 (91) and 1(91) are non 
coinciding Hilbert 91-moduli, where 1(91)	1(91)' and l2 (91)'.= {O}._lf 91 = ('(K) is 
a commutative unital C*alge}ra , the' Hilbert 91-module {('0(K), K. •) i} described in 
the, proof of Proposition 4.4 can be viewed as a' Hilbe'rt ,9i-uhthodule of' 91: But,, 

= O} in this case a,nd they do not coincide. Referring to ['19: Th. 1, Lemhia 3]' 
• we finish the proof I  

Coroll a ry 4'.6: If 91 is a C*algebra with an infinite-diriensioii.l two-sided W*


	

•	'ideal,_the standard countably 'generated Hubert 91-module 1(91) is neither self-dual nor 
•	',	91-reflexive.  

	

• ' This follows fr	 de-'
scribe	

Theorem 3.2'and Theorem-4.3. As a further application we de' 

scribe below the structure of-self-dual and C*reflexive countably' generated Hubert 

•

	

	W*moduli. That any finitely generated Hilbert C*module is self-dual was recalled - 
'in Corollary 2.9. Similarly, -any Hubert C*module over a' fipite-dimensional C*al 
gebra is self-dual, cf. Corollary,2.9.  

Proposition 4.7:' Let 91' be an W*algebr.a and M ben ('*reflexive (ãñd, hence,"self-, 
dual) countably generated Hilbert 91-module. There are two possibilities for the structure 

'ofM and Of91:,'  
(i) Ar is finitely.gener'ated and 910s arbitrary.	 •	•	, -. 

(ii) . M is the direct surn of 'a finitely generated Hilbert 91-module and of • a counlçibiy 
generated Hubert l3 module, where 93 is a finite dimensional two-sided C* -ideal in 91 

	

•	•
 

If the W*algebra 91 has no fin ute-dimensional two-sided C*ideuls , any'countably 
-' infinitely generated Hilbert 91-module is non-selfdual and non('*reflexive .	•	- 

	

•' 0	 •_	 *	 -	 ,	 -r	 -	 '	 •	 - 

	

•	 ••. -	 '	 -•	 •	 .	 '	

•
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Proof: Let {Xj}1 be the sys'tem of generatbis of M as 1-module. By [14: Prop. 
3.11] and-[18: Lemma 6.7] there exists another system6f 1 .generatrs {y1}1EN.° M 
deduced from the first one such that (y y1) =p i = =1= 0 and (yj, y,) = 0 for any 
i =j. Denote by L(y 1 ) the norm-closed cit-linear hull of y•. The Hubert ca-module 
'{L(y1), (., .)} is self-dual. Therefore, it is isomorphic to {91p 1 , (., .)} by Therem 3.8 
and (L j (y 1 ), L(y)) is a two-sided W*ideal in c for any i E N. Consequently, we get. 
that M is isomorphic to the Hilbert t-module -.	 S 

N =	= { x 1}j: X i E 21p, Z ;x j is 11 .lsj-covergin}.  
Now we try to reach a situation in which the product of any two projections p, Ps.. 
(i <1) of our choice is a projection . r if and only if i = p, == 0 For this end we use 
an inductive process of cànstruction. First, fix the projection Pi and check all products 

	

• rk = PIPk (k E IN).	r. is a projection for a certain k E IN and if rk zj= 0, then replace

p by the sum (Pi ± Pk -. rk) and Pk by rk. If r = 0, then eplacep 1 by (Pi + Pk) and 
exclude Pk from our choice. Finishing this first step we deal with the pairwise products 
Tic ' = P2PI (k E5N) With the first factor P2 in the same way. This process is conti-  
riued by induction. We remark that the claimed inductive process on the projections 
(pic: k E N)Of i is compatible with the module operations inside N ardM,respecti 
yely;  

• Suppose now there. exist more than finitely many two-sided W*ideals (91p 1 ,.91p) . 
• of our reconstructed choice being infinite-dimensional. Then .M' == M by Theorem 3.8, 

and TheOrem 4.3. Suppose there exists no finite-dimensional two-sided C*idea1 58 
in 91 containing all finite-dimensional W*idea1s ( Ip ; 11[) of our reconstructed 
choice. Then M' == M by Theorem 3.8 and Theorem 4.3 I .	.	.. 

Finally, 'e state the main problem5 arising if these results are to be extended to 
the case when5tis not necessarily a W*algebra. W. L. PASCHKE [14: Th. 3.2] ndted 
withoutproof referring to[20] that the 21-valued inner product of a Hilbert c2imodule 
lifts on to the dual Banach9[-module even if 9t is a commutative 41V ,*algebra. The 

5 question is: What are the conditions needed that thisoan be done for any 'Hilbert. 
vt-module over a certain C*algebra ? One condition is that W must be an AW* 
algebra [16: Prop. 1.1]. Itseenis to be necessary that 9tmiist be monotonically com-
plete and possess an analogy of the w*topology coinciding with the topology of order 
.convergence on bounded directed nets of self-adjoint elements of 21, cf. Theorem 4.3. 

	

•	Solving this problem one could get general criteria of self-duality and C*reflexivity. 
of Hubert C*moduli.	.•	. .	 .	• 

	

•	.
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