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Es \nrd eine’ Vermut,ung von Satsuma und \Ilmura liber blow-up- Effckte von(Los*ungen einer

mchtlmcaren Diffusionsgleichung bewiesen. .
/
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A con)octure of Satsuma and Mimura concernmg blow-up effects of solutlons of a nonlmear

diffusion equation is proved. ;
N

| o . A -
1. Iniroduction. In recent papers M. MiMURA and J. Sarsuma [1 3] proposed a class
of nonlinear diffusion equations with singular integral-terms for describing certain

- diffusion processes with nonlocal -aggregation effects. They developeéd an exact

oy

linearization method and showed the occurence of blowing up in finite time for.certain
evamplcs In this connection Satsuma and -1 Mimura conjectured that there is:a critical
value I, of the total populatlon I determining whether the solution exists globally "
for all times or blows up in finite time.

In [4] L. v. WOLFERSDORY reduced the equation of Satsuma and Mimura' to partlal

"differential equations in a complex domain and the general initial value problem to

a Hammerstein integral equation. In this way he showed the existence of a solution
in a suff:cnently small time interval for an arbitrary Hélder continuous initial func-
tion. Purther, in [5], L. v. WOLFERSDORF proved the first part of Satsuma’s and
Mimura’s conjecture that the solution ‘exists globally if 7- < I,. The second part of

- the conjecbure, namely that for [ > I, the solution always blows up, remained open.

In-the paper at hand we present a new geometric approach whlch fits for proving both

parts of the COHJCCtUIe from a unifying pomt of view: .
‘Statunent of problem and main result. The problem under study is to find a real- ,

valucd functlon w:RXx[0,T)>RO<T = oo) which satisfies the equatlon

‘.

oufdt — d *u/02* + O(uSu)/ox =0 ‘on Rx(0,T) ' (1)

and the initial condition

) (@ 0)=f@), =zeR. ' @
" Here S denotes the smgular lntegral oper at01 of Cauchy type’ o
' .. teo : k
1 & : ' ' -
Su(zx, ) = — fu(f, ‘) ¢ . . z€R. ' '
( 24 ,‘E —-—r .
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The positive constant d and the ionnegative Holder continuous function-f are assumed
to be given. We suppose that
N :

- -

. 0 < flz) €zl - 3)

- for 'some constants C > O and x > 1. Consequently, [:= f} dx < co. Tt was

already shown'in [5] that the problem is umquely solvable for small T’ and under the .

- assumption I £ /= 21(1 for ' = +oo The follomng resulb was conJcctured by
.~ Satsuma.and Mimura. . - . - - R

‘

Theo rem: Let the /unclwn f salzs/y tlLe above assumplwns and let I:= f f(x)dx,
- Iy:=. "td [ R '
(1) If I'< Iy, thcn the problem (1), (2) vs uniquely solvable for T = 4-o0.
(i) If I > I, then there exists « number Ty > O such that the problem (1), (2) is wni- -

quely solvable /or T <7, The solution satzs/zes lim sup |u(z, t)| = cc.
: t—T, .reIR .

3. Preparatlons For plovmg the theorcm we follow L. v. WOLFERSDORF [5] who in-
troduced the new unknown function w = u — iSu which can be cxtended analytic-
ally onto the upper half plane /7 of the complex plane C. In this way each solutxon u
of (1) gives rise to a solution w of the equation . . _ \

<

U owfot — d 3o+ iwdw/ez =0 . on IIx(0,T) )
which satisfies the initial condition . - : l - -
. d ' ' Y Lo ) .

‘w(z, 0) = (p(z) f,f ad zell, , (5).

- and conversely, u = Re w solves (l), (2) if w satisfies (4), (3). The transformation

W(z,t) := exp -m—{i.:/‘w((:,t)dC o . : : (6)

]

. gives a ofe-to-one Lorrespondcnce bet“een the solutions w of (4), (3) and the non= '
vanishing solutions W of the (,omplex heat cquatlon

oW/ot — d&EW/eE =0 on ITx (0,T) - S @

with the initial condition

W(z, 0) : P(z) := exp %{l f(p({) d¢ |, zell, : (8)
) . . 0 ) .

s
\

~ ¢f. [5]. Thus the solution u of (1), (2) exists as long as the solution W of the heat equa.\-
tion (7), (8) does not vanish on /7 uR. The mom'ent Ty at which thesolution w (possibly)
blows up is the first: moment at which W(z,, 7'} becomes zero for some z, € IT U R.
It was shown in [5, § 4] that z, must lie on the real axis. Thcrcfo:c it suffices to con-’
sider equations (7) and (8) on R X (0 T) only
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From (8) \ve; obtain - _ V ’ . , ~ .
, . . . z . . ; ) .. , \
o = exp | =57 [ S, e
) '0 { R . o
N . 4 H N .
mgw@=—33fﬂ9¢. ' . : (10)
. . 0 N N ‘l_ - _ . -

lhe functlon arg (D is a monotone decreasing bounded function and the llmlts [ of
arg d(x) as x — 400 exist because.of (3). We remark that «_ — (1+ = [/2(1 The
asymptotics of ¢ and @ for large real arguments are’'given in [5}:

‘ o . . - y

. I 1, .
plx) ~i——= gs x> Foo, ' - v - (11)
. T T . - : N )
D(x) ~ :z;ll-’d,e\p - [/ f (&) In |§| dg " as x —> +o0, (1;2)
S :
. D(x) '(_I)llmz exp / (&) de — -1_'; [ f(&) In |&| d& ~as x.——> ~00. '(13)"
. . 205 ; 2ad o : . |
~In par.t-lullar, .‘ o N o, T b
-, ) |
mm~uwww—7gfmmmw-avm»w 4
For the convenience of the reader we llst some propertles of the solution to the heat
oquatlon M : . . : o .
. . \e Y -
oWlet —d 82W/8x2 =_0, (2, {) € R.x (0,-00), (15)- -
which satisfies an initial condition, : ' ’ ‘
W 0)=¥@),. zeR. .+ ' v : . (18)
If ¥\ is piecewise continuous and subject to the csti.mat(, |¥(x)] < C(1 + |z|?) for
some B € R, then (15), (16) is uniquely solvable in the class of functions w 1bh at mosb
po]ynomml growth in 2. This solution is given by . : e
I/V ’C l f G(S) t) ([/(Z - 5) : ’ : t . (17)
where G is the fnndamental solutions of thc h(,at, equatxon
Gla, 1) = (4dat)1V2 exp (—2/4dt). : . _ (18) -
’ : . . S
Lemma 1 Lel ¥ be complex valued and let ¢ be a 7)osuwe number. .
(i) If W(x) = O for all x with |z| = R, then there exists a ty > 0 such thut the solution
W 10 (15), (16 sala.s/zes the estimate sup | W(x,?)| < ¢ for all (x\l € R x [lo, co).
. zelt
. N
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() If () = 0 for all x withx = R, then, for each t, € R.., there exists a number Ty
. "such’ that the solutzon W to (10) (16) satisfies the estimate sup |W(z, t)| < ¢ for all

l (x’ t) € [z, 0) X [0 to] ) ) r>z,

The proof immediately follows fxom the lepresentatxon (1'7) (18) l

Lemma 2: Lt KS Cbea closed convez set.
(i) If ¥(z) € K on R, then W(x,1)€ 1\’ on R Xl}(

v

- (i) If, in addition, ¥ is continuous on R and z/ W(ro, to) E oK /07 some x, € lR -
- lo €.Ry, then ¥(z) € 0K /or allzeR. . .. - ' -

. Proof: 1. The maximum pnncnple vields the implication . ‘ <
.Re‘[’(x)ZO VzEfR@ReW(a,l)>0 VxER (e R..

Let Ebean a.rblt,raxy closed half plane in C. Since the solutlons of the heat cquatlon

v1th the-initial functions ¥ + ¢ (c € C) and e (x € R) arc W + ¢ and e*W, re-’

spectlvely, the implication

/ Y’(x)EEv-‘/VIE{R:>W(x,t)‘E'E’ : 'VxG R, telR,

follows from thé first step of the proof. 3. By representing the closed convex set K by

an intersection of closed half planes one obtains the assertion (i). 4. Taking into ac-
- count the implication (Y’ € C(R)) ' ) . .o ‘)

Re¥(z) =0 Vz ¢R

= R W",z >0 -V EIR Cte R
- Re W(ay) >0 - } e Wiz 1) o s

whlic‘h‘ follows immeédiately from (17), (18), the second a-ssertion (ii) -can be proved by .

snmllar means 1 } ‘ . ) ‘

Lemma 3: . Let K & C be @ closed convex set-and let & be o /ned positive number

Put K, _{ZEC |nf[x—-z|<e}

(1) If ()€ K for each z € R with |z| = R, then there exists a. positive number Io'

such that W(z, t)e K. forall z,t & R witht = &, .

(it) If ¥(z) € K for euch z € R with = R, then, for (,ach positive number- ly, there .

exists a number Zy such that Wz, t) € K, /or all z, t E [R with O St thandz = 2.
Proof We defme the functlons . '
| (Y@ i el =R, if. |2l = R,
Yi(z) = . . . Wolo) = ~ - .
PR) if |zl < R, 7 | W) — W(R) if |z| < R.

. and Lemma 1/(i)) W,(z, t) € K for all (z, {)-€ R xR, and sup {|Wy(z, t)|: 2 € R} < oo

for all ¢ = ¢,. The assertion (i) follows from W Wi+ W, In a similar manner one

* can prove (ii) applying Lemma 1/(ii} @

]

4 Proof of the theorem. As has already been Temarked in ‘Sectio'ri 3, it suffices to
investigate whether the solutlon W(:c, t) of (7), (8) vanishes for some z = %, t =Ty

-or:not.

1. 7 < 2ad. Because of La, S arg (D(x) < a_ and O <a_ - @ <7, as well as

‘inf |@(2)] > 0, the curve L= {D(z): z € R} completely lies in the closed half plane
Ky={z € C: Re (zexp (—12"(@,, +a))) = 6} o 19y

_ . . . s
/ ' . : .

“The related solutions W, and W, of (15), (16)—satisfy the relations (cf. Lemma 2/(i) -
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. if the posm\ e number ¢ is sufficiently small. By applying Lemma 2/(1) we see that the
curve L(t) = {W(z, t): € R} lies in K‘, for each ¢ € R,. This means W(z, t) = 0 on
R xR,.
2. I = 2ad. Smce arg® is a monotone function, t,he curve L is contained in the
closed: half plane K, (see (19)). Now let us assume that 0 ¢ L{t,) for some {, > 0.
---~Since the origini "lies on ‘the boundary of K,, it"follows from Lemma 2/(ii) that L is

completely contained in @K,./But this is 1mpossnble since a, <, arg @(z) < a_ for
some z € R. Hence W(z, )#Ooanx[R - .

3 I > 27d. Let 6 be-a positive. number We define ~
Ky = clos conv {z€ C: largz — ail =0, |z| 1}.

The asymptotlc formulas (12), (13) give the existence of E >0 such that G)(x) € K,, .
forallz Z Rand @(z) € K,” forallz < —R. Now we take into account that 6 is an'
arbxtrary positive number and apply Lemma 3/(ii) to see that for each given e, fy € [R+
there exists a’ posmve number %o S0 that, for 0 < ¢ < 4, ‘
i ) -
s W, t) € {z €C:largz — a,} < ¢ 1f x =, (20)
Wz, t) € {z€ C: |argz—al<e} lf\xS—xo R ¢ ¥

If the solutlon u would not blow up in finite time, then we could contmuously extend '
'the branch of arg used in (10) to define arg W(z, ¢) (z € R, ¢:€ R,), since in this.case
W would never vanish (W continuously depends on z, t). Because of (20) and (21)
we would ha\e ‘ ) : .

lim arg W(z,t) = a, for all teR,. - o, (22)

‘ :.'—»:too . N . . . \

In'the following we show that (22) cannot hold for sufflclcntly large tif I > 2nd.

3.1. Let I = 2(2k + 1) nd with k € N. By rotatmg the complex plane it can bé
achieved that ¢, = 0 and a_ = (2k + 1) #. The relatlons (8) (11) and (14) imply  ~

s ~-d— |P(z)| = ld)(x)l Im g(z) = Clz|/P=' 2 C >0 Cif |2l = R. 3
For sufflclenbly la.rge, x we have 0 arg )] £ /3 and therefore ‘ ’
d Re ®(z)/dx = cos arg D(z)d |®(2)|/dz ) '
' — |O(z)| sin arg P(z) d arg Dz)/dx - )
> 2-1d|P(a))/de = C/2 >0  forall 2 =R,.. . (23)

~

Anglogously' one can show that. N
' "dRe )z = C/2>0 forall z'< —R,.

Smce o Re W/ax isa solutlon of the heat equation with the mmal funcmon d Re @/dx,
the existence of a positive number ¢, with 9 Re W(z, t)/ox = C/4 > O for all z € R,
t = t, follows from Lemma 1/(i) because of (23), (24). This estimation shows that
* Re W(-, ¢) is a monotone function (for ¢ = to) whlch cont,radlcts

lim arg W(x, t) — lim arg W(z, ) = a- — a+ Z 3n. B

T—r— oo . Z—>4-00
3.2. Let finally 7 satisfy./ > 2nd, I'¢ {2(2k + )nd:.kvé IN}. We define

2 Ma. + 7 if cos 2“i( a_—a;) >0,
o 2-Ya, +a)+ = ‘if cos 2 l(a - a+) < 0.
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If xis sufficiently large, Lhe‘ values @(z) lie in the half plane - . ;t

{z € C:Re (zmp (—m0 ) = 1}
I,emnm 3/ implies the existence of a {;, > 0 such that '

Ré Wz, 0) exp (—iag)) = 1/2  forall z¢ R, ¢4,

" This leads to the estimate

sup arg W(x, t) — infarg W(x, ) S =, .

zeR -

" in cbntradict-ion toa. —a. > = togebher with (22). Hence the assumption W (x, ¢) %= 0

on R xR, is wrong'il

' Remarks: 1. Grow- -up of %, ie. lim sup lu(z, t)] = oo, can but must not necessarily occur.

t—o0 zcR

xf I = 2ad. 2, The idea of the proof is L|0§L|) u,la,ted to the inv ariance of the total population
400

f,u(x, t) dx used py Satsuma and ‘Mimura in other con_text,, namely

—~co
A ‘ <5} 00 .

EYR u(z, t) de = f{l arg W(x, t) = drg W(—oo,t) — arg W(+oo,t). f
- — o0 ’ | — ) ¢ ' )

3. Careful calculation-of the constants in Lemmas { —3 w ould also lead to estimates (from abov (‘)_
for the blow-up t,lmc
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