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Urn Losungen oder verailgerneinerte Losungen der Iirearen Operatorgleichung Ax = b zu be-
stirnmdn, werden lineare Itêrationsverfahren der Gestalt x,, +1 = (I - DN A) x,, ± Db be-
trachtet, bei denen die Operatoren T = I - DA au3rhalb ihrer Fixpunktmenge-norm. 
reduzierend'sind. Es werden Bedingungén angegebeti, die die Konvergenz der Verfahren und 
bestirnmte Eigenschaften der Grenzeleinente sichern.	I) 

'-IToOb! HXOL1IITb peweHMH win o6oGIueHH.6le peweuitn J1111leflnoro onepaTopnoro ypauHeunfi 
I Ax = b, paccMaTpuBaloTcn llTepa[(HOIIHIde MeTOhI x 1	(I - DN A) x-{- Da b. , y HoTophLx 

ouepa 	7 = I - 1)A co!{pau.taioT iiopiy ceoux 110lB11HOIl4X aIeMeIITon. -3ataiorcn 
ycioiiiii, icoTophie oOecne'IHBaIoT CXOJ1IIMOCTb- MeToxton II OflpeJteJldII}IIAe CBOICTHa flpeLeJ16-
Hb!X :).rleMeHToIl.	-. 
To determine solutions or generalized solutions of the linear opeiator equation Ax = b lineir 
iterative methods of the form = (1-- D) x ± Db are considered for which the opera-
tors 'I',, = 1 - DA are norm-reducing outside their fixed point set. Conditions re given which 
guarantee the convergence of the methods and certain poperties of the limit elements. 

1. Generalized solutions of linear operator equations	. 

In this section we state and compare three concepts for generalized solutions of 
linear operator equati'ons which are well known from the literatbre. We modify and 
complete the concepts in such a way that the close relations between them are espe-'- -- 
daily accentuated.  

Let X and Y be Hubert spaces. We consider linear continuous operators A € L(X, 1') 
from X into Y with the - mill space l(A) and the* range R(A). The correspondiiig.linear 
operator equation reads  

-. -	Ax = b,	X 	X, b 	Y.	 -	S	 - ( 1.1) 

The first-notion is of topological nature It establishes a connection to approximation. 
and to extcemal problems.  

Definition 1.1 (cf. [8, p. 40], [3 1 p. 221]): The element in X is'called an extrenwi 
solulioit (a virtual solution, a least-squares solution) of (1.1) if hA y - bil IhAx - bI 
holds for allx E X. An extremal solution_v of minimal norm is said to he a normal 
extremal (least extremal, best approximate) solution of (1.1).  

Extremal solutions of (1.1) exist iff b belongs to the algebraic direct sum (A) 
?(A), where At denotes the adjoint of A. Under thi'condition there is one and 

only one normal extiemal solution v of (1.1). it is the uniquely det'ernliled extm'emal 
solut.ioii of (1.1) in (A*), which can be writ-ten in the form v = Ab. Thereby A is 
the orthogonal generalized inverse of A.	 .	 . -
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The second notion idei'ived from the theory of generalized inverses. 

Definition 1.2 (cf. [20], [12, P. 21]): Let the topological direct sum decomposi-
tions	 -

(1.2) 

of X and Y be given. Let P and 9 b, the corresponding projectors determined by 
(P) = 91(A),9(P) = 911, 91 (Q) =(A),il(Q) = 91. A solution v of the (projecto-

nal)  

-	Ax	 -	 0	 -	

/	 ( 1.3)	-, 

iscalled a Q-eneralized solution of (1.1). If v additionally fulfils the equation 

-	Px=0,.	 (1.4) 

then v is said to he a P-normal 9-generalized solution of(11).	- 

9-generalized solution of (1.-1-) exist iff S belongs to 9(A) -4- 91. Under this condi-
tion there is one and only one -P-iiorrnalQ-geiieralized solution of (1.1). It is the uni- 
quely determined Q-generalized 	of (1.1) in 9)1. It can 'he written as v-= Ap Qb,	- 
where A - = A — Q  is the generalized inverse of A' wit-h respect to the pair (1', 9) of pro-

P, Jectors P, 9 -satisfying the relations A-A	I - P, AA I (A) = 9 I 
Here (A) = 9(A) 4- 'l denotes the domain of A (see, e.g., [8, PP; 33-34]).	- 

The t.hirdnotion results from the theory of iterative methods. It is properly speak-
ing of algebraic nature.	-	 - 

Definition 1.3 (ef.[6, p.32], [11, p. 104], [13, p.. 209]): Let 2 be a set of Hubert 
spaces Z and S be a set of operators C E L( Y, Z) with Z = Z(G) E 2 A solution v 

- of the system	 - 

GAx=Gb,	• O€,	-	-	-	-	( 1.5) 

•	of linear operator equations is called a -eneralized solution of (1.1). Let 2' be a 
further set of Hilbert spaces Z' and X be a corresponding set of operators H € 

•	L(X, Z') with Z' = Z'(H) € 2'. if v additionally to'-(1.5) fulfils the system - 

Ix =0,	HE7,	 (1.6) 

ofhomogenkIous linear operator equations, then v is said to, be a X-normal '-gener-
alized solution of (1.1). Besides, we shall briefly speak of normal (generalized) solu-
tions if the (generalized) solutions have minimal norm (sec also Definition,!.!). 

If X(A, 5) denotes the set of solutions and X'(A, 5) the set of generalized solutions 
of (1.1) (iii the sense of one of the mentioned definitions), then the the ieltion X'(A, b) 

X(A, b) is satisfied. For the first two definitions there holds, moreover, X'(A, b) 
'X(A, b) 'if X(A, b)	0. Obviously X(A, b) and X'(A, 5) are closed convex sets. 

Thus the normal (generalized) solutions al'Q uniquely detei1'nined. • / 
If we choose 931 = 5R(A*) = 91(A), 91 = 91(A*) = 9(A) 1 in (1.2), then the cor-

responding projectors P, 9 become orthogonal. Therefore each (normal) extremal 
solution of (1.1)with the above P, 9 is also a (P-normal) 9-generalized solution of 
(1.1). Reversely, each (P-nornial) 9-generalized solution of (1.1) with arbitrary P, 9 
can be interpreted as a (normal) extremal solution of (1.1) with respect to suitable 
modified scalar products in X and Y (see, e.g., [6, p. 56]).  

0	
,
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Evidently the equations Ax = Qb and QAx = Qb are equivalent. Thus each (P-, 
normal)Q-generalized solution of (1.1) in the sense of Definition 1.2 is also a, 
normal) {Q}-generalized solution of-(1.1) in the sense of Definition 1.3. 

The discussion shows that the generality of the given concepts for generalized solu-
tions increases from definition to definition.	 - 

2. Relaxations  

This section contains some notions and results from [15, 161 which are used iii th 
following sections.	 - 

Let H be a Hubert space. We consider operators '1' € L(H) and introduce a special 
kind of nonexpansive linear operators.  

Definition 2.1: 'P is áalled a relaxation if the condition lI TxiI <iIx I holds for all 
-	.	.	. 

Theärehi 2.2: 7' € L(H) is a.rclaxation i/f the relations  
- T)'	- '/7)1	117'4< jjxjj V x E 9Z (I - 71)1 •\ {O} 

are satisfied.  
Definitidn 2.3: 'P is'called 'a strong relaxatith if the relations T91 (I -'T) 

c 'J?(! — .77)1, li T 1. 911 (1 - 'l')' iI < 1 are fulfilled. 

By Theorem 2.2 each strong relaxation is also a relaxation. Mit there are relaxa-
tions which are not strong (see [161).	.	.	 -. 

•	Definition 2.4: Let'/'bearelaxat.ion. Then then,imberv = v(T) = liT I 9(1 - 'I') ll 

	

• -	is called the relaxation degree of 'P.  

The relaxation degree v(T) lies between 0 and 1. It is less'es than I iff 'P is a, strong 
relaxation.	.	 ,	.	• 

Definition 2.5 (see [51): 'P is called\norIn-attaining if there exists an element u in 
H \ {O} satisfying 11Tull = JIT11 1jull.  

em ma 2.6: If the restrictioa'T l( - T)' of a relaxation '1' is norm-attaining, 
then. 7' is a strong relaxation.  

Compact operators 7' are norm-attaining (see [12, p. 15]). Therefore compact and 
especially finite-dimetiiotial relaxations , 'P are always strong relaxations. 

Since a relaxation 'I' is completely reduced by the pair .-(91(1 '1'), il(I - P/7)1) of 
orthogonal subspaces (for the notion see [18, p. 268]), we cart connect '1' with the ortho-
projector 7" determitiedby (T) = (I - 7'). In this sense 'I' is said to he a rlaxa-
tion of the corre'sponidingort/ioprofe.ctor 'I". Therefore a relaxation 'I' of 7" can be char-
act erized,by-the relations	 ,	 S 

'I'x = x for x € 91 (T'),	ii Tx Il < lixil for x 0 9i(T').  
Tf 'I' is moreover a strong relaxation, the relations read 

7' 1(T') = I I	('P');	II I'I l('I") < 1.	/ 

Theorem 2.7: 7' is a relaxation of 7" ill  
a) '1" = 'l"T = 'P7", Il'J 'x - T'xil < 11X11 for x- 0	

5 

- 	 •	

-

 

holds. 7' is a strong relaxation of 'I" iff	 •	S	 '	 , - 

	

•	b)'1" = 'I"'l'	'I'?", .11 7' - T'li < 1 :	 ,
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holds. Condition a) supplies fl(T')	- 'I'), l('I") = R(I - T). Under condztn 
b)- it results l(T) = Jl(f— T). -	 0 

If T is a relaxation of '1", then the relaxation degree v(T) can he expressed by 
v(T) = IT I 91(77 ')H = IT - T 'II (see Definition 2.4). Contractive operators T (i.e. 
11 T 1 <-1) are strong relaxations of 0. with v(T) = Ij 7 ' . Orthoprojectors T I are 
(degenerate) strong relaxatiohsof themselves with v(T) = 0. 

	

Definition 2.8: Let 7"	'I be. an orthoprojector. Then T=.(1 - .) I -- T'
1 -' < 1; is called a salar relaxation of T' with the (relaxation) parameter .. 
• A 5 calar re1ãati'bn .T,of I" is a strong relaxation of 7" with v(T) = 1 - .i. 
Theorem 2.9: Let T1 be relaxations of the orthoprofecto;s Ti ' for i= .1, ..., ic. Then 

the product T = ..: 'J' is a. relaxation. of the orthoprojector T' determined by 91(7') 
= fl {t('i''): i= 1, ..., k}.  

3. Product sequences of relaxations 

• Iii this section we list some notions and an important result . from [17]. 

Definition 3.1: The strictly monotone increasing mapping (k(n)) from the set 
N of natural numbers into itself is called partition sequence if the conditions k(0) = 0, 

• sup {k(n + 1) - k(n):n E N} < oc re satisfied.	. 

Defiii i tio n 3.2.(f. [1,.p.'4481, [14, pp. 92-93]): A sequence (ta ) is called almost 
cyclic if there are a finite selection set. Y = {tfl(1),...1 t (j)} of (t a ) and an integer ni >, 0 
such that  

(T	{t, ..:, tn±m _i}, for all n.  

Let (t a ) he almost cyclic. The selection set Yof (t a ) with the property (3A) for 
some rn is said to be the basic set of (t a ). There exist partition sequences (k(n)) for 
(t a ) fulfilling the, condition Y = ( tk(), ..., tk(fl+I)_1}- for all . n, where ,.T denotes the 
basi sets of (t a ). If thö numbers. k(n) are chosen minimal, we call the corresponding 
partition sequence (k(it)) the characteristic sequence of (1,,). Evidently, cyclic sequences 

• (ta ) are almost cyclic.	0 

Now let H be a Hilbert space We consider sequences ('I',,) of operatorT E L(H) 
and the derived product sequences (Pa ) with	 - 

P.= T ... T1 T0 .	-	.-	-	.	 .	( 3.2) 
• .'	

At first we formulate conditiqns ensuring the convergence of (P) 

Assumption 3.3:	 -	 - 
a) ' 	(T,') is an almost cyclic sequence of orthoprojectors with the basic set - 

• 0

	

,{T,(1), ..., 7'} and the characteristic sequence (k(n)).  

h)	,. dim span ' , U l(T () )	oo (span: closd linear hull). 

-	c)	'I', are relaxations of T' for all n.	 .	 • 

d)	Ei.z	is divergent, where	 -'	.	
0	 0	 • 

Mill {: I = k(n), ..., k(n + 1) - 1),	. 
•	 L,	1 —v(T) = I _111'.- T,11.  

•0.	 .	 .	 S
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Remark 3.3': 1. The conditions a), c) and d') inIIT	7','I < I supply thc . condition d) 
2. For scalar relaxations Ta = (1 - A) I + AT' we have I t,,	--Il, - AI (see Definition 
2.8 and thestatementafter it). 1f ( the'parameters . .fl are supposed to be real, this. means , 
=

 
min{).,, 2'— ,.,}. In this case f p,1 is divergent iff E ?(2 - ,.) is divergent. The latter 

-	condition plays an important role in the convergence theory of SOB methods (see e.g. [21])., 
3. Because of condition d) infinitely many T must-be strong relaxations.	 . 

-	
Assumption 3.';  
a') (Ta ) is an almost cyclic sequence of relaxations with the basic set (T(1),  

-	 and the characteristic sequence (k(n')),  

b') = ' k(n+l)—I	1 k(n) S norm-attaining pn	= span JU fl(l - T1): 
j 

= 1,..., l} for all n.  
Rethark 3.4': L If, as usual, we denote the corresponding orthoprojectors to T,,.by Ta', 

theI in -view-of Theorem 2.7 (cf. Assumption 3.3/b)) the set 91 in b') can be written in the form 
91 = span (U9l(T,()): j = I.... . l}. 2. The above conditions are partly more special and 
partly more general than those of Assumption 3.3. On the one side the use of only finitely many 
different relaxations' is a strong restriction.. Oil , the other-side time stromig condition b)-can be 
weakend-to b'). The latter is for instance satisfied'if one of the relaxations T () (j =' 1.... . 1) 
is compact on T. Since contains this relaxation as a factor, is compact . on 9?, too, and 
therefore norm:attaining on 9? (see'[12, p. 15]).  

'-Theorem 3.5: Let Assumption 3.3'or Assumption- 3.4 b 	Then the product 
sequence (P a ) from (3.2) converges uniformly to the orthoprolector P determined by 

(P) =fl '(7' () ) = fl T (1 - 'I),
 

(3.3) 
- .91( 	= span U 91(T,, p) = span U (J - r/?) ,	 S	 / 

-Remark :3.5': 1. If Assumption 3.3 'tolds with exception of b), then (Pa ) still accumulates 
t6 P pointwise in the weak topology. 2. In view of Theorem 2.7 the infiniteintersections and 
unions in (3.3) can be reduced to finite intersections, and unions containing the , operators - 

- T () (j = 1.....l).'3. LL 71> = 'ii	j ... T n> be the partial products' induced by the 

	

corresponding-characteristic sequence (k(n))'occuning in Assumption 3.3 and.Assumption 3.4,	S 

respectively. The proof of Theorem 3.5 shows that* 	are certain constants v ( " ) < 1 with 

I 9?iI	 ...'	'	-	 (3.4)

Ef'we define  

-m=m(n)= max {tEN:k(i)--1n},  

- then we, get the error estimate  

II P —P11	2,(m—I) ,, vt 1 yt0 >. 	(3.6)	- 

• ' 4 Iterative methods with relaxations as iteration operators  

- Let X and Y be Hubert spaces. We eonsider\a linear operator equation  

Ax = b	'(A , € L(X, Y), b € Y).'	 -	 (4.I) 

•	LJsinga sec1 tmen6e (D,,) of operators D, € L(Y, ,X) we can generate a linear instationam'y 
•	iterative one-step process  

n+1	 -4- Dr.b = P,X0 + Bob,	-	S.	 ,	 ( 42)'
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where	 - 

= I	D N A,	P = 'I', . . .T1 T0 , -	= E 'f' •.. T1+1D. 

'We are interested in conditions ensuring that the limit elements x = urn x, of the 
iterative pI'ocess (4.2) exist and represent solutions or generalized solutions of the 
equation (4.1)-(scd Section 1). For global convergence results we need the existence 

- - of the' limit operators P = lini P,, and B = lirn B (see (4.2)).	- 
Let (Dr ') be such a sequence of operators D,1  E L( Y, X) that the corresponding 

operators' T i``	T -'- D'A are orthoprojectors. If we choose D = D' and 'l' = 
in' (4.2); respectively, well-known iterative methods, of the projection type- arise (for 
special cases see, e.g., [6, 7, 10, 11]).  

By, including a sequence ().,,) of relaxation parancters 2, we can influence the 
speed, of convergence or the precision of the results. Thus the choice !) = 
supplies so-called (scalar) relaxation methods. The corresponding iteration operators 

T=, I —2D'A=(l —)I,,+2T'  
are scalar relaxations iii the sense of Definition 2.8. Such relaxation methods are 
invest.igted, e.g., in [12— 14] A further generalization is obtained if the scalar re-
laxations '1', ate replaced by (operator) relaxations iji the sense of Definition 2.1. The 
basis of a convergence theory for such general relaxation methods is in parts already 
contained in [12]. First explicit results are given in [4] for cyclic methods in finite-- 
dimensional spaces. The results 6f [2]can also be arranged in our frame'ork. 

Def iii it ion 4.1: The iterative method (4.2) is said to he consistent if it possesses 
fixed points, that are clenients x' in X satisfying x' = 'I',x' +. Db for all n. 

Obviously the method (4.2) it consistent iff the corresponding eqii'ation (4.1) has' 
- {D}-geriralizel 'solutions (see . Definition 1.3). Namely, each fixed point of (4.2) is a 
. {D,}-gencralized solution of , (4.l) and vice-versa''The method ,(4.2) is automatically

	

- ,	consistent if thë'eqution (4.1) is solvable. A consistent iterative method (4.2) can 

	

•	be .wi'itten' in the form	•'	 ' ,	. , 

-,	- x 1 = Px0 + (1- • P) x' = x',+ P(x0 — x'),	 .	-	(4.3), 

) -

 
-Where x' is any {D}-generalized solution of (4.1). 

5. About the convergence of consistent iterative relaxation methods and the properties - 
of-the limits elements  

We consider an operator equation (4.1) and an iterative relaxation method (4.2), 
here the iteration operators 'i' or at , least the corresponding orthoprojectors 'J',' 

constitute an almost cyclic e( I rtence (see Assumption 3.4 and Assumption 3.3, re-

	

. 	spectively).  

Theorem 5.1 : Let Assumption 3.3 'or Assumption 3.4 be fulfilled: Besides we add-i-' 
-	- tionally integrate some of the following assumptions:	 . 

a) (4.2) is cons	for the given b E Y.	 - 
h) ('4.2) is consistent for allb € Y.	\	,' 

-	c) (4.1) is solvable. 	 '  
d) 'Forb = 0 each'{D} -genera'ized solution of ?4.'1) is also a solution of (4.1).



	

Convergence Statements for Iterative Methods	333 
-	 S

/ 

Then the following, statements hold:	 - 
1.( P a ) donvergës uniformly tot he orthoprojector P, = P determined by the relations 

I	 --

fl 91  91(D,,A);	 - 
'I 

(P)	span U 9?(T 1 ) = span U 1(DA)..	-. 

2. The additional assumption a) supplies: (,) converges th 
•	 x = Px ± (1 —F) x' = x' -)-P(x0 - x'),	 (5.1) 

where x' is any {D}-generalized solution of (4.1). Furthermore, x itself is a. 
generalized solution of (4.1) with Px = Px 0 and the noriial {D}-generalized solution 
of (4.1)for,x6 E	(P).-  

3. The additional assumption h) supplies: The further relation 91(P),= span - 
{U )1(D): n E N) is fulfilled. Moreover, (B,,) converges strongly to a left-orthogonal outer 
iiuierse B = Bof A. The limit element	has W representation	- 

-	x	Px0 + Bb.	.	 -	 (5.2) 

-

	

	4. The additional assumption d) supplies: P is the orthogonal projection onto 91(A) 
and can he expressed by  

P = I - AA,	 -.	.	- -.	
0	

.. (5.3)	 .. 

where A is the orthogonal generalized , inverse of A. This implies Ti (P) = 91(A), 91(P) 
= (A*).  

•	The .idditional, assumptions b) and d) supply: B is a left-orthogonal generalized 
• . inverse of A. Furthermore, x is.an  A B-generalized solution of (4.1) with (I - A' 	x

= (1 - A -'A) x0 indthe normal AB-generalized solution -Bb of (4.1) for x0 E 91(A*). 
6. The additional asumptions c) and d) supply: x,. - is a solution: of (4.1) with 

(1 - A'A)x = (I. - AA) x0 and the normal solution A'b 01 (40.1) for x0 E 9l(A*). 

Proof: I. The first statement is an immediate consequence of Theorem 3.5 . if the 
relation T,, =' I - D,,A is ohser-ed. 

2. Assumption a) guarantees that the method (4.2)can be writtenc in the form (43) 
Then statement 1 implies the'convergence of (x,,) and the representation (5.1) of 
x. This representation leads to..  

D,,Ax = D,,APx0 ± D,,A(I 7 P) x' = D,,Ax' = D,,b	
. 

for all n since (P) -' fl (91(D,,A): n EN) by statement 1. Starting again with.. 
(5.1), it follows that	-	 -	- 

Fx= P2x ± P(! - P) x' = Px0 . -	 .	•	-	 (5.4) 

For x0 E 91(P) we obtain x = (I - P) x' from (5.1). Observing the orthogonality 
of Px0 and (I - 1') x', the Pythagorean relation implies 

;P X0 ± (I - P) xI 2 = IIPxo 2 + 11(1 - P)x 2	1(1 - F) xI2 .	-. 

Since all {D,,}-generalized solutions z' of (4.1) are fixed points and therefdre limit 
elements of (4.2), all assertions of statement 2 are shown. ' .
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3. By assumption h) the relatioi'D,,b € 5J(D,,A) is satisfied for aWn and all b.E V. 
This means 9i(D)	(DA) for all n' 	(D,J A)	(D,,) holds automatically for 
all n, we get the equation -(D,A) =	for all n. Therefore, it follows that 
J(P)= span U {(D,,A):n E N)	span U {R(D): a € N) if statenient '1 is taken 
into account.. Cómp,aring (4.2) and (4.3) we obtain i3'b = (1 - ,P,) x', =, x'(b). 
Thus (Bob) converges to (I - P) x'(b) for all b€ Y. Let B be the limit operator of 
(R-) iii the sense of the strong operator topology. Using the relation-P,, = I , - BAA, 
we get BA = I	1?	(1 ---P)* = (BA)* . It is easy to show the identity Em 

AD I _ 1 )	(I --ADO).---  '1 herefore	B,b E span U {(D) a E \} 

= (P) for all rn and all b E Y. Thus we find PR,,, = 0 fon all m and PB 0. Finally, 
BAB=(i - P)B = B - PB B. Hen'ceB is aleft-orthogonal'oute'r inver5se of 
A (for the notion see e.g. [8]) If we pass in-(4.2) to the limit, we obtain , (5.2). 

4. Assumption d) means  {il(D,A) 71.E N} l(A)' Because of (A) ( (DA) 
n € N) = R(P) it is T(P)	(A). rIherefore.jp is the orthorojectoroiito(A)along 
R(A*)-,which eanbe represented in the form,(5.3).  

. By statement 3 the opatonB is a left-orthogonal miter inverse of A."Statement 
4 shows ABA = A(I - -1') =A - AP = A, so that B is an inner inverse and 
consequently even a generalized inverse of A. Iii view of AP = Owe get from (5.2) 
Ax = AI'x0 + ABb = ARb, where AB is. a, projector onto IR (A). Thus x is an 
AB-generalized .solution of (4.1). The relations (5.3) and (5.4) can he 'combined to 
(1 - AA)x = (I - AA) x0 . The general solut.ioi set of Ax = ABb has the form 
X(A, ARb) = (A) - x..For'x 0 E 9(A*) it is also x E (A*) if we take (51) and 
i(A*)= l( 5P) = )i(! - P) intoconsideration. Therefore	, is the normal AR-

generalized solition of (4.1)in this case. The representation	= Bb results-from 
• '-	(5.2).	-	.	 ,. 

6. Asstiniptiomi c) implies assumption .a). Under assimption c)therefqre (5.1) IS 

satisfied with any solit.ion x' of (4.1). Besides, (5.4) holds. In view of d) we get (5.3) - 
and AP = 0. Hence wefind Ax = AP. 0 ±A(1 - P)x" Ax' = b and (I - A 4 A) 
x x, = (1 - A 'A) x0 . The general solution set of Ax = b has' the form X(A, b) = 

•	(A) ± x. Analogously as in the.prof of statement 5 we can show that x is(,the 
•	normal solution of (4.1) for x0 E T (A*) . Therefore x can be written as A-b I 

• ./ Remark 5.2: 1. The assumptions h) and d) imply that AR is a continuous projector onto 
3(A). Hence 9(A) and (A*) are closed. Thus we can rÔplae,(A*) by 9?(A*) in the state-
ments 5 and'G of Theorem 5.1. 2. Under the assumptions for statement 2, statement 5 and 
statement 6 the set'of all limit elements X m = X _(x0) coincicjés with the set of all {D,,}-generaliz-
ed- solutions, AR-generalized solutions and solutions of (4.1), respectively. Thus all olutions 

- or-genierized solutions of (4.1) in the above-mentioned sense can be reached by the selection 
of suitable starting elements x0 . 3.Under the-assumptions pf Theorem 5.1 the limit element 
x of-(4.2) are in general no extremal solutions. But they can be interpreted as extremal solu-
tions with re.4pect,to a suitable scalar product in I if the assumptions of statement 5 are ful-
filled (see Section 1). 4. Using (4.3), (5.1) and (3.6) we get the error estimate 

IIX m	x li = Ii( P - F,,) (x0	x')i	 0 11 x0 -  

where '" ) -and mare det'ermined by (3.4) and (3.5). 5. if Assumpt'ion 3.3 is fulfilled with excep-' 
tion of condition b), then the statements of Theorem 5.1 hold in some respect still in the sense 
of weak topology (see Remark 3.5').  

'	1	'	•,-	 S	 .	 ,	 S 

I	 -	 .
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6. About the convergence of cyclic iterative relaxation niet.hods and the properties 
of tile limit elements  

At first we consider an equation (4 1) and 't cyclic iterative method (4.2) belonging 
to it. We suppose that the generating sequence (D o ) has the cyclic length L. Then 
there are at most L different operators D0 , D 1 , ..., DL-1 in the sequence (Dr ). A 
linear stationary iterativeone-step process arises if in each case L single iteration 
steps are united to one step. The resulting method has the .form 

Tx ± Db = TYx° ± Bb	 (6.1) 
with	-	 ç 

•	 L-1 

• 	x0,	•D = L' 1 L - •'.	 D,, 
-	 j=0

(6.2) 

	

'1' = I - DA =	 711T0,	B(n) = E VD. 
•	 ,	 '1=0 

Now we turn to relaxation methods. Thus (Ta ) i"a cyclic sequence of relaxtiôns 
•	'I' containing 'at most L different relaxations 'J', T, ..., TL_ i of corresponding

orthoprojectrs T0 ', Ti', ..., T'L_I.  

•

	

	Theorem 6.1: Let '1' be norm-attaining on	= span U {(T,'): / = 0, .. ., 'L L 1).
Besides, some of the following assumptions are additionally integrated: 

•	a) (6.1) is consistent for thegiven b E Y.	- 
•	- b) (6.1) is consistent for all b E Y.	 S 

c) (4.1) is solvable. 
d) For b = 0 each {D}-generalized solution of (4.1) is also a solution"of (41). 
Then the listed statements hold:	-	S	 S 

I. Both (P) and (T') converge uniformly to the orthoprojectàr I' determined by the 
relations

	

	 S	 S 

9(P) ==n R(T 1 ') = fl 9?(D,A) = (DA), 

	

L-I	
!0 	 (6.3) 

1 91(P) =
 

span U(T1 ') = span U i(DA) = 

	

j=0	 ..j=0	 - 

•	2. The additional assumption a) supplies: (X's ) converges to  

•	 = Px0 + (I - P) X" x' + P(x0 _ x'),	-	 (6.4) 

where x' is any (D)-generalized solution of (4.1). Furthermore x itself is a (D}-gener-
alized. solution- of (4.1) with Px° = Px° and the normal {D}-generalized solution of 
(4.1) for x0 E (DA). 

3. The additional assumption. U) supplies: The further relation )(P) = (D) is 
fulfilled. Moreover (B") converges uniformly to a left-orthogonal outer inerse 
B = (DA + P) 1 D of-A. The limit element x has the representation 

	

= Px° +'Bb.	-	 -	•	 (6.5) 
/	 S 

4. The additional assumption d) supplies: P is the orthogonal projection onto .91(A) 
along )(A*) and am be expressed in the form P =1 - AA.	',	 S 

•	
I S,	 S 

S	 '	 S
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5. The additional assumptions h) and d) supply: B is a left-orthogonal generalized 
inverse of A and can be written as B = (I - TAA)- 1 D. Furthermore x is a't AB

	

S	
generalized solution of (4.1) with (1 - AA) x° = (1 - AA) x0 and the normal AB-

	

S	 .qe?leral:zed sointion. fib 0/(4.1) for xO E 9.(A*)	 S

.6. The additional assumptions c) and d) supply: x is a solution - of (4.1) with 
(I - AA) x = (I - AA) x° and the normal solution Ab of (4.1) for x0 

Proof: The sequence (T,,) of relaxations is almost c yclic with the basic set {'/'0,-T1, 

I L-I) and the characteristic sequence (nL): Thus T" = T( fl± I) L_I	 ?',,j. = T 
for all n. TIie'refore (Ta ) satisfies the eoiiditiris of Assuhiptioii 3.4.  

1. By Theorem 5.1 the sequence (Pa ) converges uniformly to the orthoprojeetor 
P determined by the relations -	 S 

N	 L—I	 - L--I 
fl)i('i'')= fl Jl(I)A) = fl J(D,A), 

fl 

L-1	 a—i	 S 

•	9(P) = span U 31(T').= span U (DA) = span U (D1A).	
S 

n	 j.0 

• (T") converges uniformly to -P, too, since it is a partial sequence of (Pa ). By Theorem 
2.9 the product T = T,_ 1 ... TO is a relaxation of I'..T is supposed to be norm-attain 
ing on9Z = (P). Heiie T is even a strong relaxation in view of Lemma 2.6. Thus 
the relations IT 19111 < 1 and N(P) = 9(1 - 'I') = (DA),	(P) = 1(1 -.T) 
= J1(DA) hold by virtue of rIheoi,en1 2.7 and (6.2).	

S 

The constant sequence (T) also fulfils the conditions of Assumption 3.4. Hence 
most of the remaining assertions are simple consOquences of Theorem 5.1. We re-
strict ourselves to the few other assertions.	S 

3. We have (DA)	91(I)). Assumption h) leads to 91(D)- 91(DA). That means
91(D) = 91(DA) = 9(P). Statement 3 of '['hebreni 5.1 shows the strong conver-
gence of (B) to	=' B. But if you take the'relations. 

P = TP = PT,	(T - P)n = ( T(I - P))n = P, (I - F), 

IIT - P11 = 1T(i	P ) j i = IT IN( 	< 

into account,	 S 

BETD.=ET(I —P)D=E(T n- P)'D .. 

= (I - T ± P)' D = (DA -F P)' D 

holdsuniformly.	 S 

	

•	5. Under the assumptions b)and d) we get I - T +P = I T(I - F) =
I - TAA in view of statement 4 and B 5 = ( I - TAA)-' D in view of statement 3. 

All remaining assertions are clear if Theorem 5.1 is observed I 

Remark 6.2;	l) cari be substituted by'31(A*) in the statements 5 and 6 of Theorem 6.1 
(see Remark 5.2/1.).	 S 

'Rerliark 6.3: Condition a) in Theorem 6.1 can he equivalently replaced by one of the c'on-
ditions 91(DA) = i(D) or 9(D)	Condition d) in Theorem 6.1 is equivalent to (DA) 

	

-	=
 

T(A). Hence some of the statements follow also by results contained in [9].
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Remark 6.4:It 
is 

pozib1c to strengthen the assumptions of Tlieoren 6.1 in such i vay that 
they do not depend on the' order in which the operators D (j 	0....... - !) occur. The 
modified assumptions read:	 . 

i)T,is compact on 91 (j = 0,..., L - 1). 
a') bb € 9?.(j = 0, '..., L - 1).	 - 
W) span U	(D1 ): j = 0.....1 - I	W., 
c') (4.1) is solvable.  

d') fl {S)j( DJ A) : j = 0..... L - I) = 
Under similar assumptions some results of Theorem 6.1 are obtained in [4] for finite-dimensio-
nal spaces. It is easy to see that the'assurnptions of Theorem 6.1 are replaceable-by the cor-
responding modified assumptions without clinging the statement-s. 

Let t = (21(0);..., 21(L - 1)) be a permutation of (0...... - 1). We consider an iterative 
method  

x.,'' ,,= 71.,x' ± D,b	,n-1210 -i--, B)b	. 

which differs from (6.1) by it permuted order of the generating operators D (j = 0..... L - 1). 
Under the assumptions i) and b') the iterative sequence (x') converges for an arbitrary 27 to 

x., = P,,x°-i- (1 - P.). x,' = P,,x° + B.,b.  

• An analysis shows that P,, = P does not depend on 3i while in contrast x,,' and B,, in general
depend on -r. But if we add the assumptions c') and d') to i), the dep'endence vanishes totally. 

Remark 6.5: Let the conditions i) and a') of Remark 6.4 be fulfilled. Then fiot only the 
• sequence (x") with x"(x0) = XO L(XO) but also the other cyclic partial sequences ( xflL± I (xo)) (i = 1, 

L - 1) converge. Let (r(x0, t)) denote the cyclically united iterative method with the 
permuted order 21 of the generating operators Q,, that is	 -	 S 

D (Q) , D11.....D,,(J,_j), D ( Ø ) , D (1) , ..:	 / -	 7 
5	 '	

5	

5 
0 

Furthcrniore let	be the order arising from the originalorder by a right shift of i positions in 
the cyclic sequence; that is  

D, D +1 ,..., DL.. i—I' D 1 , Dj+l,
 

Evidently weobtain'for the cyclic partial sequences x fl L+I(xo) .= x9x, ) (i = 0.... . L 
•	The limits are	= (x0 ) = x(x 1 ,ir) (i = 0..... L - 1). The scqbence-(xfl.1(;)) is cyclic 

with the property = Besides, Px(r0) = Pr0 for all n in view of Px,,, 1 = P7',1x0 
+ PDb = Pr,,. If x'(x0 ) is. the limit of a convergent partial sequence belonging to (x,,(x0)), 
there also holds Px'(x0) = Pr,,.' That means P(x) = Pr,, = P 0 (z0 ) = P,, = P(;) and 
xflL.51(xo) =	(x,,) =-,. Starting with the limit ,, of the first cyclic partial sequence (x,,15(x0)), . 
the limits Y j of the cyclic 'partial sequences (rflL+(xo)) are s'uccessively mapped one upon the 
other during the iterative process (4.2), that is	+.	=	(i, = 0..... L - 1) 
with XL =	 S	 S 

Remark 6.6: Under the assumptions forstatement ' 2, statement 4 and 9tatement 5. of 
Theorem 6.1; the set of all limit elements x = x°°(x°) coincides with the set of all (D}-generaliz-	• - 
ed solutions, AB-generalized solutions and solutions of (4.1), respectisely. Thus all solutions 
or generalized solutions of (4.1) in the above-mentioned sense can be reached by the selection 
of suitable starting elements x0.  

Remark 6.7: Under the assumptions of Theorem 6.1 the iteration operator T 6 f (6.1) is 
contractive on l(P), that is lI T 1 1W(P)II	a for it certain a < 1. Then it follows 

11 7 -	117(1 - P)II S CO -	-	.5	'	-	 (6.6) 

Thus we find	 •	 •	 ' 

lIx — xI = IKP - 7') (x0 - x')11	a 'Il	- z'll,	 •	 S 

	

'-22 Analysis It,!. 9 Heft 4 (1990)	-.
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using (4.3) with n - 1 instead df a and P_ 1 = Tn as well as (6.4) and (6.6). On the other hand 
we get from (6.1) and (6.5)	 - 

x"11
 

= II( B —B' ) ) (b— A)II=	 - Ax0) 

Z Oc i II D1I li b - Ax°II =all Il Dillib - Ax1 II1( 1 - a). 

Remark 6.8: If the basic assumption of Theorem 6.1 that T is norm-attaining on 91 is omit-



ted, then (Pa ) arid (Tz) still accumulate. to the orthogonal projector P in the weak
- sanse, where the relations (6.3) for .c3(P) and 91(P) hold with the exception that 91(P) = 91(I)A) 

hs to be replaced by 91(P) = *(DA). The remaining statements are also still true if the con-
vergence is interpreted as accumulation in the weak sense.	- 

7. Special classes, of iterative relaxation methods 

We turn to special iterative methods (4.2). We additionally consider a sequence. 
(Z n ) of Hubert spaces Z,, and two sequences (G a ), (Rn ) of operators Gn, R € L(Y, Zn). 
Furthermore we suppose the composite' operators-

A. '= OnA E L(X, Zn )	 ( 7.1) 

to -be normally solvable, that is 91(A) = (A) for all ii. Then they possess ortho-
gonal generalized inverses	E L(Zn, ). Resides the adjoints A n* of A are 
ni.Hy solvable, too (see, e.g., [81). 

Now we can choose the generating operators 'n of (4.2) in the form 
-	

D,, I = A.'-R.. 	 (7.2) 

•	for all n. It is easy to see that D.ean equivalently be expressed by-

Dn = A n*R n ,	 ( 7.21)' 

where the relations	- -	 - 

R' = (A nA n *)+ R,,	R,,\4fl4fl*1fl'	 --

hold.  In the case fl(A) = Z,, we obtain  

R.-= (AA*)_l R,	D	An*(AnAn*) Rn: 

Lemma 7.1: The iteration operators T = 1 L 'n 4 = 1 - AnHnA of (4.2)1(7:2) 
are relaxations of the orthoprojectors T' . 1 - A	ill the following two conditions 
are satisfied:	 - 

a) A n RnA(I - AnAn) = 0, '	b) IIA n(A n - RnA) xli < lxii for x + 0.

These conditions a), b) imply  
=R(-4 n ) = 'fl(DnA),

-	 (7.3) 
= R(A n *)	R(DnA) = 91(Dn)	 .	 .. 

Proof: At first we find 

-	T"1', = (I - AtA) (I - A,RA)	 -

1 - An'An ,4 n 1? n 4 ± AnRnA = Ta'.

IM 

El



-	 Coqvergence Statements for Iterative Mthods	339 

Stai-t.ing with a) we get the relations 

ARA 

	

= (I - ARA) (I. - AA)	 -	 - 

= I - A/?A —AA -	 = I -	'I''• 

Reversely the relations 'I',T,' = 'I',,' lead again to a). Besides, 
/	T,, - 'I''= 1 - ARA .--- I-)--AA =	- RA). 

uid	 - 
'91(D,1 A) = 91(I - IT,,),	U(Tv) = 91(AA) = 

J(DA) = 9? (1 - 'I 'll),	9(T') = 9(AA) =- (A) 

(D,1 A)	 - 

In view of (7.2') it follows moreover that (D)	T(A,,*). Now all assertions result 
from Theorem 2.7 I	 - 

Remark 7.2: An analogous leima can be stated including strong relaxations '1',,. For this b) 
has to be replaced by W) ! I A ( A - RA)II < 1. The conditions a), b') supply N('J'') = R(A) 
= R(DA) = R(D) (see also Theorem 2.7).	 . 

•	 /	

5 

Lemma 7.3: If the iteration operators 'I',, = I -	of (4.2)1(7.2) arc strong
relaxatiom . o/ T' = I - A 8 A, then. (4.2)/(7.2) is consistent for all  E Y. 

Th'e assertion is evident if '1.emark '7.2 is observed. The statement of Lemma 7.3 
contains just' the additional assumption 1)) of Theorem 5.1. 

Lei (0,,) he almost cyclic. Theii ('I',,') is almost cyclic, too. The operators T,,'-are 
relaxations of T,,' provided that the conditions a), b) of Lemma 7.1 are fulfilled (cf. 
Assumption 3.3).	.	 . - 

Let- (0,,) and (R,,) be cyclic. Then (T,,) is cyclic, too. thus cyclic sequence of 
relaxations 'I',, arises if additionally the conditions a), h) of Lemma 7.1 hold (cf. 
Assumption 3.4:and Section 6). For such cyclic relaxation methods the relations 

91(D) 9 span U (D)	span U 91('I'') = 9?	- 
1=0	 .	. i=0	 .	.	S 

4 

are satisfied (see Remark 6.3, Remark 6.4) Using the preceding results of this sec-
tion we can concretize Theorem 5.1 and Theorem 6.1 for relaxation methods with 
generating operators (D,,) of tliekind (7.2).	 - 

Now we want to specialize (Do ) step by step. Let (A n ) be a sequence of operators 
il,, € L(Z,,): The definition	 . 

- "	R,, =	 -	.	-	,	.	 (7.4),
supplies according to (7.2) the generating operators  

D,, =	 - S	 ,	 .	
( 7.5) 

Then the condition a) of Lemma 7.1 is fulfilled automatically since we get 

S	 A,,'R,,A(I -	-= A,,'A,,A,,(I - 

=AA,,(A,, --A,,A,,A,,) = 0.  

l'{emice the following statement results from Lemnnia 7.1 amid Remark 7.2.	 S - 

22	 .	'
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Corollary 7.4: The iteration. operators T = I - DA = I -	of (4.2)! 
•	(7.5) are relaxations (strong rclixotions) of T' = I— A'-A i/f the relations 

I! A (I	A) AxII	!xI /7r x	0 (II A ( I - A n ) AI < 1) are satisfied. 

For the special choice A,=,! we get a class f itdiative methods which are 
- investigated in [l1-14]. Here the operators T,, -are strong relaxations of T,,' iff 
• 1 - ).,, <I holds (see -Section 2).-J.n . the case-.Y--=-:RN we-can-define-the operators 

G by-G,y = , where the elements y,, consist of some components of  € RN. Hence 
the linear equation (4.1) is separated by (Ga ) intO a system (Ax)	bof linear
equations. 1f each component of j€ R N occurs in at least one-y, thei fl ?(D,1A-)--=-
= fl J(A,) = (A). Therefore condition d) of Theorem 5.1 s fulfilled. 

For X = ,R M , Y = RN the linear operator A can he represented as a matrix and 
the limiea' operator Gn call be chosen to he row selection matrices ofA consisting 
of some of the columns of the; unit matrix I N € L(R-'). Thus the so-called FSH 
methods arise. The simplest form of such methods was proposed by Kaczmarz in 
1937.'Later this Kaezmarz algorithm was' rediscovered in the context of x-ray re-
construction techniques (see, e.g., [7, 12, 19]).	 0 

Remark 7.5: 1. In the paper 121 convergence statements for (4.2)7(7.5) are obtained' tinder 
the following assumptions: a) X= 11M y 11LN, z,, = 11L for all a. b) (0,,) is a cyclic sequence 
of matrices selecting in each case the following Lrows of A € L(HM , R1 ). c) (An) i. a bounded 
sequiince of matrices A,, € L(RL) with iimIIA,,'(i	4,,) A ,,II < 1. These assumptions integrate 

into our general framework (see e.g.,condition d') in Remark 3 and €omolhr 7 4) 
•	2. The paper [l9 contains a convergence statement for (4:2)7(7.5) assuming the following 

special conditions: a') X -= R 1 , 1'	flN, Z,, = R for all n,.h) (0,,) is it cyclic sequence of
matrices selecting step by step all rows-of A. c') (A,,) is it sequence of matrices satisfying A, 
- i,,I 0 ,< , 	2 for all a Z O) is divergent, where ,,(L) = nun (/,	- 1	\ 

= mm A,,, 2 - ,.,,}. d') (4.1) is solvable. Again our general assumptions are fulfilled (see, 
e.g., Assumption 3.3'and Remark 3.3'):	 : 
• 3. 'The results in [2] and [19] are-covered by our results. Moreover we can derive some fur 
tlier results for these special cases.  

-	--
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