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Um Losungen oder verdllgemcmertc Losungen der linearen Operatorglelchung Ax = b zu be-
stimmen, werden lincare, Itcmt,lonsverfahren der Gestalt z,,, = (I — D,4) 2, + Db be-
trachtet, bei denen die Oper'ltorcn T, =1— D,4 auBérhalb ihrer I‘l\punktmcnge’norm-'
reduzierend'sind. Es werden Bedmgun{,en angegeben, die die I\onvergcnz der Verfahren und

bestxmmte Elgenschaften der Grenzelemente sichern. )
[} ’ N 4

'-IT06M HaxOAUTb pelleHuA HITH 06oﬂluéuulue ‘pelien s AMHeNHOro ONePaTOPHOro YPABHEHHA «

s Az = b, paCCManHBQIOTCﬂ UTEPALUMOHHEIE METORM Ty = (I — Dy A) xp-+ Dyb, y KOTOPHIX .

oueparopsl 7. = [ — D, A cOKpaAWIAIOT HOPMY CBOHX MOJBHAHBIX IIACMCHTOR. -33jlaK0TCA
VCHORHA, KOTOpLIC OGOLHO'IMBleT CXOIMMOCTE: METOMLOB M OfipeneaéHHLIe CROIICTRA Npenels-

HbIX )JIeMeHTOB N \
° )

To doterminf‘ solutions or generalized Solutions of the lincar opci'ator equat-ioh Az = b linear’
iterative methods of the form 2, = (I — Dp) z, + D,b are considered’ for which the opera-
tors 'y = I — Dy A are norm- reduung outside their fl‘(ed point set. Conditions are given w hich

n

B

- . ) . '

' - t

L . : . . .
B Generali7ed solutions of lincar operator equations . .

“cially accentuated.

‘In this section we state and compare three concepts for generalued solut:ons of
linear operator equamons which are well known from the. llterature We modify and

)

complete the concepts in such a way that the close relations betwe(.n them arc espe-'-

b
Lét X and ¥ be Hilbert spaces. We conlslder linear continuous operators Ae L(A Y)
from X into Y with the null space N(4) and t,he range R(A4). Thecorr espondmg lmeax
operator equatlon reads o
. . Az=0b, «zeX, beY‘, . S _— .(11)'
The first-notion is of topologlcal nature. It estabhshes a connectlon to apptoxnmatnon
and to extcemal problems. -~ ' -+ -

Definition 1.1 (cf. [8, p. 40], [3,"p. 221]): The element ¢ in X is'called an extremal

solution (a virtual solution, a least-squares solution) of (1.1) if |4dv — b]| < [l4x — b

holds for all z € X. An extremal solution, of mlmmal norm is said to be a normal
extremal (leasb extremal, best approximate) solutzon of (1. 1).

Extremal solutions of (1.1) exist iff b belongs’ to the algeblalc direct sum 5)1(A)
+ N(4*), where A* denotes the adjoint of A. Under this ‘condition there is one and
only one nor ‘mal extremal solution v of (1.1). It is the uniquely deter mmed extremal -
solution % of (1.1) in R(A*), which can be w rltt,en in the form » = A*b. Thereby A* is
the orthogonal generalized inverse of 4.’ ' ' - .
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The second notion i§ derived from the theory of generalized inverses.

\ Definition l.é'(cf. [20], [12, p. 21]): Let the topological direct slnm decomposi-*’
tions : . :

X=RA4) DM, . ¥ =RADN (L2

of X and ¥ be given. Let P and Q g the corresponding projectors determined by

- NP) =4 ‘R(P = ‘W RN(@) ="R(A4), NQ) = N. A solution v of the (projectio-
_.nal) cquatlon . . I L _— . .

CAr=gr. - - )

is called a Q- qeneralzzed solutzon of (1.1). If » additionally fulfils the equfxtion

0

v

Pz=0," . - (1)
: 'then v is said to hc a P-normal Q-gcncralzzed solution of (1.1).- ‘ -

Q gcnelalwed solutions of (1:1) exist iff b belongs to E]t(A) + N.-Under this condi-
tion there is one and only one -P-normal:Q- generalucd solution of (1.1). It is the uni-
quely determined Q- -generalized solution of (1.1) in 9. It can be written as v-= A% g,
‘where A~ = Ap is the generalized inverse of A" with respect to the pair (P, Q) of pro-
jectors P, Q- satlsfvmg the relations A=A == I — P, AA~ | D(A4") = Q| D(A7).

" “Here D(A~) = N(A) + N denotes the domain of A~ (sec, c.g., [8, pp; 33 —34]).

The third. notlon results from the theory of iterative methods. It is properly speak-
mg of algebralc nature. - '

' Dcf:mblon 1.3 (cf. [6, p. 321, [11, p. 104], {13, p. 209]): Le'bo? be a set of Hilbert
spaces Z and § be a set of operators G € L(Y,Z) with Z = Z(G) ¢ 5? A solution v
- of the system _ ..

GAz = Gb, Ce8, ‘ SR (1)
. (o :
of linear operator equations is called a $-generalized solution of (1.1). Let &’ be a
further set of Hilbert. spaces Z’ and J€ be a corresponding set of operators He
) L(X 7'y with 2" ="Z'(H) € &'. Tf » additionally to-(1.5) fulfils the system

He=0,  He, ) | (1.6)

"Of:homogenuous linear operator equations, then v is said to be a H-normal §-gener-
alized solution of (1.1). Besides, we shall bricfly speak of normal (generalized) solu-
“tions if the (generalized) solutions have minimal norm (scc also Definition 1.1).

If X(A b) denotes the set of solutions and X’ (A, b) t,hc set of generalized solutions
of (1.1) (in the sense of one of the mentioned definitions), then the relation X'(4,6) '
=2 X(A4,b) is satisfied. For the first two definitions there holds, moreover, X'(A4, b)
'—'X(A b)-if X(4,b) + 8. Obviously X(4,b) and X'(4, b) are closed convex sets.
Thus the normal (generalized) solutions are uniquely deter hined. , .

If we choose M = R(AF) = N(A)L, N = N(A*) = R(A)* in (1.2), then the cor- .
responding projectors P, Q become orthogonal. Therefore each ;(normal) extremal
solution of (1.1):with the above P, Q is also a (P- normal) Q-generalized solution of -
(1.1). Reversely, each (P-normial) Q-generalized solution of (1.1) with arbitrary P, Q

can be interpreted as a (nox mal) extremal solution of (1.1) with respect to smtable
. modlfled scalar products in X and Y (see, eg (6, p. 36]) -

~ . . . : \
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\E\ldently the equations Az = @b and Q4x = Qb are equivalent. Thus each (P-
normal) Q-generalized solution of (1.1) in the sense of Definition 1.2 is also a. ({P}-
normal) {Q}-generalized solution of-(1.1) in the sensc of Definition 1.3.

The discussion shows that the generality of the given concepts for generalized solu-
‘tions increases from definition to definition. - } . .

~ - . . ’ ' .
2. Relaxations . o ' . ,‘_ Lo
: \
This section contains some notlons and l(,SllltS from [15, 16] which are nsed in th,
following sections.
Let H be a Hilbert space. We consnder operators 7' € L(H) and int»rodnce a special -

l\md of nonexpansive linear operators. : _ -
- [ '

Definition 2.1: T is ¢alled a relazation if the condition ||’]’rll <|l=|| holds for all

xd NI =-T). - - . ,
Theorem 2.2: 1" € L(H) is a.relazation tff the 7elations , v
™I — Ty SN — T)*, 17|, < [lx]] V € NI = ) N\ {0}

- are satisfred.

H ™\ {0} satisfying ||7ulf = 7] |l|-

v

Defmltlon 23: T is called a strong relaxation if the 1elat10ns ’I‘\?(l =T
S NI —T), T IR — T)L|| < 1 are fulfilled. . S0 -

By Theorem 2.2 each strong relaxation is also a relaxatlon But thele are relaxa-
tions which are not strong (see [16]

Definition2.4: Let ’I'beaxela\mtlon Thcnthe, numbery = v(T) =||7"| “?(I - ’1’)l|l
is called the relazation degree of 1T'."

The relaxation dcgrce »(T) lies beLwecn 0 and 1.1t is less than 1iff 7 is a. strong
1e]a\mt10n : ] . '

Definit ion 2 5 (see [3]): T is called norm- attcmng if Lhere exists an element, u in
Lemma 2.6: If the restriction _I’ [N —T)* of (_c rela:wtipn 1" %s norm-attaining,
lhen Tisa strong relaxution. . .

Compact operators T are norm-attaining (see [12 p- 13]). ThcxefOle compact and
especially finite-dimensional relaxations 1" are always strong relaxations. _

Since a relaxation 7' is completely reduced by the pair. (.“? I~ Ty, R — T)*+) of -
orthogonal subspaces (for the notion see[18, p. 268]), we can conncct T with the ortho- .
projector 1" determined by R(TY) = N — T). In this sense 7' is said to be a relaza-
tion of the corresponding orthoprojector ’/" Therefore a relaxation ’j’ of 1" can be chm- :
actex ized by-the relations :

Ty =gz for ze R, H.’l,’xll <zl for zd RNT).
Tf 7' is moreover a strong relaxation, the relations read oo Yo
TIRAY = 1| R, N R <t . /
Theorem 2.7: 7' 2s « relazation of 1" iff ‘ '
a) 1" =171 =11, |1z — T'2|| < ||l for z-0 L

holds. 1" 1s « strong reluzation of T ff
DM = T = P = T < 1
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" N of natural mlmbcrs into itself is called partition sequence if the condxtlons k(O) 0,

‘such that ! L .
T =1, .. t,,,‘,,, 1) 'for a.ll n. . . . (3.1
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1

hoéds Condmon a) supplws ‘R(I" sJ?(I = 1T),%T) = 5)1([ — ’]‘). Under _condz'l‘z'wf

by it results W(T"y = R — 1. e

If T is a relaxation of 77, then the relaxation degree »(7') can be expressed by
w(T) = T | R = T — T'|| (see Definition 2.4). Contractive operators T (1e
||| <-1) are strong relaxations of 0.with »(7") = ||7||. Orthoprojectors ’I' = I are

(degenelate) strong relaxatiohs of themselves with v(’]’) = 0. , .

Deflmtlon 2.8: Let ’I" <+ be an orthoprojector. Then T _A(l — )T+ 20
|l — A < 1, is called a scalar relaxatzon of 1" with the (lelaxatxon) parameler ;.

A scalar xelaxatnon Tof T"is a st,rong relaxatlon of 7" w ith v(’l) =1 =7l

Theorem ‘) 9 Let T; be relaxations of the ortkopro;cclms T/ for t.=1, ..., k. Then '

the product T = T " ’1’, s a relua‘utwn of the orthoproyeclor T' delermmed by NIy '
R IR A PR
| ] ‘

3. Product sequmces of relaxatioins-

In t,hm section we list some notions and an 1mpoxtant 1esult from [1 1]

Defmltlon 3.1: The strictly monotone mcreasmg mapping (k(n)) from the set -

-

sup{k(n + 1) — k(n):'n € 1 } < are satisfied.

Definition 3.2. (cf [1 448] [14 PpP- 97—‘)‘3]): A sequence (¢,) is called almost
cyclic if there-are a finite selectlon set J = { a1y - by} Of (2,) and an integer m >0

Lég (¢,) be almost cyclic. The selection set J of (t,,) with the property (3. 1) for

- some 7 is said to be the basic set of (¢,). There exist partition sequences (L(n)) for

(t,) fulfilling the, condition I = {ti(wys - -+ letasn—1}- for all-m, where J denotes the

- basic set of (¢,). If the numbers k(n) are cho<cn minimal, we call the correspondirig
", partition sequence (k(n)) the characteristic sequence of (tn). Ev idently, cyclic scquences

(t,) are almost cyclic.
Now lt A be a Hilbert space. We consider sequences (7 of operators T, € L()

..and' the derlved product sequences (P,) with

Py="Ty...T\To. : : ‘ . (3.2)

_ At first we formulat-e conditions ensuring the convergence of (P,).

-

Assumptwn 3.3: o

{T,,m, oo I nuy! and the characteristic sequence (k(n)).

b) : dun span. U N(Tw;) < o0 (span closéd linear hull)..

) ’ . j=1

c) T, are relaxat:ons of T ' for all =.

d - X u'™ is divergent, where ' ' . K
n=0 . - \ . . - o 0

) ‘u(lﬂ . min {/"i: ’I, = k(?l,), iy k(’)L + 1) — 1}7
=1=w(T) =1 |TW =Tl " IR
- M \ ) / P ) ‘ ’

-

‘a) ~ (7)) is an almost cyclic sequence of OlthOpl‘OjeCtOlS ‘with the basnc set
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Remark 3.3%: 1. The condltlons a), c) and d’) lim ||7' —- T <1 supplv the.condition d)
. For scalar relaxations 75 = (1 — 4;) [ + 2,7’ we have ji, =1 — |1, = 45| (see Definition
2 8 and the statement 'lft(:'!’ it). If the’ p<1rameters /., are supposed to be real, this, means s,
= min {4, 2— 7_}. In this case ) s, is divergent Iff 5 2.(2 — 7,) is divergent. The latter
- condition plays an important role in the convergence theory of SOR methods (see e.g. ["1]
3. Beca.use of condition d) infinitely many T, must-be strona rela\mtxons

Assumption 3.4: ' L T cor
a’) ,(’l’,,) is an almost cyclic sequence of relaxations with the basic set {7y, .-
- T} and the characterlstlc sequence (Il(?l)) . /.
by T = [k(n+l)—l veo Te(my "is norm- attammg on N = = span {U ‘)\(I — Tap): )
. 7—1 ., I} for all n. v . . . -

Remarl\ 34' 1. Tf, as usual, we denote the corresponding orth'oproje'ctors to Ty by T
't,hen in_view-of Theorem 2.7 (cf. Assumptlon 3.3/b)) the set N in b’) can be \\rlttcn in the form .
N = span {U R(Thi):7 =1,.... 0. 2. The above conditions are partly more special and
partly more general than thosc of Assumption 3.3. On the one side the use of only finitely many
different relaxations’is a strong restriction. On the other-side thé strong condition b) can be
weakend to b’ ). The latter is for instance satisfied'if one of the relaxations Toijy U= A T )
is compact on N. Since 7™ contains this relaxation as a factor, T"‘) is compact on R, too And
therefore norm:attaining on N (see’[12, p. 15]). ' . . :

“Theorem 3.5: Let Assumptzon 3.3°0r Assumption 3. 4 be /ul/zlled ’I'hern the product

,sequence (P /rom (3.2) converges umformh/ {o the orlhoproyector r determzmd by .
il i ) y
gw(v ) O N ( n(])) =N 9?(] vt Try): ' X o N h . -
S - ' oo '\" e 3.3) .-
N(P) = span u ‘Jt(&’ ,,(,,) — span u m(/ - _ R ot

Remark 3.5": 1. If Assumptlon 3.3 holds \nt:h L‘(ccptlon of by, then (Py) still accumulates
to P pointw ise in the weak topology. . In view of Theorem 2.7 the infinite intersections and

. unlons in (3.3) can be reduced to finite intersections. and unions containing the operators -~
Toy G=1,...,0.8. Let 7'm = T tin -1y—1 --» Ty be the partial products induced by the
correspondmg chamctenst:c sequence (#( n)) occuring in Assumption 3.3 and.Assumption 3.4, . >
: respeomvely 'l‘he proof of Theorem 3.5 shows that therc are certain constants v("’ < 1 with .
3 . ~
*wmwmsw> ‘ o ' By,
N " RN . N

If'we dcfmo )

. m o= mn) = 'mz\:f ffeN: k(i) =1 = n}, . C < (3.5)
then we get the error estimate oL Yo . oo .
||y — Pl S vimml) L p0n0 S . (3.6)
~ o . S : o ..

4. Iterative methods wi_th ljeiaxationé as iteration operators
-Let X and Y be Hilbert spaces. We coniéider a linear operator equation
. * . v p) . .
Az =b (AeuX}wben ' , _ ! MU
Usihg.a 'scqnenéc (D,,) of operators D, € L(Y,,X we can gcne:abe a lmear mstatlonary
iterative’ one- -step process N .

. : ' N
':Fn-H = Tz, + D{b = Pz, + Bnbg . o (42‘)

’ . . 4 \

s

4
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A}
‘Where )
. o Co e . - n
Tp= —..D,,A, pP,=7,...1T\T, -~ B, =) ]’ 1Dy
. N l=0 .
‘We are mtexc:,ted in conditions ensunng that the limit clements Ze = lim z, of the

iterative process (4.2) exist and represent solutions or gcnualued solutions of the
equation (4.1) (scé Section 1). For glohal convergence results we need the exnstence
of the limit operators Py, = lim P, and B, = lim B, (see (4.2)).

Let (D,’) beé such a sequence of operators D,’ € L( Y, X) that the com (,spondmg

‘ ~operators 1= I — D,’ A are orthoprojectors: If we choose D, = D, and 7', = 1", "~

in' (4.2); respectively, well -lknown terative mcllzods of the projection type arise (for
special cases see, e.g., [6, 7, 10, 11]).

By including a sequence (%,) of .relaxation paramcters 7. we can influence the
'speed of convergeice or the precision of the results. Thus thc choice D, = 2,D,"

supplies so- called (scalar) relaxatzon methods. The corres ondm iteration opérators-
PP p g T

_1 —1—/D’A (1—/)1—}—21"

are scalar relaxations in the sense of Definition 78 Such relaxatxon methods are
investigated, e.g., in [12—14]. ‘A further generalization is obtained if the scalar re-
laxations 7', are replaced by (operator) relaxations in the sense of Definition 2.1. The
basis of a convergence theory for such g g,encnal rclaxation methods is in parts already
contained in [12]. First explicit results are given in [4] for cyclic methods in fmltc-
dimensional spaces. 'l‘he results of [2] can also be arranged in our framework.

Definition 4.1: The 1tcra,L1ve method (4.2) is said to be consistent if it posscés_es

"fi\zed points, that aré clemients 2" in X satisfying 2’ = Tz’ +. Db for all n.

' Oby iously the method (4.2) is consistent iff the concspondmg equation (4.1) has’
{D,} genemh/cd solutions (see. Definition 1.3). Namely, each fixed point of (4.2) is a
{D,}- genu’alucd qolutlon of'(4.1) and vice-versa’-The method (4.2) is automatically
.consistent, if the- equatxon (4.1) is solvable. A Lonsnstcnt iterative method (4.2) can
" be wntten in the form

\

x,,-l—Px0+(I—P)x =z —{—P(xo—:r.) T Lo . (4‘3)

-where 2’ is any {D,}-generalized solution of (4.1).

J

8. About théconvcrgence of consistent iterative relaxation methods and the prqperticé .

of-the limit-s el'emcnts ‘ . © .
. ‘ i

‘We consider an opexator equatlon (4.1) and an iterative relaxation method (4.2),
where the iteration operators 7', or at least the corresponding orthoprojectors 7',

nov .

\" constitute an almost cyclic se,qucnce (see, Assumption 3.4 and Assumption 3.3, re-
spectively). - - . -

'

Theorem 5.1: Let Assumptzon 3. 3 ‘or Assumplzon 3.4 be /ul/zlled Beszdcs we ad(la- .
tionally integrate some of the following assumptions:

a) (4.2) us consistent for the given b € X.
Ib) (4.2) s consistent for all b € Y \
¢) (4.1) 4s solvable. ' _ ' )
d) For b=20 each { ,,}-gener}«{ized,solution of (4.‘1) s also « solution of (4.1).

v i ™~

. )
{ \

-/

-~
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T'hen the following statements hold.: X o
1. (P,) c'mwerg'es uni/ormly tothe orthbp’rqjector P, = P determined by the relutions

<
N -

() H%U%m_HWWM) PR o .o

N(P) = span 'U ‘J?(’l',',(,-,) = span U ER(D,,A). .
c =t n

« 2. The additional assumption a) supplies: (x,) converges to

T :P%:UQMf—f+Pm—fL" NN G R )
" where x' is any {D,}-generalized solution of (41 Furthermore, x, uself is.a {D,}-
- generalized solution of (4.1) with Px = Pz, and the normal {D,}-generalized solution

of (4.1) for x5 € N(P).- - . v

3..The additional -dssumption’ b) aupplzeé The further relation N(P) = span
(U R(Dy): n € N} @s fulfilled. Moreover, (B,) converges 9tronglr/ toa Ie/l ()rt/zoqonal outer,
znverse By = B of A. The lzmu element .z, kas the represen{alzon ' . ~

o Pro+ Bb. o 6
. The addztwnal assumplwn d) supplzes P is the ortlwqonal proyectwn onto N(A4)
und can be ezpressed by

O '

P—I_Am - ': L R X

: u,here A+ 18 lhe orlhoqonal generahzed mverse 0/ A. ’I’Ins zmplzes T(P) = s)?(A N(P)
.= R(A*).

5. The additional, ussumptions b) and d) supply: B s a left- orthoqonal genemlezed f

©inverse of A. Furthermore, x, is.an A B-generalized solution of (4.1)with (I — A" A) =

= ([ — AT4) o and the normal A B-generalized solution Bb of (4.1) for z, € 91(A*)
6 ’I‘Ize additional assumptions c) and d) supply: “1s « solution: of (4.1) with
(I — A% Ayzy = (I — A*A) Zy and the normal solution A b of (4.1) for zy € ET{(A*)

Proof: 1. Thc first statemcnt is an immediate consequence of Theorem 3.5 if the

~relation 7', =1 — D, A is observed. ' = *

2. Assumption a) gua,lantces that the method (4.2) can be \nltten in the f01 m (4.3)."
Then statement 1 implies the convergence of (z,) and the. represcntatnon (6.1) of
«- This representation leads to.

. A\ .
D,Ax,, = D,APxy + D,,A(I ~ P)z' = D Ax' = D,b ‘ -
for all n since M(P) = N {N(D,A):n EAN} by statement 1. Startmg again with -
(5.1), it follows that ) ‘ - ) _

Pry = Py + P(I — P)2' = Pry. ™~ EE (5.4)
For z, € ‘J?(I’) we obtain z,, = (/ — P)z' from (5.1). Observing the orthogonalnty
of Pxyand (I — P) ', the Pythagox ean relation 1mplles '

P+ (I~ P&t = [Pzl + (I — P)aflF 2 (] — P) |-

Since all {D,}-generalized solutions 2’ of (4.1) are fixed pomts and thclefoxc limjt
elements of (4.2), all assertions of statement 2 are shown. '

]
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.

3 By. assumptnon b) the relation’ D,,b € R(D, A) is satisfied for all'z and allb.e V.
This means R(D,) S RN(D,4) for all n. As WD, A) = R(D,) holds automatically for
all n, we get the equation ‘]\(D,‘A) N(D,) for all n. Therefore, it follows that

' R(P) = span U {R(D,4):n € N} = span U {R(D,): n € N} if statenient ‘1 is taken
© into’ account. Comparing (4.2) and (4.3) we obtain B% = (I — PO, 8 =z (b).

Thus (B,b) converges to (I — P)2’(b) for all b¢ Y. Let B be the limit operator of
(B,)-in the sense of the strong ‘operator topology. Usmg the relation- £, = =1 - B,A,

Cwe gct BA=1+~-P=( - P)* (BAY*. Tt is easy to show the xdentlty B, .
=5 \_‘ ])/ il = ADI DS = A])o) 'l'lherefore,. -Bub € span' U-{R(D w); € N}m'o

= ‘JE( )y for all mand all b € Y Thus we fmd PB,,, — Oforallmand PB = 0. Fmally,

: BAB =(I -P)B=B - PB=B5B. Hen(,e B is a left-orthogonal’ outer mvch(, of

A (for the notion sec e.g. [8])- FTE we pass in- (4 2) to the limit, we obtain, (5.2).

4. Assumptlon d) mcansﬂ {R(D;A):n e N} S N(A). Because of E)?(A) c N{N(D, A) -
n € N} = R(P) it is R(P) = N(A4). ‘Therefore)P is the orthoprOJectOI onto.N(A) along

R(A¥) which can be rcpresented in the form (5.3). e _
5. By statemcnt 3 the oper ator B is aleft-orthogonal outer inverse of 4 Statcmcnt

4 shows ABA = A(I —P)y=4 — AP = A, so that' B is an ‘inuer inversc.and, *

consequently ‘even a generalucd inverse of 4. In view of AP = 0 we get from (5.2)

" Ax = APxy + ABb = ABb, wherc AB is a, projector. onto R(4). Thus z is an -
AB-gcncralued solution of (4.1). The relations (3.3) and (5.4) can be combm(,d to
(I — A*Ayx, = (I — A" A) 2. The general solutlon set of Ax = ABb has the form *

X(A4, ABb) = N(4) + z,.. For'z, € R(A*) it is also z, ¢ R(A*) if we take (5.1) and -

-

N(A*)'= N(P) = R(I — P) into, consideration. Therefore z,,is the norm_a} AB- ‘

generallzed solution of (4 1) in thls case. The representation x = Bb results-from
- (6.2). - . . . |
6. Assumption ¢) implies assumption.a). Under a.ssumption c). thercfore (5.1):1s
- satisfied with any solution z’ of (4.1). Besides, (5.4) 'h’olds .In view of d) we get (5.3) - .
-and AP = 0. Hence wefind Ao, = APi, - A(I — P) = Az’ =band (I — A*4) -
X Zy, = (I — A'AYz,. The general solution set of Az = b has' the form X (4, b) = .

S73(;4) + zy Arlalogomly as in the.pro¢f of statemcnt 5 we can show Lhat Z, istthe
normal solutlon of (4 1) for 20 ‘}1(A*) Therefore x, can be written as 4* ‘b

‘Remark 5 2: 1, The aseumpmom b) and d) lmply that AB IS a contmuous prolt‘ctor onto

N(4). Hence R(A) and R(A*) are closed. Thus we can replaw E}t(A*) by R(A*) in the state-

“ments 5 and'6 of Theorem 3. 1. 2, Under the assumptions for statement 2, statement 5 and
statement 6 the set'of all limit elements ., = x(z,) coincidés with the set of all {D,}- generaliz-

ed- solutions, AB-generilized solutions and solutions of (4 1), re%pecuvely Thus all solutions

. or-gencratized so]utlons of (4.1) in the above-mentioned sense can be reached by the selection
‘of suitable starting elements x,. 8. Under the-assumptions of Theorem 5.1 the limit elements

x,, of-(4.2) are in genéral no extremal solutions. But they can be interpreted as extremal solu-

\ tions with respect.to a suitable scalar product in Y if the assumptlons of statement 5 are ful-

_filled (sce Section 1). 4. Usm_g (4.3), (5.1) and (3.6) we gct “the error estimate

3 o .

» /
A . . , , B _ _

IFeo — Zpuill = (P — P )(Io -2 = V‘"‘ DO (g, — l"IE,

) . . ’
'

where pn. dnd m are determined by (3.4) and (3.5). 5. If Assumpt,lon 3.3 is fulfilled with excep-’
tion. of ‘condition b), then the statements of 'l‘heorem 3. 1 ho]d in some respect still in the sense -

of “eak topology (see Romarl\ 3.5%).
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’
t

6. About the convergence of cyclic |tcrat1ve relaxation lllLthOdS and thc propertles
of thc Imnt elements ’ ‘

N

At Tirst we conslder an equation (4.1) and a cyclic iterative method (4.’2)kbelonging
to it. We suppose that the generating sequence (D,) has the cyclic length L. Then
“there Iare at most L different operators 1)0, s - Dy in the sequence (D,). A
linear stationary -iterative one-step process arises if in each case L single iteration
. steps are. ill)ited to one step. Thq resulting method has the form °

2" = T b Db = TrHigd 4+ Bp - ., . (6.1)
with 7 ' . 4 : :
\ N\ L—1 ! . -
20 = 2, D=} T, 7;+1D ! . :
N j=0 S : N
L AN T .(6.2)
T=1—-DA="T, ...1T)T,, Bn = 3 i), ' i
C ’ =0

Now we turn to relaxation methods. Thus (7,) isa cyclic sequence of relaxations
I'» containing at most L different - relaxations "1, 7'y, ..., T, 'oflcorr\esponding
N !

m

ontlloprOJectors '1'0’, T, 0u T, .
) Theore,m 6.1: Let T be norm- ultcmng on N = span U {(N(Ty):5=0,..., L = 1).
Besides, some of the following assumptions are additionally integrated:
a) (6.1) s consistent for the given b € Y. o
B b) (6.1) s consistent for albe Y.’
¢) (4.1) is solvable. : : ~
d) For b = 0 each {D}-generalized solutzon 0/ (4.1) ¥s also « solution’of (4 1).
* Then the listed statements hold : . . .
- 1. Both (P, ) and (T") converge. znn/ormly to tke orthopro;ector P determmed by the ‘ .
relatwns . . ' v N

\
A

. T L-1 . YT L—1 .o
RP)=NRTH=nN 92(1),.14')‘: S)I(DA), T
: i=0 i=0 . \

S , . . (6.3)
L-1 L1 : :
-, 4 R(P) = span U R(T}') = span U R(D; A) R(DA).
. L j=0 )=0
2. The additional assumption a) supplies: (x") converges to -
. : 7 Y . . .
© =P+ (I —P)z' =2 + Px®* — z'),, - .(6.4)
. Vi - .

* where x' is any {D}-generulized solution of (4.1). Furthermore x> itself vs a {D}-gener-
alized. solution of (4.1) with Pz* = P2° and the normal {D}-generalized solution of
(4.1) for 2® € R(DA). A ' ' 4
3. The  additional assumption. b) supplzes The further relution N(P) = R(D) s
: ful/zlled " Moreover (B™)  converges uniformly to a left-orthogonal outer inverse
= (DA + P) 1D of - A. The limit element = hus the representation
22 = Pz® + Bb. . E e - (8.5)

. . /7
4. The additional assumption d) supplies: P 1s the orthogonal pro;echon onlo N(A)
, ulong R(4*) (md cun be expressed in the /orm P=1— A*A. :

N ~.
R 3
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i

. . The addmonal assumptions b) and d) ‘sum)lz/ B 28 « left- ortlzogonal genemhzed
wverse of A and can be wrilten as B = (I — TA A)"t D. Furthermore = is an AB-
generalized solution of (4.1) with (I — ATA) 2* = (I — A" A) 2 and the normal AB-

" generalized solution Bb of (4.1) for 20 € ‘)I(A*)

6. The adduwnal assumplions ¢ and d) supply: == is .« solution of (4.1} with
(I - A"A = ([ — A7 A) 2° and the normal &;lulwn A*b of (4.1) for 2% € R(A*).

_Proof: The sequencc (7,) of relaxations is almost cyclic with the basic SLt {’I 0> 1'ys .
1;_,} and the characteristic sequence (nL): Thus " = T4 - e Ty = I' :
"fon all n. Therefore (7',) satisfies the conditions of ‘Assumption 3.4. o

1 1. By Theorem 5_1 the sequence (P,) converges uniformly to the orthoprojector .
P determined by the relations . R

‘ -

. L—1\ — . ) . .
CRP) = m)('/")—m)a(DA)—mJe(l)A) : - B
. j=0 )
) L—1 . L—1

RN(P) = span U NT; )A_ span U R(D, A) = span U ET‘(D A)
. '=0’

<

- (T™) converges uniformly to P, too, since it is a partial sequcncc of (P,). By Theonem
2.9 the product 1' = 7', -, ... Ty is a relaxation of P. 7' is supposed to be norm-attain-
ing on N = N(P). Hence T is even a strong 1elaxat,|on in view of Lemma 2.6. Thus.’
the relations |7 N <1 and RP) =N({I - T) = ‘JE(DA) NP) =R —.T)
- = R(D4) hold by virtue of Theorem 2.7 and (6.2).. -

- The constant sequence (') also fulfils the conditions of Assumptlon 34. Hencc
most of the remaining assertions are simple- consequences of Thcoxem 5.1. We re-.
strict ourselves to the few other assertions. :

3. We have R(DA) S R(P). Assumption b) leads to R(D)-< E)\(DA) That means

- R(D) = R(DA) = N(P). Statement 3 of Theorem 5.1 shows the strong conver-
_ gence of (B™) to B = B. But if you take thunelatxons . '

N

T P=TP=PT, (T-Py-= (7 — P = - (I —
- PI= RS P = TR <1

into account,

-

B X TD=X T~ P)D :3;( < PiD

= =-T+P1D= (‘1).4 - P)ID

holds umformly

5. Under -the assumptions b) and d) we get I — T +'P = [T - P) =
I — TA*A in view of statement 4and B'= (I — TA*A)™' D in view of statement 3.
All remaining assertions are clear if Theorem 5.1 is observed a

Remarl\ 6.2: 9i(A*) dan’ be substltuted by R(A*) in the statements 5 and 6 of Theorem 6 1
) (see Remark 5. 2/1 ’

) "Renrark 6.3: Condition a) in Theorem 6.1 can be equivalently repla.ced by one of the con-
ditions R(DA) = R(D) or R(D) S N. Condition d) in Theorem 6.1 is equivalent to, “E(DA)
= “2( A4). Hence some of the statements follow also by results contained in [9].
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Remark 6.4: It is pc;véiblc to strengthen the assumptions of Theorem 6.1 in such a way that
they do not dcpend on theé order in whnch the operators D; (7 =0,..., L — 1)y occur. The -
modnfned assumptions read: . . :

" i) T} is compact on ‘1} (j = oL —1).

a’) D,b ENG=0,..,L — 1).

b’)span U {{(D;):§=0,...,L — 1} S N~
" ¢’) (4.1) is solvable. . - ) .

d)y N D, 4): i=0,. — 1} —‘J?(A) : : ' .
Under smnlar assumptmns some results of Theorem 6.1 are obtamed in [4] for finite-dimensio- -

nal spaces. It is easy to sec that the assumptions of Theorem 6.1 'are replaceable- by the cor-
: respondmg modified assumptions without changmg the statements.

Let == (n(O), w2l — 1)) be a permutatlon of (0 L — 1) \Ve conSIder an ltcratwe

method . - . ‘ ) o

Z P = Toan £ Db Toneigd £ By .

- -

w hlch differs from (6.1) by a permuted order of the generatmg operators D; (7 =0,...,L—1).
Under the assumptlons i) and b’) the iterative sequence (z,") converges for an ulbxtrmy a to

°°—Px°—§—(1—P)z'=Pz°+Bb

.

"An dna.lysm shows that P, = P does not depend on = while in contrast x,” and B, in general
depend.on 2. But if we add the assumptions ¢’) and d’) to i), the depcndcnce vamshes totally.

Remark 6.5: Let the conditions i) and a’) of Remark 6.4 be fulfilled. Thon not only .the
" sequence (z") with 2M(2o) = 2,,(%,) but also the other cyclic partial sequences (£,7.4i(Z)) (1 = 1,
..., L — 1) converge. Let (z"(x,, 7)) denote the cychcal]y united iterative method with the’
pelmuted order 7 of the generating operators D, that is .

Doys Paays ++ D'x(l—l)! D0y Daqays -+ ’ : o
" Furthernmiore let 7t; be the order arlsmg from the original order by a right shift of i positions in
the cychc scquence that is .
Dy, Diyyy -y DL :—I:D Dyyyyoee = s . o . . .
Evidently we obtain’for the cyclic partial sequences Zppei(2) = 2 (x,; ) (=0,..., L — 1)
The limits are Z; = T;(x,) = 2®(z;,'n;) (1 =0, ..., L — 1). The scquence (214 :co)) is cyclic
.with the property Ty 14ilTo) = ZTi(Tp)- Besndes Px,, :co) = Pz, for all n in view of Px,,, = PTx,
+ PDyb = Pz, If z'(%,) is.the limit of a convergent partial sequence belonging to (z,(z,)), i
there also holds Pza’(z,) = Pz, That means PZ;(xy) = Pz, = PZy(z,) = Px, = PZ(Z,) and .
ZnpeilTo) = Zi(xo) =Z;. Starting with the limit Z, of the first cyclic partial sequence (2,,(2)), -
the limits Z; of the cycllc partml sequences (:t,,,ﬂh(ar:0 ) are successively mapped one upon the
other durmg the iterative process (4.2), that is T, ,%; + D,,L+,b =T, (t=0,...,L— 1)
with Z, = 7,. . . oo

\

-Remark 6 6: Under t.he lssumptmns for statement 2, statement 4 and statement 5.of
"Theorem 6.1; the set of all limit elements x® = 2°°(x?) coincides with the set of all {D}-generaliz-
ed solumons, A B-generalized solutions and solutions of (4.1), respectively. Thus all solutions
or generalized solutions of (4.1) in the above-mentioned sense can be reached by the selection
of suitable starting elements z°. : :

Remark 6.7: Under the ﬂssumptlons ‘of Theorem 6.1 the lterutlon operutor T of (6.1) is
contractive on N(L), that is |7 | N(P)|| < « for a certain a < 1. Then it follows

17 — Pj = |71 — P)lj S . ' o o (6.6) -
Thus we ‘f‘ind ' ’

llz2 — %] = (P — T") (2 — 2)I'S amla® — 2’|, o S

22 Analysis Bd. 9 Heit 4 (1990)
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'

using (4 3) with 2 — 1 mstc 1d of n and P,_, = T" as well as (6.4) and (6.6). On the other hand f

we get from (6. l) and (6. 5)

uzm — a7 = [|(B - B"‘—l)) b — Aa® |] = T‘D b — Aa29||

S = 2. ot 1D IIb - Ax"ll =a" IIDII o — A2%/(1 — o). . .

i=n

Remark 6.8: If the basic assumption of Theorem 6.1 that 7 is norm-attaining on N is omit-
ted, then'(P,) and (T") still accumulate. to the orthogonal projector P in the weak

--+-ganse, .where the relations (6. 3) for R(P) and N(P) hold with the exception that W(P) = R(D4A)
“has to be replaced by N(P) = H(DA). The remaining statements are also still true if the con-

vergence is interpreted as accumulation in the weak sense.

7. Special classes. of iterative relaxation methods _ : <

. We turn to special .iterative inethods (4.2). We additionally consider a sequence.
" (Z,) of Hilbert spaces Z, and two sequences (G,), (R,) of operators G, B, € L(Y, Z,)

Furthermore we suppose the composite opexiator&

i

to be normally solvable, that is R(4, ) R(d4,) for all n. Then they possess ortho-

gonal generalized inverses A,* € L(Z,, X). Besides the adjoints A,* of A, are nor-’

mally solvable, too (see, e.g., [8]
Now we can choose the generating operators D, of (4. 2) in the form

.

Dy = A,*R, ~ T (7.2)

:

for all n. Tt is easy to sec that D,.can equivalently be cxpressed iby -

D, = A*R,", - o (1.2

where the relations

= (4,49 Ba, Ry ='A, AR,

v ho]d In the case R(4,) = Z, we obtain ~ o

R, = (A, A% ' R,, D,=AXA, A% R,. .

Lemma 7.1: The iteration operators T, = I “DA=1— A4, R,A of (4.2)/(7.2)
are relazations of the orthoprojectors T,' =. 1. — A,* A, iff the following two conditions
are satisfied : o . ’ : -

8) A RyA( — 4,7 4,) =0, b) | 4,*(4g — Rod) 2]l < lizl] for z = 0.

These conditions a), b) tmply LN

R(T,) = N(4,) = RD,A),

‘ - o (13)
N(T,') = R(A,*) = R(D,4) = RD,). . .o
Proof: At first we fipd ,

T,/ Tw=( — A A,) (I — A, R,A)
=71 — A,,+.A,; —.An+BnA + An+RnA = T“"

A,=0,AeLX, 2,) A ‘ (7.1)

L&)
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Starting with a) we get the relations (. .o

AR,A = A, R,AAz AL, : S
TnTn'—(I—AJfRA)(I—A *4,) ) ;

=1 —-A,*R,A —A*A,,—,—A *R,AA;A, =1 — A4, =T, .
[{evel'se]y the relations .’I.’,,’I',,’ = T, lead again to a). Besides,

;o T =TS =1 —A*RA~ T + A A, = A A, — RA4).

CRDLA) = RS T, NP = N(AA) = R(AL),

RDA) = RA = To), R = RAS 40 = R(ALL) = KAL),
R(D,A4) S R(D,). T

4
In view of (7.2) it follows moreover that R(D,) < § 1(A ,,* Now all assemons result
from Theorem 2.7 8 Y coL

Remark 7.2: An analogous lemma can be stated including strong rol(l\atlons _]' For this b)

h\s to be replaced by b") |4,7(A4, — R,A4)| < 1. The conditions a), b’) supply N( ’1' W) = R(A )
= R(D,A) = R(D,) (see also Theorem 2 ". 7).

Vi |
Lemma 7.3: If the dteration operators T, =1 — A, "R 4 o/ (4 2) (7.2) are strong
relaxations of T, =1 — A *;/1,,, then (4. ")/(7 2) s consistent for all beY.

' The assertion is endent if Remark 7.2 is observed. The statement of l,emnm 7 3
contains just the additional assumption b) of Theorem 5.1.

Let (G,) be almost cyclic. Then (7',’) is almost cyclic, too. The operators 7', ate‘
relaxations of T, provided that the conditions a), b) of Lemma 7 1 are fulfulled (cf.
Assumptlon 3.3).

Let (@,) and "(R,) be cycllc Then (T,) is cycllc, too. Thus a cyclic sequence of
relaxations 7', arises if additionally the conditions a), b) of Lemma 7.1 hold (cf.
Assumption 3.4:and Section 6). For such eyclic relaxation methods the relauons

L—1 -1 :
N(D) & span U WD) & span_U RTV) =N .
L]
are satlsflcd (see Remarl\ 6.3, Remark 6. 4) Using the preceding results of this sec-
tion wé can concretize Theorem 5.1 and Theorem 6.1 for 1elaxatlon mebhods wnth
. generating operators (D,) of the’kind (7.2).

Now we want to specialize (D,) step by step.. Let (A,) be a sequence of opexatoxs

Ay € L(Z,): The definition
‘R, =A,6, : ' . ' - (7.4),

suppllec according to (7.2) the gencmbmg opemtors

D, = At 4,G,. . . L ' (1.5)

. Th(,n Lhe condition a) of Lemma 7.1 is fulfilled automatlcally since we get

AFRA( — ArA,) = A A, — A A,) ‘
o = At A (A, —AAFA) =00 o
Hence the followmg statement results from Lemma 7. 1 and Remar I\ 7.2. .

{
29 % . AN
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’
,

Corollary 7.4: The steration operators Ty = 1 — DA = I — A,*A,A, of (4.2)/
(7.5) are reluxations (strong reluxations) of T, =1 — A,7A, iff the relations
||A = ,,) Apzl| < lle] for x =0 (||A I - A, )A Il < 1) ure satisfied. - =~ ° ' .

“For the speual choice A,-= 2, we get a class of itérative methods which- are
-mvestlgated in [11-14]. Here the operators 7', -are strong relaxations of 7', 4 iff
11 — y) s < 1 holds (sec_Section 2).-In-the case ¥~=-R* we-can-define-the operators
G, by Gy = §,, where the elements y, consist of some components of’ y € R*. Hence
“the linear equation (4.1) is scparated by (G,) into & system (4z), = b, of linear
= équations. “If each .component of y € R¥ occurs'in at least one-y,, then N gT?(D,,A
= ﬂ N(A,) = N(A). Therefore condition d) of Theorem 5 1 is fulfilled. "'

F‘or X = RM, Y = R¥ the linear operator A can be rcpmscnted as a matrix and
the lmeal operators (7, can be chosen to be row selection matrices of-A consisting :

" of some of the columns of the; unit matrix Iy € L(RY). Thus the so-called PSH
methods arise. The 51mplest form of such methods was px'opoqed by Kaczmarz in _
1937. Later this Kaczmarz algorithm as rediscov ered in the context of z- ray re-
constxu(mon techmqucs (sec, eg. [7, 12 19]).

’ Remdrk 7.5: 1. In the paper |"| oonvcrgonw statements for (4.2)/(7.5) are obtained under
the following assumptions: a) X'= RM. Y == RLY, Z_ = Rl for all n.b) (@) isa cyclicsequence
of matrices selecting in cach case the fU”O“ ing L'rows ()f 4¢€ L(RM, RLN) ¢) (A,) is a boun(lcd

) soquonce of matrices A € L(RL) \ut,h iim [|d,*(I — A,) A I| < 1. These assumptions mt(,gl ate
n»00
‘mto our general framework (see e.g., condmon d’) in Rbmdl‘l\ 3.3" and Corollary.7.4).

. 2. The paper [19] contains a conv ergence statement for (4:2)/(7.5) assuming the following

special conditions: a’) X = RM, ¥ == R¥ 7, = R for all #,,b) (G,) is a cyclic sequence of
matrices sclecting sttp by stop all rows-of 4. ¢’) (A,) is a sequence of matrices satisfying A,

= Ad, 0< 2, <2 foralln, X /t(") is divergent, where %) = min {p,y . G =1 \},
Hy = min {i,,, — Ag). d) (4.1) is solvable Again our general .lasumptmns are fulhllod (sw,

e.g., Assumption 3.3 ‘and Romml\ 3.3"). o ‘

3. lh(, results in [2] and [19] are-covered by our results. ‘\onem er we can derive some fur
* ther results for these special cases. : . s

‘.

e

REFERENCES ' 3

[1] CEexsoRr, Y - Row-action mothods for huge o,nd sparw systems and. their applwatwnb
SIAM Review 238 (1981), 444 —466.

[2] EccermoiT, P. P. B,, HeErMax, G. T., and A. LexT: Lterative Algorlthm> for large par-
titioned linear systems, with applications to image ru,onstructlon Lm ‘\lvnbrl Appl 40
(1981), 37— 67. - : \

[3] Fenvo, S., .und H.W. StoLLE: 'l‘heom, und Pra.\w der linearen lntet'r.tlgluchunrrnn

Band 1. Berlin: Dt. Verlag Wiss./Basel: Birkhauser 1982.

[4] ISERNHAGEN, V Veérschiedene Varianten von zyklisch zusammengefaliten Pm]cktmns
verfahren mit’ Relaxation zur ltomtnen Losung lmeare: (‘Iemhunﬂ yste,m(, Rostock.
Math. Kolloq. (to appear). .

[5) LINDENSTRAUSS, J.: On operators “thh attdm their norm. Israel J Math. 1 (1963),
139—148.

[6] Magss, G.: Tteramve Losung imcarer Gleichungssysteme. Nova Acta Leopoldina 52 .°

©(238) (1970) g

{7] Ma®ss, G.: Pro;e(‘thn methods solving rocta.ngulur systcms of linear equations. J. CO'nput
Appl. Math. 24 (1988), 107 —119. i

‘[8] Nasuep, M. Z., and G. F. VorruBaA: A unified operator theory of generalized inverses, In <
Generalized inverses and apphcatlons (Ed.: M. Z. Nashed). New. York: Acddomxc Press
1976, p. 1 —109. .

!

- - ’ N
. .



'

_Conrvergcnce Statements for Tterative Methods 341

[9] PETERS, W,, and D. SCHOTT Uber Nullrdume, \Verteberelche und Relationen von Opem- ’
toren, die bei stationdren Tterationsverfahren zur Lésung linearer Glexchungen ttuftrcten
Rostock.”Math. Kollog. 17 (1981), 71 —83.

" [10} Scuort, D.: Zur Konvergenz von Operatorfolgen im Zusammenhang mlt Ttemtlonsver .
fahren: Math. Nachr. 104(1981), 253 —270. .

[11 SCHOTT D.: Endlich erzeugte Projektionsverfahren zur Losung linearer Clelchungen im
Hllbcrtr‘\um Rostock. Math. Kollog. 16 (1981), 103—128. v

2] ScHotT, D.: Die Methode der Projektionskerne und ihre Anwendung ‘bei Struktur- und
Konvergenzuntersuchungen von Iterationsverfahren zur Losung lincarer Opcrator~
gleichungen-in Banachriumen. Disscertation B. Rostock: Universitat 1982, )

-{13] Scuott, D.: Zur, iterativen Losung linearer Operatorgleichungen. “Wiss. Z. Pad Hoch- -

, schille Gust,r()\\ (Math.-Nat. Fak'.) 2 (1982), 203 —223,

[14] ScuoTT, D.: }\onvergenma.ue fir Verallgemeinerungen von- PSH- und SPA Verfahren.
Math. Nachr.' 118 (1984), 89—103. ’ -

[15) ScHo?T, D.: Relaxations of orthogonal projectors (to uppcar in Serdico, Bulgaria).

[16] ScuotT, D.: Strong relaxations of Olthogona] prOJcctors (to appear in Rostock. \lath
Kollog. 42 (1990))..

{17] Scnott, D.: Product sequences of rela\dtlons (submitted- to Numer. Funct. Annl and
Optimiz., USA).

[18} TayLor, A. E¥ Introduction to Functlonal Analysis. New York: John Wiley &, Sons 19:)8

[19) TRUMMER, M. R.: Reconstructing pictures from projections: On ithe convergence of the.
« ART algorithm with relaxation. Compating 26 (1981), 18‘)—190

["O] Workowicz, H., and S. ZLoBEc: Calculating the best approwmate solutlon of an opemton
equation. Math. Comput. 32 (1978), 1183 —1213. -

(21] Youve, D. M.: Iterative solution of large linear systems. \c“ York and London ‘Acade- -
mic Press 1971. . -

7 . \ ~

g .)Innus_kriptei-ngang: 29. 03. 1989

- VERFASSER: LT . -
- Doz.Dr. DIETER SCHOTT’ T, Con
Institut fir Mathematik - - : St
der Piadagogischen Hochschule ,,Llcselottc Hcrrmann
Goldberger Str. 12

DDR-2600 Giistrow



