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• Monotonicity Properties of Oscillatory Solutions of Second Order. 
• Differential Equations 

E. MULLER-PFEIFFER	 - 

Es wird untersucht, wie sich Monotonieeigenschaften der Koeffizienten gewahtilicher Diffe- - 
rentialgleichungenzweithr Ordnung' auf oszillierende Losungen u sOlcher Gleichungen über-
tragen. Zum Beispiel werden Aussagen gemacht fiber die Abstände der Nullstellen von- u, lh' 
und der von u und u' untereinander.	

0 

HccIeyeTcn, RW nepeHOCHTCa dnoflcTsa MOIIOTOIIIIOCTH 1{oa4rnUHeHT0B o6MH}0ReHHbIx 
w4epeH[waJ1bHMx ypanileilufi BT000 nopaisa Ha OCUHJIJIHPYIOUiHC peweHHfl u 'raHux 

ypasHeHufi.- )IeJ1aIoTcH, ilanpuMep, Bb1c}ca3b1BaHuH, 0 paCCTOHUHH nyneff 4yIIR[14f.u, u' ii 
Tex Or U H U' mewgy co6ofl..	 - 

• It is proved in what way monotonicity properties of the coefficients of ordinary second order 
differential equations are transmitted to oscillatory solutions u of such equations. For instance, 
there are statements on the distances of the zeros of u, u', and u and u' mutually. 

This paper generalizes the following theorem of P. HARTMAN ancl A. WINTNER [2]':' •'. 
Consider the equation	 - 

-	—u" +-Q(x) u = 0, x 1	x x3, Q E C, Q	0, -	 - 

and let u b'ea solution with three consecutive zeros x 1 , x2 , x3 , and relative extrema at 
• - 1 ',x1 <x1 " < x21 and x2 ', x2 <x2' < x3. Let A be the area bounded by the x-axis, 

'the straight line x .= x,', and the graph of u belonging to the interval [x,, x,'], j = 1, 
2, and let A,' be the area bounded by the x-axis, the straight line x	x,j ', and the ". 
graph of u belonging to the interval [x 1 ', x,, 1 ], j = 1, 2 (Fig. 1).	• 

Fig 1 

If Q is monotone decreasing on [x 1 , x3 1; then A' can be placed into A, by reflection 
at the straight line x = x1 ', j = 1, 2, and A 2 can be placed into A 1 ' by rotation through 

-. 1800 about the point x2 and translatioii about d = 2x2 — x 1 ' — x2 ' to the left'placing 
the abscissae of the extrerna ordinates in coincidence. (After this rotation and trans- 

- lation of A 2 the new position of A 2 is denoted by (A 2 ) in )Fig. 1.) Concerning the mono-: 
tonicity of the quarter-waves A,, A,' and the half-waves A, u A' if Q is monotone 
decreasing or increaing compare -also the papers of E. MAKAI [9] and I. Brn.iu [1]. - 

In the following we consider the non-selfacljoint differential equations (r, R E 
•	C[a,b])	•	• ,	.	 '	 '	.'	- 

+Ru'+Qu=0 (0<PE C'[a,b],O>QE'C[a,b]),	(1)'
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-	
' 

and
—(pv')' + rv"+ qv = 0 (0 <p EC'[a b], 0.> q E C[a b]).	•.	 (2) 

Let u be an oscillatory' solution to (1) and throughout this paper denote the zeros of 
u by x 1 , x21 ..., and the zeros of u' being greater than z1 by x 1 ', x2 ', ..., so that 
o X I <x1 ' <x2 <xv' < . ... Define the areas A 1 , A,' of the quarter-waves of u as 
above. Fiirthei, let the following definitions hold throughout the paper. - '	i) A 1 .Q A,' means that A,' can be placed into A 1 by reflection at the straight. 
line  = x('.  

A;.^ms that.-A, 1 canbe placed into A,' by rotation through '180° 
about the point x,, 1 (Fig. 2; after the 180°-rotation the position of A,, 1 is denoted by 

Xi	 J.2

Fig. 2 

iii) A, Q A, 1 means that A, 1 can beplaced into A ) by reflection at the x-axis and 
translation ab6ut x' 	x,' to the left.  

iv) A 1'Q A;, means that A +1 can be placed iitoA 1 ' by-reflection at the x-axis 
and translation about x 1 , - x1 ' to the left. 

V) Au A 1 '	A 1, 1 u A +1 means that A-j u A, 1 can be placed into A 1 6 A 5 ' by
reflection at the x-axis and translation about x; +1 - x,' to the left. 
The inclusions A 1	A 5 ', 'A 1	A 5', A 5	A 1' and so on are analogously defined.. 

Comparison theorems  

,T46 compare oscillatory solutions of (I) and (2) these equations are to be transformed 
into Riccatidifferential equations.  

Lemmal: Let u be a solution to (1) which doesn't vanish on (t 1 , t2 ), and choose any 
positive junction 0 E C'[t 1 , t2]. Then the function	 . 

y = —Pu 1 u'	 .	 • -	 .	 (3) 

is a solution; to the'Riccati differential equation	•	 '.	 • 

•	'	 .

 

y
	± (10' + P'R)y -'Q on (t 1 , t2 ).	'	(4) 

This assertion follows by an-easy calculation. Analogously, if v'is a solution to (2) 
-Which doesn't vanish -on (41 t2 ) and q E C'[t 1 , t 2 ] is anypositive function, then - 

Z = —pv'v'	,	
'	

(5) - 

is a solution to  

= T'p'z2 + (.p- IpI + p'r) z -	on (t 1 ; t2 ).	 (6) 

•	Theorem 1: Let u be a solution to (1) with u(a)u'(c) = u(b) = 0, a <c <b,
u> 0 on (a, b), and consider the soluiion'v to (2) determined by v(c) = u(c) v'(c) , 	=.Ø
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If there exist a number 77 > 0 and a point x0 E [a, b] such that	
. 

?)P(x) exp (-I pp-i dt) p(x) ep (-i rp 1 dt) x E {a b]	() 

Q(x) 	RP-' dt) 5 > q(x)exp (-i rp' dt). x E[a, b]1''	(8) 
X. 

then there exist points a E [a, c) and fl . E (c, b] with v(a)= 0 =v() and 0 ( v' !^^' u on  
If -in (7) and (8) the signs > are.replaced by , then v ^t u-on [a, b]. If in (7) 

and (8) at least one of the signs	is replaced by >, then a E (a, c), ft E (c, b) and 0< v 
< u on (a, c) u (c, fi). If in (7) and (8) the sign	are valid and at least one, of the aris-
ing inequalities is strict, then v > u on [a, c) u (c, b].	- -	- 

•	Proof:,By setting  

(x) =27 exp (4RP_1 dt) x E [a, bJ,.. -	 '	(9) 

and
 

•
9(x)=exP.(_frP1dt). x€[a,b], 

•	it follows from (4) and (6) that 

-	y' = 'P'y2 — OQ on (a, b); y(c)	0,	'. 

and 	 -	 '	 •.	- 

= 9,1p'z2 — 9,q, z(c) = 0,	 -'	 -	(12) 

respectively. (12) holds on every interval (t 1 , t2 )', c E (t 1 ; t2 ), where z exists. By (7) 
and (8) we obtain z'	y' everywhere in the strip	= {(x, y) I x € ( t i , t2), 
y E (—co, co)}. Thus, concerning the solution to (11) and (12) it follows that z y 
on (t 1 , c] and z ^t y on [c, t2 ) (cf. [3, p; 911). Therefore, and by y(x) –.. —cc- as x ,j. a, 
y(x) – + o o as x  b it follows that there exist points, aE [a, c) and i E (c, b] such 
that z(x) – -00 as x 4 a, z(x) -± +00 as x l' fl., Hence, we have v(a) = 'O = v(). 
Further, Y' > Oholcls on (a, ) because of (11) andQ <0. This implies z	y < 0 on 
(a, c) and 0 <y	z on (c, ). Thus, by (3), (5), (7), and (8), we obtain v- V	u1u' 
> 0 on (&, c) and vv'	u 1u' <0 on (c, ). Finally, integration leads to v	u on 
[a, J . If in (7) and (8) the signs	are replaced by the signs	the assertion-v	u
on [a, b] can analogously be proved. 

Assume now that in (7) or (8) at least one of the signs is replaced by >. Then, in 
'view of (11) and (12), it follows that z' > y' everywhere in the strip whenever 
(x,y) + (c, y). Thus, we obtain z < y <0 on (a,c), 0 <y < .z on (c, ), and, conse-
buently, 0 -< v <u on (a, c) u (c, ). To prove that E (c, b), for instance, choose 
a point x1 € (c, ) and consider the solution y to (11) determined by y 1 (x1 )	z(x1) 
(> y(x1 )). The function w = (y 1 .— y)-\' is a solution to	-• 

-	 w' + 2y'P 1w +	11	.0 on (a, b) -•	 -. --	- (13) - 

(10)

(11)

-5--

'-5
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/ 
I..: ro .LUJ). LIt IIL	

0 

W(X) exp 
(x 0 

dt) (w(xi ) _fb-'P' exp (21 ytlr'P' dr)dt) 

= 2()	
— u2 (xi)f- 1 P- 1 u2dt) t	 S 

.' \	 (14)	'1 

w(x1 ) = 01(x0 — y(xi )) 1 > 0 '	 - 
\It follows from (14) and  

lini f 0 P -1u-1 dt	oo- 
-xlb z, 

that there exists a point	E (x1 , b) such that w(x) - 0 as x ' . Hence, we have 
y 1 (x) —* co as x ' . Since z' >	in 8(t,t,), it follows that z	Yi on .(x1 ,t2 ). There-
fore,. there exists a point /3 E (c, b) such that z(x) --> oc as x '' /3 . This proves that 
V(#) = 0, /3 E (c, b). The assertion a, e (a, c) can analogously be proved I 

•

	

	In the selfadjoint case R — r '0 concerning the: loéation of the . zero /3 of v Theo-
rem 1 is esentialIy a result by LEIGHTON [5].  

Theorem 2-:.. Let .0 be a solution to (1) with u(a) = u'(b) = 0, u' > 0 On (a, b) and 
consider the s6lution v to (2) determined by v(a) = 0, v'(a)= u'(a) > 0. 

If 
there exist a 

number > 0 and a point x0 E [a, b] such that (7) and(8) are fulfilled, then there exists 
a point /3 E (a, bJ with v'(/3) = 0 and v'> 0 on [a, /3). If i(7) and (8) the signs ^ are 
replaced - by , then v' > 0 on [a, b). 11(7) and (8) hold and one of these inequalities' is 
strict, then /3 E (a, b). 

Proof: Use the functions (9), (10), and, consequently, the equations (11) and (12). 
It follows from the hypothes of the theorem that y(x) .-;--oo and z(x) -±—oc as 

r	x.J1 a;y' > 0 on (a, b), y(b) = 0, an'd y < 0 on (a, b). Tet the conditions (7) and (8) 
be fulfilled. We prove that z y on all intervals (a, /3'),fl' b, where z exists. Assum-
ing the contrary suppose that there existsa point x 1 € (a, /3') with z(x1 ) <y(x1 ). Con-
sider the solution Yi to (11) determined by y 1 (x 1 ) = z(x 1 ). The function w = (y — y)' 
is a solution to (13). w is given by (14) with -w(x 1 ) = (y 1 (x1 ))— y(x 1 )) 1 < 0 and we 
have	 - .	 I S 

Iim f 1 P-12 dt	 S 

X.a X,	 . 

Hence, there exits a point € (a,'x 1 ) such thaf w(x) - 0 as x4, and, consequ'ently, 
y 1 (x)-* —oo as x,. . Because of i'	z' everywhere in the strip	={(x, y)
I x  (a, /3'), y (—, oo)} we obtain z ^ y on the left-hand side of x1 . Hence, there 
exists a point 2 E Ei x1 ) with z(x)- * —óo as x .11 2• This, however, contradicts the 
faét that z exists on (a, /3') . This proves z y on (a, /3') . Since y(b) = 0, there exists 
a point P  (a, b] with z(Th= 0 and —oo< y z <0 on (a,/3). Thus, we obtain 
v'(/3) = 0 and . v'-> 0ori [a, #). If () and (8) hold, but one of these inequalities is 
strict, we dbtain y' < z' in 8(a$) and, consequently, y < z on (a, /3) . It now follows 

•	from y' <z' on (a, /3) that /3 <b.	 - 
• 11(7) and (8) with ^ in place of are considered, we prove that z y on (a, b]. 

Assume the contrary and let x1 € (a,b) be a point with z(x 1 ) > y(x1 ). The solution Yi 
to(11) determined by y 1 (x 1 ) = z(X) is monOtone, increasing on (a, x 1 ]. The case y1(x) 

- -^ .—oo as x .. a is impossible, because, by assuming this case, it would follow that 
there exists a point	€ (a, x1 ) with y(x)	—oo as x 4. as it is seen from above.
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Hence, we have y1 (x)was xa,,w € (_00,y1 ( 1 )).'Further, by- e hypotheses 
under consideration, it follows that y'	z' in the strip S(Q.b) which implies that 
z	yj > w on (a, x11. This, hoever, is impossible because of z(x) -* —co as x 4. a.
Hence, we have z y on (a, b]. This proves that v > 0 on [a, b) I 

In the selfadjoint case R = r = Q and 77 = 1 Theorem 2 is due to LE'IOHTON [5, 61. 
- . The next theorem can similarly be proved.  

Theorem 3: Let u be a solution to (1) withu(b) = u'(a) = 0, u' < 0 on (a, b], and 
consider the solution v to (2)'determined by v(b) = 0, v'(b) = u'(b) < 0. If there exist a 

• number 77 -> 0 and a point. x0 € [a, b] such that (7) and (8) are satisfied, then there 
exists a point a € [a, b) with v'(a) = 0 and v' <0 on (a, bI. If, additionally, one of 
these inequalities is strict, then a € (a,'b). If in (7) and (8) the signs	are replaced by 

then v' <Oon(a,b). 
By setting Pp = -_	1 in (4) and , (6) we .obtaiii the Riccati equations 

y ' —y2 + Ry— Q, y= —u''u',	 "	( 15) 

and	.	 C 

Z= z2 + rz - q, z = —v'v',	-	.	,	. .	,	( 16) 

• which lead , to the following theorem.	 .	 .	
• 2 

Theorem 4: Let u and  be solutions to  

au" + Ru' Qu = 0, (R, QE C[a, b], Q < 0)	 (17) 
•and.	 -	

r 

-	 '—v" + rv' ± qv =' 0, (r, q € C[a, b], q <0)	 .'	(18) 

• with u(a) = v(a) = u'(b).=.O, u'(a) = v'(a) > 0, u' > 0 on [a, b). If 

r	R, q ;;E; Q on [a, b],	..	- /	.	,	(19) 

then there' exists a point E (a, b} withv'(,) = 0,- v' > 0 on [a, ), and 0 < v	on 
•	. (a, fli. The point j9 is equal to b only if the equations ( 17) and (18) are identical. If 

r	R, q	Q on [a, b],	-'	/	 '	(20) .

then v > u on [a, b] v > 0 on [a b) and v (b) = 0 only if (17) and (18) are identical 

Proof: The function y = _uu)' is defined on (a, bi By the hypotheses on u it'-- 
r ' follows that y(x) - —cc as x .j. a; y(b)= 0; and y < 0 on (a, b). Let the hypothesis 

(19) be fulfilled. Assume that there doesn't exist a zero of v' on (a, b).'Then the func-
tion z —v'v' is negative on (a, b). By (15), (16),,iând (19) it follows that y' z' 
everywhure in the half-strip H (O .b) = { (x, y) I x € (a, b), y € (—cc, 0)).' Thus; as in 
the proof of Theorem 2, we 'obtain y ;S z on intervals (a, 9'}, fl ' € (a, b}, vhcre —cc - 
< z	0. If the functions y and z aie not identical, there exists a point x 1 € (a, b)
with y(x 1 ) <z'(x 1 ) ( < 0). , The solution y1 to (15) determined by the initial value 

= z(x 1 ) must, cross the x-axis because of y(b) = 0 and the uniqueness of solu-
ions to (15)Now, it follows from y' :5: z'-in H ( a b) that Yi z to the right of x 1 and 

for points (x, y 1 ) and (x, z) which are placed in H (0 .b) . Hence, thu'graph of z must also 
cross the x-axis. This, however, contradicts the assumption that v' does not vanish on 
(a, b). Hence, we have y = z on (a, b). Thus, by (15), (16), and (19) it follows that 

- . Q	q and R = i, i.e. the equations (17) &nd '(18) are identical if v' does not vanish on-• 
(a, b). Let j5 € (a, b) be the first zero of v'. Then we have y ' z < 0 on (a, fi), whih im-
plies that u 1u'	v'v' > 0 on, (, ). By integration we obtain 0 <v 'u on (a, ]. -
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This proves the first part ofthe theorem. If (20) is supposed exchange the parts of the 
equations (17) and (18) I	. 

The different parts of the following theorem can analogously be proved. --

Theorem 5: Consider the differential equations (17) and (18) on [a, b]. 
i) Let u and v be solutions to, (17) and (18), respectively, with u(a) = v(a) > 0, 

u'(a) = v'(a) = u(b) = 0, u > 0 on [a, b). If	. 
rR,qQ<0 on[a,b],	 ,(21) 

then u'. < 0 o [a, b], and there exists a point flE (a;b]such that v( j9) 0,0< v u - 
on [a,'- j9);' and v' < 0 on (a, j9], where	 only if (17) and (18) are is equal to b 	identical. I, 

•rR, Q < q < 0 on[a,b],  
then v > u on [a, b], where v(b) = 0 only if (17) and (18)-are identical:	0 - 

ii) Let u and ,v be solutions to (17) and (18), respectively, with u(b) = v(b) > 0, 
u'(b) = v'(b) = u(a) = 0, and u	0 on (a, b]. If 

rR, q 5 Q < 0 on[a,b], 
then u' > 0 on [a, b] and there exists a point a E [a, b)such that v(a) = 0,'0 < v :!E^ u - 
on (a, b] and v' > lion [a, b), where a is equal to a only if (17) and (18) are identical. If 

r^R, Q•q<0 on[a,bl; 
then v	u-on [a, b], where v(a)	0 only if (17) and(18) are identical. 

iii) Let u and v be solutions to (17).and (18), respectively, with u(b) = v(b) = u'(a) 
= 0, u'(b) = v'(b) < 0, u' < 0 on (a, bJ. If	 - 

rR, q;5Q<0 on[a,b], 
then- there exists a point a E [a, b) with v'(a) = 0, 0 <v < u on [a, b) and v' <Oon-
(a, b], where ix is equal to a only if (17) and (18) are identical. If 

rR, Qq<0 on[a,b], 

thenv> non [a, b], v' < 0 on (a, b], and v'(a)	0 only if (17) and (18) are identical 

Proof: i) The assertion u' < 0 on (a,b), for instance, easily follows from (15): 
Since y(a) = 0, y'(a) = —Q(a) > 0, the function y is positive in a: neighbourhood 
of a. Further, the graph of y cannot touch the x-axis at a point x0 E (a, b) as can be 
proved as follows. Assume that x0 is the smallest point to the right of a with y(x0 )	0. 

'Since y> 0 on (a; ,x0), we have y'(x0) 0, contradictory to y'(x0 ) = —Q(x0) > 0. 
y > 0 on (a, b) implies u' < 0 on (a, b). To prove the other assertions of the theorem 
compare the proof of Theorem 4 I 

Of course, the Theorems 4 and 5 can easily be applied to the selfadjoint equations 
(1) arid (2) with R	0 and r	0, respectively, to obtain analogous comparison theo-
rems.	 - 

Monotonicity properti'es of solutions	 -	- -	-	- 

In the following the comparison theoreths from above are used to study morioto-
nicity properties of oscillatory solutions of second order differential equations im-
plied by corresponding monotonicity behaviour of the coefficients of the differential - 
equations.	 -	 -
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Theorem 6: Lit u be an oscillatory solution'  to (1) on [0, oo). Denote the zeros of U \ 
by x1 , x, :.., and the zeros of u' by,x1 ', x2 ', . ., so that 0	x 1 < x 1 ' < x2 <x2' <
If there exists C E IR such that the functions 

	

exp (cx -f RP' dt) Q(x) exp (cx _f RP- 1 dt)	-	(22) 

are monotone decreasing (increasing) on [0, co), then, for j E IN, 

Xj ' -	 1+1'	j+I•	j' ()	- x 1	 (2) 

and, consequently, 

	

- x1	x 2 —x 11 x 1 - 
i. 

x 2 - x;+1 .	 -(24) 

1/, additionally, one of the functions (22) is strictly monotone, the inequalities (23) and - 
(24) are also strict.	 S 

Proof: The function (x) = u(x +1 - x' + x) (x E [x,, x,+1 }; j- E IN) is a solution 
to the differential equation	 - 

•	(P(x;41 —x1 ' + .x)u')' ±(x +L — xj ' + x) ü' + Q(x 1	x5 ' + x) ft = 0.

Assume that the functio'ns (22) are monotone decreasing. Then 

	

1P (x) evp (cx _f RP' dt)	 ( 

^ 11P(x - x1 ' +x)exp (c(x; l - x + x) - f RP' dt) 

= P(x, - x, + x) ex (cx _fR(x,. - x7 + r) P I (x)fl —x, 

	

S	

;.F1—X,	 - 

with j = exp (c(' - x1)+ f- RP:' dt). Hence,	
0 

-	 .5	 Ix	 -€,P(x) exp ( -f RP-' dt 
\ x 

P(x - x' + x) exp (-1 R(x 1 • 1 —x1' + r) P'(x 1 - xj ' + r) dr) 
Xj 

'where
xi'  

.iexP(fRP-1dt+fR(x'x'+r)P-1(x;_x'+T)dr) 

S	 -	 4 

.1) Here and in the following a possible zero -z0 ' E CO, x 1)of u' is disregarded.	• 

0	

1	 ,-	 -	 S 

S	 .	

0 

-	 S	
•	 .5	

/ 

S	

/,	
S

0
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x € [x1 , Xj,j], j E N. Analogously, 

Q(x) exp	RP- 1 dt)	- 
•	 -	 xi	 •,	 .•	 .' 

Q(x + -, + x)ex(_fR(x i -X, +T)P-'(X;+1	-, +r)dr), 

x € [x,, x,+1 1 j E N To finish the first part of Theorem 6 set 

P(x 1	x' + x)=p(x), 'R(x +1 —x,'	x) = r(x )+,	 -
Q(x; + , '—,x,' + x) = q(x), v(x) = L(Z') i1(x,')-ü(x),  
Xi - =c=x0,x=a, x+1=b, 

and apply Theorem. 1. The part of Theorem 6 described by the braclets can ánalo-
gously.be proved. If, additionpilly, one of the functions (22) is strictly, monotone de 
creasing (increasing), the remaining part of Theorem 6ol1ows from the last part of 

•	Theorem 1 I	-	- 

In the special case P	1-1 R	0 c = 0 and concerning the inequalities x31 - Xi 

—x.. 1 Theorem s due to A.'LAFORGIA [4].  

Theorem 7: Let u be an oscillatory solution to (1) on [0; co). 1/the/unctions 

P(x) exp	kP dt) Q(x) . exp (_JRP1 d 	 (25) 

are monotone decreasing (increasing) on [O, 00), then Xi ' —x	x,^1 - x,' 
- x,+1 andA	A,' (j € IN). 'If, additionally, one o/ the functions' (25) is strictly
monotone, decreasing (increasing), then the asserted inequalities and inclusions are 
also strict.	/	 •.	 .	 S 

Prof: We prove thátA,	A,'if the functions (25) are monotone decreasing. The' 
function i(x) = u(2X,' - x), X E [x,; xi '], is a solution to the differential equation 

_(P(2x,'_ x) it')' - 1?(2x,' - ' x) ft' + Q(2x,' —,x) ft =0 

with u(') = u(X'), u'(x5 ') 1= -u'(x') = 0. Since P(x) exp	RP-' dt ismno 
tone decreasing, we have \ o 

•	 /	' • 

P(x) exp (_f RP-' dt) = exp (I RP- 1 qt ) P(x) exp (-_f RP-' dt) 

•	
S	 2x/-x 

^ exp (i ftp-i dt) P(2x' - X) exp (- / RP- i dt)	 . 

•	
-	 ,/ 2x/-x

 

= P(2x1 ' - x) exp (- f RP-ldt)	 ' • •	•	 \'x,'	I 

1 - '• '	 = P(2x) ' —"x) exp (f (_R(2x1' - r)) P 1 (2x' - r) dr)  
•	 -	 S	 S 

1	 ••_
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x E [x,, x']. Analogously	 V	

V	 V	

V 

• Q(x) exp R.P dt) Q(2x' x)exP(_f (—R(2x,'— T))P (2x,' - r)dr) 
V V : 

x E [x,, x . ']. By setting .	 V 

	

P(2x,' - x) = p(x), —R(2x,' - x) = r(x), Q(2x,' ±x) = q(x), 
V	

V 

•	
4(x) = v(x), x,' = x0 = c, VX = a, 17 = 1,	 '	

V	

V 

and applying Theorem 1 we obtain A,' A . and, consequently, x' - x,	XJVj - Xp,. 

To prove x,, 1 - x,'	x1 ^ 1 - x,^1 define the function 4(x) = —u(2x^ 1 - x), x E [xi', 
x 1 J. This function is a solution to	 V	

V 

	

V 

_(P(2x +1 - x) 4')' - R(2x, 1 - x) 4' + Q(2x+1	
V 

withü(x, 1 ) = —u(x1, 1 ) = 0, u'(x,+1 ) = u'(x,+1 )., Now, conclude as above and , apply 
Theorem 3. Thus, we obtain x,,1 - x,' xJ+1 - x,+1 . If, additionally, one of the func-
tions (25) is strictly monotone decreasing, by using the Theorems 1 and 3 the corre-
sponding assertions can analogously be proved. The same holdsin the case that the. 
functions (25) are monotone increasing I	

V 

Theorem 8: Consider the•dilferential equation	
V	 • .	

V 

	

- —u" -f- Ru' + Qi = 0 (R, Q E C[O, cc), Q < 0) .	 (26)	V 

• and letu b art 1'oscillatory solution.	
V	

V	

V	

V !

V i) If the coefficients are monotone decreasing (increasing) on [0, cc), then x,' - xj 

()  xi	
- x41 ; j E EN.' If, additionally, one of these 'coefficients is strictly decreasing 

(increasing), then x .  - x,	- x, j E N. V	 V	

V 

	

.ii) If Ris monotone decreasing (increasing) and  is monotone increasing (decreasing),	V 

then x, 1 - x,' (L Xj+2 - x 11 j E N. If, additionally, one of these functions is strictly 
monotone, then x, 1 - X,,	 - X; +1 , j E N.	 V 

Proof: Let R and Q be rnonotone . decreasing'on [0, co). The solution v u_1(x,1) 
x u(x,') u to (26) has the properties v(x +1 ) = u(x1 ') and v'(x,'+1 )	u'(x,') = 0.. By 
translating the graphs of v, R, and Q belonging to the interval {x+1,	J to the left	'	V 

about - x,' and applying Theorem ,5/ii), we obtain x,' -  	 - 

Additionally, we have x' - x > x^ 1 - x,^ 1 if one of the coefficients is strictly 
• decreasing. By the help of Theorem 5 the other assertions of Theorem 8 can analo- V 

V gously be proved •	
V • 

Theorerri 9: Let u be an oscillatory solution to (26) and as in the introduction denote 
• the areas of the quarter-waves by A, and A,', respectively.	.	V 

i) If R	0 and Q is monotone dec reasing (increasing) on [0, cc), theiA'  
• j E N. If, additionally; R	0 or Q	strictly decreasing (increasing), then A,'	A,,	

V jEN.	 V 

ii) If R	0 and Q is monotone decreasing (increasing)' on [0, cc), then A,'	A,', 
j E N. If, additionally, R	0 or Q is strictly decreasing (increasing), then A 	> A,1, 

V jEIN .	•	 -.	 V •	 . 

V	 S	
V	

-	 V
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Proof-: Assume first that R 0 and Q is hionotone decreasing on [0, oc). The func-
tion i(x) = u(2x,' — x), x E [x,, x,'], is a solution to the differentiJ equation —ü" 
- R(2x1' - x) ;k' + Q(2x,' - x) ü = 0 with the initial values t2(x,') = u(x1 '), fL'(x,') 
= —u '(x,') = 0. Hence, by Theorem 5/u), we have t	u on [2x,' — x,^1 , x,'] if 

- —R(2x,' - x)	R() and Q(2x1 ' - x) ^ Q(x), x E [x,, x,']. But, in 'the present case, 
these conditions are satisfied. 

We else discuss the case R 0 and Q is monotone decreasing. The function (x) 
= —u(2x1 , — x), x E [x,', x, + ,], is a 'solution to the differential equation 

- —ü" — R(2x,, -- x) tV + Q(2x,+ , - x) ü = 0 on [x1 ',	 - - - 

with (x)1 ) = 0, u'(x1 ,) = u'(x,,).'Hence, by Theorem 5/iii), we obtain A1+1 9 A 1 ' if 
—R(2x, 1 — x) 11(x) and Q(2x,+ , — x) Q(x), x E [x,', x,+ ,]. By the assumptions 
on the coefficients in the present case these conditions are fulfilled. The remaining - 
assertions of the theorem can analogously be proved I	- 

By joining the Theorems 5-and 9 the following theorem is obtained. 

Theorem 10: Let u be an oscillatory solution to (26).	-	 - 
i) If 11 > 0 and both functions R and Q are monotone decreasing (increasing), then 

A, () A 11 ; j E'IN; If, 'additionally, R	0 or one of the functions R and 	is strictly 
decregsing (increasing), then A,	A,,, j  N. 

ii) I/IR	0, R is monotone increasing (decreasing), andQ is monotone decreasing 
(increasing), then A,' 	E IN If, additionally, 11	'0 or 11 or Q is strictly	- 
monotone increasing (decreasing), then A,' A + ,, j E N. 

Proof:-We handle the case that R :!E^ 0 and both functions 11 and Qare monotone 
decreasing. By Theorem 9/u), it follows that A,'	A,,, j E N. Hence, we have 
ju(x1 ')I	Iu(x,)I, j E N. The 'function v(x)= _U(X;+1 - x' + x) is a solution to 

-	
—v" ± R(x +1 — x1 ' + x)v'+ Q(x 41 — x1 ' . + x)v =0 on [x5 , x1'] 

with v(x1 ')I = u(x; + ,)I	u(x1 ')I and v'(x,') = —u'(x,^,) =0. Since R(x,	x' + x) 
R(x) and Q(x, — x' + x)	Q(x), x E [xi , x1 '], in view of Theorem 5/u), it

follows that A, Q A,+,, j E N. The remaining cases of the theorem can analogously 
be handled I	.	.	.. 

Remark: Consider the differential equation —u" -[- u' + Qu = 0 (0 > Q 
E C[0, oo), = const) and let u be an oscillatory solution. Then by Theorems 9 and 
10 the following holds; 

i) If	0 and Q is monotone decreasing, then A, Q A 1+1 and A,' AJ j E N. 
Hence, concerning the half-waves A u A,' and A,+, u A;+ , we have - A, u A,' 

A 11 u .A; +. ,. If, additionally, Lo<0 or Q is strictly monotone decreasing, then 
A,	A,, and A,'	A;,, i € N.	 - 

ii) If	•0 and Q is monotone increasing, then A,	A,, and A,'	1, j E N. 
If, additionally, e > 0 or Q is strictly monotone increasing, 'then A, c A,, and A' 

iii) ,If	= 0 and Q is decreasing (increasing), then A, > A,' _ ) A	E, N., 
If o = 0 and Q is strictly monotone decreasing (increasing), then A (C) A 1 ' ()AJ+,, 
jEN.  

Concerning the selfadjoint equation  

—(Put)' + Qu = Q (0 <P E C'[O, oc), 0 ' Q € O[O, 00)) -'	' (27)

we have the following situation. -
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•	Theorem 11: Let u be an oscillatory-solution to (27). 
i) If P is monotone increasing (decreasing) and P-'Q is monotone decreaing (in-

creasing), then A,'	A, 1 . j € N. 1/, additionally, P is strictly monotone increasing 
•	(decreasing) or P- IQ is ' strictly monotone decreasing (increasing), then A,' (c) 

'j€ [N.. 
ii) it P, P-'Q - are monotone decreasing • (increasing), then A,'	A, j € [N. If, •	additionally, P or P"'Q is strictly monotone decreasing (increasing), then A,' ()) A,, 

,j€ [N. 
• '	iii) If F, P'P' are monotone increasing (decreasing), and P 1 Q is monotone de-

creasing (increasing), then A,	A,, 1 , j € N. If, additionally, t.one of these functions 
is strictly monotone, then A, () A, 1 , j € N. 

iv) If P is monotone increasing (decreasing), and P- 1P', P'Q are monotone decreas- 
ing (increasing), then A'. ()	j € N. If, additionally, one of these functions is 
strictly, monotone, then A,'	A,'+1 , j€ EN	 _-

v) If P(x) = e, c > 0, and e2?Q(x) is monotone decreasing (increasing), then 
A, (c ) AJj and -A,'	A; 1, € [N. If, additionally, c	0 or e_Q(x) is strictly 
monotone 	(increasing), then A,	A, 1 and A,' (c)	€ N. 

Proof: By considering that the equation (27) can be written as —u" - P1 
x P'u' + P'Q = 0 Theorem 11 directly f9llows from the Theorems 9 and 10:1 

Finally, we apply the Theorems 9 and 10 to the Bessel differential equation 

—u" - x- Iu' —(1 - x' 2v2)u = 0, x €.(0,.c'o).	 -	(28) 

The Riccati differential equation (15) belonging to (28) calls	. 

- y'	y
2 - x 1y + ( 1 - x 2v2), x € (0, co), y = —u'u'.	.	'.	(29), 

By means of (29) one can easily see that a non-trivial solution u tO (28) possesses at 
most one zero'on (0, !]. Additionally, if the first zero"x1 of uis placed in (0, jr !), the 
first zero x1' (> x1 ) of u' is greater than l v i . Hence, Q(x) '= —(1 —.X-2V2) < 0, x 
€ [x1 ', oo),'and the Theorems 8-10 can be applied to (28) if x is restricted by x1' 

x<oo.  

Theorem 12: Let s',, v + 0, be a non-trivial solution to (28) and denote its quarter-
waves by'A, ,and A,', j € EN, respectively. Then, A,'	A 1 and A,'	A; Fl , i € N. 
Further we have x +1 - x/ > X; +j - x, 1 , x +1 - x,' > x +2 -	and l',(x,')l 
>	j € N. In the special case v = 0 the inclusions A,'	A,+1 , A,' 
A;.f,	A,1 and	t he. inequalities x 1 - x,' > x	—.	-	>	 1'

-> X; j — ( X,+ j , l 0(x,')l > l'o(x;+1)l, j € [N, hold. 

Proof: Apply the Theorems 9 and;10 I 

The inequalities l,(x,')l >.l(x;+1)l (v € ER, j € EN) are due to L. LORCIE, M. E. 
MULDOON, and P. SZEGO. Additionally; they proved that the sequence {'2(x')}JN 
is' completely monotonic (cf. [8])., Furthermore, they proved , that the sequence 

- x,'}JE N' is also completely monotonic (cf. [8]).  

- Corollary: Assume ll \1/2 and let e, be a non-trivial solution to (28). Then, 
concerning , the zeros x, and x,' of °, ,and n',', respectively, the inequalities x - 
>.	- x,+1 , x, 1 - x,' > x 42 _ x5+1 , and x +1 —x,' > x,' —x,, j € N, hold. ,
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Proof: In view of Theorem 12 we only have to show that x, 1 - x,'> x,' —.x,. 
It is well-known that-x 1 -	-'- x•+1 (cf. [7], for instance). Hence, together 

•	with the inequalities of Theorem 12, we obtain	 S 

S	
- 

XI 
+ x/ - 	Xj 2 - X;i+ X;+1 — . x +1 . 2(xj+j -- x1') 

and, consequently, the assertion x' - x, <x 1 - xj%j E N I 
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