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.. N Gcgenstand dlescs Artikels smd eine neue Dofmmon des Begriffes ,,eelbstdunlor Hllbcrt C*-

Moduyl* als ein Kategoriebegriff der Banach- C*. \Ioduln und die Bedingungen fiar einige Hl]
" bert-C*- \Iodu’ln selbstdual oder C*-reflexiv zu sein. -Es wird die Isomorphie. zweier bellcblgel
Hilbertstrukturen auf einem gegebenen selbstdualen Hilbert-C*-Modul gezeigt, di¢ dquival’
e - lente Normen zur gegebenen Norm induzieren. Ein topologisches Kriterium der Selbstdualitit
und C*:Reflexivitit von Hilbert- W*-Moduln wird bgwiesen. Weiterhin wird ein Kriterium der
-Selbstdualitit des abzihlbar erzeugten Hilbert-C*. \[oduls L((Y) fir bqhoblgc C*-Algebren ¥ _

gezeigt. Als eine Anwendung wird die ‘Klassifikation’ der abzahlbar Pr/cugtcn sclbstdualen ;

Hilbert- W*-Moduln durch deren Struktur gegeben, : - . v

“ EN . P . . - s . ‘:;

s llpennleanx CTaTH HBJHETCS HOBOE -ONpefeicHile MOHATHA ,,ABTOAYadbHbil rHasbepron C*-
" MO;{yab” Kak MOHATHE KaTeropuu 0AHAXOBBIX C"*—Mo;xyrlcu U YCHOBHAH {1 HEKOTOPBIX T'Hilb-
vt . .Geproseix C*-mouyneii GnTh aBTONYaNbHbIMA uin C*. -pedaercunyuvn. llokasana usoMopd-

! HOCTb -TIOOBIX JIBYX PIIBOEPTOBLIX CTPYKTYP HA BAAAHHOM ABTONYANLHOM. IHALGEPTOBOM °

SC*-moayae, ecan OHH HHAYUHPYIOT HOPMLI DKBUBAJACHTHHIE K 3ajanHolt. Tlokasan Tomo:io-
PHUECKMIT KPHTEPHA aBTONYAABHOCTH 1 C*-pedIeKCHBHOCTII MHILGEPTOBEIX W*- MO yJIeit.

7 Hanee, ‘chopmymnpoBau Kpurepuii ABTOAYaJibHOCTH CYCTHO TOPOIKICHHOrO IUILGEPTOBOrO *

<. A-monyanl, (A) ana moGwx C*-anredp A. B radyecTre npiiiomeHnsa 1ana mlaccmbnhalum cyer-
HO .MOPOKiIEHHBIX rum,chTOBM\ W*-moaymeif nx crpymypoﬁ . S L
-, . ' " - / :

The subject of this-pa,pei' are a new definitio'n of the r}(')trion “self—dual Hilbert C*-todule” as

-+ & categorical concept of Banach C*-moduli, and the “conditions for some Hilbert C*-moduli ,

" to be self-dual or C*- reflexive. The isomorphism of any two Hilbert structures on a given self-
dual Hilbert C*-module  inducing equivalent norms to the given one is statéd. A topological.

. criterion of self-duality and C*-reflexivity of Hilbert I¥*.-moduli is proved. A criterion of self-
duality of the cduntably generatéd Hilbert %-modulé [,(A) is stated for arbitrary C*-algebras
. As an application t,ho classification of (,ountflbly genorated Hilbert W*. moduh by their
structure is gnven ’ ) X oty

Ve . LT
§1 Introduction v

’

At “the’ b%mnmg we fix some denotations and give celtam' facts and e\amples from
the literature: All moduli in this paper are left moduli by definition. A pre-Hilbert
UA-module over a _certain C*-algebra 9 is an A-module M cqluppcd w1th a conjugate
bllmeal mapping (MM > ‘2[ satisfying

() (x,x)=0foranyxeM, . , o -

B '  (i1) (\ ).)-Olfandonlyé(:() ' A
(itiy (x,y) =y, x)* forany x,y € M,
c(iv) {ax,y) = «(x,; y) for any « €9, x, y € M.
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.
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- with respect to.the %-norm is a pre-Hilbert A- module.
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Thc map < -y is called the A-valued inner product on M. Let us remark that we_ will.

write “pre-Hilbert C*-module” instead of “pre- Hilbert %A-module over the C*-al-.

gebra A’ whenever the concrete properties of the underlymg C*-algebra 9 are unim-
portant in the context. A pre- Hllbert C*-module is Hilbert if it is complete with respect

‘to the norm |||} = ||(-, )i%2. Two Hilbert 9-moduli {M, (-, Ym}, {N, (-, -)n}- over a

certain fixed C*-algebra 9 are isomorphic if there exists a bijective Q[ lmear bounded
map, B: M— N such ‘that (x, y)m = (B(x),rB y))x for'any x,y€ M. A Hilbert -
module over a certa.m'C*-algebra A is called. finitely (resp., countably, countably in-

i /zmtely) genemled if it is finitely (resp., countably, countably infinitely) generated

as an 9-module, cf. [9]. A C*-suhmodule M of a ‘certain Hilbert C*-module {N, (; DN
is a Hilbert C*-submodule of N if {M, (-; -)}-is a Hilbert C* module A pre- Hllbert C*

* submodule {M, (:, -)} of a certain pre-Hilbert C*-module {N,'(:, -)} is a direct summand

of N if any clcmcnt of N has'a (unique) deco\mposntlon mto ‘the sum of an element -of
M and an element of the or thogonal w1th respect to (-, -) complcment of M. o

1 . ~

Lct us. consnder some cxampleq ) , ' .

/

(i) Any C% algebm 9 becomes.a Hllbert % modulc with the inner product ( Y bcmg de
fined by (a, b)sr = ab* for any a, b€ Av

(ii) Any Hilbert spacc is a'Hilbert C*-module over 'the C*-algcbra C.

(iii) Let I be an index.set and let {Da}acs be a collection of left ideals of a certain O*-algcbr.m
9 indexed by I. Then the set of all I-tuples X = {za}aes for which the sum Z’ x,,x,,* converges’

¢

(iv) ‘Let H be a Hilbert spice and % be a C*-algebra: The algebralc tensor product 91 ® 1 be-
comes a pre-Hilbert %-module with the inner product (:, -).defined on clementary tensors by

,(a@f b @ n) = ab*(§, 7. Obv iously, if the Hilbert space H is finite-dimensional, then

U ® Cm'is isomorphic to the set AT of n-tuples of elements of A. Let us remark thatthe norm-
closure of A ® Iris denoted by L,(A), and it plays an important role describing propertles of*
a.rblt,mry countably generated Hilbert %-moduli, cf.’[9: Th. 2].

(v) Let § = (E,'p, K, H) be a locally trivial Hilbert bundle over a compact space K. Denote
by I'(£) the set of all continuous sections of this bundle. Then I'(£) becomies in a natuml way "’
a Hilbert C(K)-module 5pllttmg the i inner products of the flbres 111, z € K, cf. [2 p- 48—49].

- We deiiote by M’ the sét of all bounded module maps f:-I Mo Followmg W. L.

. PascHkE [14] a Hilbert C*- module M is called self-dual if every map r € M is of the
-form {-; a,) for some a, € M. W. L. Paschke proved that in the casc of %A being-a W*-
~ algebra the A- valued inner product on a pre-Hilbert %-module {M, (-, )} lifts to an
_A-valued inner product (-, -)p on the Banach A‘module M’ turning {M’, (:, -)p} into *

a self-dual Hilbert 9-module, ¢f. [14: Th. 3.2]. A.S. MiSCENKO bhov»ed that every
finitely generated Hilbert C*-module is self-dual, cf. [12]. P. P. SawororNow: got

Denote by. M""-the 9- fnodule of all bounded module maps from M’ into A. Let g be

c e

.the result that every Hilbert %-module over a finite- dimensional C*- algebxa Ais self- - '
_dual; ef. {19: Th. 3]. .

the module map ¢: M.— M” defined by g(m) 7] = (r(m))* for each m € M, any .

7€ M'. A Banach C*-module M over U is called C*-reflexive (or U-reflexive) ) if the mo-

dule-mdp g is a module isomorphism, cf. [13]. For a Hilbert C*-module the map ¢
is automatically an isometry [13: Cor. 1.1].'It turns out that for Hilbert W*-moduli
the C*- reflemwty is-équivalent to the sclf-duality [14: Th. 3.2]. W. L. PASCHKE [16]
proved that for any Hilbert %A-module M over a certain C*-algebra A the A-valued
inner product can be extended to the A- bldual Banach A-miodule M""- tmnmg it into

a C*—reflexlve Hilbert %-module.

The paper is organized’ as follows: The second part is concerned. with the defml-

._txon of the notion “‘self-dual Hilbert C*-module”.. We show that the property of a
Hilbert C*-module to be self-dual (in 'the sense-of [14]) depends not on the structure of .

the given inner product, but only on the-existence of an inner product on thé under-:

.o . : ‘
’ . .
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lymg ‘Banach C*-module inducing an eqmvalent Hllbert norm and rea,llzmg the con-
dition of self- duallty (Proposition 2.2). A new definition of this notion is given (Defi- ~
_ nition 2.1).describing it on the category of Banach C*-moduli. As a consequence we
get that on self-dual Hilbert C*-moduli any two Hilbert structures inducing equiva- -
lent norms to the given ohe are isomorphic (Theorem 2.6). We prove: ‘that'any self- -
dual Hilbert C*-submodule of an arbltrary pre- Hllben C*-module 1s a dlrect sum-. -
-mand (Theorem 2.7). -
. In the third part, Hilbert W*-moduli are treated. We characterize C*-refle\n e (and '
. hence, self- dual) Hilbert W*-moduli by their inner topologlcal properties (Theorem :
3.2). Also an cxample ofa non- -C*-reflexive Hilbert - module’ ‘overa certaincommuta- _.
~ tive unital W*-algebra 9 is'given (Example 3.6) contradlctmg [13: Th. 2.1]. '
The fourth part of this paper is concerned with the Hilbert %-module ,(A) over
certain C*-algebras %, (%) being standard for all countably generated Hilbert %- .
moduli insthe sense of [9: Th. 2]. We give a crlterlon of self- duahty of 1,(A) (Theoxem i
4.3). Moreover, we show that every Hilbert 9-module over a certain C*-algebra -
is self—dual if and only-if U is finite-dimensiohal’ (Proposition 4.4)."As an application
.. we get thé classification of.all countably generated self dual Hllbert w* moduh by
: thelr structure (Proposmon 4.7). _ o N

¢

/ - X

-7 §2 The notlon “seli dual Hllbert C*-module” — a category concept . .

W L PASCHKL [14] and other authons [12 18] have defined that a Hilbert - module
M, (-, ) over a certain C*-algebra  is self-dual if and only if every bounded module
map f € M’ is of the form (-, a;) for some a; € M. We give another defmmon .

. Definition 2.1: A Banach - module M over a certain C*-algebra, 9 is called'a’ -
self-dual Hilbert A-niodule over A if there custs an Y- valucd inner product ¢, ) on'.
M with the properties: . 7
(i) The norm induced on M by the?I valued i inner product 'S ) 18 equnalcnt to the
/given norm on M.
(ii) The map ¢: M — M’ defmcd by the formula pla) =, a) (a € \I) is sur_]ectxve

Thls definition seems to be weaker than the other one. In the follomng, howevm
‘ we prove the equivalence of both definitions. As a result we can show the categorlcal
* sense of the notion for the category of Banach C*-moduli. , 4

. Proposn:(xon 2.2: Let: U be a C*-algebra. Let M be an A- module tumzng into a self- .
/ dudl (in the sense of [14]) Hilbert A-module with the A-valued inner product (-, -),, and - -
turning into a Hilbert A-module with the A-valued inner product (-, -y,. We suppose the
‘equivalence of the norms ||-|l, and ||-|l, on M and the compleleness of M wzéh respect to
A them. '

Then M, (-, -)o} s a self-dual (in lhe sense of [14] yH ilbert A-module and there exists a
bounded U-linear operator B: M — M with the following properties:
(b, a), = (b B(a) )1 for any a, b € M. .
(n) Bis one-to-one and, n addition, self- ad7oml and positive on both {M, (-, Nt and

O, () : ‘
. (i) B has an inverse B~} , which is bmmded and N-linear. For B-1 the properties ‘of

ilem (ii) are valid and (b, a.)l = (b, B-}(a)), for any a,b € M.

~ “Proof: (i) Since {M, (, )} is self-dual, for cach a € M there exists an element :
BayeM such that (-, a), = (., B a))l on M. The map B i is U-linear. Since the i 1nequa.- -
lity

T lally S K lalk, < Lllally (k1€ ©, ool | L
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is valid for any a €M by supposntnon and because of the mequallty
lB(d)le'_ = [KB(a), Bla))lla = IKB(a); el ' ‘
= IIB(a)Ilz lall, = ¢ [IB(a)ll; llall, . 2)

- (cf. [14: Prop. 2.3] and (1)) we get the boundedness of B. It does not depend on the

mner product. ) . .
(i) We state the equalities (a, b € M) . ‘ : s ~
(B(a), b)n = (b, B(a)),* = (b, a),* = (a, hYs = (a, B(b)),, V

J(B(), b = (B(a), Bb)), = (a, Bb)), = a, B

This is enough to show ‘B = B* with respect to both inner products The other pro-
pertles of B are trivial deductions now. In partlcular we get that B is a oné-to-one
mappmg

(1ii) Because of the inequality

lall,® = 42 jlafl,* = ’»2 (Ka, aollor = 1»" i€, B(a Dilla = R IB@), llally

. béing valid for any a € )l (cf. ( ) and [14 Prop. 2. 3] we get the connectlon

lall, = 42 ||B(a)lly = &% ||Bllop.: llall, .forany ae M. ("i) o

~

Smce B is bounded this means that every norm-fundamental sequence of the range of
B has a (unique) norm-fundamental sequence of M as. its pre- image. Moreover, B
‘maps the limit of this pre- 1mage sequence into the limit of the sequence taken in the -
range of B. Consequently, since B is U-linear the range .Im (B) is a norm-closéd
A-submodule of M independent of the inner product. The Banach %-module Im (B) .

- becomes a Hilbert 9-submodule of M with both inner products (., -), and (-, -),. Now

\

there are-three possibilities;how Im (B) can be related to the Hilbert %-module M:
“(a) Tm(B) == M, Tm (B)* == (0}.. s '
(o) Im (B)== M, Im (B)* =1{0}. .

() Im(B) =M. T

. { ’ . . ] ) o
We will show that, in fact, only (¢) can be: To rule out the first possibility we take

an element b € Im (B)! with Iespect to (-, -);, b == 0. Then we get (b, b), = (b, B(b)),
= 0 and, therefore, b = 0. This is a contradiction. The samé happens if we take
b€ Im (B)! with respect to < 2, b = 0. We get() = (B(b bY, = (B(b), B(b)), and,
therefore, B(b) = 0. Since Bis injective, b = 0 in contradiction to our choice of b.

" " To drop.the second possibility we use the fact that the canonical embedding of a -

Hilbert A-module (N;(:, -)} over a certain C*-algebra’ U .into its %A-bidual Banach
A-module N does not depend oir the.structure of the ¥-valued inner product (-, -) by
definition. Using on M the inner product ¢y wéget M =M and Im (B)""= M as

" Banach %-moduli. Now we dcfme on Im (B) a third A-valued inner. producb by the—~
formula (a, by, = (B-Y(a), B-'(h)), for any a, b’e Im(B). Itis well defined since Bis

a one-to-one, sur]ect;n e, A-linear, bounded mapping from M onto Im (B). Because of
(3) we get that {Im (B), (-, )3 is a Hilbert %-module, which is, moreover, self-dualin
the sense of [14]. Usmg the inner product (-, :); we consider Im (B)" = Im (B). This -
means Im (B) = M in contradiction to (b). )

Therefore, only the relation M = Im (B) 1is  possible. Moreover, ﬁhe bounded

-YU-linear.operator B-1: M — M, which is inverse to B, exists and satisfies the condi-

.tions of the ltems (i1) and (ii1). Finally, we show the self-duality of {M; (-, )2 anthe
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. sense of [14] We choose an 7 €N’ arbltrarlly By supposmon there e\lsts an element

b,.€ M such thatr(-)'=(;, b,;);.on M. We definee¢, = B-1(b,) € M and get7() = ¢, 0)2
on7 \I Since 7 € M’ is choosen albltrarlly we are done 1.

o Corollary 2.3: Lét {M; -, )} bea self- -dual Hilbert A-module over a C*-algebra oA

- Then for any W-valued inner product (+, -)o on M inducing an equivalent norm to the given

‘one there exists one and only one bounded NA-linear invertible positive opérator By on

{M, (3, )} with the properly( Yo = (= Bo(-)),on M. And vice versa.
This follows fx;om [10 ‘Temma 2, Th. 3] and from Proposition 2.2. - I

Corollary 2.4: Under the suppositions /ormulated in Proposztwn 2.2 beszde the ine-
qualzly (1) tkere holds the inequality .

\

CAa, ), = C(a a)2 S D(a, a), - Yy
/or some conslants C,De (0, “Fc0) and for any a € M. . .' D

Proof: We have. (a,a), = (a, B(a)); = (BY%a), B‘Iz(d» = ”Bl“llOpl(a ay,
= {|Bllop. (a, a)l for any a € M (cf. [14: Pxop 2 8] In the same way we geb (a, a), -

= |IB- 1[[0,,2(:1 a), for any a € M n o

Corollary 2.5: The operalor descnbed in I’roposytzon 2 2 has lhe prope‘rty A-?
< ]]B||op, = l'-’ where k, 1 € R are taken /'rom (n. .

This follows from (2)'and (3). The follo“mg coxollary is suggested from [1‘*) Th. 1. 1,

. Cor. 1.2],where a special case of it is stated.

Theorem 2:6; Let™) be 7 C*-alqebm and {M, (-, )} be a sel/ -dual Hzlbert A module

o ['Izen every Y- valued inner product (-, -y, on M, the norm induced from which is equiva- .
© . lent lo-the given norim, defines a-Hilbert structure on M zsomorphzc to the H zlbert slrw;ture
given by.the A-valued inner product (-, )l , b

‘Proof: By Ploposmon 2.2 there exists a bounded - lmear invertible self- adjomt

* positive operator B: M — M satisfying the equallty.(a by, = (a, B(b)), for any"

a,'b € M. The set of all bounded A-linear operators on a self-dual Hilbert %-module
is a C*-algebra’ by [14 Cor. 3.5], and an operator B is positive on the Hilbert %-md-
dule-if and only if it is positive as an‘element of this C*-algebra by [10: Lemra 2,

Th. 3). So we can find a bounded ¥-ligear invertible self-adjoint positive: operator

Remark 2.7: if the undellvmg C*-algebra 9 is commutative, then any Hllbelb_

.A-module has a umque (up to isomorphism) Hilbert structure, i.e. the propert,)l to be

self- dual is omittable in this case. This fact can be drawn flom the mvcst,lgatlons of .

" M. J. DuprE and R. M. GrLLEeTTE [3: pp. 48 —49]. Howevet, if we drop the commuta-

Ltivity condition on 9, the analogous problem of nniqueness is still open. There seems

to be some hope to solve it afflrmatnvely SN

g
\*mv we are able to obtaina very important proper ty of self~dual Hilbert C*-moduli:
Let Gis previously remark that not any Hilbert C*-submodule of.a pre- Hllbert C*-
module has to. be a direct summand, in general. - -

Theorem 2.8: Let A be C"“-algebra (N, (-, )} be any pre- H?lberl A- module and - .
MEN be « self-dual H ilbert A-submodude. Then 1\ =M@PM:

“Proof: We take the UA- valued inner product onl \l given by that oneon N reduced to i
M S N. By[14: Prop. 3.4] the injective isometric A-linear embedding ': M — N has "

,\
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“an adjoi_r';t Ql-linear bounded operator T*: N M defined on N such that
(T(m), n)y = (m', T*m)hy - : R . . {4)

for any nne M, any n € N. Because of the choice of the Hilbert structure onM and
smce T is isometric we-can rewrite (4) as (’l(m : ’J ’I""(n))>,\ = 0 for any
n E 1\ any. m € M. That’ is, any element n € N can be decomposed n = T7*(n)

+ (0. — TT*n)), where T7*(n) €, MSN and (n - ’lT*(n)) €. M*+. This decompo—’
sition is unique - :

~ Finishing thls paraor‘aph we llst some results from the lxteratme to illustrate the. -
importance of Theorem 2. 8

Corollary 2.9 [1‘3 Cor 14], [2: Prop 1], [8] ’l'he./ollou,mg is true:

(1) Let A be any C*-algebm Let (M, (-, -)) be a finitely generated Hilbert - submo- I
" dule of arj arbztmryrpre Hilbert - module (N, (,)). Then N =M DM

(ii) Let % be a finite-dimensional C*-algebra Let {M, ( -} be a ‘Hilbert g2I-t<>'ubmodulc o

' . o/ an arbztmry pre-H zlbert ‘lI module 5 )} Then \ =M Q—) M<L.

' §3‘ A topological characterimtion of self-dual and C*-reflexive Hilbort W*-moduli

The aim of the_present paragraph is to chara.ctelue self- dualnty and: P* -reflexiv 1ty ’
fora specxal class of Ililbert C*-moduli, namely, for Hilbert W*-moduli, by their i inner
topologital properties. The possibility of such a characterization is based either on °
Theorem 2.6 for self- dualnty or on the defnntlon of thé notion for C*-reflexivity. The -
ideas for the following investigations arise froth the proving technics and from the '
ental background of two papers of W. L. PAsCHKE [14,-16]. ’

Deflnltlon 3.1: Let U be a W*-algebra, {M, (., )} be a pre- Hllbcrt A-module and
P be the set of all normal states on Y. The topology induced on \I by the seml-
norms .

P (& ))"”'feP Lo LTl T e
¢ is denoted by 7,. The topology 1nduced on M by the linear functlonals /(( ), / € P,
- yYeM,is denoted by 7,.

Let ustemarkthat the topology 7, was already’ e\plxmtly defined by W. L. PASCHKE
.in [147 Remark 3.9], whereas the topology 7, was suggested to the author by the prov-
ing technics of [16: Lemma 2.3). If we define an'Y-valued inner product on the W*-
algebra, A by the formula (a, by’ = ab*, a, b € U, the topology 1, coincides with the -
© weak* topology on A. In the case of A being €. and M being an arbitrary Hilbert
" space the topology 7, is the Hilbert topology on M, but the topology 7, is'the weak "’
and weak* topology on M. That is, they do Tiot coincide, in general

.~ Theorem 3.2: Let A be « W*-alqebm and (M, () bea Hilbert - module ’I’he
folloumg conditions for M are ‘equivalent: :

-
1

(1) M is self-dual. . - (e " . oy
(1) M 4s-U- reﬂe:cwe 0 ’
(lii) The unit ball of M is t,-complele ) 7 ,
" (iv) The unit'ball of M zs T,-complete.. . ’ - )

[N \

Proof: (1) & (ii) follows from the definitions and from [14: Th. 3 2] (1) = (iii):.
Assume that the-unit-ball.of a self-dual Hilbert 9(-module M is not complete relative -
. to the topology T Denote by L the linear hull of the (,ompletlon of the unit ball of

-

.
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M relative to the topology 7,. For the e\tensmns of the semi-norms (o) from Mto L
we use the same denotations. By assumption there exists. an 7 € L\ M and-4 norm-.
bounded net -{y,}.c; = M such that for every f € P and for each ¢ > O -there is an

. -ocEIwnth/((r—y,;,r—yﬁ>'<£foranyﬂZa Wefl\/éP e> 0, x€ I andan
'arbltraryXEM I_‘hen Yo N

- Je

s - e S = 3 ¥ LT

= fI(% HVE [y 3,, YB — ¥ = (26, ‘)))

for a,ny /3, y = oc Consequently, there exists

for each X 6 M. F uzt,hermore the mequallby

—hm{(\(y)océl} R(A) , I "."(6)"

|/<x Yﬂ>l<|[\llsup{ll)all x€ly, BeDy .
shows'the boundedness of the map R: M — Y defined by (6). The U-linearity of R i is

-obvious. Thus, (6): defmes a bounded module map R. By assumption there exists an
“element z € M such that R(x) = (x, z)-for any x € M. Consequently, we arrive at-

Cwr—lm{(x,y5): €T} = (X, z). for any x € M, z € M being the 7,-limit of the norm-

. bounded net {y.}. ThlS means 7 = z € M in contradiction to our ~assumption.

<

(ii) = (i): We take an arbitrary r € M" and we suppose the 7,-completeness of the
unit ball of M. By [14:.Th, 3.2] we can lift the - valued-inner product (-, -). from M

to M turnmg M’ into a self-dual Hilbert %-module and satlsfymg the followmg pro-

. perties for the lifted mner ploduct ¢, p:

-(k’)')—(q)(\),tp()’)>n if X,y€eM; ) - | \' ~
f(x) —(w\),f>o i xe M, e MONM, / '

A_where #(y) = (-, y) for any y € M. Furthermore, (M, M) and (M, M’)D are W*-alge-

bras, (M; M) being a two-sided *-ideal in (M’, M")p. Therefore, they coincide because - .

of the properties of the lifted inner ‘product, and (r, r)p belongs to (M, M). First, let %
be o-finite and let g €.P be a faithful normal state on 9, which exists according to -
[1: p. 94, Prop. 2.3.6]. Let{H, =, 2} be the cycllc representation associated with g.

. The vector 2 € H is both cychc and separating, The linear space M equlpped with
© the inner product g((:, *)) turns into a pre-Hllbclt; space. The map g((- )) ‘M ->Cisa.

linear fnnct,lonal on it. Consequently, there exists an element 7, in the completion of

M relative to the norm g((-, -))!/? such that g((x, 7)) = g(r(‘()) for any x €M That

,means there exists a scquence {Xi}iex= 1 \I such that

!

0= hm g((\ — T Xi — - 79)) : - : .
.:‘hm g((rp(& -, ‘P(x-‘) - 7>D) o |
= lim | 7 ((p(\ — 7, 9(X;) — 7'>D) ’

i
1—00 .

‘Since the-vector Q € H is both cyclic and sepalatmg there exists u,* - hm ((p(‘( ) — 7,
P(xi) — )p = 0 by.[1: Lemma 2.5. ‘38 Lcmma 2.5.39]." This proves the 1mphcatlon
in the case of A being o-finite. . - ! .
If A is not -o-finite, there exists an mcreasmg directed net of projections {pa}aes
c= U such that pa‘)lpa is & o-finite W*-algebra for each « 6 I and w* — hm Pa = ]g;

.

1
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‘e

‘(cf (1: p. 164]). Obscrvmg pa%[p,, and (p.r) € M’ for each & € I we ‘concludé that
(par) €M for each a € I since’ (p.r, pur)p = pu(r, 7p p. and the latter belongs to
2.Up. for each x.€ I. Consequently, the 7,-limit of the bounded net {p,r}ac; belongs
to M and it is equal to r € M’. So the self—duahty of Mturns out.

(iil) & (iv)? First, if the unit ball of M is 7,-complete, then M must be self-dual as
shown above. By [14: Prop. 3.8, Remark 3.9] there follows that M is a conjugate space-
with weak* topology ,. Thercforc, the unit ball of M is 7,-complete. Secondly, let
{Xa}aes =M be a-norm-bounded 7,-fundamental net and let the’ umt ball of M be
- Ty complete Then, for any y € M, /E P, ﬁ yel, :

I/((xﬂ’ y) - /(‘/’ y> 2= f«xﬂ - X,,Xﬂ — ‘(7) f((y, y)) . A‘ A*(7)

Dcnote by L the linéar hill of the r,-completlon of the unit bhall of \[ The limit

— lim x, = ¢ exists in L. From the inequality (7) we get that the net {x,} is also
rz-fundamental and so the r,-limit x € M exists by assumption. Recall thdt L=M "
. and that_the -valyed inner product lifts from-M to M’ _turning M 2 into a’self-dual
Hilbert 9(- module I‘hus t=1 —limx, =7, — limx, =x € MI

Remark 3. 3: Let 9 be an infinite-dimensional g-finite W*-algebra and {M, (-,
be a Hilbert 9-module. 1f g is a faithful normal state on ¥, the Hilbert complet,lon of"' '
the pre- -Hilbert space { M g({ - M does not coincide with" the Hilbert %-module M,
in general . A .

Comllary 34:If 9)1 is @ W*-algebra und M is a self-dual IIzlberl A- module, then .
the C*-algebra (M, M) is a W*-subalgebm of A aund a two-sided ideal in U.

The converse is not true, in general as w1ll bc shown on the e\ample of [,(A) in §4 .
of the present paper. .

Co rolla,ry 3.5: Let U be.an infinite- dzmenszonal C*-ulgebra havzng « W*-subalgebra =
B as its two-sided ideal. Let M be a finitely generated Hilbert 9(-module’and N be an
arbitrary Hilbert 8-module. Then the direct sum M P N’ becomes « self-dual Hilbert

9[ module ’ . N -
)

~ Proof: First; we note that Nisa Hllbcrb QI modu]e, too since B is a two-sided
ideal'in 9. Furthermore, the set of bounded module mapsy: \ — A coincides with N’
because f(n) _/ 1gn) = 1gf(n) € B for any n ¢ N. We know from [12] that M is
self-dual. N’ is also self dual as it was shown in [14: Th. 3.2} 1

E\ample 3.6: Take U = lo, M = €o Wwith the - valucd inner product (a, By
= ab* for a, b € ¢,. Easy computations show that M’ = I, and M =l Th}s 1S an
elegant counter -example to [13: Th. 2.1]. : ‘ )

For the completeness’ of thc present pdmgmph we reproduce a result of W. L. Pascaki
' concerning tmothcr criterion of self-duality and C*.reflexivity of Hilbert W*-moduli.

Definition ‘i 7[14]: Let %A be a IW*.algebra, I be an index set and.{M,, {-; -)}a¢s be a collec-
tion of pre-Hilbert %A-moduli indexed by /. Let F denote the set of finitc subsets of 7, directed
upwards: by inclusion. For I-tuples x = X1, ¥y = {y.} (xa, Y. €M,)and S¢ F we set

<‘ Y>s - 24 <\a’ Yo> ’ ! N R

Lot M denote the set of I- tupl( s X = {x,} such that sup (x, X)s: S € F} is flmte Notice that for
x € M the net {(x, X)s} se r is bounded in norm and increasingly directed. We let (x, X) denote its
least upper bound.’ The net {(x, ¥)s} scF is also bounded and w*-convergent for any X,y € M.
We denote by (X, y) its w*- limit. Under co-ordinatewise operations M is a left, %-module, and.
(-, -) defined as above is"an U- valued inner product on M. We call the pre- “Hilbert %-module
M, ¢, ) the ultraweak direct sum of the moduh {llﬂ, (. )} and write 1 \I UDS M,: « € 1}

[y
.
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Theorem 3.8{14: Th. 3: 12] Let A be a W*. algebra and M be a Hzlberl A-module. Then the
/ollowmg two conditions for M are equivalent: . - i
(i) M is self-dual. ) :

(ii) There is a collection {p,}acs o/ (not necessary distinct) non-zero pro;ectzons of W such thatM . -

and UDS {‘Hpa a« €I} are 1somorphzc as Hilbert Y-moduli. -

Remark 3.9: This theorem suggests a possibility to construct other useful topologles on -

self-dual Hilbert I"*-moduli M in the following way: One must take a topology on the under-
lying W*-algebra % with-respect to which the unit ball of % is coniplete. Then one has to com-

- bine_this topology either with the map {:, -y on M_x M or with all %-linear bounded functionals
. of M. We could get topologies on M with respect to which the unit ball of M would be complete.

A *

Y / . AY
§4 A eriterion 01‘ self duallty of l2(‘lI) Applications .t ,
Let A be an arbltraly C*-algebra We consider the Hllbert 9[ modulc 1(N) mentloncd
in the introduction. It is representable as the set of all sequences a = {a;}iex = U

for which the series } a,a;* converges rclative to the norm topology in . The inner

product on it is defined as (a, by = 3 a;b;* for any a, b € L,(%A). If A has an identity
then [,(A) is countably generated The Hllbert A-module is standard for all conntably

generated Hilbert A-moduli in the sense of G. G. KASPAROV’S Stabilisation theorem -

[9:Th. 2]. Let us describe the inner structure of Z,(%f).’ Dcnote by {eitiew the canomcal
orthonormal ‘basis of I,(N). . <

"Lemmad4.1: Let o be a C*—algebra with zdenlzt y and lz(?l ) be the slandurd countably
generated Hilbért W-module. Then the mapw: f € L(A) — {f(€;)*}iex is a bijection between
T (AY- (md the -sel of all sequences a = {aities = W with the property sup llea,* +---

+ ayay*|| < 4o00.- Moreover w maps all bounded module maps of the form (p( )
= ( a} a € L, (A), into the characterzzmg element a and vice versa.

) Y . )

for any f € LAY .

Corollar y 4.2: We have Iz = llm Z fle; )* f(b,)

The statements of Lemma 4. 1 and Corollary 4.2 are mentioned by*[16] and by [5]

without proof. Since the proof is easy it will be omitted. The following theorem is an

- extension of [6: Prop. 3, Prop. 4] to the non-commutative case. It was first proved
‘by,the.author [7% Th. 22] with global C*-algebraical methods and, independently,
by O. G. FiL.rerov [5] consldermg maximal commutatlvc C*-suba]gebras ‘We repro-
duce here the proof from [7] in an ameliorated variant.

Theorem 4.3: Let A be a C*-algebra. The followzng condztzons are equivalent : \"
(1) A s finite- -dimensional. . l . _

(1) L,(A) is self-dual. o

(m) For each a € lz(‘lI) the series Z s I‘H2 converges. l

, P roof Westart witha srmple observation. If the C’*-a,lgebra. QI 1s finite- dlmcnsmnal :

it contains an identity. If [,(N) is self-dual, then the bounded module map kb defined

. by the formula i(a) = «, forany a = {a,}.e\ € 1,(A) belongs to L,(A) S L,(A)'. Thus

. A must contain an identity.

" Assume now that 9 contains an'ldentlty The Hilbert 9- module 1,(2) .is self-dual
if:and only if any norm-bounded increasing directed sequence of self-adjoint positive
elements of U is fundamental relative to the norm- topology of A, cf. Lemma 4.1.

Eqmvalenb to this condition is that all linear posrtwc functionals on 9 are normal,

ie., that the’ umvcrsal representation of A is normal and, equwalently, that ‘2[ is

L . \ , -

> : . \ 4
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reflexlve as a Banach space. The latter is true if and only if 9 is finite: d1mens1onal..
- The equivalence of the éonditions () and (iii) follows from a proposition ‘of A. Dvo-
RLszy and C. A. ROGERS {4], which can ‘be found in [17 Prop. 3 4.1, Prop. 1 6. 2] |

_Asa corollary we can extend [19 Th. 3] to these criteria:

Proposrtlon 4.4: Let ‘2[ be a C’*-algcbm The /ollowmg condztzons are equwalent

(1)U s finite-dimensional. . I o
(ii) Any Hilbert A-module M is self- duul 4
: Moreover, if the C*- -algebra U is comm?datzve and unital (or, respectwely, is a W*-al-
gebm) tkerc exists a third equwalent condition: - L
(iii) Any H zlbert A module M is “UA- reflegive. T ' ‘

Proof: The first item follows from [19: Th. 2] and from Theorem 4.3 above. To .
prove the'sccond one we consider a compact space K consisting of infinitely many «
. points. We dénote by C(K) the.set of all continuous complex-valued functions on
'K and, respectively,. by Cy(K) the set of all f €' C(K) satisfying f(x) = 0 at a cértain .
fn{ed accumulatlon point z € K. The sets C(K y-and Cy(K) are both C*—algcbras where -
the latter is a. two sided ideal in C(K). We defineon- C(K) the usual inner product -
(5w T hen- M = - {Co(K), (-, Ya} turns into- a Hilbert C(K)-module for \Vthh the
- connection M* '— M = C(K) holds. Hence, Co(K) is not Y-reflexive.
If A isan infinite-dimensional W*-algebra the counter -example is glven by Theorem .
32andThcorcm4‘%l Sy : , s

Propos1tlon 4.5: Let A be a W*-algebra or, respeclwely, a commutatzbe umtal o*--
.. . algebra. The following two condztwné are equivalent: R . c o

(1) A is fanite-dimensional. I ' '

(it). For any. Hilbert: ‘)I module N and any Hilbert ‘2[ submodule II S \ tkere kolds

N=M@M-. , R
Proof: If A is an mfmlte dxmenswnal W*-algebra both [,(A) and lz(‘)I) are non”
coinciding Hilbert - moduh where 5,(A) = L(A) and L(A)+ .= {0}..1f A = C(K) is
a commutative unital C*-algebra the Hilbert %-module {Cy(K), (-, -)a} described in _
the, proof of Propos1tlon 4.4 can be viewed as a’ Hilbert ,A-submodule of-A: But, . ;o
Co(l&) = {0} in this case and they do not, comcrdc Referrmg to [19 Th. 1 Lemina ‘3]
- 'we finish the proof 1 .

\

-

\

v -
-

Corollary £6: If QI is a-C*-algebra wzth an’ mfmzte dzmenézmzal tuo sided -W*-
“ideal, the standard countably generated Hilbert A-module L,(N) is neztker sel/ dual nor
A- reﬂexwe : N

This follows from Theorem 3.2'and Theorem. 4 3. As a further apphcatlon we de-\ . )
scribe below the struetire of self-dual and C*:reflexive countab]y generated Hilbert '
W*-moduli. That any flmtely generated Hilbert C*-module is self-dual was recalled -

. in Corollary 2.9. Similarly, .any Hilbert C*-modu]e over.a fmlte dimensional 0*-a1-
gebra is self-dual, cf. Corollary 2.9.

Proposxtlon 4.7 Let A be an W*-algebm and M be'a O*-re/leme (and hence, sel/
; dual) countably genemted Hilbert A-module. There are two posszbzlzlzes for the smwture
- of M and of A.. v .

(i) M is finitely generated and U is urbztmry .

~(ii)- M 4s the direct sum- of ‘a finilely generated. Hilbert - module and o/ a countubly
generated Hilbert B-module, where B is a finite- -dimensional two-sided C*-ideal in . _

_ If the W¥-algebra % has no finite-dimensional two-sided C*-ideuls, any counlably C
o mimztely generated Hilbert Y- module is non-self-: dual and non- C*-reﬂexwe o -

-

-

~ \ s
. ~ R .-
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Proof Let {‘.}-e\' be the system of generators of M a.s ‘)I module. By [14: Prop
3.11] and-[18: Lemma 6.7] there exists another system of! .generators {y;}iex .of M .
deduced from the first one such that (yi; iy = pi =P +0and(y;, y;) = 0 for any
i =7 Denote by La(y;) the norm-closed ¥- linear hull of y;- The Hilbert A-module

{Ly(y:), {-,.+)} is self-dual. Therefore, it is lSOD’lOl‘pth to {Ap;, (-, Yu} by Theorem 3.8°

v and (La(y;), Ly(y;)) is a two-sided W*-ideal in ¥ forany ¢ € N. Consequently, we get:

that M is lsomorphlc to the Hilbert QI module - -
{x = ,},e\ z; € Up;, Z z; :r,'* is || Jlac- covergmg} ,

" \Tow we. try to reach a situation in which the product of any two projections p;, p;

i <9) of our choice is a projection 7 if and only if 7 = p; 3= 0, For this end we use

~ an inductive process of construction. First, fix the projection p, and check all products

7, = pipi (k € N). If 7, is 8 projection for a, certain k € N and if 7 # 0, then replace
p, by the sum (p, + p, — ;) and p, by 7. If 7, = 0, then replace p, by (pl + p) and’
‘exclude p, from our choice. Finishing this first step we deal with the pairwise products
7' = p,pi (k € N) with the first factor p, in the same way. This process is ‘conti-
-nued by induction. We remark that the claimed inductive process on the projections
Apy: k € N)of U is compatlble :with the module operatxons inside N and ‘M, respecti-
vely.

Suppose now there exist more tha.n fmltely many two- sxded W*.ideals (‘l[p., Ap;) -

" of our reconstructed choice being infinite-dimensional. Then M’ & M by Theorem 3.8,

and Theorem 4.3. Suppose’ there exists no finite-dimensional two-sided C*-ideal B’
in % containing all finite-dimensional W*-ideals (pr.,‘llp.) of our reconst:ruct;ed‘

. choice. Then M’ =M by Theorem 3.8 and 'lheorem 43 1.

Fmally, we state the main problem arising lf these results are to be extended to -
the case when 9 is not necessarily a W*-algebra. W. L. PASCRKE [14: Th. 3. 2] néted
" without, proof referring to.[20] that the %-valued inner product of a Hilbert 9- “module _
lifts on to the dual Banach %-module even if % is a commutative 4 W*-algebra. The
.question is: ‘What are the conditions needed that this can be done for any Hilbert.
. 9-module over a certain C*-algebra ¥A? One- condition is that A must be an AW*-~
algebra [16: Prop. 1.1]. It.scems to be necessary that must be monotonically com-
plete and possess an analogy of the w*-topology coinciding with the topology of order
'.convergence on bounded directed nets of self-adjoint elements of 9, ¢f. Theorem 4.3,
Solving this problem one could get general criteria of self- duallty and O’*—refle\lvmy .
of Hilbert C*-moduli. - . .

\
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