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Factoring Compact Operators and ApplioximableOperators

.

'I.M. Porovict and D. T. Voza™ - S - ,

In unserer Arbelt werden zwei Gegenstande behandelt Erstens wird eine. Version, des Figiel-
Johnson Theorems iiber Faktorlslerungen kompakter Operatoren fiir geordnete Banachraume
angegeben Genauer wird gezeigt, daB jeder kompakte Operator, der einen Banachraum in’

- einen geordneten Banachra.um mit abgeschlossenem, erzcugendem Kegel (bzw. in einen Banach-
verband) abbildet, mn, kompakten Faktoren durch'einen reflexiven geordneten Banachraum

mlt”abgeschlossenem erzeugendem Kegel (bZw. durch einen verbandsgeordneten reflexiven

. Banachraum mit stetigem Absolutbetrag) faktorlslert. werden kann.- Dabcl ka,nn der zweite

Faktor positiv (bzw. als Verbandshomomorphismus) gewihlt werden:
Zweitens werden Faktorlslerungen approximierbarer Operatoren U zwischen Banachver-
banden behandelt. Wir zeigen, daB ein jeder ‘solcher Operator U mit kompakten Faktoren durch.

' cinen reflexiven Banachverband mit unbedingter Basis faktorsiert werden kann, wobei einer

der Faktoren positiv gewihlt werden kann. Daruaber hinaus geben wir €ine Bedingung an U an,
die notwendig und hinreichend dafiir ist, da beide Faktoren in dieser Zerlegung als, leferen-

. zen von posmven kompakten Oper&toren gewihlt werden kénnen. . . R

- « = - -
Hawa pa6oTa mOCBAUIEHA BYM TEMaM. Hepsan TeMa — HOBAaA BepCHﬂ TEOopeMBbl (Durenﬂ-
J#oHCOHA 0 PaKTOPH3AUMM KOMNAKTHLIX ONEPaTOPOB [AIA MOJYYMOPANOUEHHBIX 6aHaXOBHLX
TPOCTPAHCTB. A MMEHHO, NOKA3bIBaeTCA, 4TO JNI06OH KOMNAKTHHIA onepaTop M3 bHdwaxoBa
NpOCTpPaHCTBA B, TNONyyTNIOpANOYeHHOe GaHAXOBO NPOCTPAHCTBO €O 3AMKHYTHIM ' POH3BO-
RAWMM KOHYCOM (COOTBETCTBEHIO, B GaHaXomy peueTky) ¢paKTopuayeTcA € KOMNAKTHLIMU

'Q)am'opamu yepes pecb.nehcwmxoe noNyynopAnoOYeHHoe 6aHAX0BO NpOCTPAHCTBO CO 3AMHYTHIM *

. POU3BOALLMM * KOHYCOM (COOTBETCTBEHHO, uYeped peducKCHBHYIO 0aHaXoBY pemleTky ¢

~-

HenpepbiBHLIM Mofydem). .IlTpu atom BTOpoit darrop MomeT 6mTH Bu6pau NOJIOKHUTENbHBIM

- (COOTRETCTBEHHO, PELIeTOUHBIM FOMOMOpPdU3MOM). ' - |

Bropaa Tema ‘mpencrasasner coloff aucKyccuio 0 Q)aKTopuaaum( annpoucuMpreMux
0meparopoB eficTBYIOMX Mexmy GanaxosuiMu pewerkasu.. [lokaswBaercd, uTo. moGoi
Takoit oneparop U daKTOpHAYeTCA ¢ KOMIAKTHHIMU PAKTOPAMHU Yepes peqmexcuauym 6Gana-
X0By peuwerxy ¢ GeaycnoBHbLIM 6aaicoM, Mpu YeM OfMH U3 GaKTOPOB MoKeT GHITL BHIGpaH
nonoxurensieM. Bosee Toro, naerca ycsosue na U, Heo6xonumoe ¥ AOCTATOUHOE AJA TOrO
uT06H 0Ge GaKTOPLI B ITOM PA3JIOHEHMH MOTYT OhITh Bu6pauu KaK PagHOCTD MOJIOMHUTETBHEX
KOMMIAKTHBIX OTEPaTOpOB. ) )

. . . L . 4 )
Our paper is concerned wnth two topics. The first one is represented by a version of Figiel’s and
Johnson’s theorem on ‘the factorization of compact operators adaptéd to the-framework of

. ordered Banach spaces. Namely, we prove that every compact operator from a Banach space
to an orderéd Banach space with closed generating cone (respectively, a Banach lattice) factors, .-

with compact factors, thr()ugh a’reflexive ordered Banach space with closed generating cone,
the second factor being positive (respectively, a reflexive lattice-ordered Banach space ) w1th

- continuous modulus, the second factor being a Riesz homomorphnsm) .

" The second topic is provided by a discussion of the factorization of approximable operators
between Banach lattices. We prove that every such operator U factors through a reflexive
Banach lattice with an unconditional basis, the factors being compact and one of them being

.positive. We also give a 'necessary and sufficient condition on U under which both factors in-

the mentxoned factorization can.be taken to be dnfferencesnof positive compact opemtors
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1 Introductlon

All operators in thls paper which act between Bapach spaces will be assumed to be
. linear and bounded. . b ‘

“The classical factoruatxon theorem due to T. FicIEL [5] and W. B. Jorrsox [7]
asserts that every compact operator U from a Banach space E to a Banach space #
factors according the scheme

E Y% G"’+F S, ‘. ) S @)-
: where @ is a reflexive Banach’ space and the factors U, U, are compact This scheme
. means that U = U,U,. In the situation when E andjor F belong to a special class £
. of Banach spaces, it is natural to try to find the reflexive factorization space G in
(1.1) among the members of a class more or less related to €. In Section 2 of our paper
we examine front this viewpoint two such classes £, namely the class g, of all ordered -
Banach spaces with closed generating cones and the class &, of all Banach lattices.
It is shown that £, is stable under factorization, that is, the hypothesis that F belongs
‘to €; ensures the possibility of choosmg G among the members of the same class.
‘The s1tuatlon is more involved for €,. Thus, the answer to the following problem
seems to be stil unknown

1

Problem 1.1: Does’ every compact operator U from a Banach space E to a Banach
lattice F factor accordmg (1 1) with G areflexive Banach lattice and U, U2 compact?

C.D. ALIPRA\’TIS and O. BURKINSHAW [1] have grven a partial answer to Prdblem <
1.1: namely, they have proved that whenever a given compact operator ‘from a Ba-
nach space to:a’ Banach lattice factors, with compact factors, through a Banach
lattice, then it'also factors, with compact factors, through a reflexive Banach lattice.

In our paper we present an alternative scheme of factorization which applles to.
every compact operator U from' a Banach space to a Banach lattice. Namely, we
.prove that U factors accordmg (1.1) so that the reflexive space G belongs to the class
£, of so-called lattice-ordered Banach spaces with. continuous moduli, the factors are *

- compact and U,-is a Riesz homomorphism.-The class &, contains all Banach lattices.
as well as some classical lattice-ordered Banach spaces whlch are not Banach lattices,
such as Sobolev spaces and. Besov spaces. We consider our factorization result as
being mdependcnt of the answer to Problem 1.1. Indeed, the fact that the order struc- -
ture on @ in our scheme is weaker than the structure of a Banach lattice is not due to

- the lack of an answer to that problem; it is a logical consequence of the condition im-
poscd to U, to be a compact Riesz homomorphism. Recall that a Riesz homomorphism
is a linear operator 7' between two Riesz spaces G, F such that [’I‘(x)| =T(|z|) for
every z€Q.

As an application® of our factorization results we complete Figiel’s operatorral
characterization of Banach spaces without the approximation property with some
‘additional statements corresponding to the situations when ¥ belongs to &, or ;.

It was communicated by W. B. Johnson to the authors of [1] that the answer to. .-

- Problem 1.1 is affirmative provided that F has the approximation property; more-
over, in thislsituation G can even be taken to have an unconditional basis. Johnson’s
communication was the starting point for our results exposed in Section 3. In the first
place, we present a proof of a stronger version of Johnson’s result, showing that we,
always can take the compact factor U, to be positive; dur proof makes use. of a.
relatively recent principle of local reflexivity for™ orderediBanach spaces due- to. ,
K. D. KtrsTEN [8]. Second, we consider the case when E is also a Banach lattice:
and we find a necessary and sufficient condition on U under which both factors
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in (i 1) can bé choosen to be differences of _positive compact dperatore and G to be

. a reflexive Banach lattice with an unconditional basis (the order. rela.tlon on (@ bemg o

canonically defined by its basis). . |
A part of the results exposed in the present paper made the obJect of the first
author’s thesis [13]. S
The reader is suppoSed to be acquainted with some general facts about RIeSZ spaces,
ordered ‘Banach spaces, Banach lattices and operators between them; we refer him'
-to the excellent monographs (3, 12, 14] for the needed information. We recall here
some notions and notations to be used throughout Sections 2 and 3. For a Banach
- space E, we denote by Jg: E — E'’ the canonical map. Given an operator U betweenx
two Banach spaces E and F, we denote by ||U]j its operator norm. U is called approz-

émable provided that it belongs to the closure of the subspace of all finite-rank ope- .

l

rators from E to F taken with x;gspect to the operator norm. .

-~

2 The factorization of.compact operators:

~

In this section we study the factorization of a compact operator defined on a Banach
space E and taking values in an ordered Banach space F. We shall be concerned with

* two types of order structures which can be introduced on the factorization space G,
described by Defmltlons 2.1 and 2.2 bclow - -

Def lnltlon 2.1: An ordered Banach space with closed generaling cone is an ordered’
Banach space G w1th the property that the cone G, is closed and verifies the equality
G, — G+ =G . .

Defin 1t10n 2 2: A lattice-ordered Banach space u,zth continuous modulus is a lattice-
ordered Banach space G with the property that the map z > |z is continuous for the
norm of G. - _ ‘ Co '

_While the class of ordered Banach spaces indicated by Definition 2.1 has received considera-
tion in the. theory of ordered topological vector spaces (sce for instance [12]), it secms to us
that its subclass indicated by Definition-2.2 has not yet made the object of a special study.
We hope we could emphasize its importance by underlining the role played by it in the facto-
rization of compact operators. Obviously, every Banach lattice is a lattice-ordered Banach’
space with continuous modulus: However, our factorization theorem yields in general lattice-
ordered Banach spaces which are not, Banach lattices (see Proposition 2.2 below); for this

" reason, we think it is useful to know that there are examples of classical Banach spaces which
are lattice-ordered Banach spaces with continuous moduli but not Banach lattices. We confine
ourselves to mention the Sobolev spaces L,?(R") for 1 < p < oo and the Besov spaces A ,P-9(R")

forO0<a< 1,1 =p S o0andl =g < oo, We draw the attention on the fact that there are

lattice-ordered Banach spaces for which the map z +» |2| is not norm-continuous:examples

are provided by the Sobolev space L,°(R") and by the spaces of Lipschitz functions A,(R")
for 0 < oo < 1 (see [15: Ch. V, §§ 2, 4, 5] for the definitions of the above mentioned spaces).
In all examples above, we have assumed that the Banach spaces under consideration were
endowed with the usual order relation n.t,tached to.a function space.

. The notion of an ordered Banach space ha.vmg a principal latticial extension intro-
duced by the second author will occur in the statement of the factorization theomm
consequently, we reproduce below the definition: from [16]. The terminology * prm-
cipal latticial extension” is motivated by the,conne\xon existing between this notion
and the theory of so-called “principal modules” developed by the second author;
see [16] for details. ' ‘ ’

S
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Defmltlon 2 3: An ordered Banach space @ is said to have a principal ldtticial
exténsion provided that there is a Riesz space G containing @ as a vector subspace
such that the following hold:

(i) G, =G, nG.
(i1) There is a dense vector subspace G,-of G such that for every ¢ > 0 and z € G
_ there are a linear operator U: G -G and y € G with the propertles 0<U <1
(I' = the identity mapon G), U(Q)= G and the restriction of U to @ is norm-contin- -
uous, Ux) =20, (I — U) (x,,) S y (the posmve part of x being taken in G) and
Yl <e

The 1mportance of sich ordered Bana.ch spaces 18 ]ustlfled by the followmg theorem,
- also reproduced from [16].
Let G be a reflexive ordered Banach space with closed generating cone and let F be a
- Banach lattice with order continuous norm. Suppose that G kas a principal latticial
_extension. Then for every operators S, T: G — F such that T is compactand0 < S < T,
" it follows that S belongs to the closed two-sided algebraical ideal generated by T. :
The proof of the factorization theorem in this section relies on the followjng pro- .
position, which represents a version of the well-known lemma of W.J. Davis et al.
[4] adapted to the situation of a compact subset of an ordered Banach space. It seems
to us that the construction of the factorization space described in [4] (and also employ-
ed by C. D. ALrpEanTis and O. BurkixsHAW [1]) cannot be lmmedlately adapted to
our purposes for this reason, the construction of our factonzatlon space is somewhat .
- different. ‘ N

Propos1t10n 2.1: Let F bé a Banach space and K be a compact subset of F. There
are a vector subspace G of F and a norm |||-]|| on G $uch that the following hold :.

(1) K is contained in G as a compact subset for ||| - |||
() (G, |- ]}l) is a reflexive Banach space.-
_ (iti) The inclusion map from the Banach space G to the Banach space F is compact.
(iv) If F is an ordered Banach space with closed generating cone, then G is an ordered,
Banach space with closed generating cone for thé order relation induced by the order on F.
(v) Suppose that F is a Banach lattice. Then G is a Riesz subspace of F and the map
x > |z| on G is continuous for |||-|||; if in addzlum, Fis d-order complete, thén G has
a pmwzpal latticial extension.. ‘

Proof: For an arbltrary Banach space F the assertlons (1) — (1i1) are consequences
“of the mentloned lemma in [4]. We are pre01sely mterested in the additional properties

+ (iv) and (v).

" Let us therefore begm w1th the case when F is'an ordered Banach's space with closed
generating cone. By [9: Prop. 1.e.2], we find a sequence (z,;)n21 F such "that
KC c—o (z,) and z, — 0. By [12: Ch. II, Cor. 1.14], one can write Ty =2 — ‘x,’ with

z,, x,, '€ F, and x,, , x, — 0. Let (y,,),,z1 be defined by ¥, = x,, » Yon = .. As

Yn f> O there i is a sequence of mtegers 1=mn, < ny < --~such that Z 2% gup ||yafi2.
k=1 . mEn<ng,

< o0. Let V, be the vector subspace generatcd by {yn | m =1 < nkﬂ} Define the

norm p, on V, by p,(2) = inf {||z|| + ||z”']|| 2, 2" € Vi n F,;2 =2’ — 2""}; the set in
the right side is nonvoid as y, ng. We have ° . ) .
el S pe2), z€ Ves” el = pule), e Vin Fi. o (2.1)

Let V be the Banach space of all sequences ¢ = (zk)k21 such that z € Vi and. |[Clly

12 . / .
(Z 22k, Pie(2) ) < 0. Vis a reflexive Banach space, as being an l,-sum of finite-

{
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dlmensmnal Banach spaces Consnder the operator T:V — F given by T({) = ): 2.
'is approxtmab]e indeed, if T,: V — F is the finite- rank operator given by T (C)
= Zz,,, then, taking into account (2. 1)‘ we have
k=1 . K

Iz 2 @l S Z' llzell = Z 2 2% |1z

—n+l .-
12 12« r .
( Z Q- 2k) ( Z' 9% ||2k||2) ‘. . . N
i k=n+1 N k=n+1 : N o
: 1/2 -1/2 -
L= ( Z 2- %) ( Z 2 k(zk )
Rt k=n+1. k=n+1
s e
v ( ).7 2- 2") 1zl - .
. k=n¥1 ] : .

The above calculatlon shows in partlcular that T is well defined. Let V N V/Ker T

I, F be the canonical factorization of 7' (thé norm on V/Ker T bemg the quo- -
tient norm). Put' G = ’1‘(V) and define ‘||| -|]|.by |}lz|]| = IT-1(2)|. AsT is compact
the assertion (iii) in the statement of the proposition. is proved. The assertion (ii) is
also verified, as G is isometrically isomorphic to a quotient of a reflexive Banach
space. For the proof of (i), remark that because of |||y,l|| £ 2*pe(¥s) = 2Xlyull (74
= n < Mmy,), the closed absolutely convex hull of {2y,, | n = 1}, taken in (G, |||-]|}),
is compact. Moreover, it is closed in F and contains, therefore, the set K. This proves
that K is a compact subsét of (G, |}|*]).

It remains to prove (iv). Clearly, G n'F, is a convex cone in ¥e closed for |||-]}|. To
see that it generates G, let 2'€ G be glven There 180 = (%)iz1 € V such that z = T'({).
By the definition of pk, there are'z’, z,”' € V, n F, such that max (pk(z,,) pk(zk )).
< 2p(%) and 2, = 2z, — z”’ By lettmgg = (&' ez, & = (2" )e=1, ONe obtains that
CCEVZ—T(C)GGD "'=T{" e@nF, and z = 2’ — 2"". >

..Before undertaking the case of a Banach lattice ¥, we pause in order to establish
some notations and to provea lemma. Given a Banach lattice F and z € F,, we denote -
by F; the order ideal in F generated by z, and by C,, the set of components of z,
that is' theset {y € F |y A (x — y) = 0}. C,is a-Boolean algebra with respect to the
operations A and v. Given a Boolean subalgebra X of C., we shall denote by Sp (X)
the vector subspace of F generated by 2.

. ~ .
Lemma 2.1: Let F be a o-order complete Banach lattice and:let K be a compact sub-
selof F. Therearex € F, and a sequence (z,) = Sp (C’ ) such that Zn —> 0 and K — @ (z,);

Proof: We shall establish first. the followmg assertlon
(A) Let z € F,. Every y € F, can be wntten as Z‘ 2 My, Wlth U € Sp (C,) and

lluall < 2772 Jjyll. n=1
Indeed, Freudenthal’s theorem shows that Sp (C;) is densé‘in F,. Consequently,
one can define mductlvely z, €Sp (C,) so that ||y — z, — --- — Tyl = 27%" ||yl and

|l < 2-22=1 |ly||. The decomposition we look for is'obtained by taking 2"z, as u,,.
We prove now the lemma. By [9: Prop l.e.2], we fmd a sequence (y,,),,g1 C F such

that y, -0 and Kc 6 (y,). Let z = Z’ 277 |y,|- By (A one can wntey,, = Z‘ 2-"x. .

n=1 m=1

with z,,, € Sp (C,) and [1Zamll = 2—""r2 ||y,,|| We have K< 'to (y,,) &0 (Tam)nmz1- On

15 Ana!ysls Bd. 9, Heft 3 (1990)
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the other side, the double sequence (:z:,,,,,) has the property that for every ¢ > 0, the

" set {(n, m) | {|xamll > ¢ is finite. Consequently, one can, rearrange the z,,’s - as a se-

quence (z Cn) convergmg to 0 n ,

We return now to the proof of Proposition 2.1 by considering the case of a Banach
lattice F. Suppose'first that F is g-order complete. By Lemma 2.1, there are x € F,
and (Zp)s=; = Sp (C; ) so that K &= ¢o (:z:,,) and z, = 0. We can find a sequence of-

integers 1 = n, < ny < - “such that 222" sup  |lz,ll? < oo and an increasing
=1 N SA<Ngyy

sequence (Z;)y», of finite Boolean suba]gebras of C, such that z, € Sp (&) form, = n
"< M4y, Let V be the Banach space of all sequences ¢ = (2)i», such that 2, € Sp (2}),

oo

. : 12
and.|¢lly = (2 22 |]z {2) < oo. Consider the operator T': V — F given by T)
oo k

E % and let_V — V/Ker T Iy F bethe canonical factorizationof 7. PutG’ T(V)

and=def1ne Mk by |||z||| = H’f' 1(2)]l. As in the first part of the proof one verifies -

that (1)— (m) hold. It remains to prove (v). To this purpose callasequence ¢ = (2 )iz0
admissible for 2z € F if z, =0, z,, € Sp (Zk) for. k 2 1 2 —2z and }.c (222"I]zk

1/2

— z,,_1|12 < . Tt is easnly seen that 2 E Gifand only if there is a sequence admissible -

for z;in this case, |||2||| equals.the infimum of thec numbers 4, where { runs over all :

sequences which are admissible for z: It follows- immediately that G i i$ a Riesz subspace
of F: indeed, if z € G and if (z,) is an admissible sequence for z, then (|z,]) is an ad-

missible sequence for. ]z] (remark that the Sp (X)’s are Riesz subspa.ces) Let us prove '

that the map 2z > [z] is continuous for |[|:|]|. So let z € G be given and let (z) be an

'

- k2~+122k[]zk — 2k—1l|2 < e - C (2.2

and put M = 2%k Z’ 2 2). It suffices to prove that ||| |z + y] 12| ]]]2\< lle
whenever |||y]||2 < M le So let y € G verlfy yIN? < M- 1e and let (yk) be an admis-

sible sequence for y such. that R o N
T D Py — gl <M e o | Lo 23
. =L ‘ L ] , : : . .
We-have . o
T : ke { ke Y2 [ ke . : 12 :
el = 2 g, = vie-all = (2 2‘“) (Z 2% lye — yk_lllz) T (249)

_ which 1mphes 22k ||yk I < &. The sequence (y;’ )k>o glven by Y =0 for k< k.,

v’ = y for k = k,, is still admissible for ¥ the sequence (|ze + %'] — |2e])ezo 18 ad-
missible for |z + y| - |2]. Consequently,

Fa

Il 1= + yl — IZI IlI2 < )_722" I lzk + ykl — |2l — |z + yk—ll + 12l II2

-Dnvxde the sum mto two pa.rts namely up to &, and from k, + 1. The first equa.ls

22"‘ 2w, + el — lzk,l P = 22"‘ H?/lr,ll2 < - g

§
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The second is dominated.by C o R - -
2 Z 22" 2 + %) =2 + yk—ll II? + 2 Z 22" I Izk] - Izk 1| IR :

By v1rtue of (2. 2), the second sum in the a.bove expression is dommated by & while the

. first sum is dommated by i

. . . . . , ) S .

2 2% ||z, — 2z + Y — ?/1:—1”2 : o ' B s
k=lg+1 .. o v . L
I

=2 2 22" e — 2 1II2 +2 X 22" Hyk - yk P < 26 + 26 = 45,

v, k=ket k=ket

by vnrtue of (2.2) and (2 3). Fmally, Wiz + yl — |2 |||2 < 1le.

The last thmg to do is to construct a prmcxpal latticial extension for G.. Accordmg ’

- ~ to Defmltlon 2‘3 we take G F and G, = USp (). leen z€ Gy, defme U B

F—>Fby U(z) _sup,I (zAnx+)forz€ F ThenO sUELU@ 20, — U)(x,)
= 0. It remains to prove that U(G)= G and that the restriction of U to G is conti-
nuous for [|]-|l]. Let, ko'be that mteger for which z € Sp (Zk.), let z¢ @ and let (z,)

be an admlss1b]e sequence-for z such that 2_2‘”‘ ||zk — P =2 |||z]||2 The sequence '

k=1
(Welezo glven by ‘w, = 0 for k< ko, we'= Ulz) for k = k,, is admissible for Ul(z).
Indeed, on one side we have w, — U(z) and 1w, € Sp (Zk) for k =1, as U(Sp (2,,))
= Sp (Z%) \whenever k= k. On the other snde,

i

. « o
' B 2% flew P Z 22"' e — ze-ali®

' o 'szu-|1zk°u?,+2|uzn|2 T -

A

A calculatlon similar to that which was done in (2.4) yields 2% ||z, ||2 = M ]|]z|]|2: -

with M dependmg only on k,. Hence, U(z) € G and [||U(2)|||. < (M + 2)V/2||Jz]|}.

In the situation'when F is not c-order complete, one applies the pregeding construc- -

tion to F' and to its compact subset J;(K); one obtains the Riesz subspace G, of F
‘endowed with the norm HI1+]lli- Then one takes Jy"Y(G,) as G and one defmes -1

by {lizlll = I/l ¥ : ( \

We are now in posmon to state the main result in this sectlon

'
L1

Theorem 1 2. 1: :"Let E, F be Banach spaces und let U: E =F be a compact opemtor
Then U factors accordmg the scheme E L G L24 F where G isa reflexive Banach space;
the factors U,, U, are compact and U, is one-to-one. Moreover; under additional assump-
" tionson E, F and U, it /ollous that the space Gand tke factors U,, U 2 can be taken to have
the /ollowmg additional properties: . ' oo . C o

2 2% ho, — w2 = °2"°‘I|U(Zk.)||2 +‘:}—%;122k HU(Zk), = Ulzi)l®. e

“(i) G is an-grdered Banach space with closed generating cone and U,is poszlwe provzd- :

ed that F is an ordered Banach space with: closed generating cone.
(ii) G is a lattice-ordered Banach space with continuous modulus and Uj is.a Rzesz

. homomorphism provided that F is « Banach lattice; if in addition, F is. a-order complete,

then G can also be taken to have a prmczpal lattical extension. o

’
15% : . o

~
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 In cases (1) and (i) abm)e U, can be taken posztwe if E is an ordered Banach space
and U is positive. =~ y ,
Proof Apply Proposntlon 2.1 taking the closure of {U(z) |z € E ||x|| = 1} as K 1

As it .was already pointed out in Section 1, the factorization scheme proposed by -
Theorem 2.1 yields in general an order structure on @ weaker than the structure of a
-/ Banach lattice.: This is due to the condition imposed to U, to be a'compact Riesz
homomorphlsm ‘Indeed, it suffices to take any nondiscrete Banach lattice as F and .
any compact operator with dense ra.nge as U; the followmg proposmon will show that -_.
the factorlzatlon space G cannot be'a Banach lattice in thls sntuatlon

Proposition 2. 2 Let G, F be Banach lattzces and let U2 G’ — F be a compact Rzesz ’
homomorphism with.dense range. Then F is discrete (that is, every nonzero order ideal
in F contains a nonzero alomic element) and has order continuous norm.

Proof: Let F, be the set of those y € F such that the order interval [ —|y], |y|] is .
compact for the norm. By the well-known result of B. WALSH [17], it suffices to.prove ~ -
that F,J = F. -

 Fy is closed. Indeed, let (ya) = Fo, y,, —y. Forz P 1- |y|, [y|], letz, =(z v (=|yal))
A |yal. Then 2z, € [—|¥al, |y,,] and |z — z,| < |ly — y,|; we easily infer from these

" - relations that [—|y|, |y|] is compact.

- We have Uy(G) = F,. To see this, let z € G let I = [—}Uz(x)l /]Ug(x)l] and let
M. = InU,(G). M is totally bounded. Indeed, if y, = Ue(x,,) € M, let z,* be glven by

7

za' = (2 v (=lZD)) Al2l. ' (25)

Thcn z, € [— |z}, |z|) and Uy(z,") = y,. As U, is cornpact the sequence (y,) contains
a convergent subsequence, the total -boundedness of M being thus' proved. M is
dense in I/ for if y € 7, there is by hypothesis (x,,) — G such that Uy(z,) — y. Consider °
z,' obtamed from z, via formula (2 5): we have Uz(x . E M and U,(z,’) — y. In con-
clusion, I'is compact. v C )
T As Fo is closed and Uz(G) ns densc in F, it follows that F,=F 1

, . T. FigIEr: (51 has proved that a Banach space I has not the apprommatlon pro-
perty if and only if there is a. reflexive Banach space G 'and an operator U: G —F
which is one-to-one, compact and nona.ppro“mable Our factorization theorem allows
us to complete Flglel s statement in the situation when F is endowed with order -
structures. .- . ;

\

Co rollar y2:1: Let Fbea Banach space without the approximation properly 1 ’here
are a. re/lexzve Banach space G and an operator. U : G — F which is one-to-one, compact
and nonapproximable. Moreover, under additional assumptions on F, it /ollous that G

and U can be taken to have the /ollowzng additional properties: “

(1) @ is-an-ordered Banach space with closed generatmg cone and.U is 'posztwe provided
that F is an ordered.Banach space: with closed generatzng cone.

(i1) @ is a lattice-ordered Banach space with continuous modulus and U is a Riesz
homomorphzsm provided that F is a Banach lattice; if in addition, F has order continuous
‘norm, than G can also-be taken to have the property that the convex cone K. (G, F) of all
'posztwe compact operators from G to F be a face of the convex cone of all positive opera-
tors from G to F, while the convex cone of all posztwe approximable operators /rom G to
Fbea (proper) /ace of K.(G, F). '

/

-
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Proof: By Figiel’s'theorem, there are a Banach space H and a compact nonapprox- '

Jmable operator V: H — F. By Theorem 2.1, V factors according the scheme Ho @
Ly F where G- is reflexive and U is one- to-one, compact and nonapproxnmable, as

V is nonapproximable. The additional properties 6f G'and U are consequences of the |

- additional properties described in Theorem 2.1; the last statement in (ii) above fol-
lows from the fact that G has a principal latticial extension, by takmg into’ account
the theorem from [16] reproduced at the beginning of this section B

We recall that there are Banach lattices with order continiious norm and without
the approximation property. For instance, A. Szankowski’s Banach lattice wnthout
the appronmatlon property is even reflemve see (10].

s . . -~ -
'

[ ‘.
The paper [1] encloses the following lmes \

“Finally, it should be mentioned that W. B. Johrison has pointed out to us that hls
techmques in'[14] yield also the following result: If T: Z — X is a compact, operator
and X is a Banach lattice with-the approximation property, then T factors with,conipact
factors (which can be taken poszlzve if T is positive) through a reﬂexwe Banach space
with an unconditional basis.” (The reference [14] is our reference [7] )

The.-above statement.comprises two distinct’ parts:

“a) the _possibility of factoring every compact operator. U: E — F (E a Banachr

space, F’a Banach lattice w1th the approx:matlon property) accordmg the scheme

?
S

EYy gl Ly P . e ARGV

’ where G is a reflexive Banach space with at uncondmonal basns and the factors U,, U,
are compact; . N

'b) the’ possnblllty of choosmg both U, and U, to be posmve in case U is posmve
(E also being a Banatch lattice in this case). ’
The assertlons a) and b) a.bove are the starting pomt for our study in this section.

_ 'As concerns a), we shall give it a complete proof, replacing the hypothcsns that F hus the
approximation property by the more general hypothesis that U is approximable. The proof is
, entircly elementary in case F is g-order complete and a bit less elementary if F is not so, in
which case an appeal to the local reflexlvmy principle is necessary. The classical form of that
principle yields a factorization scheme (3.1) in which the factors have no positivity propgrties.
" 'However, K. D. KGRSTEN gave in the paper (8], which appeared .in the same year as [1], an
1mproved version of the local reflexivity principle which applies to the specific situation of

- ordered Banach spaces. By using this improved version we can prove in fact a stronger form .

of a): namely, any of the factors U,: U; (but not both) can be-chdosen positive, irrespective to
the fact whether U is positive or not.
As concerns b}, it is not clear from [1] what is the order relation on G in (3.1) with respect

to which the positivity of the factors is considered. In the present’ paper we shall be concerned *

only with t,he ordcr relation cunomcally defined by an inconditional busns namely, if (e,,),.gl

is an uncondltlonal basis for @, call an element 2 aze, posmve if a, 2 0 for everyn = 1.
n=1

It is well- known that such an order relation defines a structure of a Banach lattlce on.@ (See.

for instance [9, 10]). The term “Banach lattice with an unconditional basis” w:ll be exclusively

employed to design a Banach lattice whose order relation is defined in the above indicated way.

*We shall see that, with respect to the lattice structure so defined, the posltlva of U is not

sufficient-in order to ensure the possibility of choosing both factors.U, and U, in (3 1) posmve
™~

-~ . N '

3. The factorization of apprgxim_i;ble operatorgx and of regularly approximable operators

<
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In fact, we shall find a necessary and sufficient condition .on U under which both U, and U,
can be ‘taken to be differences of positive compact operators and we shall see that not every

. posrtnvc approxxmable operator U satisfies that condition. . ,

. Before stating our factorization theorems, let us recall some notions from the theory
of operators between Banach lattices; for details, see [14]. °

- Consider two Banach lattices E, F. An operator U: E — F is called regular if it
can be written_ss a difference of positive operators. The vector space of all regular’

- operators from E to Fisa Banach space with respect to the regular norm ||-}j, defined

by |U|l, =inf {iVi|| V: E - F, VU< V}. An operator U: E — F_is called

regularly approxzmable if it is regular and it belongs to the closure of the subspace of .

all finite-rank operators from E to’F taken with respect to the regular norm. Every
regularly apprommable operator can be written as a difference of positive “regularly
apprO\lmable operators.

It 1s-well known (see [11]) that the regu]arly approx1mable operators on a Hilbert
lattice Ly(p), with p a o-finite measure, are precisely those kernel operators defined
by a kernel k with the property that the kcrnel |L| defines a compact operator on

The proofs of our factorlzatlon results rely on the lemma below. Recall that given
two Ba.nach spaces E, F and a fmlte rank operator U: §.— F, the fmlte nuclear

norm vo(U) 18 defmed as the infimam of Z M|l el taken over all reprcsentatxons l

of U as Z' z; ® y; withz € E', y; € E.. The finite nuclear norm dommates the -ope-

i=1 -

.rator norm‘ it also dommates the regular norm in case E and F are Banach lattlces

Lemma 3. 1 Let E’ bea Banack space, F be a Banach lattice, V.E—>F bea finite-
rank operalor and let ¢ > 0. There are. a finite-dimensional Riesz subspace L of 1'”
(md operators W E — L, P:L >F wzlk the following propertzes

(1) P=0 and 1Pl =146 - ’ ' f
(n) vV — IW)Y < e (s the mcluszon 7nap) : o -
(m) v(V'— PW) < e ' ' '

e .
,Proof By [14: Prop III. 3.5), there are a flmte d1mensnonal Riesz subspa.ce L
of F" and an operator W: E — L such that v (JpV — IW) < 3-'¢, where I: L - F”

denotes the inclusion map. The definition of », implies the existence of a finit.>-dimen-

sional vector subspace M of F’' containing L and JzV(E) and having the proeperty

that, if we let I,: L — M be the'inclusion map and Vl E - M be defined by V,(x)

~—Jp (z), then

. 1’0(V -1 W) <‘; 15

- Lis generated by a set of mutually disjoint norm-one elements z,, s 2, € BV Let
“ 6 = min (2 1L (n 4 1)1¢, (2n || W] s) By K.D. KURSTEN’s version of the local -

reflexivity prmcnple [8 Theorem 1], there is an operator S \M — F with the propcr-
ties, . N

e : "33
IS S el Ol ze M, . ees
S(Us@) = vy €SN . L 35)

ey
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Defme P L-—>F by P = Zz ® S(z;),, where (z )lg,s" denotes the basns in L' .

dual to (z,).s,g,. Obvnously, P = 0. To eva.luate its norm, first remark that _

e

P = S1) 5 2 lail lste, —S<z~)||;2||z; HSEISn - (36)

as||z; || =1 and ||S(z,) <6 by (3.4). Consequently,
’ IIPH < IS+ (P — 81, = ISIH+ 2o(P — s L)<t + €
b (3.3) and 1(3. 6) In order to evaluate vo(l/ — PW) write - -
w(V — PW) S vo(V — SVy) + v(SVy— SI; W) +. vo(SI W - PW)

iThe first term vanlshes by’ (3. a) For. the other t“o we have: vO(SV - Sl W)
=S vV, — 1 W) < 2-1 by (3. 2) and (3. ‘3), vo(SI W — PW) < vo(SI p ||W||
=27 by (3 6) B '

) Note that property (ii) in the above lemma entalls 1wy < ]ll/[] -{— € and in case B
is a Banach lattice, Wi, < IVIl, + &. - o . :

'Theorem 3.1: Let'E be a Banach space and lét F be a Banach lattice” For everz/ U
‘B> ¥ the follou,mg assertions dre equzvalent £

/ oo

(i) U is approximable. oA .
(i) ‘U factors according the scheme (371). where G’ isa 7eﬂexwe Banackllattice wzlh an
unconditional basis and at least one of the factors U,, U, is compact! -

an uncondztzonal basis, U, 2s approxzmable and U, is regulurly approxzmable and posi-
live. ’

A similar slatement s lrue /or the Sztuatzon wken E is a Banach luttzce and F is a

Banach space, in which case the condition “yu 2 48 regularly approximable and positive” -

/rom (iii) should be replaced by “U, is regularly approxzmable and positive™ . ’
Proof: Clearly. (m) = (u) (11) :> () is & consequence of the fact that G and G’

klhave the approximation property. It remains to prove (i) => (m) The hypothesis
that U is approximable allows us to construct-inductively, with the aid of Lemma 3.1,

& sequence (L,),», of finite-dimensional Riesz subspaces of '’ and operators W,:

E —>L,,,P L, - F such that P, 20, |P,| < 2,|W,|| < 2-2=1 [U||and |U — P, W,

- — P,W,| < 2~ 1O]|. Let G be the,Banach lattice of all sequences { = (zp)nz1
1/2

"such that z, € L, for n = 1 and ||f||g = (Z PALIPR ||2) < oc. The factormatlon we -

n=1 -

look for w1th U, posntlve is obtained by deflmng U, and U, via the formulas U NG
(W (x)),,al, U,(t Z‘P (23). Some calculatlons s:mllar to those performed

during the proof of Proposntlon 2.1 show that Uiis approumable and U; ig regularly
approximable. .

In the situation when E is a Banach lattlce and F is a Banach space, first factor
U accordmg the scheme E 34 H, =+ F where H, is a reflexive Banach space and
8,, 8, are approximable; this can be done by using the method in the above part of

" the proof. Then factor S,” according the scheme H,’ H2 s, E' where H, is are-

flexive Banach lattice \uth an unconditional basxs, 1’1 is approximable and T, is
regularly approxnma.ble and positive. Fmally, let G = H2 , Uy =T,'Jg and U,
= S 1’l o -

N -~

) U /ac"tors according the scheme (3.1) where G is a reflexive Banach lattice with.

-l
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We remark that in the situation when F is g-order complete, the construction of
" the L,’s can be done in ‘F and no appeal to the local reflexivit,y principle is necessary.

Theorem 3. 2 Let E, F be Banach latlwes Forevery U: E — F the /ollou,mg asser-
tions are equivalent: .

(i) U is regularly approxzmable : :

(i1) U factors according the scheme (3.1) where G is a re/lexwe Banach lattice with an
unconditional basis, the factors U,, U, are regular and at least one of them is a difference
of positive compact operators. -

(i) ‘U factors according the scheme (‘3 1) u,kere @G is a reflexive Banach lattice with an
‘unconditional basis, the factors U,, U, are reqularly approximable and U, is posztwe .

(iv) Same as (i) but with U, positive instead of U,.

Proof: Clearly (iii) = (ii) and (1v) = (ii). '

(ii) = (i): Suppose that U, = § — T with §, T' posxtlve and. compact. Let (P, ) ‘be
the sequence of"canonical finite- rank projections associated to the basis of G. As
S —-P,S= 0 and ||S.— P,S| — 0, it follows that S is regularly approximable; simi-
larly, Tis regularly appro‘umable hence U, is so. U, being regular, it follows that U
is regularly apprommable In case U, is a difference of positive compact operators,
a similar reasoning applied to U," shows that U, is regularly approximable, hence U
also is so.

.+ (i) =(iii): Repeat word by word the proof of ( 1) = (1i1) in Theorem 3.1 replacmg
the operator norm by the regular norm,

(1) =>.(iv): This is deduced from (1) = (iii) By an argument snmllar to the one em-
ployed in the proof of Theorem 3.1

We close the section with two comments. Y

First, there are positive approximable operators which are not regularly approxnma.ble
Indeed, D. H. FrREMLIN [6] has constructed a _positive compact operator on L;(4) (4 = the
Lebesgue measure on [0, 1]) which is not a kernel operator. According to the result, mentioned
at the beginning of this section, such an operator cannot be regularly approximable.

Second, one cannot choose in general both factors in Theorem 3.2 positive, even for a posi-
tive regu]arly approximable operator U. To sce this, consider any compact metrizablé nondis-
crete group together with its normalized Haar measure . Such a group always contains a closed,
subset M with void interior and such that () > 0. Let y, be the characteristic function of
M and let U be the operator on L,(u) defined by the convolution with y,. As U is a positive com-

. pact kernel operator it 1s regularly approximable: On the other side, U cannot factor accordmg

the scheme Ly(u) Lyely L,(u) with G a Banach lattice with an unconditional basis and both
factors U,, U, positive. Indeed, such a factorization would imply the existence of a nonzero
rank-one operator S on L,(u) such that 0 < 8 < U. Consequently, there would exist nonzero
“elements f, g in Ly(u), such that yu(st~1) = f(s) g(t~) u X u-almost everywherc. As the map .
(s, t) > (st,t) leaves-u X u invariant, it follows that yy(s) = f(st) g(t=!) u X p-almost ‘every-
where. Integrating with respect to £, one gbtains y,,(s) = (f # g) (8} pu-almost everywhere, where
« denotes the operation of convolution. But f « g is a positive continuous not identically zero_
function as being the convolution of two nonzero elements in Ly(u), ; see [2]. We ha,ve t,hus
arnved at a contradiction, as M is closed .and has void mtenor

REFERENCES
1] AvipranTis, C. D, and 0. Burkinsuaw: Factoring compact and weakly compact opera-
tors through reflexxve Banach lattices. Trans. Amer. Math. Soc. 2883 (1984), 369—381.
[2] BourBaki, N.: Intégration. Ch. 7: Mesure de Haar. Ch. 8: Convolutxon et représentations.
Paris: Hermann 1963. .
- [3] CristeEscu, R.: Ordered vector spaces and lmear opera.tors Tunbridge - Wells: Aba.cus
Press 1976.



’

i - A

" Factoring Compact Operators 233

[4] Davis, W. J., FIGIEL T JOHNSON, W. B, and A. PELCZYNSKI: Factormg wea,k]y com-
pact operabors J. Funct. Anal. 17 (1974), 311—327 e ‘
(5] Ficier, T.: Factorization of compact opera.bors and applications to the approximation
-property. Studia Math. 45 (1973), 191 —210.
[6] ErREMLIN, D. H.: A positive compact operator. Manuscripta Math. 15 (1975), 323—327.
N JOHIySO\T W. B.: Factoring compact operators. Israel J. Math. 9 (1971), 337 —345. '
[8] KirsTEN, K. D.: Lokale Reflexivitit und lokale Dualitit von Ultraprodukten fiir halb-
geordnete Banachraume. Z. Anal. Anw. 8 (1984), 245265,
[9] LiNDENSTRAUSS, J., and L. TzaFrIrI: Classical Banach spaces 1. Berlm chde]berg—
. New York: Sprmger Verlag 1977.

[10] LINDENSTRAUSS, J., and L. TzarrIri: Classical Banach spaces II Berlm Hexdelberg—-
New York: Sprmger Verlag 1979.

[11] NaGeL, R., and U. SCHLOTTERBECK: Zur Approxnmatlon kompakter Operatoren durch
Operutoren ‘endlichen Ranges. Archiv Math. 25 (1974), 514—515. !

‘[12] PerEssiNT, A. L.: Ordered topologlcal vector spaces. New York— Evanston London:
. Harper & Row 1967." -

[13] Poravicr, I. M.: Clase de spatii lmmre dlruatc topologlce Thesis. Bucharest, University
1987. .

(14] Scawarz, H. U.: Banach lattices and operators. Leipzig: B G. Teubner Verlagsges 1984

[15) STE1N, E. M.: Singular integrals and differentiability properties of functions. Princeton,
New Jersey: University Press 1970. - .

[16] Vuza, D.: Ideal properties of order bounded operators on ordered Banach spaces which are
‘not Banach lattices. In: -Advances in invariant subspaces and other results of Operator
Theory. Proc. Conf. Timigoara/Herculane (Romaria), June 4—14, 1984 (Ed.: R. G. Dou-

" glas et al.). Basel —Boston —Stuttgart: Birkhauser Verlag 1986, p. 353 —368.

[17] WaLsH, B.: On characterizing Kéthe sequence spaces as vector lattices. Math. Ahn. 175

(1968), 253 —256. ' S

. . -

-~

| B Manuskripteihg&ng:\03. 05. 1988; in revidierter Faséuﬁg 16. 03.1989

VERFASSER:

Dr. Toan MrGEA Popovict Dr. Dan Tupor Vuza ,

High School Mircea cel Bitrin Department of Mathematics

Str. Stefan cel Mare 6 - The National Institute for

R -8700 Constantza : . Scientific and Technical Crcat:on
TN

) Bd. Pacii 220
\  R-79622 Bucharest

\

\ : N



