.

- lation of 4, the new position of 4, is denoted by (4.) in Flg 1) Concernmg the mono- .

,/

. \
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Monotonicity Propertxes of Oscillatory Solutions of Seeond- Order .
Differential Equations - , -

N

E. MULLER-PFEIFFER

Es wird untersucht, wie sich Monotonieeigenschaften der Koeffizienten gewdhilicher Diffe-
rentialgleichungen)zweiter Ordnung- auf oszillierende Losungen u solcher Gleichungen iiber- .

tragen. Zum Belsplel werden Aussagen gemacht iiber dle Abstinde der Nullstellen von u, «’
und der von % und v’ untereinander. . ) .

Ucenenyeren, KaK® NEPEHOCATCA CDOMCTBA MOHOTOHHOCTH KOI(PQUUHMEHTOB OOBIKHOREHHBIX

nuddepeHUHANBHEX ypaBHeHHil BTOpOro NOPARKA HA OCUMJIMpYIOLLIE pelleHUA © TAKIX
YPaBHeHUH . JIenam*cx, uanpnmep, BRICKA3BIBAHUA, 0 paccTommu nyneu GyHKUMA . w, v’ u
Tex OT u ¥ u’ MeKAy coGoil.. .

‘Itis proved in what way monotonicity properties of the coeff1c1ents of ordinary second order
. differential equations are transmitted to oscillatory solutions % of such equ&tlons For instance,

there are statements on ‘the distances of the zeros of %, %/, and % and %’ mutually.
o~ a e . - . -

H

This paper generahzes the following theorem of P. HARTMAN and A WINTNER [2]
Consider the equation

-

u"-{—Q(x)’u:O n=rx=1x, QEC, QSO

and let u be a solution with three consecumve ZEeros Xy, T, T3, and rc]atlvc extrema at

R, T < 2y < %, and x2 , Ty < Ty" < 3. Let A; be the area bounded by the z-axis,
't,he straight line z = x;’, and the graph of u belongmg to the interval [x,, zj Ti=1,
2, and let 4, be the area bounded by the z-axis, the straight line z = - 2y, and athe. .

graph of u belongmg to the interval [x, ) Zinl, ] = 1 2 (Fig. 1)

~

. L " Fig 1
' - - Vi '
If @ is monotone decreasmg on [z, 3]; then A;’ can be placed into A, by reflection
at the straightlinez = #;,j = 1, 2,and 4, can be placed into 4,’ by rotation through_

» 180° about the point x, and granslation about d = 2z, — ;" — z,’ to the left placing:.

the abscissae of the extrema ordinates in ‘coincidence. (After this rotation and trans-

tonicity of the quarter-waves A;, A} and the half-waves 4; v 4;"if @ is monotone *
decreasing or increaking compare also the papers of E. MAKAI [9] a,nd I. Birari [1].
In the following we consider the non-selfadjoint differential equatlons (r,Re€

C[a b))

1

—(Pw) + R 4+ Qu=0 (0< P € C'a, b],-.O >Qe([a, b])', oy

o -

/

G
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S B \ B : /
-~ and’ v C . )
—(p') + =0 0<peCab,0>qgeCab). - . (@)
Lot: u be an oscillatory’solution to (1) and throughout this paper denote the zeros of - -
u by z,, 2, s and the zeros of «’ being greater than.z, by z,, 2,’, ..., so that

0=z <z’ <2 <2z < .. Define the areas 4;, 4, of the quarter-waves of u as
above. Further, let the followmg definitions hold throughout the paper.

i) 4; .Q A means that Aj" can be placed into 4; by reflection at the strarght
linex = ;'
~-ii) A4y Q A,+l means that ‘A, canibe placed into 4y by rotation through 180°
about the point z;,; (Flg 2; after the 180°-rotation t,he posmon of A,Jrl is denoted by
- ,[A;+l] B - . . \

. kD 414 Ny /
7x, \ Xj, Xje: A/ + A/n Xje2 .
: A - Fig2 -

o

©1ii) 4; D A;,, means that A,H can be placed into A by reflection at t,he z-axis and
translatlon about x;,, — ;" to the left.. .
T iv) A, 2 A;., means that A,+1 can be placed into 4, by reflection a.t the z-axis
a,nd translat,lon about x,?l %’ to the left.

v) Aju 4} D A U A],y means that 4y, UA)” can be placed into A P by
rcflectlon at the z-axis and translation about z,, — %;’ to the left.
[‘he mclusrons 4; o A, ,A4; €A, A, < A and so on are analogously defined. .

-

' Companson theorems K ' ' . .
. To compare oscrllat,ory solutlons of (n and (2) these equatlons are to be transformed
mt,o Rlccatr differential equations. . - . - oA

; Lemma 1: Let u be a solution to (1) which doesn ¢ vamsh on (k1 L), and choose any
’ posmve function @€ CI[¢,,t,]. Then the function

y—-—opulu . S o ‘ .3
isa solutwn to the’ chcatz differential equation ' b

¢WW+@@%PWW—M0n%M ",(g

This assertion follows by an- -easy calculatron Analogously, if v/is a solutlon to (2)
.whlch doesn’t vanish-on (¢, &,) and @ € C\[t,, t,] is any p031tlve function, then

.

e= —gpu - G
isasolution to o T '
“%7Z~W@W+WW+PWVWQMWA) . ®

Theorem 1 ' Let u be a solution to (1) with u(a) = uw'(c) =ud)=0,a < ¢ < b,
u>0on (a b), and conszder the solulwn v lo (2) determmed by v(c) = u(c), v'(c) = 0

~N



If there exist @ number 7; > 0 and a point z, € [a, b] such that -

nP(z) exp (—f I‘?'P“1 dt) p= ﬁ(x) exp'(—f'rrp“ dt), z € {a, ], (D

/ -z

. . . ! s " ‘
. 1Q(x) exp ( fRP ‘dt) = q(x) e\p( frp“dt), zefa, b 0 (8)

Lo

then there exzst pomts « € [a c) and B € (c b] with v(o:) = O ="v(B) and 0<vw < uon
(x, B). If in (7) and (8) the signs = are.replaced by =, then v = u-on [a, b]. If in (7)

- and (8) at least one of the s¢gns =is replaced by >,then x € (a,c),B€ (c,b)and 0 < v~

‘< uon (x,c)ulc B). If in (7) and (8) the signs < are valid and at least one of the arts-

" ang meqwtlmes is strict, then v > w on [a, ¢) v (c, b]. - o '

-

Proof: By setting

T . " - . - '» oo , )
D(x) = nexp (—f RP! d_t), z € [a, b}, - N 9)
-~ \z. ) \ . “x , ’ . .
and \ ( - — ‘
. z S [ . i v
o) = exp,(—f rpT! dt),; z € [a,b], a . ’ ‘ v (10)
N ) . ’ - ' / B . . e )
_ it follows from (4) and (6) that =~ . v - ! .
Ly =P 0@ on (abiy) =0, oo . (1)
S \ : . . .
and .. . : ’
2h= gripTi2 — gq, 2(c) =0, . O (12)

respectively. (12) holds on every interval (¢, &), ¢ € (&;; t),” where z exists. By (1

and (8) we obtain z' =y’ eve‘rythre in the strip Sy, = {((Z, ¥) | 2 € (4, &),

\y € (—o0, 0)}. Thus, concerning the solution to (11) and (12) it follows that z < y

on (4, cl and z 2 y.on [c, &) (cf. {3, p: 91]). Therefore, and by y(z) - —co-as z | a,
y(z) = +o00 as z 1 b it follows that there exist points «-€ [a, c) and 8 € (c, b] such
that 2(z) - —oo0 as x| «, z(x) > +c0 as z 1 f. Hence, we have v(«) =0 = »(f).
Further, ’ > 0holdson («, B) because of (11) and.Q < 0. Thisimplies 2 < y < 0 on
(x,¢)and 0 <y < zon (c, ﬂ) Thus, by (3), (5), (7), and (8), we obtain v~ = u~lu’
> 0 on (&, c) and v’ < w u' < 0 on (c, B). Finally, mtegratlon leads to v < u on

[, B). If in (7) and (8) the signs = are replaced by the signs < the assertion v =u

on (a, b] can analogously be proved. .
Assume now that in (7) or (8) at least one of the signs = is rep]aced by > Then, in

“view of (11) and (12), it follows that 2’ > y’ everywhere in the stnp Su,.1y whenéver

(z,y) % (¢, y). Thus; we ‘obtain z < y < 0on (x,¢), 0 <y < zon (¢, B), and, conse-
buently, 0<w < wuon (x¢)ul(cpB). To prove that 8 € (c, b), for 1hstance choose

" a point. z, € (¢, B) and consider the solutlon ¥, to (11) determlned by y,(z,) = 2(z,)

(> y(x,)) The function w = (y,.— Y)Y is a solution to
w + 2y¢“1P‘1w + @7'P71 =0 on(a,b) )

¢ -
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(cf [3 10]) Hence : S
/" (x) = exp ( 2f yd) 1p-1 dt) (w(xl) —f<1> 1P‘ exp (2fy<1) 1P'1dr) dt)

.z, z,

) -

: _ u*(x) a2 -1p-1,,-2
) ) T W) w(“’h) u (%)f‘p P w dt |, .
oo K . ,,: S (14)
’ w(x,) = (?]1(171) - Z’/(xl))_l >0. ’ . ST '
It follows from, (14)'and A I
l\ ' lim f(D“P‘lu“'?dt ~ oo - ' Yo
G xth T / !

“that there exists a point 51 (xl, b) such that w(z) >0 as z 1¢&,. Hence we have

y(x) > ccas z T ). Since 2’ > y," In Sy, ¢, it follows that z > ¥, on .(z,, t,). There- -
fore,..there exists a point § € (¢, b) such_that z(x) — oo as z 1 8.  This proves that.
v(B) = 0, B € (c, b). The. assertion a- € (a, ¢) can analogously be proved B

In the selfadjoint case R = r ='0 concerning the:loéation of the-zero ﬂ of v Theo-
rem 1 is essentially a result by LEicHTON [5]. - /-

Theorem 2; Let u be a solution to (1) with u(e) = uw'(b) = 0, ' > 0 on [a, b) and

* consider the solution v to (2) determined by v(a) = 0, v ‘(@) = u'(a) > 0. If there exist a

number n > 0 and a point z, € [a, b] such that (7) and (8) are /ul/zlled then there exists

a point f € (a, b] with v (8) = O and v" > 0 on [a, B). If in (7) and (8) the signs = are

replaced by <, then v' > 0 on [a, b). If (7) and (8) hold and one of these inequalities'is
strict, then B € (a b). - .

' Proof Use the funct,xons( ) (10 and consequently, the equatlons (11) and (12).
It follows from fhe hypotheses of the theorem tha.t, y(x) - —o0 and z(z) > —oco as
zl a;y" > 0on (a, b), y(b) = O, and y < O on (a, b). Let the conditions (7) and (8)
be fulfilled. We prove that z' = y on all intervals (a, '), ﬁ =< b, where z exists. Assum-
ing the contrary suppose that there exists.a point z, € (a, 8) w1th 2(xy) < y(z,). Con-
sider the solution ¥, to (11) determined by #1(2i) = 2(z,). The function w = (y, — y)™!

.is a solution to (1‘3) wis glven by (14) with w(z,) = (y,(xl) y(xl)) ! < 0 and we
have : : .

\“m f (p'_—lp—l/uﬂ dt J—
zla z,.

. Hence, there exists a point &, € (a xl) such that w(z) >0asz | & and consequently,
Y (z)—> —oco as x.LEl Because of %" < 2’ everywhere in’ the strip S(aﬂ) = {(z, y)
|z € {a, ),y € (—o0,c0)} weobtain z < y, on the left-hand side of x,. Hence, there
exists a point &, € [El, x;) with z(x) - —do as z | &,. This, however, contradicts the
fact that z exists on (a, 8’). This proves z = y on (a, #'). Since y(b) = 0, there exists
a point B € (a, b] with 2(8) = 0 and —o<y=2<0 on (a, §). Thus, we obtain
v'(B) = 0 and-v"-> 0-on [a ﬂ It (7) and’ (8) hold, but one of these inequalities is

“strict, 'we obtain ¥’ << 2’ in S, and consequent]y y < zon (a, ﬂ) It now follows
from y’ <.z’ on (a, B) that § < b. -

If (7) and (8) thh < in place of = are considered, we prove that z < y on (a, b].

Assume the contrary and let z, € (a, b) ‘be a pomt, with z(z,) > y(z,). The solution ¥,

+ to.(11) determined by y,(x,) = 2(z;) is monotone. mcreasmg on (a, z,]. The case y,(z)

— —oo as x | a is impossible, because, by assuming this case, it would follow that

there eXIStS a point &, € (a, ;) w1bh y(x) — —oo as x { &, as it is seen from above.

’
’

)
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" Hence, we have yl(x) >waszla, we (—oo y,(zl)) -Further, by the hypotheses
under conmderatron it follows that ' = 2’ in the strip S which implies that
z 2 4, > w on (a,'%,]. This, however, is 1mp0531ble because of z(x) > —occ as x .L a.
Hence, we have z < y on (a, b]. This proves that v, > O on [a, b) 1

In the selfadjomt case R=r=0andyp=1 Theorem 2 is due to LEIGHTON [5, 6].
The next theorem can similarly be proved. !

. Theorem 3: Let u be a solution to (1) unth u(b) =u (a) = 0 u' < 0on (a,b), and
consider the solution v to (2) determined by v(b) = 0,v "(b) = w'(b) < 0. If there exist a
number 7> 0 and a point.z, € [a, b] such that (7) and (8) are satisfied, ‘then there *
erists a pomt « € [a, b) with v'(x) = 0 and v' < 0 on (x, b]. If, additionally, one of
these mequalztzes is strict, then « € (a, b). If in (7) and (8) the szgns = are replaced by
<,thenv’ < Oon (a,b). . -

By setting P=p =@ =9 = 1in (4) and (6) we, obtam the Rlccatl equatrons

y=y*+Ry—Q, y=—wi, . < (15)

and - i . ’ . o .' .
Y= bz —gq, 2= —vW, - B S . (16)
which’ lead to the followmg theorem L R -

Theo rem 4: Let u and v be solutwns to

Ah—u"—{—Ru £ Qu =0, (R,Q€Clabl,@<0) - - S

cand . » T B T : S
. —v"—}—rv—{—qv—O (rqeo[ab],q<0) B
szthu(a,)__v(a)—u(b)—Ou(a)—v(a)>0u >00n[a b). If . N
r<R, ¢=Q onlab], . s (19)

: .then there exists a pomt B € (a, b] with'v'(B) = 0,.v" > 0 on [a B), and 0O<v=<uon
E (a B1. The point B i is equal to b only if the equations (17) and (18) are tdentical. If.

r=R, q>Q on [a, b], . A . ’ (20) .
f'.then v = uon [a b}, v' > O'on'[a, b) and v'(b)y=0 only if (17) and (18) are zdentzcal
Proof: The function y = —u'lu is defined on (a, bT By the hypotheses on w it

" follows that y(xr) - —oo as'x la; y(b) = 0,and y <Oon (a b). Let the hypothesis
(19) be fu]fl]led Assume that there doesn’t exist a zero of v’ on (a, b)."Then the func-
tion z = —v~ 1’ is negative on (a, b). By (15), (16),/and (19) it follows that g y =2

everywhere in the half:strip Hp = {(z,y) |z € (@, b),y € (—oo, 0)}: Thus, as in
the proof of Theorem 2, we obtain y < z on intervals (a, 8], 8’ € (a b], where —oo
- <z = 0. If the functlons y and z are not identical, there exists a point 2, € (a, )
with y(z,) < 2(z,) (<0). The so]utlon y, to (15) determined by the initial value
h(z) = z(z,) must, cross the z-axis because of y(b) = 0 and the uniqueness of solu-
tions to (15)- ‘Now, it follows from ¢’ < z"in H ) that y, < z to the right of z, and
for points (z, ¥,) and (z, z) which are placed in H,s,. Hence, the gra.ph of z must also
cross the z-axis. This, however, cont,radlcts the assumptlon that +" does not vanish on
(a, b). Hence, we have y = z on (a, b). Thus, by (15), (16), and (19) it follows that .
Q = gand R =, i.e. the equations (17) and (18) are identical if v’ does not vanish on
(a,b). Let B € (a,b] be the first zero of v'. Then we havey <z < Oon (a, §), which im-

plies that u~'u’ = v~%’' > 0 on (g, ). By integration we obtain 0 < v <u on (a, 8].

\
7
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’

This proves the first part of'the theorem If (20) is supposed exchange the parts of the
equatlons (17) and (18) B )

_The different parts of the following theorem can a.nalogous]y be proved. ~

" Theorem 5: Consider the dzf/erentzal equations (17) and (18) on [a, b].
i) Let w and v be solutions to, (17) and (18), respectively, with u(a) = v(a) > 0,
"w(a) =v'(a) =ub)=0,u>00n[ab). If . . N _
rZR’'¢<Q<O0 onfab], - , ' L@

. then u' < 0on [a b, and there exists a point € (a, b] such that v(B) = = 0, O<ov=u
“on [aB)y and v < 0 on (a, B], where B is equal to 0] only if (17) and (18) areé identical. I,

o TSR Q<q<0 on'[a, b},
then v = w on [a, b], where v(b) = 0 only if (17) and (18) are 1dentwal

ii) Let w and .v be solutions to (17}, and (18), respectively, with u(b) = v(b) > 0,
w(b) = v'(b) = u(a) = 0, and u > 0 on (a, b). If - S _ ,

B r< R, ¢=Q<0 onlab], T '

. then w' > 0 on [a, b] and there exists a point « € [a, b) such that i;(a) =00<v=u
on («, b] and v' > Oon [«, b), where xS eqwl to a only +f (17) and (18) are identical. If

r2zR, @Q=q<0 onlab];

N

then v = u on [a, b], where v(a) = 0 only if ( 17 and (18) are zdentzcal

iii) Let u and v be solutions to (17).and (18), respectively, with u(b) = v(b) = u'(a)
_Ou(b)—v(b)<0u<00n(ab]1f _ -

rZR qSQ<0 on [a, b],

then there exists a point « € [a, b) with v'(x) = 0,0 <v Zu on [oc b) and v < O'on
(x, b], where o 8 equal to a only if (17) and (18) are identical. If

. rSR, @=q<0 onlabd]
: thenv > uon [a,b),v < 0on (a, b], and v'(a) = OonlJ if (17) and (18) are identical. -

Proof: i) The assertion u’ < 0 on (a, b], for instance, eas1ly fol_lous from (15):

- Since y(a) = 0, y'(a) = —Q(a) > 0, the function Yy is positive in & neighbourhood
of a. Further, the graph of y cannot touch the z-axis at a point z, € {a, b) as can be

‘ proved as follows. Assume that z, is the smallest point to the right of @ with y(z,) = 0.

"“Since y > 0 on (a, z,), we have y'(x,) = 0, contradictory to y'(z,) = —Q(zs) > 0. -

y > 0on (a, b) 1mp11es u’ < Oon (a, b). To prove the other assertions of the theorem |
compare the proof of Theorem 4 1 :

Of course, the Theorems 4 and 5 can easily be applied to the selfadjoint equations
()and (2) with R =0and r = 0, respectlvely, to obtain analogous companson theo-
rems T

v

‘Monotonicity properties of solutions

" In. the following the comparison ‘theorems from above are used to study monoto- -
nicity properties of oscillatory solutions of second order differential equations im-
plied by corresponding monotonicity behawour of the coefficients of the deferentlal
equations. -, - . . '~

-
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= o
Theo rem 6 Let u be an oscillatory solution to (1) on [0, o0). Denote the zeros, o/ % \
by z,, z3, .- ., and the zeros of u’ bg//:z:l y Ty S0 that 0 S 2, < 7)) < Zp < Ty .
If there exists ¢ € R such that the functions ' ' . ‘
.. A x . z " - )
~ P(z) exp (ca: —,—f RP? dt), Q(z) exp (cx —‘ff RP1 dt) : (22)
: : .0 , 0o - A . 3
" are monoto;ae decreasing (incretlzsing) on [0, o0), then, for § € N, o p;
x| — ;&) i';,fn — Ti+1 Zj — x{" &) Tise - leﬂ - . (2_3? -

and, consequently, -,
: . ’ 2 ’ ' . .
Ziyy — X (3) Tiyo — xJ-Ha x;’+1 Zi (2 x xj+1‘ . (24)

If; additionally, one of the /unchons (22) us-strictly monotone, the mequalztzes (23) and -
(24) are also strict. , . | : .

Proof The functlon i(z) = uxj,, — :c,’ + z) (z € [2;, jx1]; 7€ N) is a solution
to the differential equation ~ - . : .

—(P(xf —z +x)@’) —i—'R(x;H‘ —z; +2) % + Q(:cl =z x)u = 0

Assume that the functlons (22) are monotone decreasmg Then

-~

ﬁ;P'(a:) exp (cxv— f RP! dt) - /
| g . .

¢

o . - o fa—T+T :
= Wi_P(x;{n — ;" + x)exp (C(x;{:-l — "+ z) — f Rp3 dt)
: Y : - ) . 0 ’ ’ )

s
»

. . S : .
.= P(zj,, — z/ + ) exp (lcz — [ Rz}, — 2 + 1) Py, — 2 + T)df)"
. . 0

ERITY Rk’ ) . .
+ with n; = exp (c(x_,-’ —zj)+ f RP."-dt). Hence, ) - .
T 4 0 . N : . ! - .

. N .
7;P(x) exp (—f'RP‘l dt)
7 :

L~

- - T . c . :
_—— P(z},, — 2"+ x) exp (—f R(@j., — = + z) P\(z},, —z; + 1) dr),
. R s B A : ’

. . - . ) zy zy . \. .
a fi; = 7; €xp (—f RP-Ydt + [ R(z],, — 2/ + ) PN zj,, — 2] +7) dr),_
. 0 .0 . ’

\

\
- - . . \
1) Here and in the following a possible zero-z,” € [0, xll)\'of »’ is disregarded.
; . P . v . . ~

~

~
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- Creasing (mcreasmg) the remaining part of Theorem 6 fo]lows from the last part of .

284 E. MULLER-PFEIFFER - ’ : : , o d

L ze [x,, ,+1] jeNT Analogously,

n,Q(x) exp (—;—f RP dt) o
- I’ / ’ N N

1

: . i z v . s o . )
g Q). — x,’ + z) exp (e f R(z{,, —zi + 1) P‘l(:zc,f+1 —; + 1) dr) ,
x5 o

.y,

x€ [:z:,, x,“] jE€ N To flmsh the flrst part of Theorem 6set . , ,
' P(,,l -z +z) (), R(x,“fx Y 2) = r(z), - L

Qs — 2 +2) = @), o(@) = bl #e,) i),
,,'a:,_c_xo, z;=a, ‘x,+1—b - ) A ,

and apply Theorem 1. The part of Theorem 6 described by the brackets can analo-
gously,be proved. If, additionally, one of the functions (22) is stnctly monotone de-

" Theorem 1 1 . . l
. In the spcmal case P = 1 R=0,c=0 and concermng the mequahtxcs ziy — %
) Tjea — Ty ‘Theorem 6-is due to A LAFORGIA [4].

"Theorem 7: Let u be an osc;llatory solmwn to (1) on [0; oo). If the functz:ons

P(x) ei{pb(—; RP-1 dt):/ Qkx)-oxp (—f RP1 d&)‘ ' _ : (25)

are monotone decreasmg (mcreasmg) on [0, co), "then z/ —z; & xm — :z:, & z}, y

s —xiy and’ A, (c, A7 (j € N). If additionally, one of the functions (25) s strwtly

monotone, decreasmg (tncreasing), then the asserted mequalztzes and mcluswns are
also strict. , — '

Proof: We prove “that, A =1 A if the funct,lons (20) are monotone decreasing. The’

. function @(z) = u(2x; — x) x€ [a: x;'], is a solution to the differential equatlon

—(P(2x ——:z:) @) — R(2z; —:c) "+ Q2 —-x)u_O ‘

with u(x ) = u(x )y @ (a: ) = —u (x = 0 Smce P(z) exp ( fRP‘l dt) is'mono; _
Y .

tone decreasmg, we have _ -

‘P(x) exp (—' f RP-l dt) = exp (}-’ RP-1 dc) P(z) ‘éxp (—f RP-1 dt)
' ' ../ ., 0 .

Y

'

' -

21—z
>exp(fRP 1dt)P(2x —x)exp( [ RP- ldt)

[

-~

. o 2z/—z , - , \ll, .
= P(2z; —x) exp( f RP-1 dt) y ) o

l “1

¥
‘ v

- .z . ’ . . .- i
= P(2x) —3:) éxp (—f (—‘R(2af,~" — t)) P12z — 1) dr),
co . z/ °

.



a

» ze€ [z;, z']. Ana.logous-lyb

Q(x) exp ( f RP! dt) = Q(2z, — :z:) exp. ( f (.—R(2x,-'~— t)) P12z — 1) dr) ,

X ThlS funct,ron is a solution to

~j € N. If, additionally, B 3,0 or Qis stnctly decrea.smg (mcreasmg), then Aa;

- . . . '
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- - _

zy zy o -
' \ N BN i ;
x € [z;, %] By setting: . , ' oy

P@s/ — ) = ple), —B(2x —2) = r(z), Qs ) = q()

Au(x)—v(x); x;’,=xo=0, :ci=a,'7)='1,.

~and applymg Theorem 1 weobtain 4;" S 4;and, consequently, z;’ — z; = z;,, — z;’.

To prove z;,, — %; 2 :z:,H — Ty defme the functlon u(:z:) —u(2z;, — %), Z € [z},

<(P<2xi+1 — @) &) — R(2yy — ) @ + Q2 —2) 8= 0

with di(z;,,) = u(:c,“) =0,% (x,“) =u (:r,“) Now, conclude as above and apply
Theorem 3. Thus, we obtain z;,, — z;" = x'ﬂ — ;4. If, additionally, one of the func-
tions (25) is strictly monotone decreasmg, by using the Theorems 1 and 3 the corre-
sponding assertions can analogously be proved. The same holds i in the case that the
functions (25) are inonotone increasing . ' ! K .

’ Theorem 8: Consider the-differential eqwm'on e S

- ~u £ Rw 4 Qu=0 (RQeC[Ooo)Q<O) e Tee
and let 1w be an Joscillatory solution. L - . L ,
i) If the ooe//zczents are monotone decreasmg (mcreaszng) on [0 oo) then x — ;-
2) T — Zjaxs 1 € [N If, addztzomzlly, one of "these ‘coe//zczents s strzctly decrea.smg
(mcreasmg) then zj — x; 2, ;+1 — %y, J € N
Ai) 1 f Ris monotone decreasmg (vncreasing) and Q 1. is monotone: increasing (decrea.smg)
" then z;y, — x; (g, Zipg — ,+ 1 7 € IN. If, additionally, one of these funchons ] .stnctly
monotone, then Ty — 2, (S, Tjsz — Ziv, ] EN.

Proof Let R and Q@ be monotone decreasmg on [0, c0). The so]utlon v = u“(z +1)
X u(z;’) w to (26) has the properties ( z{,;) = w(z;") and v (z,H) = u'(z;) = 0. By
translatmg the graphs of », R, and @ belonging.to the interval [x,“, ,”] to the left
about z;,, —2;' and applymg Theorem plii), we obta.m ¥ — % = X[, — i
Additionally, we have 2" —z; > z/;;, — 2,4 'if one of the coeffxcnent,s JIs strictly

. decreasing. By the help of Theorem 5 the other assertions of Theorem 8 can analo-
.gously be: proved ] . . :

'
A}

Theorem 9: Let u be an oscillatory solution to (26) and as in the mtroductzon denole
the areas of the quarter waves by 4; and A}, respectively.

i) If R 2,0 and Q is monotone decreasmg (increasing) on [0, oo then A, (g) 4,,

_ 7 € IN. If, additionally;, R Z,0or Q 18 strictly decreasing (zncreaszng), then A < A
‘5 € N.

7 (2)

j€
i) If R &0 and Qis monotone decreasmg (tncreasing) on [0 o), then A, (c—) A;,.,

Ajrs
7€[N ‘ : ’ | . ‘ | )(c) i

/

1

’
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Proof: Assume first that B = 0 and @.is monotone decreasing on [0, o). The func-
tion di(x) = u(2x, — ), z € [z}, z;’], is a solution to the differential equation —a"’
— R(2x — 2) @ + @2z — z) & = O with the initial values 4(z;") = u(z;’); @'(z;’)

. = —u/(z;") = 0. Hence, by Theorem 5/ii), we have @ <wu on [2x —xpy, %] i

- —R(2x — z) < R(%) and Q(2x; — z) < Q(), % € [z}, z;'].. But, in the present case,
these conditions are satisfied. - \
We else discuss the case R < 0 and Q is monotone decreasing. The functlon a(x)
c= —u(2xy, — ), T € [z, 25,4, i5 8 solution to the differential equation

\ L — — R(2alc,+l —2) 4 + Q2 — )% =0 on [z, ;)

w1th W(zj,,) = 0, #'(2;41) = ©'(2;1,). Hence, by Theorem 5/iii), we obtain A;,, S 4/’
—R(2z;,, —x) =2 R(:t) and Q(2z;,, — x) < Q(z), x € [z}, z;j.,]. By the assumptlons

on the coefficients in the present case these conditions are fulfilled. The remaining -

assertions of the theorem can analogously be proved 1§
- By joining the Theorems 5-and 9 the following theorem is obtained.

Theorem 10: Let u be an oscillatory solution to (26).
. 1) I f R E,0 and both functions R and Q are monotone decreasmg (increasing), then
CA; (c, A,+1,7 € IN: If, addztwnally, R 5,0 or one of the functions R and Q s strictly

decregsmg (mcreasmg) then A; 2 (©) A,“, j € IN. -
i) If" R )0, R is monotone increasing (decreasing), and @ is monotone decreasmg

(zm;reasmg), then A;' (C)A,,l, j € NI If, addztwnally, R 3 O or R or @ is stmctly
monotone increasing (decreasing), then A;' 2, A,,,j € N.

Proof:We handle the case that B < 0 and both functions R and Q are monotone
decreasing. By Theorem 9/ii), it follows that 4;' 2 4,,;, 76 IN. Hence, we have

) = ulxl)ls jE IN. The function v(z) = v—u(z] ga—2 +x)isa solution to
. —v" + Rz, —z/ + x)v" + Qz;;, — 2+ z)v =0 on[z,z/]
with lo(z;")| = lu(x]”)| Iu(z )| and v'(z;') = —u'(x].,) = 0. Since R(z Ty — —z + )

- R(x) and Q(zj,, — ;" + z) < Q(z), z € [x;, %], in view of Theorem 5/11), it

follows that 4; 2 4;,,, 7 € N. The remammg cases of the thcorem can analogously .

" be handled 1 :

Remark: Consider - the dlfferentlal equatloh —u" 4+ pu’ +- Qu =0 (0 > Q
€ C[0, ), p = const) and let % be an oscillatory solution. Then by Theorems 9 and
10 the followmg holds:- - =

1) If o < 0 and @ is monotone decreasmg, then 4; 2 A;,;and 4, 2 AJ'H, 7 € IN:
Hence, concerning the half-waves A4; y 4, and A,+l U A o we have - ‘4, u4dy
D A)-H v A;bl
4; ;D Ajy and 47 :)A"”, j € IN.

11) Ifg =0 and @ is monotone increasing, then 4; c A,“ and 4;' & A,,l, j€ [N .

- If, additionally, 0> 0 or @ is.strictly monotone mcreasmg, then A < 4;,, and A

= AI”, j € IN.

iii) If o = 0 and Q is decreasmg (increasing), then A4; (C) Ay (c, 4, 7 E\IN‘
If o=0and Q 18 stnct]y monotone decreasing (mcreasmg) then 4; 2 = A5 2 () 4js1s
7 € N. , ,

Concerning the se]fadjomt equation - . )

—(Pu)y + Qu =0, (0<Pecy, oo),0>QEC[O oo)) T ey

. we have the following sitnation.-

If, addltlona]ly, <0 or Q is strictly monotone decreasmg, then E

N\
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Theorem 11: Let u be an oscillatory-solution to (27)

i) 1 fP is monotone increasing (decreasing) and P-1Q s monotone decrecwmg (in- ‘
creasing), then A, = Aﬁl j € N. If, additionally, P is smctly monotone increasing -

(decreasmg) or P- lQ is strictly monotone decreasing’ (wwreasmg), then Aj (C,A,ﬂ,
5 € IN.
i1) I/ P, P'Q are monotone decreasing - (mcreasmg) then 4; (g) 4;, e N. If,

i addztwmzlly, P or P~ 1Q 8 stnctly monolone decreasing (tncreasing), then A4;" S A

i {2>)
jEN. ~
iii) If P, P 1P" are monotone increasing (decreasing), and P 1Q is monotone de-

creasing (increasing), then A4; (C)A,“, jeN. I f, a.ddmonally, ‘one of these /unctwns :

is strictly monotone, then A, @), Ajirs j € IN.
"~ iv) If P is monotone mcreasmg (decreasing), and P~ P’, P 1Q are monotone decreas-

ing, (increasing), then Aj' (c, A,H, j € IN. If, addztwnally, one of ¢ these /unctwns 18

strictly. monotone, then A, (2, A,H, j.€ IN-
v) If P(x) = e?, (3)0 and e °*Q(x) is monolone decreasmg (mcreasmg), then

A; (3, A, and -4/ (g)A 10 ] €N If, addztwnally, c (<, 0 or e “*Q(x) is striclly
monolone decrea.smg (increasing), then A, (<) A,“ and A, o) A,“, 7 € N.

Proof: By considering that the equation (27) can be written as —u" — P!
X P'u’ + P'Q = 0 Theorem 11 directly follows from the Theorems 9 and 10-8

Finally, we apply the Theorems 9 and 10 to the Bessel differential equation

—u —ly— (1 —2%)u=0, z€(0,0). - ] . (28)
' The Riccati differential equation (15) belonging to (28) calls “ , N .
Y=y —aly+ (1 —ah), ze(00), y=—uu. - . (29)

By means of (29) one can easily sce that a non-trivial solution'u to (28) possesses at
most one zero on (0, |»|]. Addltlonally, if the first zero'z, of u is placed in (0, |»]), the
first zero z,' (> z,) of %’ is greater than |v|. Hence, Q(z) = —(1 —2 %% <0, z
€ [z,’; 00),’and the Theorems 8—10 can be applled to (28) if z is restncbed by x,
Sx<oo. .

Theorem 12: Let 8,, v &= 0, be a non-trivial solution to (28) and denote its quarter-

waves by- A and A}, j € N, respectwelj Then, A} DA,+l and A} :A,r,, 7 € IN.

. Further we have z;,, — zi > 2] i1 = Tis Tin — & > Tjeg — xlﬂ, and |6,(z;’)|
> |8,(%; +1)I, j € N. In the speczal case v = 0 the mcluszons Ay DA,H, 4, o> A;ln:
A, D A,+l and the . inequalities x;,; — x; > x,” — Zjey, x,ﬂ -z > x,+2 — .y
x}+2 - ]+1 > x —Zjs1s |g0(x )l > |go(x,+x)| 7 € N, hOld

Proof Apply the Theorems 9 and 10 B

The inequalities |£,(z;')] > |6.(x},,)| (v € R, j € N) are due to L. Lorcx, M. E. -

MuLpoox, and P. SzEGS. Additionally, they proved that the sequence {£,%(z;')};en
is completely monotonic (cf. [8])., Furthermore, t,hey proved that the sequence
Axj — },e\ is a]so completely monotonic (cf. [8]).

Coro]lary Assume ]vl 5\1/2 and let 8 be a mon-trivial solution to (28) Then,

concerning the zeros x; and z; of €,.and 8., respectively, the inequalities ;. — ;'
o ’ "4 ‘ ’ . .
> Zivy — Tjs1s Tjyg — Z; > xi+2 — Ty and Zjt1 —.x,' > Zi' —Zj, ) € [N, hold. .
. : - .

I ’ : ’ Y

/
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Proof: In view of Théorem 12 we only have to show that z;,, — x‘ >z —.x;.
It is well-known that-z;,, — z; < 21, — 2;4, (cf. [7], for 1nstance) Hence, together
with the mequahtles of Theorem 12, we obtain

- 7
Zj — %+ x, — § e ;n + x — Ty < 225 — ;)
and, consequently, the assertion ;" — z; < x;,, — x,’,'y' EN B '

’
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