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Factoring Compact Operators and Approximable Operators 

I..M.Popovxci and D. T. YUzA 

In unserer Arbeit werden zwei Gegonstände behandelt. Erstens wird eine. Version . des Figiel-
Johnson-Theorems fiber Faktorisierungen kornpakter Operatoren für geordnete Banachräume 
angegeben. Genauer wird gezeigt, da'13 jeder 'kompakte Operator, der omen Banachraum in 

• einen geordneten Banaçhraum mit abgeschlossenem, erzeugndem Kegel (bzw. in einen Banach-
verband) abbildet, mit kompakten Faktoren durh einen reflexiven geordneten Banachraum 
mitabgosch1ossenem, erzeugendem Kegel (biw. durcheinen verbandsgeördneten reflexiven 
Banachraum mit stetigem Absolutbetrag) faktorisiert werden kann.. Dabei kann der zweite 
Faktor positiv (bzw. als Verbandshomomorphismus) gewählt werden 

C	Zweitens werden Faktorisierungen approximierbarer Operatoren U zwischen Banachver-
• bänden,behandelt; Wir zeigen, daB ein jeder soicher Operator U nut kompakten Faktoren durch 

einen reflexiyen Banachverband mit unbedingter Basis faktorsiert werden kann, wobei einer 
der Faktoren positiv gewählt werden kann. Darüber hinaus geben wir eine Bedingung an Uan, 
die notwendig und hinreichend dafür 1st, daB beide Faktoren in dieser Zerlegung als,Differen- 

•	, zen von positiven kompakten Operatoren gewählt werden können. 

• Haiva pa60Ta HOCE)Fnixella ABYM TeMaM. flepBaR TOME Honafi BCMH TCopemm berejia-
,L1oHcoHa 0 1jaITop113au1m KoMna}THb1x onepaopo JiH n0yyrI0pB01eHHbIx 6aHaxoBblx 
ipocpaucTB. A HMeIIH0, noxa3bleaeTcH, 4T0 ino6ofl }coMna}(THufl oneparop H3 6diiaXOBa 
flOCT1ICTB 1)	 6aHaxoBo I1pOCTpaHCTB0 Co 3aMFCHymIM 11pou3130-



IHWMM HOHCOM (cooTBe'rcTBeIIIIo, n 6auaxoey peuleTHy) ()aHTopnayeTCn C HOMnaHTHbLMM 
•' iaiTopaM 'iepea pejM!eicHBIroe nojiyynopHAo q eHHoe 6aHàx000 HOCTHCTBO CO 3MHTMM 

. flp0113130iHuulM }OHCOM (cooTBeTcTneHHo, qepea pC4JICKCIIBHyI0 6aHaxoey pemexy C 

HenpepblBhIIJM MwlyneM). 11pM 3TOM BTOpOf I)HTO MoHeT 6hlm BhI6paH HOJIO?+CMTeJIbHbIM 
• • (COOTBeTCTBeHHO, peuierouu I'0M0M0p(Drn3M0M).	 •	.	I 

BTopa1 TeMa	 co6ofl JJIICKyCCHIO 0 4aHT0pMaaunif annpoHc11mmpyemEjx 
; onepaTopon TtC11CTBYl0LlAHX reey 6aHax0BwMI4 pelueTMaMu. HoKa3MnaeTcR, 'no. uo6o 

•	axof onepaop U 4axTop1I3yeTcH C xoinaniireu 1lBHTOMM epe pe4JleKCliBHyIo 6aHa- 
xoBy peuiexy C 6eayC.11onIIaiM 6aaucoM, npu qeM OHH 113 4)3HTOPOB Mo?+eT 6blT6 BalBpau - •	
n0JI0R11TeJ1b}(b1M. Boiee Toro, AaeTCH YCJIOBHe iia U, I1eo6xouMoe u gocTaTOqHoe )11H TOI'O 

MTO6IJ o6e )aHTOpb1 B 3TOM pawiowetmtt MoryT 6blTb Bb16paHbI KaM pawIOCTb noJ1O+{MTeJIbHhlX 
}(oMnaKTHbIx onepaTopoB.	 - S	 •	 . 

Our paper is concerned with two topics. The first one is represented by aversion of Figiel's and 
Johnson's theorem on the factorization of compact operators adapted to the -framework of 
ordered Banach spaces. Namely, we prove that every compact operator from a Banach space 
to an ordered Banach space with closed generating cone (respectively, a Banaöh lattice) factors, 
with compabt factors, through a'reflexive ordered Banach space with closed generating cone, 

• •	the second factor being positive (respectively, a reflexive lattice-ordered Banach space with 
• •	- continuous modulus, the second factcr being a Riesz homomorphism).	• 

• The second topic is provided by a discussion of the factorization of approximable operators 
• -	between :Banach lattices. We prove that every such operator U factors through a reflexive 

• Banach lattice with an unconditional basis, the factors being compact and one of them being 
positive. We also give a necessary and sufficient condition on U under which both factors in 
the mentioned factorization can be taken to be differences of positive compact operators. 

•	 -	 L1	 •	 -
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1. Introduction 

All operators in this paper which act between Bapach spaces will be assumed to be 
linear and bounded. 

The classical factorjzation theorem due to T. FIdEL '[5] and W. B. JOHNSON [7] 
asserts that every compact operator U from a Banach space E to a Banach space F 
factors according the scheme 

•	 -.	 "	'(1.1)-

'here G is a reflexive Banch 'sce and the factors U 1 , U2 are compact. This scheme 
means that U = U2 U 1 . In the situation when E and/or F belong to special class 
of Banach spaces, it is natural to try to find the -reflexive factorization space 0 in 
(1.1) among the members of a class more or less related to 61 . In Section 2 of our paper 
we examine from this viewp6int two such classes If, namely - the class of all ordered 
:Banach spaces with closed generating cones and the class '2 of all Banach lattices. 
It is shown that 61, is stable under factoiizatioii, that is, the hypothesis that F belongs 

'to ensures the possibility of choosing G among the members of the same class. 
The situation is more involved for C. Thus, the answer to the following problem 
seems to be 9till unknown:	. 0 

Problem 1.1: Does every compact operator U from a Banach,space E to a Banach 
- lattice F factor according (1.1) with 0  reflexive Banach lattice and U 1 , U2 compact? 

C. D: ALiPRANTIS and 0. BIJRKINSHAW [1] have given a partial answer to Pràblern 
1.1: namely, they have proved that whenever a given compact operator from a Ba- 
nach space to. a' Banach lattice factors, with compact factors, through a Banac,h 
lattice, then'it' also factors, with compact factors, through a reflexive I3anach lattice. 

moor paper we present an alternative scheme of factoriation which applies to 
every compact operator ,U from' a Banaeh space to a Banach lattice. Na'mely, we 
prove that U factors according (1.1) so that the reflexive space 0 belongs to the class 

of so-called lattice-ordered Banach spaces with continuous moduli, the factors are 
compact and U,-is a Riesz homomorphism.'The class e, contains all I3anaeh lattices.. 
as well as some classical lattice-ordered Banach spaces which are not Banach lattice, 
such as Soholev spaces and Bcsov spaces. We consider our factorization result as 
being independent. of ' the answer to Problem 1.1. Indeed, the fact that the order struc-
ture on 0 in our scheme is weaker than the structure of a Banach lattice is not due to 
the lack of an answer to tht problem; it is a logical consequence of the condition im-
posed to U2 to be a ' cornpact Riesz homomorphism. Recall that a Riesz homomorphism 
Js a linear operator T between two Riesz. spaces G, 'F such that IT(x) ='7?(Jx) for 
every x E C. 

As an application- of our factorization results we coThplete Figiel's operatorial' 
characterization of Bànach spaces without the approximation property with some 
additional statements corresponding to the situations when F belth'igs to e, or 

It was communicated by W. B. Johnson to the authors of [1] , that the answer to, 
'Problem 1.1 is affirmative provided that F has the approximation property; more-
over, in this situation, U can even be taken to have an unconditional basis. Johnson's 
cornmunicaton was the starting point for, our results exposed in Section 3. In the first 
place, we present a proof of a stronger version of Johnson's result, showing that we\ 
always can take the compact' factor U2 to be positive; Our proof makes use. of a 
relatively recent principle' of local reflexivity for' ordered i.Banach spaces due to. 
K. D. KURSTEN [8]., Second, we consider the case when E is also a Banach lattice' 
and we find a necessary and sufficient condition on U under which •both factors
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in (1.1) can be' choosen to be differences of positive compact operators and 0 to be 
a reflexive Banach lattice with an unconditional basis (the order-relation on 0 being 
canonically defined by its basis). 

A part of the results exposed in the present paper made the object of the first 
author's thesis [13].	 ,. 

The reader is supposed to be acquainted with some general-facts about Riesz spaces, 
ordered Banach spaces, Banach lattices and operators bet*een them; we refer him 
to the excellent monographs [3, 12, 14] for the needed information. We recall here 
some notions and notations to be used throughout Sections 2 and 3. For a Banach 
space E, we denote by JE: E -> E" the canonical map. Given an operator U between 
two Banach spaces B and F, we denote by IJUJI its operator norm. U is called approx-
imable provided that it belongs to the closure of the subspace of all finite-rank ope-
rators from B to F taken with respect to the operator norm. 

2. The factorization of compact operators.- 

In this section we study the factorization of a compact operator defined on a Banach 
space E and taking values in an ordered Banach space F. We shall be concerned with 
two types of order structures which can be introduced on -the factorization space 0, 
described by Definitions 2.1 and 2.2 below. 

- Definition 2:1: An ordered Banach sjace with closed generating cone is an ordered 
Banach space 0 with the property that the cone 0, is closed and verifies the equality 
0, - 0+ = G. 

Definition 2.2: A lattice-ordered Banach space with continuous modulus is a lattice-
ordered Banach space 0 with the property that the map x i- lxi is continuous for the 
norm of G.	 - 

While the class of ordered Banach spaces indicated by Definition2.1 has received considera-
tion in the, theory of ordered topological vector spaces (see for instance [12]), it seems to us 
that its subclass indicated by Definitioh2.2 has not yet made the object of a special study. 
We hope we could emphasize its importance by underlining the role played by it in the facto-
rization of compact operators. Obviously, every Banach lattice is a lattice-ordered Banach 
space with continuous modulus. However, our factorization theorem yields in general lattice-
ordered Banach spaces which are not Banach lattices (see PropOsitiQn 2.2 below); for this 
reason, we think it is useful to know that there are examples of classical Banach sacs which 
are lattice-ordered Banach spaces with continuous moduli but not Bhnach lattices. We confine 
ourselves to 'mention the Sobolev spaces L1P(R) for 1	p < - and the Besov spaces AP.(Rt) 
for O< a < 1, 1 :!^ p and 1 g < oc. We draw the attention on the fact that there are 
lattice-ordered Banach spaces for which the map x i-* lxi is not norm-continuous : examples 
Are provided by the Sobolev space L100(R") and by the spaces of Lipschitz functions A(R") 
for 0 < a < 1 (se [15: Ch. V, § 2, 4, 5] for the definitions of the above mentioned spaces). 
In all examples above, we have assumed that the Banach spacps  under consideration were 
endowed with the usual order relation attached toa function space.	 - 

• The notion of an ordered Bana6h space having a principal latticial extension intro-
duced by the second author will occur in the statement of the factorization theorem; 
consequently, we reproduce below the definition from [16]. The terniinology "prin-
cipal latticial extension" is motivated by the1connexi6n existing between this notion 
and the theory of so-called "principal modules" developed by the second author; 
see [16] for details.
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Definition 2.3: An ordred Banach space 0 is said to have a principal Icitticial 
extension provided that there is a Riesz space G containing 0 as a vector subspace 
such that the following . hold: - 

(i) G,	G. 
(ii) There is a dense vector subspace Gof 0 such that for every e> 0 and x E G 

there are a linear operator ' U: G 0 and y E 0 with the properties: 0 !!^ U I 
(I = the identity map on G), U(G)c= 0 and the restriction of U to  is norm-contin-
uous, U(x) ^O, (I - U) (x) ;5 y (the positive part of x -being taken in 0) .nd 
iyii<e.	 S 

The importance of such ordered Banach spaces is justified by the following theorem, 
also reproduced from [16]. 

Let 0 be a reflexive ordered Banach space with closed generating cone and let F be a 
Banach lattice with order continuous norm. Suppose that 0 has a principal latticial 
extension,. Then for every operators 5, T: 0 —* F such that T is compact and 0	9 < T, 

- it follows that S belongs to the closed two-sided algebraical ideal generated by T.	- 
The proof of the factorization theorem in this section relies on the following pro-

position, Which represents a version of the well-known lemma of W. J. DAVIS et al. 
[4] adapted to' the situation of a compact subset of an ordered Banach space. It seems 
to us that the construction of the factorization space described in [4] (and also emloy- 
ed by C. D. ALIPRAIcTIS and 0.. BURKJIcSHAW [1]) cannot be immediately adapted to 
our purposes; for this reason, the construction of our factorization space is somewhat 
different. 

• Proposition 2.1: Let F be a Banach space and K be a compact subset of F: There 
are a vector subspace 0 of F and a norm I fl I J on G such that the following hold 

(i) K is contained in Gas a compact subset for III - IN. 
(ii) (0, I fl fl) is a . reflexive Banac'h space.-- 

(iii) The inclusion map from the Banach space 0 to the Banach space F is compact. 
(iv) If F is an oMered Banach space with closed generating cone, then- 0 is an ordered, 

Banach space with closed generating cone for the order relation induced by the order on F. 
(v) Suppose that F is a Banach lattice; Then 0 is a Riesz subspace of F and the map 

x i-* xI on 0 is continuous for III IIJ; if in addition, F is a-order complete, then 0 has 
a principal latticial extension..	-	 S 

Proof:, For an arbitrary Banach space F, the assertions (i)—(iii) are consequences 
of the mentioned lemma in [4]. We are precisely interested in the additional properties 
(iv) and (v).	. 

Let lis therefore begin with the ease when F is an ordered Banach space with closed 
generating cone. By [9: Prop. 1.e.2], we find a sequence	F such 'that 
K	(xe) and x,, - O.By [12: Ch. II, Cor. 1.14], one can write x = x,,' - x," with
x', x,,", E F and xe ', x,, " -->-0. Let (Yn)n;>i be defined by Y2n-i = x,', Y2n = Zn". As 

oo 

y, —* 0, there is a sequence of integers 1 = n 1 <	•. .-such that E 22k sup IIynII2 
S	 \	 k=1 

<cc. Let Vk be the vector subspace generated by {y I n-k	<flk,1). Define the
norm Pk on Vk by pk(z) = inf {IIz 'I + I"II z', z" E Vk n F; z = z' - z"}; the set in 
the right side is nonvoid as y	0. We have	. 

II z II	.Pk(z), z E 1/k; lIz IJ = Pk(z),	z E Vk n F.	 -	(2.1) 

Let V be the Banach space of all sequences = (Zk)k^i such that Zk E Vk . and .lIIIv 

)

1 /2	.	 ( 

X 2cp,(z 	< cc. V is a reflexive Banach space, as being an l 2-sum of finite- 
\k1 	-
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dimensional Banach spacçs. Consider the operator T V --> F given by T(C) 
k=1 

T is approximable: indeed, if T,,: V	F is the finite-rank operator given by_T() 

=L'Zk, then, taking into account (2.1) we have	 -. 

Ii( T - T) ()II	E IkkII. = E 2k2k 

	

kn+i	k=n+I 

/	00	 .00	 \112	P 

^ (	'. 2-"	(	'	22k lIz 11 2	 . 
\k=n+I  

/ 
00

1/2 /' oo 

^-( E 2-2k) ( - L' 22kp()2 
\k=n+1	/	\kn+i	 - 

( 

(
w

k

\112

<
	2")	IIlIv

n '+1	/	 -. 
The above calculation show; in particular that T is well defined. Let V	V/Ker T 

F be the canonical factorization of 7' (the norm on V/Ker T being the quo-
tient norm). Put 0 = T(V) and define IIIIIIJ y Ifi z ill = II'(z )iI . As is compact, 
the assertion (iii) in the statement of the proposition is proved. The assertion (ii) is 
also verified, as G is isometrically isomorphic to a quotient of a reflexive Banach 
space. For the proof of (i), remark that because of 111y. 111 2kpk(yfl) = 2k11	

(k 
n < fl +), the closed absolutely convex hull of {2y, n 1}, taken in (0, III•H) 

is compact. Moreover, it is closed in F and contains, therefore, the set K. This proves 
that K is a coflipact subset of (G, I fl III).  

It remains to prove (iv). Clearly,- G nF.,. is a convex cone in 0 closed for lftUl . To 
see that it generates 0, let z'E 0 be given. There is	(Zk)kI E V such that z 
By the definition of Pk, there are zk , Zk" E Vk n F, such that max (pk(zk'), pk(zk)) 

2Pk.(zk) and Zk = Zk ' - Zk" . By letting ' = (4 ' 41, C = (zk")k^tI, one obtains that 
', ' • V, z' = T(') E On F, z" = T(") € On F, and z = z ' - z" . '	 S 

Before undertaking the case of a Banach lattice F, we pause in order to establish 
some notations and to prove a lemma. Given a Banach lattice F and x .E F.,., we denote 
by Fj the order ideal in F generated by x, and by C, the set of components of x, 
that is, the set {y E F I y A (x - y) . = O}. C2 is a Boolean algebra with respect to the 
Operations A and v. Given a Boolén subalgebra L' of C, we shall denote by . Sp (I) 
the vector subspace of F generated by E.	 - 

L é mm a 2.1: Let F be a c-order complete Banach lattice and let K be a compact sub-
set of F. There are x E F, and a sequence (xe) S (C2) such that x,, 0 and K 

Proof: We shall establish first. the following assertion: 

(A) Let x E F.,.. Every y E F2 can be written as E2"u with uE' Sp (C2) and 
IIunII ^S 2_ n ± 2 I lyll.	 ...  

Indeed, Freudenthal's theorem shows that Sp (C2) is densèin F2 . Consequently, 
one can define inductively z E Sp (C2) so that II - - •.. - x,II 2_27 IIYII and  
IIx,II ^ 2_2(1) Ily ll . The decomposition we look for isobtained by taking 2"x,,. as u. 

We prove now the lemma. By [9: Prop. 1.é.21, we find a sequence (Yn)ni F such 
thaty-* Oaid Kc	(y).Letx=	 = 2_mXnm - 

¼	 .	 -	,iI	 -	 rn=1 
with Xnm E Sp (C2) and IIxII	.2m+2 Ily II- We haye	(yn)	(Xn,,,)nmj. On

15 Analysis Bd. 9, Heft 3(1900)



226	I. M. Porovici and D. T. VUZA 

the other side, the double sequence (Xnm) has the property that for every r> 0, the 
set {(n, m) I IIXnmII > \ r} is finite. Consequently, one cati. rearrange the	as a se-



quence 
(x,)' converging to 0 

I 
We return now to the proof of Proposition 2.1 by consideringthe case of a Banach 

lattice F. Suppose'first that F is (1-order complete. By Lemma 2.1, there are x E F4. 
and (x0)., Sp (C2) so that K ZF6 (x) and x - 0. We can find a sequence of 
integers 1 = n 1 < n2 <	such that f 2" sup I IX.112 < cc and an increasing 

•	k1	flfl<fl, 

sequence (Ek)k^ l of finite Boolean subalgebras of C2 such that x, E Sp (±k ) .for nk 

<nk+I ., Let V be the Banãch space of all sèquences = (Zk)k^I such that Zk E Sp (E 

U	

\I/2 
and - lIIv 

='	

-2" Izkll 2) < cc. Consider the operator T: V -> F given by T() 

= 'Zk and let V -.-+ V/Ker T 13 F be the canonical factorization of T. Put G = T( V) 
and define ft fl by HI z IlI = I 1 (z )II . As in the first part of the proof one verifies 
that () - (iii) hold. It remains to prove (v). To this purpose, call a sequence = 
admissible for z E F if z0 = 0, z, E Sp (L'k) for. k	F, Zk'— Z and AC 	

(

22k 114 
\I/2 

- Zk_1I1 2) < cc. It is easily seen that z E G if and only if there is a sequence admissible 
for z; in this case, IlI zUl equals the infimum of the numbers A, where runs over all 
sequences which are admissible for zi It follows immediately that G i a Riesz subspace 
of F: indeed, if z E 0 and if(zk) is an admissible sequence for z, then (IZkI) is an ad-
missible sequence for- zJ,(remark that the Sp (Ek )'s are Riesz subspaces). Let us prove 
that the map z i-+ zJ is continuous for I fl • fl . So let z E 0 be given and let (Zk) be an

	

- admissible sequence for z. Given e> 0, choose k, so that	 - 

2k liz - ;-111 2 <r	
0	

(2.2) 

k=k,+I  
•	

'

 

U i
and put M = 22	 22k) It suffices to prove that II z 	I 	Jzj iii2\< hr /-
whenever 111 y l11 2 < M 1 e. So let y E 0 verify 111 y 111 2 < M'r and let (Yk) be an admis-
sible sequence for y èuch that	- 

f 211 liYk — Yk_111 2 < M 'E. 'S	 .	 (2. 
k=I.  

We-have	 - 
/	 k,	 ,/ k,	\1/2 /. k	-	 \1/2 

lIYk,II	E IiYk	i/k-ill	( L' 2-2k)	(	' 22k iIYk	i/k-ill 2 )	 (2.4) 
k=i	 \k=i	/	\k=1	'	1	 -	- 

which implies 22k, lIYk,11 2 < r. The	 > sequence (yk')ko given by i/k = 0 for k < k,, 
Yk ' = i/k for k > k,, is still admissible for' y'; the sequence (l zk + Yk ' l - lZkl)kO is ad- 
missible for Iz + I - I z i . Consequently, 

-	III J Z + yj- IzI 1112	
22k II I; + i/k I - IZk I - izk1 + Yk-II + kk-iI 112 k  

-Divide the sum into two parts, namely up to k and from Ic,+ 1. The first equals 
-'	-	•	2kz jj l, + Yk,I - Zk ,l 11 2	22kg lYk 11 2 < 

0
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The second is dominated by  

2 f 221 II iì .± Ykl	l2kl + y -1l 11 2 + 2	22k II Jzj - kkilkk1+1  

By virtue of (2.2), the second sum in the above expression is dominated by e,while the 
first suth is dominated by	 } 

oo	 V	 V	 - 

	

•	
' 221 

IIZk — 2k1 + Yk - Yk-1I12	 .	. 
k ==k+l	 V 

^5 2 E 2?k IIZk - 2k_ill2 + 2	22k lYk - Yk-111 2 	2e - 2= 4e, 

	

•	 kk1+1	 -	kk,+i	 .	V 

by virtue'of (22) and (' 2.3). Finally, Ill Iz + I - IzI 111 2 < lie	 ( 

	

The last thing to do is to construct a principal latticial extension for G According -	V 

to Definition 2 3 we take	=-F. and 00 =_USp (Ek) Given x E 0o define U 
V F - F by U(z) = sup,, (z Anx

+

).for z E F. Then 0 ^ U :!E^ I, U(x) ^ 0, (1 — U)(x,) 
= 0. It remains to prove that U(G) 0 a,nd that the restriction of U to 0 is conti-
nuous for IlI• flJ . Let k0 'be that integer for which x  Sp (Zk,), let z E 0 and let (2k)	V 

bean admissible sequence for z such that EV.22" lZk — 2k_ i 11
2	21112111 2 The sequence 

(wk )k o given by Wk = 0 for k < k0 , wk '= U(zk) for k	k0 , is admissible for U(z).	
• -
	V 

Indeed, on one side we have Wk —* U(z) and Wk E Sp (Ek ) for k	1, as U(Sp (Ek))	• 
V	 V - 

	

Sp (Ek ) whenever k	h. On the other side,	
V	 V 

V	 V	 V 

E2	IWk	k-iII2	22koV IIU(zk,)II 2 + E 22k II U (zk) — U(zkVVl )11 2 .	 V 

V	 k=i	
V	 k=k,+i  V	 •	

V	 •	 V 

^ 22k lIk,Il + E 22k 12k — .zk1112	 •	
V	

V	 V 

V 

V	

k k,-,-i	

V 

V	
V	

V	

^ 2. llZk 11 2,+ 2 111z1112.	
V	 • 

A calculation similar to that which was done in (2.4) yields 2 o I14j1 2	M 11121112 V 

with M depending only on k0 . Hence, U(z) E G and III U (z)IlI. ^5 (M + 2)1/2 IlizIll. V 

In the situation'when F is not a-order Complete, one applies the preceding construe-
tion to F" and to its compact subset JF(K); one obtains the Riesz subspace 0 of F" 
endowed with the norm IHIIIV Then one takes JF'(Gi) as 0 and one defines IIl•lll by llIz IIl = lII J -(z)Illi I 

	

We are now in position to state the main result in' this sectioii. 
V	

V	
V 

	

Theoreni 2.1 :Let E,F be Banach spaces and let U: B -±-F.be a compact operator.	V 

Then U factors according the scheme B L4 0 -i F where 0 is a reflexive Banach space	
V 

V	 the factors U 1 , U2 are compact and U2 is one-.to-one. Moreover, under additional assump- V

V V 
lions on E, F and U,, it follows that the space Gand the factors U 1 , U2 can be taken to have
the following additional pr'iperties:	V	

•	 V V V

	

V 

V 
(i) 0 is an-ordered Banach space with closed generating cone and U2 is positive provid-

ed that F is an ordered Banach space with- closed generating cone.	V	 V V V. 

	

(ii) 0 is a lattice-ordered Banach space with continuous modulus and U2 is zRiesz	
V 

homomorphism provided that F is a Banach lattice; if in addition, F is, a-order complete,	V 

then. U can also be taken to have a principal lattical extension.	
V -'	 :VV	

V • 

V V 

15*	

V	

V	

V	

•V'	

V	
V	

V	 -V.	 • 

/
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•	In cases (i) and (ii)abve, U1 can be taken positive if E is an ordered Banach space 
and U is positive.	 I 

Proof: Apply Proposition 2.1 taking the closure of {U(x) x  E, lxii ;5 1} as K U 

As it was already' pointed out in Section 1, the factorization, scheme proposed by 
Theorem 2.1 yields in general an order structure on G weaker than the structure of a 

/ Banach lattice:- This , is du6 to the condition imposed to U2 to be a compact Riesz 
hdmomorp.hism Indeed, it suffices to take any nondiscrete Banach lattice as F and 
any compact operator with dense range as U; the following'proposition will show that --
the factorization space G cannot be'a Banach lattice in this situation. 

l'roposition2.2: Let ,G, F be Banach lattices and let U 2 : G — F be acompact Riesz 
•	homomorphism with. dense range. Then F is discrete (that is, every nonzero order ideal 

in F contains a nonzero atomic element), and has order continuous norm.. 

Proof: Let F0 be the set of thosey E F such that the order interval [— l y l, 1Y1] is 
compact for the norm. By the well-known result of B. WALSH [17], it suffices to.prove 
thatF0=F.  

.j	F0 is closed, indeed, let (ye)	F, Yn —'y. For z E ,[ — l yl l y l], let z,,	(z V (_ iyi))
A l y I . Then z,, E [— y,j , ii,,lj and jz — z,,J 5 JY — y,,; we easily infer from these 
relations that [— l yl, ll] is compact. 

We have U2 (G) c: F0 . To see this, let' x  G, let 1 = [- - 1U2(x)1111U2(x)i] and let 
M	I n U2 (G). M is totally 'bounded. Indeed, 'if y,, = U2 (x) E M, let x,, be given by 

• .	 zn'..	(x V (— l X D) A l x i..	 , 

Then x71 ' E [/._ l x i, l x i] and U;(xn") = y,,. As U2 is compact, the sequence (y,) contains 
a convergent subsequence, the total boundedness of M being thus proved. M is 
dense in I: for if y E I, there is' }y hypothesis'(x,)	G such that U2 (xn) - y. Consider 
Xn ' obtained'frónix via formula (2.5): we have U2 (X n ').E'M and U2(x') 	y. In con-
clusion, I 'is compact.	 :	.	'	'	'	•	- 

As F0 is closed and U2 (G) is dense in F, 'it follows that F0 . = F I 

T. FIGIEL'[5] has' proved that a Banachspace'F has not the approximation pro-
perty if and only* if there is a, reflexive Banach space 0 and an operator U: 'G -*-F 
which is one-to-one, compact and nonapproximable. Our factorization theorem allows 
us to complete Fiiel's statement in the situation when F is endowed with order -. 
structuTes.  

Corollary 21: Let F be a Banach space without the approximation propertyl There 
are a re'flexive Banach space 0 and an operator U: 0 -* F which is one-to-one, compact 
and nonapproximable. Moreover, under additional assumptions on F, it follows that 0 
and U can be taken to have the following additional properties: 

(i) 0 is an ordeied Banach space with closed generating cone and U is positive provided 
that F is an ordered .Banach space' with closed generating. cone. 

(ii) 0 is a lattice-ordered Banach space with continuous modulus and U is a Riesz 
homomorphism provided that F is a Banach lattice; if in addition, F has order'contirtuous 
norm, thanG can also-be taken to have the property that the convex cone K + (G, F) of all 
positive compact operators from 0 to F be a face of the convex cone of all p'ositive 'opera-
tors from 0 to F, while the convex cone of all positive approximable operators from 0 to 
F be a (proper)'f ace of K+ (G, F).  

-S

/
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Proof: By Figiel'stheorem, there area Banach space H and a compact nonapprox-
imable operator V: H F. By Theorem 2. 1, V factors according the scheme H .'-+ G 
!-+ F whe're G is reflexive and U is one-to-one, compact and nonapproximable, as 
V is nonapproximable. The additional properties of G and U are consequnces'of the 
additional properties described in Theorem 2.1; the last statement in (ii) above fol-
lows from the fact that 0 has a principal latticial extension, by taking into.-account 
the theorem from [16] reproduced at the beginning of this section I 

We recall that,there are Banach lattice with order continuous norm and without - 
the approximation property. For instance, A. Sankowski's Banach lattice without 
the approximation property is even reflexive; see [10].	 -. 

3. The factorization of approximàble operators and of regularly approximable operators 

The paper [1] encloses the following lines: 
"Finally, it should be mentioned that W. B. Johnson has pointed out tous that his 

techniques, in [1'4]+ yield also the.following result: If T: Z -* Xis a compact operator 
and X is a Banach lattice with-the approximation property, then 'I' factors with\conipact 
factors (which can be taken positive if T is positive) through a reflexive Banach space 
with an unconditional basis." (The reference [14] is our reference [71.) 

The-above statement .comprises two distinct parts:.	 -	. 
a) the possibility of factoring every compact operator . U: E — . 'F (E a Banach. 

space, F. a Banach lattice with the approximation property) according the scheme 

H	.	(3.1) 
where 0 is a reflexive Banach space with an' unconditional basis and the factors U 1 , U2 
are compact; .	.	 .	 . 

' b) the possibility of choosing both U 1 and U2 to be positive in case U is positive 
( also being a Bana'ch lattice in this case). 

The assertions a) and h) above are the starting point for our study in this section. 

As concerns a), we shall give it a complete proof; replacing the hypothesis that F has the 
approximation property by the more general hypothesis that U is approximable. The proof is 
entirely, elementary in case F is a-order complete and a bit less elementary if F is not so, in 
which case an appeal to the local reflexivity principle is necessary. The classical form of that 
principle yields a factorization scheme (3.1) in which the factors have no positivity prop9rties. 
However, K. 1). KURSTEN gave in the paper [8], which appeared in the same year as [1], an 
improved versiob of the local reflexivity principle which applies to the specific situation of 
ordered Banach spaces. By using this improved version we can prove in fact a stronger form 
of a): namely, any of the -factors U1: U (but not both) can bechdosen positive, irrespective to 
the fact whether U is positive or not.	 .	 .	- 

As concerns b), it is not clear from [1] what is the order relation on 0 in' (3.1) with respect 
to which the positivity of the factors is considered. In the presentpaper we shall be concerned 
only with the order relation canonically defined by an unconditional basis: namely, if 

is an unconditional' basis for 0, call an element .2'ae positive if a 	0 for every n ^ 1. 

It is well-known that such an order relation defines a structure of a Banach lattice on 0 (see, 
for instance [9, 10]). The term "Banach lattice with an unconditional basis" will be exclusivel y 
employed to design a Banach lattice whose order relation is defined in the above indicated way. 
We shall see that,,with respect to the lattice structure so defined, the positivity of U is not 
sufficient-in order to ensure the possibility of choosing both factors .U1 and U2 in (31) positive.
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'S	 S 

In fiict, we.shall.find a necessary and sufficient condition on U under which both U1 and U2 
can be taken to be differences of positive compact operators and we shall see that not every 
positive approxirnable operator.0 satisfies that condition. 

. Before stating our factorization theorems, let us recall some notions from the theory 

	

•	of operators between Banách lattices; for details, see [14].	 .	. 
Consider 'two Banach lattices E, F. An operatpr U: E -* F is called re,,ular if it 

•

	

	can be written - as a difference of positive operators. The vector space of all regular 
operators from E to F is a Banach space with respect toth'e regular , norm II 1 defined 
by Il U = inf (11 V 11 V: E —* F, V --E^ U -E^ V}. An operator U: E —Fis called 
regularly approximable if it is regiilr and it belongs to the closure of the subspace of 
all finite-rank operators from E toF taken with respect to the regular norm. Every 
regularly approximable operator can be be written as a difference of positive'regularly 

• .	approximable operators.  
It is well known (see [11]) that the regularly approximable operators on a Hubert 

•	lattice Ia2 (u), with ju a a-finite -measure, are precisely those kernel operators defined 
by a kernel k with the property that the kernel IkI defines a compact operator on- 
L2 (,u).	- 

The proofs of our factorization -results rely on the lemma below. Recall that, given 
• two Banach spaces E, F and a finite -rank operator . U: E--> F, the finite nuclear 

norm v0(U) is defined as the infimum of E IIx,'ll 1 1yi . 11 taken over all representations 

of U as ' x1 ' ®Yj with x1 ' E E', y /"..The finite nuclear norm dominates the-ope- 

rator norm ,',,it also dominates the regular noim in case E and F are Banach lattices 

Lemma 3.1; Let E be a Banach space, F be a Banach lattIce, V: E — F.be a finite-
rank operator and let e > 0. There are. a /initedimensional Ries4 subspace L of F" 
and operators W: E — ii, P: L - F 'with the following properties:  

(i) P	0 and IIP II	1 +  
- . (ii) 3' 0 (JV — 1W)	(I is the inclusion map)..  

(iii) v( V — PW) ^ e 

.,Proof: By [14 Prop III 3 5] Ththere are a finite dimensional Riesz subspace L 
of F" and aii operator W: K -' L such thati'O (JFV — 1W) < 3e, where I: L - F" 
denotes the inclusion map. The definition of v 0 implies the existence- of a finit -dimen-
sional 'vector subspace M of F" containing L and JF V(E) and having the property - 
that, if we let 1: L -. M he the inclusion map and V 1 : E	M be defined by V 1 (x) -
= JFV(X), then- 

-'	v(Vj — 1 1 W) < 3'e	• -	-	 -,	(3.2)

L is generated by a set of mutually disjoint norm-one el'emerts z1 ,..., z,, E F". Let 

	

-	'
 

6 = mm (2 1 , (n + 1)-is, (2nIIWI' ). By K. D. KURSTEN'S version of the local 
reflexivity principle [8: Theorem 1], there is an operator S :-M F with the proper-
ties  ) 

- , r	kSM :5-1 1 + 6 1	-	 .	 (3.3) 

•	 '	 •	

-

 

118 (z)	IZII + 6 IIz IL	z E M, -	-	/	 -	- (3.4) 

	

-	S(J[F(Y)) =	E JF'(M). -	'	 .	.	(3.5) - 

	

-	"S	 -	
• 

/
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Define P: L -. F by F- = E z1' ® S(z1), where (z,')11	denotes the basis, in L' 
dual.to (z1 ) 1 . Obviously, P	0.-To evIuate its norm, first remark that 

	

v(P	81)	Z I!z 'lII1S (z ), - 8(z)II = E IlzYli '118(z ) II '
;5
	

(3.6) 

as I1 z1'II = 1 and lI8 (z1)_II	6 by . (3.4). 'Consequnt1y,	.	.	. 

	

IIP II	I1S1 11! .+ lip	8i II	118 11 +0(P —SIr)	'1 + e 
by (3.3) and!(3.6).,Jn ordertb evaluate 0(V — PTV), write- 

v(V - W) v(V — 8V1 )+ v(8 I'— S1, W) ±-vo(81 1 W — PW). 
The first term vanishes by' (3.5). For. the other two, we have:'.v 0(SV 1 — 811-W) 

iIS II v0 (.V1 - 1 1 W) ;5 2_ lc by (3.2) and (3.3); v0 (S1 1 W PW) v(SI .- l')'IIWII 2T'Eby (3.6) I'  

Note that property (ii) in the above lemma entai1'IIWII :!i^- jV ± c and, in case' E 
is a Banach lattice, 11 Wjj < 11 V + E.  

'Theorem 3.1: Let'E be ai3anach space- and let F he a Banach'lattice.'For every U: 
E — F the fllowing assertions are equivalent:  

() U is àpproximable.  
(ii) ' U factors according the scheme (31). where 0 is 'a r/1exive Banac1Vlattice'tith an 

unconditional basis and at least one of the factors U 1 ,. U) is compact  
(iii) U factors according the scheme (3.1) where 0 is a reflexive Banach lattice with, 

an unconditional basis, U 1 is approxiniable and U 2 is regularly approximable and posi-
tive.  

A s imilar statement is true for, the situa tion when E_ is a Baiach 'lattie and F is a. 
Banach space, in which case the condition "U 2 is regularly approximable and positive" 
from (iii) should be replaced by "U 1 is regularly approximable and positive". 

S	,	 .	 .	 .	 '. 

	

Proof: Clearly,(iii)	(ii); (ii)	(i) is ,eonequence of the fact that 0 and 0' 
have the approximation koperty. It remains to prove (i)	(iii). The hypothesis 
that U is approximable allows' us to construct inductively, with th aid of Lemma 3.1,-

-a sequence (Ln )ni of finite-dimensional Riesz'subspaces of F" and operators 'We: 
E	L, P: L —F such that P,	0, IP,l ;5 2, ll W ll ^5 2_2(_1) IJUIlandIJU —P1 W1 —	— P,Wn	2 — " IlUll. Let 0 be the;I3anachlattice of all sequences = (z,,)1

 (0=01

1/2
such that z,, E L for n _> 1 and l j c = J 22" jjZnll 2 < oo. The factorization we' 

- 
look for with U2 positive is obtained by defining U1 and U2 via the 'formulas U1(x) 
= (Wn(X))n?-:i, U2 () = L'P(). Some calculations similar to' those performed 
during the proof of Proposition 2.1 show that Ui' is approximable and U; is regularly 
approximable.  

In the situation when E is a Banach lattice and F is a Banach space, first factor 
U according the scheme B	H1 !!+ F where.H 1 is a reflexive Banach space and
S, .82 are approximable; this can be done by using the method in the above part,of 
the proof. Then factor 8' according ' the -scheme H 1'! H2 B' where H2 is a, re-
flexive Banaeh lattice with an unconditional basis, T1 is approximable and T2 is 
regularly approximable and positive. Finally, let 0 = H2 '-, U 1 = T2 'J5 and U2 
.82 I'j I

I
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We remark that in the situation when F is cr-order complete, the construction of 
the La 's can be done in 'F and no appeal to the local reflexivity principle is necessary. 

•	Theorem 3.2: Let E, F be Banach lattices. For every U: F -*F the following asser-
tions are equivalent:	. 

(1) U is regularly approximable. 
(ii) U factors according the scheme (3.1) where G is a reflexive Banach lattice with an 

unconditional basis, the factors U 1 , U2 are regular and at least one of them is a difference 
of positive compact operators.  

(iii) U factors according the scheme (3.1) where G is a reflexiveBanach lattice with an 
unconditional basis, the factors U 1 , U2 are regularly approximable and U 2 is positive. 

(iv) Same as (iii) but with U 1 positive instead of U2. 

	

Proof: Clearly (iii) =' (ii) and (iv)	(ii). 
(ii) =' (i): Suppose that U. 1 = S - T with 5, T positive and compact. Let (P)be 

the sequence of *- canonical . finite-ank projections associated to the basis of G. As 
S - P,S :^! , O and Ik9 -- PSII -±0, it follows that S . is regularly approximable; simi- 
larly, T is regularly approximable, hence U 1 is so. U2 being regular, it follows that U 
is regularly approximable. In case' U2 is a difference of positive compact operators, 
a similar reasoning applied to U2 ' shows that U2 is regularly approximable, hence U 
also is so. 

(i) =' (iii): Repeat word by word the prodf of (i)	(iii) in Theorem 3.1 replacing
the operator norm by the regular norm. 

•	(i)	.(iv): This is deduced from (i) = (iii) ty an argument similar to the one em-
ployed in the proof of Theorem 3.1 I 

We close the section with two comments.  
First, there are positive approximabie operators which are not regularly approximable. 

Indeed, D. H. FREr,IL1N [6] has constructed apositive compact operator on L(A) . (A . = the 
Lebesgue measure on [0, 1]) which is not a kernel operator. According to the result mentioned 
at the beginning of this section, such an operator cannot be regularly approximable. 

Second, one cannot choose in general both factors in Theorem 3.2 positive, even for a posi-
tive regularly approximable operator U. To see this, conider any compact metrizable nondis- 
crete group together with its no Haar measure It. Such a group always contains a closed 
subset M with void interior and such that it(M) > 0. Let XM. be the characteristic function of 
M and let U be the operator on L2 (u) defined by the convolution with X.41 . As U is a positive com-
pact kernel operator, it is regularly approximable: On the other side, U cannot factor according 

the scheme L2(0) "'G -+ L2(z) with G a Banach lattice with an uncbnditional basis and both 
factors U1 , U. positive. Indeed, such a factorization would imply the existence of a nonzero 
rank-one operator S on L2 (4u) such that 0 S U. Consequently, there would exist nonzero 

'elements f, g in L2 ( 4u)l such that xsf(ét') ^ i(s) g(t 1 ) 14 x 1z-almost everywhere. As the map 
(s, t) i-* (st,.t) leaves- /4 x a invariant, it follows that XM() 2^ f(st) g(t 1) z xpt-almost every-
where. Integrating with respect tot, one obtains Z,() ^ (f * g) (a) it-almost everywhere, where 
• denotes the operation of convolution. But / • g is a positive continuous not identically zero, 
function as being the convolution of two nonzero elements in L2(it)+; see [2]. We have thus 
arrived at a contradiction, as M is closed .and has void interior. 
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