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Es wird gezeigt, daB eine beschriinkte Zahlenfolge genau dann H-limitierbar zum Wert ¢

ist, wenn alle starken Banach-Limites dieser ‘Zahlenfolge denselben Wert a zuordnen. Ein

_ starker Bdndch Limit ist dabei-ein lineares Funktnonal mit. bestimmten Eigenschaften im
Raum M aller beschriinkten Zahlenfolgen. Allgememere gleichmii Bige le1t10rungsverf(thron
lassen sich in ahnlicher Weise chnral\tenswren . N
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YIOK&:&LIBZ&CTCﬂ, uTo orpalllmeuuan YHCOBAA  IOCHEA0BATEALHOCTL MOMKET JIHMHTHPO-
patbest Heo-METOAOM K 3HAUEHIIO ¢ TOTAA M TOJLKO TO'AA KOFAA BCE CHimbHBIe Banaxw npe- *
ACIbI npnrmcmuam’r OTOli MOCNENOBATCALHOCTI TO #ie camoe 3HaYcHue a. Cnanublil Banaxon
npeaes ABAACTCA MPH BTOM SITHER BN (pym\uuoua.nom C HEKOTOPHMH CBOIiCTBaMM B npo-
cTpanctne M RCEX OTPAHIUEHHBIX UYHCJIOBBIX MOCHeNoBaTedbHOCTEH. Bosee obuiie MeTOb!

. paBHO\lepuoro nu\anponaHlm MoryT 6bITh 0\apah1‘epujoBauLl aHANOrHUYHBIM 06pasoM. e

o~ . ) ! B
A boundcd sequence is sho“n to be H -limitable to tlle value a if and only if all strong Banach .
limits assign the same value « to this sequence. In thls connection, a strong Bdna(,h limit means,
a linear functional with certain properties on the space M of bounded sequences. More gcncml
uniform llmltdtlon 1rletllods can be characterized in a similar manner

]
~

1. Introduction T ' - ‘, AP

The conccpt of almost convergence was mt,roduced and. studied by Lore~Tz [7], cf
also ZFELLER and BEERMaNN [14: p. 12], and StiEGLITZ [13] for a gcneralu,atlon
~ Almost convergence has found its most important application, perhaps, in the theory
of uniform distribution of sequences where it leads to ‘the concept of well-distri-
bution, ¢f. KurPers and ‘\‘IFDLRRuThR [6:p.40], ScuarTE [9, 10], Drvora and
Ticuy [3]. . :
Almost convergence can be legarded as & uniform version of the H,-method (al ith-
.metic means). It is no matrix nicthod and must be defined by a two- dunensxonal limit-
ing process. On the other hand, a- bounded sequence {a,} is almost convergent to the-
‘value « if and only if certain linear functionals, so- called Bmzach lwnts, aSSIgn the
same value « to this sequence. :
Another limitation method being defined by a two- dnnenslonal limiting process is
the H -method, cf. ZELLER and BEEKMANN [14: p. 11], SCuarTE [8). The H -method
possesses also applications in probability theory, for a survey-cf. ScuaTre [12] Hoo-
_limitation can be regarded.as a uniform version of limitation by ]ogauthmlc means.
Because of these similarities with almost convergence, the question arises whether
the H _-method can also be characterized by the fact that certain linear functionals |
assign “the same value a to a given sequence. This question can be answered in the
- affirmative. The com,spondmg functnonals w11] be called strong Banach lzmus



. appears as a theorem which is proved in LorexTzZ [7].
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Further the sumlentles between almost convelgence and H -llmltablllty induce

" the trial to fill the gap between both methods. Thus the concept of uniform n~9-

limitability is. considered ag a special case of the uniform p,-limitability, ¢f. ScHATTE

' [9—11), DrmoTaand Ticuy [3]. The uniform »-d- -limitability can also be charactenzed
" by lincar functlonals which w1ll be called »-9- Banach lomits.

N

, - . - o C >

2. Almo'st'convcrgence“ S ) ' B .

The -starting-point for our -considerations is the concept of almost, convelgence as

' mtroduced and chanacten/ed in LORE\TZ (7.

Definition 1 A sequence & = { an); of real numbers is called almest convergent
to the value a if : C

| ey K S ~ B
Hlim w 2 a,=auniformlyink=20,1,2,... - (1)
Y N—oo n=k+1 [ \ ‘. :
Remark 1: Obviously (1) is equivalent to ,
o 1 kN : ' . v . 4
. lim sup = 23 «, —a|l=0, : : . (2
N—ooo k=0.1.... N nlZsi : . ' :
. \
and this is again equivalent to X »
. o Cox o . : .
lim limsup|— J @, —al=0, . : 3)
N—oo k—ro0 _ n=k+1 N ’ o . .

since (3) ivmplies the bound'edness of {a,}.

Remark 2: On acc0unt of (3) almost- convergcncc is equivalent to-the method H*

‘(verkur/te arithmetische Mittel) considered in SCHATTE [8]. From Satz 7 of that place -

we obtain the following assertion: If the Fourier series of an integrable function. is

' almost convergent then it 7s even cmwergent This justifies further the denota.Mon

“almost” " convergent.

We con31der the set. M of all bounded sequences a = { Yol '.lhen Misa Banach
space if the linear operations are defined termwise and if the notm l«|| is defined by
Jlxll = sup |a,]. We shall write « = 0 if ¢, = 0 for'n = 1, 2, ... Further we dendte
by S the shift operator S = {dny}- o .

Deflmtlon 2: A linear functional f on Mis c&lled a Banack lzmzt if ,

(i) S, 1, =1, . . __ . ' R
(ii) /(a)>0 for a>o,_ o

i) fSa) = f@). S .,
The exnstence of such functlonals was shown by Bana,eh and Mazur, cf. ZELLER °
und BEERMANN [14: p. 12]. If the sequence & converges to , then f(«) = a for every

Banach limit f by (i) to (iii). But we can say much more.

Theorem A: T'he sequence x € M s almost:convergent to the value a z/ and only 2/

fl&) = a holds for every Bunach Limit f in M.

- This interesting characterlzatlon of almost convergence was used by LoRreENTZ [7] ,

for the definition of almost convergence. Then the characterization in Defmntlon 1

.
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3. H -llmltahlht)
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In what follo“s we shall’ charactérize the H -limitability, analogously to almost
convergence by a class of linear functionals.

aif N N :
lim lnm sup |Hk(a,,) — ul = 0 , ey (4
. A—*oo n—o00"
where -
. . . 1 n ' . .
flo(“n = (L,,, Hlt* ((l,,) = — Z H’C (l,,‘ k=0..
n

The H -limitability of a bounded sequence {«,}, can be deflncd analogously as

almost convergence by replacing the atithmetic means by logarithmic means. The -

>

“following theorem is 1_(;lent1cal with Satz 3 in ScuaTTE [8).
Theorem B: The sequence «. € MisH wo-lemaitable to the.value a if and only if

\ . o Ar . .
kN .. -
1 a,

li~ lim sup |——= — —u|l=0. : - (3).

N—>oo  k—do lOg N n=k41 M \

- In comparison to condition (4), the condition (5) can be a]}alyied more easily by
- asymptotic methods as represented in, ¢.g., BERG [1]. We intend to reduce H -

limitability to almost convergence. To this end we define = Ba = {b,} by

. 1 2"1“7' =
n logZ,znly

If the given sequence o = {a,} is bounded; then Ba is ‘bounded, too

nEL2a T ey

Defmltlon 3:A sequencc {a, } of real numbers is called\ H -limitable to'the, value

Corollary 1: The-sequence « € M is H -lzmzlable to the wlue I3 z/ and only if the . -

sequence § = Ba zs almost convergent to the value «.

‘Proof: In (5) we can restrict ourselves to k = 2K, N = 2' wnth mtcgers K,r. Thcn

" we have : .
1 TkN—1 an : 1 Kir S
_— = = [— 2 b,, —a [ | © o
lOgN "= k n 7 n=K+1 L L

]nspned by COHE\ [2], we introduce in the Banach spage M of bounded sequences.

"x = = {a,} the operator T'a = y =.{c,}, where ¢, = (dg,-y + @2,)/2. \'.lhcn 2T = {x,

+ U, Gy + gy a5 + s> - .}.-We obtain ) '
nok . . \ ) . : ) ) . . -

Tty = {z* > u,} ' A

j=(n—n2¥+1

»

Defuntlon 4: A linear functional g on M is called a strong Banach limat if

M . og, 1, =1, S o
(“) g(a) g 0 fpl’ Bx ; 0, ’ i Ve _\ A - -
(i) " g(Ta) = gla). - S

Remark 3:/Let the sequence a be almost convergent to 0. Then from (7) we obtain
I7*«]| < & for sufficiently large £ and consequently |g(«)| = |g(1%x)| < ¢ according
to (ii), (i). It follows that g(«) = O for each strong Banach limit g. Especially, of the

sequence o is convergenl to 0, then g(a) = 0 for each strong Banach limit g.

21 Analysis Bd, 9, Heft 4 (1990)
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Rema,xk 4: Let x € M and Y=« — Sa Then y is-almost, (,onvmgent to 0 and
g(y) =0, g(Sx) = gla) Thus each smong Banach- limit lS a Banach limit, but not .

“conversely. e

‘Remark 5: Strong Banach limits g can be constr ucted in the following way. Take
a Banach limit f according to Definition 2, assign to « = {a,,} a.sequence f = Bx_

T = {b,} accordmg to (6) and put g((x) = f(B).Then (1) is clear, since for a, =1 we’

N

obtain b, =1 +.¢,, ¢, =0 and f({b,}) = f({1, 1, -+ f({eq)) = 1. The condition-
- (ii) is tnvmlly satisfied by condition (u) of Dcfmmon 2 Jn oxder to show (iii) we insert
~.Px in (6) and obtain BTa = {b *} wnbh .. S e
: 1 ony : . : ,
bn* Tgé Z_ (a‘2] 1 'l' a27)/2] = bn-— o €n, . , . . .
(’/a)=/({b*~)=/‘(bn+1)+/( )—f( D = gl«): :

If conversely a strong Banach lumt g with (i) —(iii) is given, we can construct a Ba- v
nach limit f by f(8). = g(«). This' définition is independent of «;since 8 = Bax, =, Ba, .

implies g(«; — &) = 0 and g(x;, — ;) < 0 by (ii) and-therefore g(«x,) = g(x,). The
conditions (i)—{ii) of Definition 2 are clearly satisfied. Since S = {b,,,} = BT«

-+ By where y com‘ergcs to 0, the condition (iii) of Defmmon 2is also satisfied in .

_view of Remark 3. o / ,

Thcorem I': The sequence x € M s H -limitable to the value @ zf and only if g(a) =ua

. holds for every strong Banach lLimit X m M

Proof By Corollary 1 the H. -lnmtablllty of the sequence « to the value wis .

equivalent to the almost convergence of the scquence f = Bx.to the value a. By -

. Theorem A this is equivalent to f(8) = a for every Banach limit f, and . by 'the .
construction in Remarl\ 5 thls is eqmvalent to g( ) = « for every strong Banach ' .

limitg 8 - : .
h\amplol We consider . - T
a—{lOOllllOOOOOOOOl )
andobtam . .
'7’60‘—{0110000111111110 } o

By Rcm'lrk 4 and (iii) we have ¢ _/(TSa)-— g(a) On thé other hand g( m) g(’l‘Sa) =1 by (1)

Consequently g(«) = 1/2 for every strong Banach limit g, and the sequence « is H,-limitable ~

to the value 1/2. This follov»s also immediately from Theorem B or Corollary 1 since ,8 = B« ,

‘.—110101 3+ leah

Remarl\ 6: The condition (ii) is equwalent to the two conditions
(ii*) . g@) =0 for &« =0, -
(iv) q(a) = 0 for B = Bx = 0.

-

'Obv1ously (1) unplles (ii*)yand (iv). Let convcrsely ch = 0. Then there is an «* such

that a* = Oand Ba = Ba*. It follows g(x) = g(a*) from (iv) and g(x) = 0 from (11*)
The.condition (ii) cannot’ b(, relaxed to the condition (u*) alone. We give an example.

. h\ample 2 Let o = {a,} be gl\en We mtroducc
. ‘)n#l
, — 2—n=+1 x ‘a, ! -
\ J=3274 .
dnd put g(x)-= f( {x,,} ) for some Banach llmlt/ Then ¢ is a linear functional with (i), (u ), and

(iil). Now we can choose a sequence o * such that #, = 1 and therefore g(a*) = | but Ba* =

¢

L
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Remar k 7: Replace in Definition 4 the operators B and 7' by B* and T'*, 1espec,-‘

 tively, ivhich are given bv .
’ . 1 ”""»‘ 'a,

'A“ IR B*{ n} = {bn }, bn*,_

and-
’ o . i lz(n-H)l
1*{&,,} = {Cn*}: . C,,* = -2_; . Z] U,
j=(zn

A\
where z> lisanar bltrary fixed real number. 'l hen we obtain modified strong Ba-

nach limits g*. As it is easy to see, all preceding assertions can also be. proved for‘ "

-,modified strong Banach limits g*. Even eack strong Banach limit g is also a;modified:
étro7)g Banach limait g* ‘and conversely. Namely, let B*x = 0.\This’ means that the:
sequence o is H -limitable to the value 0 which can be shown analogously as Corol-
lary 1. Thcrefore g(a) = O for every strong, Banach limit g by Theorem 1, Moreovér
we, consider y = o — T*a. Then B¥y is almostmonvergent to 0 and, consequently %
is H ,-limitable to 0. Tt follows g(v) = 0, gla) = g(7T™*«) for every strong Banatch limit

g: Therefore looking to Remark 6 we see ‘that-every strong Banach limit is also a~

modified strong Banach limit. The converse can be shown in the same way.

Remark 8: We see fmthermore that the eondltlon (m) in Defmlt,lon 4'can- be
replaced: hv . o ' <

!

(”l*) g((al, (52» .. }) = g({ao. a,, al; U, a‘za )

where ‘o is an arbltlzuy paxametex Namely, assume that } is almost convergent to0 .

' and put .
) /s

ﬂlr - bk) bk+1a bku» bl+2: bnz: bk+2, blu?y bk+3’ . } ’

whcxe B is defmcd by Bf, = By. Then J(’y) = g(f,) by (u) and g(ﬂ,) = g ﬂk) by (m*)
But |g(B) < ¢ fo: sufficiently large k,’and therefore g(y) = 0. Now' g(T'«) = ¢(»),
" where 2n'= (2aq, a4y + as), @y + s, 3 + @y, g + ay, ...} accoxdmg to (m*) Since
y=1n —«is almost convergent to 0, we have g(n) = J(o.)
4. 'Uniform"n"d-limitability o ' . o
++ Inthissection we \\'lSh to fill the gap between almost convergence and H -llmltablllty
)

v by a class of limitation methods. _ o

.

“ Definition 5: A sequence {a,) of real numbers is called umformly n‘"-lzmztuble to~

the value a, 0 < d < 1, if/

A . '

~ \ - L
. . - -d- ¢ :
lim lim sup Ni-V ¥ gqm¢'—a| =0, ., ' (8)
N—oo koo T n=k+1

\ . .
' 4

where I = Lk, N) is the lmgest, integer such that Z n 4.5 N1-d,
n=k+1
Remark 9: As i in Definition 1 and'in Theorem B, xespectlvely, in Deflmt,lon 5 for
« € M the lim sup can be nep]a,ced by the sup .

L—»oo, k=0,1..

Remark 10 Let 0Sc<d <1andleta € M be umfonmly n~‘-limitable. Then ’
_«'is also uniformly n-¢limitable, cf. ScCHATTE ([9: Theorem 5] or [11: Lemma 1]). On .

the other hand, there are sequenccs o being uniformly 2-¢- lmntable but, not uni-

21%
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el

formly n‘“-hmltablc,\cf the consnderauons fo]lo“mg equality (29) in ScuatTe [9].
In this connection, uniformly n-°-limitable means almost convergent and uniformly

CeopTle lmntable means H -limitable. _ o

We again intend to reduce uniform n-4-limitability to almost convergence. To,
this end we introduce d, = [»!"~9] and B, = By = {b,} by

dpsr—1 !

by = (1 —d) X api? ' . ' ‘ 9
: - j=da. . . .
" Corolla ry 2 The sequence ~ 18 um]ormlj n“’-hmzlable to the value « if and onlJ -
2 tf the sequence Bq = By Us almost convergent to the value a. .

- Proof: In (8) we can lestnct, ourselves tok = d,\, N = d, with inbegérs K,r. Then
we have

' . B

L K+r .
Nt Y amt —a|l=|= X b,=a|+yks -
' "—k+l 7 n—K+1 .
“where lim " lim sup vk =00 -- . -

r—>00 K—o0 ) ~
Corollar y 3: The uniform n“’—liom'lalion»is no .matrix method.

We introduce the transformation 7,& = vi = {c,}. For d;. S_; < d,., we sct
m(j) = j —d, + dnis a-nd ¢j = dmj)- For instance : . '

Tll:“ = {644, (g, Qgy Ugy « -0y U3y Uygy + +05 Aoy ML25; <+ o5 Uass Uos, b

Defm ition 6 _A linear functional gy on M is called an n~ -Banuch limit if
M glLL.)=1,
i) gax) =0 for By = 0
(ii1) 9a(Tax) = gal)- ' ' B
Remark 11: If the sequence a is convergent to O, then ||7 "c\l[ < ¢ for suff:ucntly
large & and consequcntly ga(x) = O for ecach n~%Banach limit. - ;

Remark 12: To cach Banach limit f an n~4-Banach limit g4 can be asSIgncd bv
galx) = f(Bda) and- conversely, analogously as in Remark 5. To this end, Remark 3
must be replaccd by Remark 11. - ‘

Theon em 2: The sequence x € M is uniformly n~¢-limitable to the valite « if and only
-of ga(x) = a holds for every n~9-Banach limit getn M B ,

Exx\mple 3: Letd = 1/2, o = {a,}, where °. ’ :

i Bk + 1) S < (3k +3)°
"0 Bk 4 32 S < Bk + 4)°

“ Then & + Ty + Tipax = {2, 2, ..}, and « is uniformly n=1/2. Ilmlt(\blc to the value 2/3. ’ll.h
can also be seen from Corollary 2 since

ﬁ,/,—Bll‘,c\—{llollOIIO g+ {end

Remark 13: Let 0<c<d <1, x € M, and ga any n¢- Ba.nach hm]t, Then
'B.x = 0 means ‘that the sequence « is uniformly n-<limitable to the value 0. But
then «-is also uniformly n-4-limitable to 0 according to Remark 10. It follows g,(x)
= 0. Moreover we consider y = o — 7'«. Then By is almost convergent to O and
consequently s uniformly 2~ ¢limitable to' 0 according to Corollary 2 But then y

,
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is-also n¢9- llmltable to O according to Remark 10 and it follows gd(/) = 0, ga(x)

= go(Tex). T his we have seen that each n~9-Bunach limit ga s ‘also an n=°-Banach

limit. The converse is not true on account of Theorem 2 and since there are sequences
a being n~%-limitable but,not, »~*-limitable, cf. Remark 10. +

Clearly, an n-9- Banach limit means a Banach llmlt and an n", Banach llmlt means
a strong Banach limit. Note that 7, = S and B, is the identity, but 7', and B, are

not defined. Thus it causes some difficulties to introduce more general p,,-Bdlld(,h .

/ . -

'lnmtc o \ .

lore on stronv Bdnach lnmts* -

-

’bmall‘y we give vet another chalacten/ablon of stlong B'ma(,h llmlts for whlch a

counterpart for n_“’ Banach limits is not known. Let ,

-

Ha = (H,(a,) ={’L jﬁ“a,} N,
Theorem 3: The lmear/unctzo7za£gonM1o « strong Banachlzmzl z/mzd onlyif -
B gty =1, o .
) .. gle) = 0’ for « =0, T E .
(iii) 9(8x) = g(«), - o Lo - S
(iv)  g(Hs) = g(@). " | ‘

S

Proof: 1. Let the conditions of Definition 4 be satisfied. Then, according to Remark -

4, the condit-ion (ii1) of Theorem 3 is also satisfied. In order to prove (iv) we write

ZH (u,/y—Z(l,Zz 2 — }_'(L,/] 0(1) . oy '

= =7 j= ' 4

as K — oo. It fo]lows that B(Hx — «) is alrhost convergent to 0 and consequently

Ha — xis H -llmltable to 0 accordmg to Corollary 1, hencc gHx) = J(a) on account

f’lheorem ] ;
2. Let the condltlom of Theorem 3 be satisfied. Assumc further that « is I7 -

llmltablc 10 0. Then ||SiH*x|| < ¢ for sufficiently large k and j by Definition 3. Hencc .

lg(x)] = |g(STH*x)| < ¢ according to (iii), (iv) and therefore g(«) = 0. Puty =a — Ta.

Then 7 is H -limitable to 0 on account of Theorem B and g(«).= g(T'x). Let further -

'/3 Bx.= 0 Then « is H -lln]ltdbl(, to 0 and q(r\) =0. Now we can a'pply Re-
mark 6n - ' »

Co rollm y'4: The sequence x € M-is H -lmntable to the vulue a tf and only zf g(a)

= « holds for every linear fwzctzonccl g on M whach. suhs]zeé the conditions (i) —(iv) of
Theorem 3. . : : . :

\

Corollary 4 can dlso be concluded eaqnly'flom results by DURAS 4: Scctlon 6]. But ’

‘these results rely on a theorem due to EBhRLFI\ (5] a pxoof of which was not, found

in the llterature "

Remark 14: Th(. cx&mple g E)_ - «, shows that the condition (iii)'in Theorem 3

is indispensable. But the (,ondmon (1ii) can be replaced by the weaker requirement |

that g(a) = 0 if x converges to 0. This is possible because H(a — S«) converges to O
for x € M and therefore gla — Sx) = J(H(oc — Sc\)) = 0 by- (nf) The condition (ii)

in Theorem 3 is also indispensable, choose g({u,}) = 3f({bay1}) — 2f({bs,}), where
{b,}.= B{u,}, and where f is a Banach limit.” = ' Y .

2\ ’ - ,

—
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