On Uniform Limitability and Banach Limits

P. SCHATTE

Dedicated to Prof. L. Berg on the occasion of his 60th birthday

Es wird gezeigt, daß eine beschränkte Zahlenfolge genau dann H_{∞} -limitierbar zum Wert a ist, wenn alle starken Banach-Limites dieser Zahlenfolge denselben Wert a zuordnen. Ein starker Banach-Limit ist dabei ein lineares Funktional mit bestimmten Eigenschaften im Raum M aller beschränkten Zahlenfolgen. Allgemeinere gleichmäßige Limitierungsverfahren lassen sich in ähnlicher Weise charakterisieren.

Показывается, что ограниченная числовая последовательность может лимитироваться H_{∞} -методом к значению *а* тогда и только тогда когда все сильные Банахы пределы приписывают этой последовательности то же самое значение а. Сильный Банахов предел является при этом линейным функционалом с некоторыми свойствами в пространстве М всех ограниченных числовых последовательностей. Более общие методы равномерного лимитирования могут быть охарактеризованы аналогичным образом. У

A bounded sequence is shown to be H_{∞} -limitable to the value a if and only if all strong Banach limits assign the same value a to this sequence. In this connection, a strong Banach limit means a linear functional with certain properties on the space M of bounded sequences. More general uniform limitation methods can be characterized in a similar manner.

1. Introduction

The concept of almost convergence was introduced and studied by LORENTZ [7], cf. also ZELLER and BEEKMANN [14: p. 12], and STIEGLITZ [13] for a generalization. Almost convergence has found its most important application, perhaps, in the theory of uniform distribution of sequences where it leads to the concept of well-distribution, cf. KUIPERS and NIEDERREITER [6: p. 40], SCHATTE [9, 10], DRMOTA and Ттсну [3].

Almost convergence can be regarded as a uniform version of the H_1 -method (arithmetic means). It is no matrix method and must be defined by a two-dimensional limiting process. On the other hand, a bounded sequence $\{a_n\}$ is almost convergent to the value a if and only if certain linear functionals, so-called *Banach limits*, assign the same value a to this sequence.

Another limitation method being defined by a two-dimensional limiting process is the H_{∞} -method, cf. ZELLER and BEEKMANN [14: p. 11], SCHATTE [8]. The \bar{H}_{∞} -method possesses also applications in probability theory, for a survey cf. SCHATTE [12]. H_{∞} limitation can be regarded as a uniform version of limitation by logarithmic means. Because of these similarities with almost convergence, the question arises whether the H_{∞} -method can also be characterized by the fact that certain linear functionals assign the same value a to a given sequence. This question can be answered in the affirmative. The corresponding functionals will be called strong Banach limits.

Further the similarities between almost convergence and H_{∞} -limitability induce the trial to fill the gap between both methods. Thus the concept of uniform n^{-d} limitability is considered as a special case of the uniform p_n -limitability, cf. SCHATTE [9-11], DRMOTA and TICHY [3]. The uniform n^{-d} -limitability can also be characterized by linear functionals which will be called n^{-d} -Banach limits.

2. Almost convergence

The starting-point for our considerations is the concept of almost convergence as introduced and characterized in LORENTZ [7].

Definition 1: A sequence $\alpha = \{a_n\}_{n=1}^{\infty}$ of real numbers is called *almost convergent* to the value a if

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=k+1}^{k+N} a_n = a \text{ uniformly in } k = 0, 1, 2, ... \tag{1}
$$

Remark 1: Obviously (1) is equivalent to

$$
\lim_{N \to \infty} \sup_{k=0,1,...} \left| \frac{1}{N} \sum_{n=k+1}^{k+N} a_n - a \right| = 0, \tag{2}
$$

 (3)

and this is again equivalent to

$$
\lim_{N\to\infty}\limsup_{k\to\infty}\left|\frac{1}{N}\sum_{n=k+1}^{k+N}a_n-a\right|=0,
$$

since (3) implies the boundedness of $\{a_n\}$.

Remark 2: On account of (3) almost convergence is equivalent to the method H^* (verkürzte arithmetische Mittel) considered in SCHATTE [8]. From Satz 7 of that place we obtain the following assertion: If the Fourier series of an integrable function is almost convergent, then it is even convergent. This justifies further the denotation "almost" convergent.

We consider the set M of all bounded sequences $\alpha = \{a_n\}_{n=1}^{\infty}$. Then M is a Banach space if the linear operations are defined termwise and if the norm $\|\alpha\|$ is defined by $\|\alpha\| = \sup |a_n|$. We shall write $\alpha \geq 0$ if $a_n \geq 0$ for $n = 1, 2, ...$ Further we denote by S the shift operator, $S_{\alpha} = \{a_{n+1}\}.$

Definition 2: A linear functional f on M is called a Banach limit if

The existence of such functionals was shown by Banach and Mazur, cf. ZELLER und BEEKMANN [14: p. 12]. If the sequence α converges to a, then $f(\alpha) = a$ for every Banach limit f by (i) to (iii). But we can say much more.

Theorem A: The sequence $\alpha \in M$ is almost convergent to the value a if and only if $f(x) = a$ holds for every Banach limit f in M.

This interesting characterization of almost convergence was used by LORENTZ [7] for the definition of almost convergence. Then the characterization in Definition 1 appears as a theorem which is proved in LORENTZ [7].

3. H_{∞} -limitability

In what follows we shall characterize the H_{∞} -limitability analogously to almost convergence by a class of linear functionals.

Definition 3: A sequence $\{a_n\}$ of real numbers is called H_{∞} -limitable to the value a if

$$
\lim_{h \to \infty} \limsup |H_k(a_n) - a| = 0
$$

where

$$
H_0(a_n) = a_n, \qquad H_{k+1}(a_n) = \frac{1}{n} \sum_{j=1}^n H_k(a_j), \qquad k \geq 0.
$$

The H_{∞} -limitability of a bounded sequence $\{a_n\}$ can be defined analogously as almost convergence by replacing the arithmetic means by logarithmic means. The following theorem is identical with Satz 3 in SCHATTE [8].

Theorem B: The sequence $\alpha \in M$ is H_{∞} -limitable to the value a if and only if

$$
\lim_{N \to \infty} \limsup_{k \to \infty} \left| \frac{1}{\log N} \sum_{n=k+1}^{kN} \frac{a_n}{n} - a \right| = 0. \tag{5}
$$

In comparison to condition (4) , the condition (5) can be analyzed more easily by asymptotic methods as represented in, e.g., BERG [1]. We intend to reduce H_{∞} . limitability to almost convergence. To this end we define $\beta = B\alpha = \{b_n\}$ by

$$
b_n = \frac{1}{\log 2} \sum_{j=2^{n-1}}^{2^n-1} \frac{a_j}{j}, \qquad n = 1, 2, ... \tag{6}
$$

If the given sequence $\alpha = \{a_n\}$ is bounded, then B_{α} is bounded, too.

Corollary 1: The sequence $\alpha \in M$ is H_{∞} -limitable to the value a if and only if the sequence $\beta = B\alpha$ is almost convergent to the value a .

Proof: In (5) we can restrict ourselves to $k = 2^K$, $N = 2^r$ with integers K, r. Then we have

$$
\left|\frac{1}{\log N}\sum_{n=k}^{kN-1}\frac{a_n}{n}-a\right|=\left|\frac{1}{r}\sum_{n=K+1}^{K+r}b_n-a\right|\blacksquare
$$

. Inspired by COHEN $[2]$, we introduce in the Banach space M of bounded sequences $\alpha = \{a_n\}$ the operator $T\alpha = \gamma = \{c_n\}$, where $c_n = (a_{2n-1} + a_{2n})/2$. Then $2T\alpha = \{\alpha_1\}$ $+ a_2, a_3 + a_4, a_5 + a_6, \ldots$. We obtain

$$
T^k \alpha = \left\{ 2^{-k} \sum_{j=(n-1)2^k+1}^{n2^k} a_j \right\}.
$$

Definition 4: A linear functional g on M is called a strong Banach limit if $g({1, 1, ...}) = 1,$ (i) $g(\alpha) \geq 0$ for $B\alpha \geq 0$, (ii)

(iii)
$$
g(T\alpha) = g(\alpha)
$$
.

Remark 3: Let the sequence α be almost convergent to 0. Then from (7) we obtain $||T^k\alpha|| \leq \varepsilon$ for sufficiently large k and consequently $|g(\alpha)| = |g(T^k\alpha)| \leq \varepsilon$ according to (ii), (i). It follows that $g(x) = 0$ for each strong Banach limit q. Especially, if the sequence α is convergent to 0, then $g(\alpha) = 0$ for each strong Banach limit g.

21 Analysis Bd, 9, Heft 4 (1990)

 γ (4)

Remark 4: Let $\alpha \in M$ and $\gamma = \alpha - S\alpha$. Then γ is almost convergent to 0 and $g(\gamma) = 0$, $g(S\alpha) = g(\alpha)$. Thus each strong Banach limit is a Banach limit, but not conversely.

Remark 5: Strong Banach limits g can be constructed in the following way. Take a Banach limit f according to Definition 2, assign to $\alpha = \{a_n\}$ a sequence $\beta = B_{\alpha}$. $=$ { b_n } according to (6) and put $g(\alpha) = f(\beta)$. Then (i) is clear, since for $a_n = 1$ we obtain $b_n = 1 + \varepsilon_n$, $\varepsilon_n \to 0$ and $f(\langle b_n \rangle) = f(\langle 1, 1, \ldots \rangle) + f(\langle \varepsilon_n \rangle) = 1$. The condition (ii) is trivially satisfied by condition (ii) of Definition 2. In order to show (iii) we insert T_{α} in (6) and obtain $BT_{\alpha} = \{b_n^*\}\$ with.

$$
b_n^* = \frac{1}{\log 2} \sum_{j=2^{n-1}}^{2^n-1} (a_{2j-1} + a_{2j})/2j = b_{n+1} + \varepsilon_n,
$$

$$
g(T\alpha) = f(\{b_n^*\}) = f(\{b_{n+1}\}) + f(\{\varepsilon_n\}) = f(\{b_n\}) = g(\alpha).
$$

If conversely a strong Banach limit g with (i) – (iii) is given, we can construct a Banach limit f by $f(\beta) = g(\alpha)$. This definition is independent of α ; since $\beta = B\alpha_1 = B\alpha_2$ implies $g(x_1 - x_2) \ge 0$ and $g(x_1 - x_2) \le 0$ by (ii) and therefore $g(x_1) = g(x_2)$. The conditions (i) -(ii) of Definition 2 are clearly satisfied. Since $S\beta = \{b_{n+1}\} = BT\alpha$ $+$ By where y converges to 0, the condition (iii) of Definition 2 is also satisfied in view of Remark 3.

Theorem 1 : The sequence $\alpha \in M$ is H_∞ -limitable to the value a if and only if $g(\alpha) = a$ holds for every strong Banach limit g in M.

Proof: By Corollary 1 the H_{∞} -limitability of the sequence α to the value a is equivalent to the almost convergence of the sequence $\beta = B\alpha$ to the value a. By Theorem A this is equivalent to $f(\beta) = a$ for every Banach limit f, and by the construction in Remark 5 this is equivalent to $q(x) = a$ for every strong Banach limit $q \blacksquare$

Example 1: We consider

 $\alpha = \{1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \ldots\}$

and obtain

$$
TS\alpha = \{0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, \ldots\}.
$$

By Remark 4 and (iii) we have $g(TS\alpha) = g(\alpha)$. On the other hand, $g(\alpha) + g(TS\alpha) = 1$ by (i). Consequently $g(x) = 1/2$ for every strong Banach limit g, and the sequence α is H_{∞} -limitable to the value 1/2. This follows also immediately from Theorem B or Corollary 1 since $\beta = B\alpha$ $\{1, 0, 1, 0, 1, ...\} + \{\varepsilon_n\}.$

Remark 6: The condition (ii) is equivalent to the two conditions

(ii*)
$$
g(\dot{\alpha}) \geq 0
$$
 for $\dot{\alpha} \geq 0$,
(iv) $\dot{g}(\alpha) = 0$ for $\beta = B\alpha =$

Obviously (ii) implies (ii*) and (iv). Let conversely $B\alpha \geq 0$. Then there is an α^* such that $\alpha^* \geq 0$ and $B\alpha = B\alpha^*$. It follows $g(\alpha) = g(\alpha^*)$ from (iv) and $g(\alpha) \geq 0$ from (ii*). The condition (ii) cannot be relaxed to the condition (ii*) alone. We give an example.

Example 2: Let $\alpha = \{a_n\}$ be given. We introduce

$$
x_n = 2^{-n+1} \sum_{j=3 \cdot 2^{n-1}+1}^{2^{n+1}} a_j
$$

and, put $g(x) = f(\lbrace x_n \rbrace)$ for some Banach limit *f*. Then *g* is a linear functional with (i), (ii*), and (iii). Now we can choose a sequence α^* such that $x_n = 1$ and therefore $g(\alpha^*) = 1$ but $B\alpha^* = 0$.

Remark 7: Replace in Definition 4 the operators B and T by B^* and T^* , respec-' κ **Remark 7:** Replace in tively, which are given by - 1 **IZED As a set of the Second Association** of the operator
 IXED *B**(*a_n*) = {*b_n**}, **b**_n* = $\frac{1}{\log x} \sum_{j=\lfloor x^n \rfloor+1}^{\lfloor x^{n+1} \rfloor} \frac{a_j}{j}$

and
 $T^*(a_n) = \{c_n^*\}, \qquad c_n^* = \frac{1}{\sqrt{2}} \sum_{j=1}^{\lfloor x(n+1) \rfloor} a_j$, Remark 7: I

ively, which are
 $B^*(a_n)$

and-
 $T^*(a_n)$

where $x > 1$ is a *Iniform Limitability and Banach Limits*

the operators *B* and *T* by *B** and *T**, res
 $\frac{1}{x} \sum_{j=1}^{[2^{n}+1]} \frac{a_j}{j}$
 $\frac{1}{[x(n+1)]} \sum_{i=1}^{[x(n+1)]} a_j$,

• , -

On Uniform Lim
\nRemark 7: Replace in Definition 4 the operator
\nely, which are given by
\n
$$
B^*(a_n) = \{b_n^*\}, \qquad b_n^* = \frac{1}{\log x} \sum_{j=\lfloor x^n \rfloor+1}^{\lfloor x^{n+1} \rfloor} \frac{a}{j}
$$
\n
$$
T^*\{a_n\} = \{c_n^*\}, \qquad c_n^* = \frac{1}{x} \sum_{j=\lfloor x^n \rfloor+1}^{\lfloor x(n+1) \rfloor} a_j,
$$
\nere $x > 1$ is an arbitrary fixed real number. The

 $\log x$

where $x > 1$ is an arbitrary fixed real number. Then we obtain modified strong Banach limits g^* . As it is easy-to see, all preceding assertions can also be proved for modified strong Banach limits g^{*}. Even each strong Banach limit g is also a modified *strong Banach limit g* and conversely.* Namely, let B^* $\alpha = 0$. This means that the sequence α is H_{∞} -limitable to the value 0 which can-be shown analogously as Corollary'.^{I'.} Therefore $g(x) = 0$ for every strong Banach limit g by Theorem 1. Moreover we consider $\gamma = \alpha - T^* \alpha$. Then $B^* \gamma$ is almosticonvergent to 0 and, consequently γ is H_{∞} -limitable to 0. It follows $g(y) = 0$, $g(\alpha) = g(T^*\alpha)$ for every strong Banach limit g. Therefore looking to Remark 6 we see that every strong Banach limit is also a
modified strong Banach limit. The converse can be shown in the same way.
Remark 8: We see furthermore that the condition (iii) in Definition On Uniform Limitability and Banaeh Limits 32:

Remark 7: Replace in Definition 4 the operators B and T by B* and T*, respectively, which are given by
 $B^*(a_n) = (b_n^*)$, $b_n^* = \frac{1}{\log x} \sum_{i=1}^{[x^{(n)}]} \frac{a_i}{x_i}$

and
 $T^*(a_n)$ **Example 18 Consideration** in the specific of the specific

Remark 8: We see furthermore that the condition (iii) in Definition 4 can be replaced by. modified strong Banach limit. The converse can be shown in the same way.

Remark 8: We see furthermore that the condition (iii) in Definition 4 can be

replaced by.

(iii*) $g(\lbrace a_1, a_2, \ldots \rbrace) = g(\lbrace a_0, a_1, a_1, a_2, a_2, \ldots \rbrace)$

(iii*)
$$
g(\{a_1, a_2, ...\}) = g(\{a_0, a_1, a_1, a_2, a_2, ...\}),
$$

'and put */*

$$
\beta_k = \langle b_k, b_{k+1}, b_{k+1}, b_{k+2}, b_{k+2}, b_{k+2}, b_{k+2}, b_{k+3}, \ldots \rangle
$$

where β_1 is defined by $B\beta_1 = B\gamma$. Then $g(\gamma) = g(\beta_1)$ by (ii) and $g(\beta_1) = g(\beta_k)$ by (iii*). But $|g(\hat{\beta}_k)| \leq \varepsilon$ for sufficiently large k, and therefore $g(\gamma) = 0$. Now $g(T\alpha) = g(\eta)$, where $2\eta = \{2a_0, a_1 + a_2, a_1 + a_2, a_3 + a_4, a_3 + a_4, ...\}$ according to (iii*). Since $\gamma = \eta - \alpha$ is almost convergent to 0, we have $g(\eta) = g(\alpha)$. is defined by $B\beta_1 = B\gamma$. Then $g(\gamma) = g(\beta_1)$ by (ii) and $g(\beta_1) = g(\beta_k)$ by (iii*).
 $|\beta| \leq \varepsilon$ for sufficiently large k , and therefore $g(\gamma) = 0$. Now $g(T\alpha) = g(\eta)$,
 $i = \{2a_0, a_1 + a_2, a_1 + a_2, a_3 + a_4, a_3 + a_4, \ldots\}$ ac

4. Uniform n_d_lirnit,ahility

In this section we wish to fill the gap between almost convergence and H_{∞} -limitability by a class of limitation methods.

Definition 5: A sequence *{a}* of real numbers is called *uniformly n"-limitable to the value a,* $0 < d < 1$ *, if '*

$$
\lim_{N \to \infty} \limsup_{k \to \infty} \left| \frac{N^{d-1} \sum_{n=k+1}^{L} a_n n^{-d} - a}{n-k+1} \right| = 0,
$$
\n
$$
= L(k, N) \text{ is the largest integer such that } \sum_{n=1}^{L} a_n
$$

 $L = L(k, N)$ is the set of Ω .

wiere $Z_1 = \{Id_0, u_1 + u_2, u_1 + d_2, u_3 + u_4, u_3 + u_4, \ldots\}$ according to (iii*). So
 $\chi = \eta - \alpha$ is almost convergent to 0, we have $g(\eta) = g(\alpha)$.

4. Uniform n^{-d} -limitability

In this section we wish to fill the gap between real numbers is called *unif*
 $-a = 0,$
 ger such that $\sum_{n=k+1}^{L} n^{-d} \leq N$
 in Theorem B, respectivel
 i the sup. Remark 9: As in Definition 1 and in Theorem B, respectively, in Definition 5 for $\alpha \in M$ the lim sup can be replaced by the sup. Remark 9: As in Definition 1 and in Theorem B, respectively, in Definition 5 for
 $\in M$ the lim sup can be replaced by the sup.

Remark 10: Let $0 \le c < d \le 1$ and let $\alpha \in M$ be uniformly n^{-c} -limitable. Then

is also uni

 α is also uniformly n^{-d} -limitable, cf. Sснлтт $\bf{\bf r}$ ([9: Theorem 5] or [11: Lemma 1]). On α the other hand, there are sequences α being uniformly n^{-d} -limitable but not uni-Remark 9: As in Definition 1 and in Theorem B, respectively, in $\alpha \in M$ the lim sup can be replaced by the sup.
 $k \rightarrow \infty$

Remark 10: Let $0 \le c < d \le 1$ and let $\alpha \in M$ be uniformly n^{-c-1}
 α is also uniformly n^{-d} -l

$324 -$ P. SCHATTE

formly n^{-c} -limitable, cf. the considerations following equality (29) in SCHATTE [9]. In this connection, uniformly n^{-0} -limitable means almost convergent and uniformly n^{-1} -limitable means H_{∞} -limitable.

We again intend to reduce uniform n^{-d} -limitability to almost convergence. To this end we introduce $d_n = [n^{1/(1-d)}]$ and $\beta_d = B_d \alpha = \{b_n\}$ by

 (9)

$$
b_n = (1 - d) \sum_{j=d_n}^{d_{n+1}-1} a_j j^{-d}.
$$

Corollary 2: The sequence α is uniformly n^{-d} -limitable to the value a if and only *if the sequence* $\beta_d = B_d \alpha$ is almost convergent to the value a.

Proof: In (8) we can restrict ourselves to $k = d_K$, $N = d_r$ with integers K, r. Then we have

$$
\left|N^{d-1}\sum_{n=k+1}^{L}a_n\tilde{n}^{-d}-a\right|=\left|\frac{1}{r}\sum_{n=K+1}^{K+r}b_n-\tilde{a}\right|+\gamma_{K,r}
$$

where $\lim_{n \to \infty}$ lim sup $|\gamma_{K,r}| = 0$

Corollary 3: The uniform n^{-d} -limitation is no matrix method.

We introduce the transformation $T_d \alpha = \gamma_d = \{c_n\}$. For $d_n \leq j < d_{n+1}$ we set $m(j) = j - d_n + d_{n+1}$ and $c_j = a_{m(j)}$. For instance

 $T_{1/2}\alpha = \{a_4, a_5, a_6, a_9, ..., a_{13}, a_{16}, ..., a_{22}, a_{25}, ..., a_{33}, a_{36}, ... \}$

Definition 6: A linear functional g_d on M is called an n^{-c} -Banach limit if

(i)
$$
a_n(\{1, 1, ...\}) = 1
$$

(ii)
$$
q_d(\alpha) \ge 0
$$
 for $B_d \alpha \ge 0$,

 $q_d(T_d\alpha) = q_d(\alpha).$ (iii)

Remark 11: If the sequence α is convergent to 0, then $||T_d^k\alpha|| \leq \varepsilon$ for sufficiently large k and consequently $g_d(x) = 0$ for each n^{-d} -Banach limit.

Rèmark 12: To each Banach limit f an n^{-d} -Banach limit g_d can be assigned by $g_d(x) = f(B_d x)$ and conversely, analogously as in Remark 5. To this end, Remark 3 must be replaced by Remark 11.

Theorem 2: The sequence $\alpha \in M$ is uniformly n^{-c} -limitable to the value a if and only if $g_d(x) = a$ holds for every n^{-d}-Banach limit g_d in M **B**

Example 3: Let $d = 1/2$, $\alpha = \{a_n\}$, where

$$
a_n = \begin{cases} 1 \text{ if } (3k+1)^2 \leq n < (3k+3)^2 \\ 0 \text{ if } (3k+3)^2 \leq n < (3k+4)^2 \end{cases} \quad (k = 0, 1, 2, \ldots).
$$

Then $\alpha + T_{1/2}\alpha + T_{1/2}^2\alpha = \{2, 2, ...\}$, and α is uniformly $n^{-1/2}$ -limitable to the value 2/3. This can also be seen from Corollary 2 since

$$
\beta_{1/2} = B_{1/2}\alpha = \{1, 1, 0, 1, 1, 0, 1, 1, 0, \ldots\} + \{e_n\}.
$$

Remark 13: Let $0 \leq c < d \leq 1$, $\alpha \in M$, and g_d any n^{-d} -Banach limit. Then $B_{c} \alpha = 0$ means that the sequence α is uniformly n^{-c} -limitable to the value 0. But then α is also uniformly n^{-d} -limitable to 0 according to Remark 10. It follows $g_d(x)$ = 0. Moreover we consider $\gamma = \alpha - T_c \alpha$. Then $B_c \gamma$ is almost convergent to 0 and consequently γ is uniformly $n^{-\epsilon}$ -limitable to 0 according to Corollary 2. But then γ

is also n^{-d} -limitable to 0 according to Remark 10, and it follows $g_d(\gamma) = 0$, $g_d(\alpha)$ $= g_d(T_c x)$. Thus we have seen that each n^{-d} -Banach limit g_d is also an n^{-c} -Banach $limit$. The converse is not true on account of Theorem 2 and since there are sequences α being n^{-d} -limitable but not n^{-c} -limitable, cf. Remark 10. \rightarrow

Clearly, an n^{-0} -Banach limit means a Banach limit and an n^{-1} -Banach limit means a strong Banach limit. Note that $T_0 = S$ and B_0 is the identity, but T_1 and B_1 are not defined. Thus it causes some difficulties to introduce more general p_n -Banach limits.

5. More on strong Banach limits~

Finally we give yet another characterization of strong Banach limits for which a counterpart for n^{-d} -Banach limits is not known. Let

$$
H\alpha = \{H_1(a_n)\} = \left\{\frac{1}{n}, \sum_{j=1}^n a_j\right\}.
$$

Theorem 3: The linear functional g on M is a strong Banach limit if and only if

 $g(\{1, 1, \ldots\}) = 1$; (i) $g(\alpha) \geq 0$ for $\alpha \geq 0$, (ii) $g(S\alpha) = g(\alpha),$ (iii)

 (iv) $q(H\alpha) = q(\alpha)$.

Proof: 1. Let the conditions of Definition 4 be satisfied. Then, according to Remark 4, the condition (iii) of Theorem 3 is also satisfied. In order to prove (iv) we write

$$
\sum_{j=1}^n H_1(a_j)/j = \sum_{j=1}^n a_j \sum_{i=j}^n i^{-2} = \sum_{j=1}^n a_j/j + O(1)
$$

as $\hat{u} \to \infty$. It follows that $B(H\alpha - \alpha)$ is almost convergent to 0 and consequently $H\alpha = \alpha$ is H_{∞} -limitable to 0 according to Corollary 1, hence $g(H\alpha) = g(\alpha)$ on account of Theorem 1.

2. Let the conditions of Theorem 3 be satisfied. Assume further that α is H_{∞} limitable to 0. Then $\|S^jH^k\alpha\| \leq \varepsilon$ for sufficiently large k and j by Definition 3. Hence $|g(x)| = |g(S^{j}H^{k}x)| \leq \varepsilon$ according to (iii), (iv) and therefore $g(x) = 0$. Put $\gamma = \alpha - T\alpha$. Then γ is H_{∞} -limitable to 0 on account of Theorem B and $q(\alpha) = q(T\alpha)$. Let further $\beta = B\alpha = 0$. Then α is H_{∞} -limitable to 0 and $g(\alpha) = 0$. Now we can apply Remark 6 \blacksquare .

Corollary 4: The sequence $\alpha \in M$ is H_{∞} -limitable to the value a if and only if $g(\alpha)$ $=$ a holds for every linear functional g on M which satisfies the conditions (i) – (iv) of Theorem 3.

Corollary 4 can also be concluded easily from results by DURAN [4: Section 6]. But 'these results rely on a theorem due to EBERLEIN [5] a proof of which was not found in the literature.

Remark 14: The example $g(\{a_n\}) = a_1$ shows that the condition (iii) in Theorem 3 is indispensable. But the condition (iii) can be replaced by the weaker requirement that $g(x) = 0$ if x converges to 0. This is possible because $H(x - Sx)$ converges to 0 for $\alpha \in M$ and therefore $g(\alpha - S\alpha) = g(H(\alpha - S\alpha)) = 0$ by (iv). The condition (ii) in Theorem 3 is also indispensable, choose $g(\{\alpha_n\}) = 3f(\{b_{2n-1}\}) - 2f(\{b_{2n}\})$, where $\{b_n\} = B\{a_n\}$, and where f is a Banach limit.

REFERENCES

- [1] BERG, L.: Asymptotische Darstellungen und Entwicklungen. Berlin: Dt. Verlag Wiss. 1968.
- [2] COHEN, D. I. A.: An explanation of the first digit phenomenon. J. Comb. Theory 20 $(1976), 367 - 370.$
- [3] DRMOTA, M., and R. F. TICHY: 1A note on Riesz means and well-distribution. Math. Nachr. 139 (1988), 267-279. ~ 25
- [4] DURAN, J. P.: Almost convergence, summability and ergodicity. Can. J. Math. 26 (1974), $372 - 385.$
- [5] EBERLEIN, W. F.: On Hölder summability of infinite order. Notices Amer. Math. Soc. 19 (1972) , A 164, Abstract \pm 691-46-21.
- [6] KUIPERS, L., and H. NIEDERREITER: Uniform distribution of sequences. New York: J. Wiley & Sons 1974.
- [7] LORENTZ, G. G.: A contribution to the theory of divergent sequences. Acta Math. 80 $(1948), 167 - 190.$
- [8] SCHATTE, P.: Ein Kriterium für die H_{∞} -Limitierbarkeit, Math. Nachr. 64 (1974), 63 -70.
- [9] SCHATTE, P.: On the discrepancy of well-distributed sequences. Math. Nachr. 136 (1988), $267 - 280.$
- [10] SCHATTE, P.: On well-distribution with respect to weighted means. Math. Nachr. 138 $(1988), 55 - 60.$
- [11] SCHATTE, P.: On uniform versions of the strong law of large numbers. Math. Nachr. 142 (1989), $149 - 166$.
- [12] SCHATTE, P.: On mantissa distributions in computing and Benford's law. J. Inf. Process. Cybern. EIK 24 (1988), 443-455.
- [13] STIEGLITZ, M.: Eine Verallgemeinerung des Begriffes der Fastkonvergenz. Math. Japon. $18(1973), 53-70.$
- [14] ZELLER, K., und W. BEEKMANN: Theorie der Limitierungsverfahren. Berlin: Springer-Verlag 1970.

Manuskripteingang: 08. 03. 1988

VERFASSER:

Doz. Dr. sc. P. SCHATTE Fachbereich Mathematik der Bergakademie Freiberg Bernh:-v.-Cotta-Str. 2 DDR-9200 Freiberg