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Wir geben cine Klassﬁizierung der linearen konform-invarianten Differentialoperatoren iiber
Cn, die ihre Wesgte in einer Cliffordschen Algebra annehmen. Solche Operatoren schlicBen-den
Diracschen Operator und seine Potenzen ein. Wir zeigen, daB die mit dem Diracschen Operator
in R® und C" verbundene Funktlonentheone sich ‘auf alle diese Opemtoren verallgememern
1a0t. .
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Mu . naem hnaccudumaumo mmenﬂux Ronq)op\mo mmapuamuut nu(p(bepenunduhuux
onepa'ropOB Hag C® co 3HaueHuAmMM B ajarebpe H.nml)d)opna 9TH 0MepaTopLl, BKIOYAT B
ce6si oneparop Jdupaka u ero cremenu. Mul [oKagbIBaeM, 4TO TEOPUH q)ymumn CBA3AHHAA C
onepa'ropom Hupaka' s R® 1 €%, 0606mae'rcn Ha BCE OTH ONEPATOPHI. S '

We give a classification of lmcar conformally mvanant Clifford algebra va,]ued dlfferentlal
operators over C*. Such operators comprise of the Dira¢ operator and its iterates. VVe show that °
the function theory, associated to the Du'ac operator in IR" and C*® can be generah/cd to all

. these operators. :

Lo

Introduction . - ’ o oy

’
- - In

By mtroducmg complex Cllfford algebras’it has been possible to mtroduce a first
order differential operator, over R”, whose square is the Laplacian, and to study the
properties of analytic continuations to €" of functions which are annihilated by this
operator [6—8, 13, 14, 21—24]. This operator gives a natural generalization of hoth
the classical Cauchy-Riemann equations and the massless Dirac equation. The study
of properties of functions which are annihilated by this generalized Cauchy- -Riemann:
Dirac operator is referred to as Clifford analysis [6, 19, 20 —24]. In the 1930s Clifford
analysis had been developed by FuETER [11, 12}, and his collaborators, as a functlon
theory over the quaternions, and by MoisIL and TEODORESCU [18]. Also, earlier work
on.this analysis had been developed by’ Dixox {9]. More recently this analysis' has
been extended to higher dimensions by a number of authors (eg [6—8, 13,14, 19,
21—-24;28]). -

In recent work [1— 3] ARLFORS, building on results of VA}{LE\' [27] and \’IAAss [17],
‘deseribes propertles of MoB1US transformations in R™ by means of a_group of matrices
with entriés in a Clifford algébra. Within mathematical physics the study-of confor-’
mally invariant differential operators on Minkowski space, and analogues of these
operators over curved spaces, has been extensively pursued (see for example [10, 15].
and references therein). In [15] JAk0oBSEN and VERGNE show that powers (3¢ of the
ordinary d’Alembertion acting on functions in Minkowski space are conformally
invariant in the sense described here. In this paper we use the complex extension of

- the matrices appearing in[1— 3] to show that the class of linear, conformally invariant, .
holomorphic differential operators defined over C* comprises of a semigroup of 1ter-
" ated Dirac operators In [10] Verma modules are uséd to descrlbe conformally mvanant
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. differential operators on Minkowski space. However, the methods used here are
function theoretic in nature. We obtain our result by first deducing a generalized
Cauchy integral formula, or /jgeneralized Green’s formula, for solutions to each:such
operator -We then use these formulae to give a characterization of solutions to these -
equations over the Lie. ball and apply arguments given in {24] and 8] to deduce the
result. ‘
In this paper we also extend a number of results in complex Cllfford analysns from -
even dimensions to odd dlmensmns 'This leads us to study partlcular types.of domains
in €*, and to study conformal transformations over twofold covering spaces of some *
domams in C*, when n is odd - R S - -

~

Preliminaries
L [N : ..

Let A,,((E) be the comp]ev 2n dlmensmnal Clifford algebra described in 14, Part 1],
[20, Chapter 13], and elsewhere. This algebra has an xdentlty 1 (=e,), and basis ele-
ments 1, €, ..., €, €€, ..., €4 1€y ..., €, .6, ..., € ... &, Where j; < ---<j, and
1 <7 < n.Theelementse,,- .., e, satisfy the antlcommutatlon relatlonshlp ejen + ee;
= —26,k, where 6,,, is the Kronecker delta. We call €" the complex space spanned-

by e, ..., e,. We call R” the real space spanned by-e,, ..., e,. The isotropic, or null -

- cone (:zlel +-- + zze, € C": zl 44 2,2 =0) is denoted by N(0), and a general
. ” vector z,e; +---+ z,e,.€ C" is denoted by z. It may be noted that each vectorz € C*
\N(0) hasa multlphcatlve mverse (281 ¢ (E"\N(O) Consequently, we have the Clif-
ford group I',(C) = {Z € A(C): Z = 2,...5,2 € (D"\N(O) forl1 <j<kandkisan
arbitrary positive integer}. On restnctmg the elements Z € I',(C) so that for each z;
we have that z> = + 1 we obtain a subgroup of I,(C) which we denote by Pzn((l:")
and in the case where k is even we obtam a subgroup of Pm((I:") which we denote by

. Spin(C*").

Furthermoze, we have (4, 20] an antlautomorphlsm ~: A, (C) — A,,((l',‘) ej,...€j 1.
+>¢;,...e;. For a general element Z € A,(C) we denote ~ (Z) by Z. Using the pre- .
v10usly descrlbed anticommutation relationship it. may be observed that for each
"« € Pin (C*) we have that a€"a = C" and for each.z € €, (aza)? = 22. It follows

that Pin(C") is closely related to the complex orthogonal group O(C") = {(a,,)
1=¢j5= n, a;; € (E and (a;;) (a;;) T =1}. In fact we have

Lemma 1: The group Pm((D") is a four-fold covering of the group O(C") (i.e. thereisa
shorl exact sequence 0 — Z, — Pin(C") - O(C") — 0). X

Outline, proof On considering the group homomorphism 0: Pin(C") > O(C")"
: canomcal]y induced by the map ) Pin(C*) xC": (a, 2)+> azd it may be observed

that the elements 1, —1, ) — lel ey, —]/—lel .6, € Pin(C*) belong to the kernel
of 0. It now follows from similar arguments to those detailed for'the Euclidean case

in [4, Part 1] that the homomorphlsm 0is surjectlve w1th kernel {1 -1, ]/— le, ...
»—V_ie, € } l

Using the CllffOld algebra’s: antlcommutatlon relatlonshlp we may from R" gene- -
rate a real, 27-dimensional subalgebra of 4,(C). This algebra-is an example of a real
Clifford algebra and its propertics are described in [4, Part 1], [20, Chapter 13] and
elsewhere We denote it by 4,,. The group A, n-S8pin(C") is denoted by Spin(R")and,
as shown in [4, 20] it is a double covermg of the special orthogonal group SO(n),
which-acts on IR™. The group 4,n Pm(d’l”) 18 denoted by Pin(IR™) and it is a covering
group of O(n) (see [4 20]).
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1 - Lo

Following results obtained by ARLFORS [1—3]; Maass [17] and VAHLEI\ [27], we

introduce the following type of matrices: -

Let ( d) be a matn\ such that a, b, ¢, d € A ((1:), z),nd a =a,...q, b = b,..'.b,,,,

c——cl £ d =d,.. dq,wherea,,. ,a,,b,,...,b,,,,c,,. ,c,,,dl,.. da € C*1,m,p,q

"€ Z* and aé, éd, db, ba € " and ad—bé € C\{0}. Then this matrix is calledaCh//ord
matriz. As Jllustrated in_[24), for each Clifford matrix the transformatlon .

\
1

(Z 2) > (az + b) (cz.+ d)-1 R R s | ) .

is well defined, ‘and glves a Mobius transformatlon in (II"

Suppose now that U is a domain‘in R*, n > 2, and that/ U — A,,((L‘) 188 functlon .

- for which all partial derivatives exist. Suppose that, P is a Clifford algebra valued con-
stant coefficient differential operator of order p € Z*, which acts on f on the left hand

side (i.e. the operator P acting on f does not involve multiplying f on'the right-hand .

‘side by an element ‘'of the.honcommutative algebra A,,((E)) Then we may. mt,roduce
‘the followmg defmltuon e Cetn i

\

'Def:mtmn 1[8]: Suppose that for each a E Spin( IR") and for each f with the pro-
perty Pf(azd) = O with respect to the variable uzd, where z € R®, we have that

Paf(axa) = 0 with respect to the' variable z. Then P is called a spin- Ew:lzdean dz//e- ‘

rential operator and’f is said to be spin invariant with resepct to P. i

In [28], and e]sewhere, it is,observed that the opcrator D = Z e; 6/82: is a spm-
Euclidean dlffcrentlal operator It is’ also well- known (e g. [28 Chapter 9] that the
Laplaman A= —DI) Z 82/6x 2 is invar 1ant undcr actlons of the specna] orthogo-
nal. group SO(n) As szn(IR") is a double covermg of ‘the gronp SO(n), and @ is a

. constant, it follows that the Laplacmn is a spin-Euclidean dnffercntlal operator. On

placmg Db =1 it 15 deduced in [8] that . -
Theorem 1: Every spin- Euclzdean dzf/erential opemlor of order p is o/ the form
\

. Z A D*, with Ak = Qg x + Qy..p k€1 Cny where Ao 4> Qyion e € 'C.
1 k=0 . t. . - .,
From the chain rule we have U

Proposn; ion 1: The only solutions to a spin- Euclzdean dz//erentzal operalor whzch are .
v+ invariant under dilation are solutions to'an iterate of the operator D.

Defnntnon 2 [21] A solution to the spin- Luclldean differential operator D is called

a left regular function. A similar definition may be given for right regular /unclzons X

An example of a function which is both left and .right regular is the function .

G(z) = z|z|~", defined on IR"\{0}. Using this functlon we have [7] the followmg gene-
ralized Cauchy mtegnal formula.

Theo rem 2: Suppose that f: U — A,.((E) is a left regular functztm, and M S Uisa

compact n-dimensional manifold. Then, for each point xq € M, the interior of M we have

f(ze) = 1w, [ Gzo — ) Wz flz), : . (1)
. oM -

. N .. . . ‘ n L . .
where w, is the surface area of the unit sphere S*=1, and, Wz = . Z; e;(— 1) ¢2x’;. T
. . . i= SO

25% S
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Tt may be observed, from Theorem 2 that the operator D is a natuxal generaliza-
tion of the Cauchy-Rlemann operators. It may also be observed that this operator 18
also a Euclidean generalization of the Dirac operator described in [15] and elsewhere.

The operator D and the integral formula (1) have natural generalizations in c.
Before introducing these generaluatlons we require.the following manifolds. '

Deflmtlon 3 [21] Suppose that M is a compact,.smooth; connected, real n- dlmen—.
sional manifold, with boundary, lying in C* such that.for each z € M we have (i)

* Mn N() ={z} and (ii) TM.n ‘N(z) = {2); where N(z) {z' € € (z ’)~ = 0}

then M is called a manifold of type one. .~ . . .-

ATy compact, n- dlmensmnal manifold lying in IR” is an e\ample of a mamfold of

. type one. Further examples, and constructlons of manifolds of type one are glven in

3. > . P

~

In [21] we describe ‘the followmg class of domams in €.

. Defmltlon 4: Suppose that M is a manifold of typeone, then the component of €™\

{N(2):z€ 6M} contammg Mis ealled a cell of harmonicity o/ type one, and we denote
it by M+, ,,

When M C R? these cells of. harmomclty have prev1ously been descnbed in [:):
16, 26], and- -when M is the unit dise, K, in R?, the domain M+ is the Lie ball Ix’ ,
= {z € C: (2722 + (2~ ”|z|)‘ = 22( z)? )1/2 < 1} described in [26].

’

T Deflmtlon '5 [2‘3] Supposethat UC is a'domain in €" and that g: Ug — 4 H(C)isa |
holomorphic functlon _which" satisfics. the equation Dg*g(z) =0 for each z€.Ug,

where DC = Z € 8/62 and k E Z*. Then g is called a complex k-left regular function,
i=
and the operat,or Dc is called the Ic th order iterated Dirac’ operator in (L‘”

<

When £ is even the cquatlon D¢* g(z) =0 corresponds to the k/2 complex harmonic’

- functions described by AVANISSIAX 1 in [5]. The operator Dg is a holomorphxc generah-‘

zation of the operator D. .
. In [23] we deduce the followmg Cauchy integral formula.

Theorem 3: Suppose that f: Ug — A,(C) isa complez k-left regular function, with n -

even and,k < n — 1. Suppose alsothat M, & Ug is an n-dimensional manifold of type

“one. Then for each point z, € M* n Ug we have

~

t

fmhﬂMd'ZAGW—%HWM) e

eM p=1
where'Al (—1) )l Gl*‘(z) =z G *(z) =z~ "tP, A, is a constant with DCA Gt (2)
= A,,_ G,,_l(z), and Wz = Z (—1)7 e dz

Using the formula (2) it is stralghtforward to deduce the following holomorphxc
ontmuatlon ] ‘ . . . .

‘

Theorem 4 [23] Suppose that,f: Uc - A,(TC) isa complex k-left regular junclzon

“with n even and’'k < n — 1. Suppose also that M S Ug is an n- -dimensional manifold

of type one lyzng in Uc Then there zs a holomorphu; /um;tzon fr: UC vM*t > A,,((E)
such that f"luc n ={.
\
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Theorem 5 [24]: Sup;pose that / UC Ny A(C) is a com/plex 1-left regular /umtzon

 with respect to the variable (az + b) (cz + d)~1, where @b is a Clz//ord malrzx, and )

, (c- d)
'n s even. Then the kolomorphic function Jy(cz + d) f((az + b) (¢éz + d)~ ) isa comz:lex
1-left regular. /unclzon with. respect lo the variable z, where J 1(c;: + d) =.(cz +d) ¢

X {(cz + d) (cz+d) —n/2, . S \

N
f-

Generalized Calxchy integral fdrnullae

9 ' e
This section is divided into two parts. In Part A we consider the cases Where n is even
and greater than two, and in Part B we consider the cases where 7 is odd, and greater
- than two. 7 :

' Part A. We begm by deducmg the fo]]owmg e\tensmn to Theorem 3.

Theorem 6: Suppose that f: Ug — A,(C) is a comxplex k- Le/t regular /um:tum, with
kzn, Ugn R**= D and M a mam/old of type one lying in Ug n R™. Then, for each
point xo E M we have c. , . .

ﬂ%)__anf ZH4GA%——x)WxD"1ﬂﬂ T ®)
oM p=1 ' : : '\ :
where Al =1, A, is a constant with DA 2Gp(@) = —A,, NG _,(x), Gpl2) = x~ P for

1£p<n—] G,(z) = 1/2log (—=?), andG,,(:c)—l/2x” "log( x2)+n'1(p—n)'
X zP= "fornt+1=p<=k ' . . ‘

Outline proof: ]t, follows from Stokes’ theorem that the integral 3) is equal to

oo [ I A4,Gpa — ) WeD'= (@), f B @

0K (z,r) p=1 N

where K (z,, 7) isthe real, n-dimensional disc lying.in. M, centred at x,, and with radius
7. As rlogr — 0 for r — 0, it now follows from similar arguments to those uséd to
prove the generallzed Cauchy mtegral formula in [6] that the integral (4) is equal
to f (xo)

Before generalizing Theorem 6 to arbitrary manifolds of type one we requlre

Lemma 2: For each real n-dimensional manifold of type one lying in C" the expresszmz .
log (2 — 2,)* may be umqueh/ defined on the set oM X M, where z € M and z, € M.

Proof: As M is a manifold of type one, then it follows from [26] that the boundary;,
oM, is homologous in €C*\N(z;) to the unit sphere Sn—t iy 2o lying in IR" 4 2, for each
29€ M. As'S"—Lis simply connected it follows that the expression log (—(z — zo)z)
may be uniquely defined for each z € §"~! 4 2z,. The result follows 1

Proposition 2: Suppose that {: Ug — A (C) is a complex k-left regular ,‘unction, with .
k = n. Suppose also that zy € Ug; and K(O, r) + Zg = UC. Then the integral -

; Yo, [ ZAG(%—aww&‘ﬂ)\_ (5)

KOS +2z, p=1 - -

evaluates lo f(2o) for each of tize'cobe‘ring space values of Gpy*(zg — 2), withn < p-< k.
. . I : , . - B f ',—\

- N . ] .
. . . N



A

390 . J. Rvax : . , oL
. ! - 7 ' \ T

Outhne ‘proof: On choosmg dlfferent covering va]ues for G +(zo — z),forn < p =k

it follows from homogeneity arguments that the limit as r tends to Lero for expression

(5) is f(2o). The result now follows from Stokes theorem 1

.~ /. ~

We now have : ' - \.
Theorem 7: Suppose that f: Ug — A,,((E) is a complex k -left 7egular function, w;lh‘ ) ‘
k=n, and M is a manifold of type one lying in Ug. Then, for each point z, € M and ~-
for ‘each choice of covermg space values for G*(z — z,), with n < p= <k, we hcwe

o) = Yo [~ 5 4,0, (zoLz ) WeDe?~ /). e

alwpl'

As is observed in[5]if Misa snmply connected mamfold of type one, it does not
necessarily follow that the cell of harmommty, M+, is simply connected. For example, -
glven the annulus A(1/2,3/2) = {z e R*:1/2 <'—:z:2 < 3/2} the cell of harmonicity

4 (1/2,3/2)* contains the path e?"i%,, where 6 € [0, 1]. By considering the continuous -
functxon q: A(1/2 3/2)* - C\{0}iz > 22, it may be observed that this path is not
homotoplc to aniy path in IR*\{0}: ;

As a consequence we have from the 1ntegra] (6) that even fon simply connected
manifolds of type one the complex k-left regular functiens ,with k& = =, do not neces-
sarily have unique holomorphic continuations to the cell of harmonicity. For example
the holomorphlc continuation of log (— 12) is a complex n-left regular function whlch
is not uniquely defined on A(1/2, 3/2)*

In order to introduce suitable subdomams of M+ over which these functlons are
uniquely defined we begin by lntroducmg the following deflmtlons o

Definition 6: Suppose that: M’is a manifold of typeoneand z, € M* isa pomt such
that for each z € N(zy) n-M the line segment Jommg Z0 to z lies in M+. Then the pomt
20 I8 sald to be null connected to M.

It is not in general the case that for an arbltrary manxfold M of type one we have
that each 'z € M+ is null corinected to M. For example, for the point ie, € A(1/2, ‘3/2)+ .
the pomt e; € N(ie)) n A(1/2, 3/2), but the point 1/218l 1/.‘202 does not lie in
A(1)2, ‘3}2)* even though it docs llc on the line segment joining ie, to e,.

Definition 7: Suppose that M is a mamfold of type one then the set of points
{20 € M+ : 24 is null connected to M).is called the null connected subdomain of M+ ‘and
lt is denoted by NM*.- ! .

We now deduce

Lemma 3: Suppose that M isa manz/old of type one. ’J’hen the null cormecled subdomain
of M* is a domain. : a

-Pr’oof Suppose that z, € NM+. Then, either z, € M or.z, € M*\M Ifz € i thén
we may choose a neighbourhood B(z,) & M* of z, such that for each pair of points
21, 23 € B(zy) the line segment {}z, + (1 — 2)2,: A € [O 1]} lies in° B(zo In [23] we -
show that for each point z € M+*\ M the set N(z) n M is a manifold homeomorphic to
the sphere S"~2. It also follows from [23] that we may choose B(zo) so that N(z) n
"C Blz,) for each z € B(z,). It now follows from the construction of the nelghbourhood
'B(zo) that each point z € B(z,) is null connected to M. Supposc now thatzy, € M*\J3{ .
then as the set of line segments joining 2, to the compact manifold. M n N(z,) is com-
pact, and contained in the open set M*, it follows that there is an open subset U,,- -
of M* such that z, € U, and for each z E U,° we have that z € NM*. Consequently,
the set NM* is an open set. " . ot '

~y
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To show that thls open set is connected conisider first a pomt zy € NM*\M Then

. from the open set U, we may construct the open subset of M*\M -

U., = (U U Ule(1—2)z )

z(Uz° zeN(z)nM le0,1}] -~

c P -

Let U" = NM* n U,, and suppose- that U" + U' Then there exists a point
z € (cl (U INU;) 0 (U;\U;) such that a line segment joining z, to M n N(z,) is not
entirely contained in M* Suppose now that z, is a point on this line segment satis-
fying the condition z, € ‘el (M+)N\M*. Then there JIs a point'z; € M such that z, € N(z,).
It may be observed that the complex hyperplane {z3 + ¢(z, — 23): ¢ € €C}.is a subset
- of N(z,). Now consider the real three- dimensional hyperplane, H, contammg this com-
plex hyperplane and t:he vector z;. As z, € (cl(U;;)\U") and U,  is an open sct it
follows that H n U, & @ and it is open.)Therefore, we have that for each point 2,
€ H n U, the line passing through z,, and parallel to the line segment {Azy + (L — 4)
X 2y: A€ [O 1]}, intersects with the complex hyperplane {z; + ¢(z; — 2;): ¢ € ﬂ:}
. Also, for 'z, sufficiently close to z, we have that these line segments also lie in"U;,.
Thus (HaU)nN(z) 0. As z € oM this contradicts our assumption that
U. £ U, (,onsequently, each point zo € NM\M is path connected to the set M. As
Mis connected 1t follows that NM* is COpnectcd Consequent]y, the set NM is &
domain I : . \

" In order to deduce hat kth order complex left regular functions may be umquely
holomorphlcally extended to.these domains we first require the follomng result '

Proposition 3: For each closed path'h: S* — NM* there is a homotopy-H :- §* x {0, 1]»
- NM* sm:h that for each s € S* (i) H(s 0) = h(s)\and (i1) A(s, 1) E M. .

Proof: As observed in the proof ‘of Lemma 3 we prove in [23] that for each point
290 € M*\M the set '‘N(zy) n M is a manifold homeomorphlc to the sphere S"—2. It.
follows from the definition of a manifold of type one that for each pomt z€ N(zgyn. M
there does not exist any other point 2'"€ N(z,) n M such that 2’ = #, + c(z — z,) for. -
some ¢ € €©\{0}. Consequently, we have that for each point z, € MI\M there is a uni-
‘que non-zero complex number c(zp) such that z + c(zo) (€,.+ iep) € N(z)) n M. It
‘now follows from .the proof of Lemma 3 that for each path A: St = NM* wé may
" produce a homotopy H: S§! x [0, 1] - NM+, where H(s, t) = h(s) for.all.s with h(s) -
€M, and H(s, t) = h(s) + tc(2,) (e1 1ey), _otherwnsc This homotopy satisfies éon--.
dltlons (i)'and (u) . o S

.Using Proposmlon 3 and Theorem 7 it'is how stralghtforward to deduce

Theorem 8: Suppose that f: Ug'— A WC) isa complex k-left regulm /unctzon with
k = n, dnd M is a manifold of type one lying in Ug. Then the /umtzon f has « unique

’ ‘holomorp}zzc continuation f* lo the domain'Ug u NM+.
)

_Part B. We begin.by introducing the following. extensnon to Theorem 6:

Theorem 9: Suppose that [: Ug — A,(T) is a com/plex k-left reqular function, Ug
NR" % 0,and M a manifold of lype one lying in UC n IR" Then, for each pointx, € M,

we kave - '

flzo) = Yewn, f Z B,,G,,'(xo - x) WaDr=1 f(z), L n
N where B1 =1, B,,f is conslant u,zth DBG () = B,, 10,,_,(2:) and G,,’(x)
= (@) for i Sp Sk

~
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The proof- follows the same lines as the outline proof of Theorem 6 so it is omltted
. By eqmvalent arguments to those used to deduce Lemma 2 we also have ' ?

Lemm a 4: For each real n-dimensional mam/old of type one lying in C* the ezp'resszmz V

(z— 20) (z — 20))!2 ‘may be unzquely de/med on the set oM xM where z € OM and
20€EM. .

Consequcntly, we now have , '

: Theorem 10: Suppose that IE UC - A,,((E) isa complex k-left regular function,.and .
- M is a manifold of lype one lying in UC Then, /or each point 2 € M we have .

) ='w, [ .>:B‘G'+ —z)Wchv 1f(2),

M p=1

where G '*(zo — ) s thé holomorphic contznuatum to 8M of G (20 — z), defined on

Sn= ‘/—{— 2y, oblained via the homological equivalence in C*\N (zo) o/ oM and S*—! + Zg.

‘Observation 1: Both Definition 6 and 7 do not .depend on the dimension of M
. being even. Also, the statement and proof of Lemma 3 and Proposmon 2 are valid for
. odd- dimensional manifolds of type one. - :

Consequently, we have the following extension to odd dimensions of Theorem 8

Theorem 11: Suppose that f: Ug — A,(C) is a complex k-left reqular /unctzon, and
n = 1 mod 2. Suppose also that-M S Ug is a manifold of Lype one.. Then the /unctum /
has a umque kolomorphic continuation, f* to the domain Ug' u NM~.

74 . .

o R
Conformal invariance =~ A ' - - T T

—

.We begm thls sectlon by deducing the followmg result;

. Proposition 4: Suppose that f: Uc — A ((E) isa complex 1-left. regular’ /unctzom,
Then. /or each posztwe integer k the /unctzon =1 f(z) is complex k-left regular.

'—Prc')o_f: Suppose first that k = 2p. Then DC" = (—1) ( 82/82 )and,z"“/(z)
7=1 - .

= et e 2P~ (<177 f): Now

I3

j= la . . .
'—2(p—1)z<z1 o 22 2/<z> , -
+2p—.1) (2p — 3) 2 oo 2P o) . - h

N

+§z(z12+-~-+zf>ﬂ-22<lo—1>z'~a/<z>/az~ | o

prov1ded p=3.If p=1,then it i8 stralghtforward to determme by direct calcula-
tion that - o _ ~ -

‘ !

Do)t <0, B ®
= v : !

.’"6'2 - ' . .

4
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~where- P, isa émnplex 1-left regdlm function, homogeneous of degree q — 1.
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Ifp = 2 then Z 82(23 /(z))/az,2 = 2z f(z) + 22 Z z; 6//62, It fo]lows from expressmn
(7).that- =1 BRI

(,‘i:l 22z, ) (za /(z)) —2 ( x e ) (z fzk_a//azk). |

allow the pth order’ complex Laplacxan to act on the 2z(z,2 -+ 2,2)?~! part of

. z(z1 + oo 2,%)P7 f(2), then it may be observéd from expression (8) that thig term

is anmhllated by this operator. As f(z) is a complex 1-left regular function, we
have that f(z) is also annihilated by the complex Laplacian. Consequently
l
(Z‘ 0%[oz; ) . (Z’ z; 6/62,) f(z) = 0. It may now be observed from expressm)n (8)
j=1 : o L o
that, S : ‘ .
4 om- e : : /
(Z 32/321'2)*%’(— 1P (2,2 +--+'2,2)P 71 f(2). = 0.
,i=l \
* Suppose now that & = 2p + 1. Then, as f(2) is a complex 1-left regu]ar function we
have .that Dg(2,2 4« + 2,2)? f(2) = 2pz(z,\ + oo 2,27 lf(z), und it follows from
the previous. arguments that .

(Z 32/3.21') 2p2(z,® + - +zn2)” 1f(z) = 0.

Consequently, 227 f(2) is a comp]ex k-left regular functlon L
Coro]lary Suppose that for 0 SISk — 1the functions f,: UC — A,,((E) are com-
plea: l-le/t reqular. Then the /um:tzon

F: UC—>A((D) F(z Z‘z‘/‘(z ‘ , S 9
is complex k-left regular. ' .

Observation 2: It is not the case that every comple\ k-left regular functlon can be
expressed in the form (9). From Theorem 4 we have that for n even each complex

- 1-left regular function has a unique holomorphic continuation from a neighbourhood

of a manifold of type one to its cell. of harmonicity. However, as observed earlier;

log (—2?) is a comp]e\ n- ]eft regulm function which is not uniquely defined on v
A(1/2, 3/2 . y . '

As C" is contractible to a point we have from Theorems 7 and 10

Propos1t10n 5: Suppose tlmt Pgy:C" > 4,(C) isa complex k- leﬂ reqular polyno- '

mial, homogeneous of degree q with respect to the origin. Then

P(e) ='l§; 2Py(2),

" As the disc ]ymg in IR", of radius 7 € IR*, is contractible within itself toa pomt it -
follows from Theorems 8 and 11, Proposition 5 and the Taylor expansion given in
[7 Theorem 10] that

-

" As f(2) is complew 1-left regular, ):' 82/8z 2 (z sz of( z)/az,,) = 0. If, for p = 3, we.

)

A}

i

’
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Theorem’ 12: Suppose thal K(r)* is the Lze ball of radzus r € R*, lymg in C» and
/ K (r)+ — A,(C) is a complex k- -left regular /urzclzon Then

7 i

. ) ZZ.I/‘Z), 1

1= - :
for each z € K (r)*, u,kere each fi: K(r)* — A,(C) is a complex 1 'left regular function. .

- As Dgkis a consta,nt coefflclent dlfferentlal opera.tor we have

Proposition 6: Suppose lhat/ Ué — A,(C) isa comple:z: k-left regular function with -

“respect Lo the variable w = z - z, for some constant zy € €". Then f is complex k- -left
regular with Tespect to the variable . >

" From Proposmon 6 and Theorem 12 we have

Theorem 1‘3 Suppose that K(z,, )* is the Lie ball of radzus 7 € R* centred at zg € €,
and f: K (zo, )f - A,,((E) is a complex lc -left regular /unclzon Then

i . : ~

/(\B) = (Z - Z'o)‘ hz — z), -
for each z €K (zo, r)’ where each fa K (zo, )¢t — A,’,(C) isa corrlplex 1-left regular func-
"~ tion. .

As _DC .is a homogeneous diffcrential operator,we have ‘ ) e

Proi)osﬁuon 7: Sujppose that f(w) is a complex k-left reqular /urictz'ou with respect to
- the variable w = jz, where J € C\{ }. Then f(iz) is a complex k-left regular function with
- respect to the variable z. ‘ ‘ .

We now deduce the Pm((E") invariance of. the comple\ k-left regular functlons We. a

begmmth ' . e

Proposxtlo n8§: Su'ppose that.a E Pm(C") and K(azyu, r)* isa Lie ball o/ radiusr € R+

" and centred at azyd € €", Suppose also that f:" K(az@, r)* — A,(C) is a complex k-left
reqular function with respecl'lo the variable aza € K(aza, r)*. Theu tke function af(aza)

k—1

Proof We . have from- Theorem 13 that /(a'zd)v Z(aza — azy@)! f,(aza ‘where

. each f, is a complex 1- left regular function wnh Tespect to the vanable aza Nowr .

flaza) 1‘2’1 a(aza — azoa f,(aza) Z (aa (z — zo)’ afy(aza). o . (10)
(=0

Jt fo]]ows from Theorem 5 that each a/,(aza is a complex 1- left regular function with

respect to the variable z. From expression (10). and the corollary to Proposmon 4
we now have that the function df(azd) is complex R-left rcgular l

For each domain Ug and each a € Pzn((l'l") we. may take sets of pomts {z,,},,_o =C

~'and {r(z,,)} C R* such that {az,a}p_o &£ Ug and U K(az,,a, r(z,,)) =Ug.  °

As a consequence the following result follows from Proposwlon 8.

’ Theorem 14: Suppose that f: Ug — A.(C) is a complex k- lcfl regular function with '

. respect to the variable aza. Then, the function /a aUga — A (C): f,(2) = éf(azd) is
complex k-left regular with respect lo the variable z.: - S

(T
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. . > ~

Observation 3: Theorem i4 is ‘also a consequence of Theorem'1. However, the .

. methods used here to establish Theorem .14 differ from those used in [8] to establish

Theorem 1. Later in this section we shall adapt the methods used here to establish

Theorem 14 to deduce other results which are not consequences of Theorem 1.
In the cases where k is even the differentiable operator Dg* is an iterate of the com-
plex Laplacian. As a € Pin(€?) is a constant, it follows from Theorem 14, or by direct

’ calculatlon that the function flaza) is complex k-left regular w1th respect to the varia-

A

ble 2.

Observatlon 4: Proposrtlon 8 may also be deduced by using Lemma 1 and’ dlrectly :
: applymg the iterated complex Laplacianto the functlon f1.4(2).

i

We now use' our prev1ous arguments to deduce the mvarlance of complex k-left
- regular functions under i inversion. We begin with

\ i

Proposition9: Suppose that K(zg, 7)* is a Lie ball of radzus TE R*, and centred atzg,
and lying in C"\N (0). Suppose also that f* K (zo, ¢ —> A4 ((E) is a complex k- leﬂ regular
‘function in the variable w = z=1. Then the /unctzon : o

inv. (f): K=z, 7t —\>{h(¢)~ inv (f) (2) = Jil2) fz71),

- 48 complex Vk-le/t' regular with respect to the variable z, where K-1(zg, 1)t = {z € C™\N (0)

-

271 € K(zy, 7)) and J(2) = G 7(2) 2= for m even, Ji(z) = '*(z) z‘ Yform odd

k—1

‘Proof: l'rom Theorem 13 we have that /(z ) = F(z7! — zo)‘ f,(z, 1), where each

filz71) 1s’a comple\ k-left regular functxon in the varlable z~1 Now consider the func- -

tion . . ) . e
. k-1 .. ) N '
I ) = Tt 7 ) e
C k=1 . o0 , L
. ' ’=1§)Jk(z) (z/(212.+...+ zn2) — zo)l fiz 1) “ - ) (11)

[y

For-the case where k = 1 and »is even the result is a direct co'nseiQuence of Théorem
5. When k = 1 and n is odd, the result follows from direct analogues of the argnments

given ih [24]. . 1 -
Suppose now that & is odd and greater than one. Then on e\pandmg the e\pressmn
(11)we obtam on pla,cmg k =2p + 1, the terms /

(zzo)le(z)/k_l( y o N S (12)”

and . . ’ . e
ez ) fesle 1) _ T ey

AS J(2) fi-s(z7) and J»(2) fo_y(z71) are both complex harmonic functnons with respect

to the variable z, then it follows from the anticommutation relatlonshlp within the
. Clifford algebra, and the order of the operator, Dg* that both expressions (12) and (1‘3)
are annihilated by this operator.. The expansion of (11) also contains the. term' .

2P~ 12,70 ,(2) fr_1(271) and as'J, (z) fi-1(z71) is a complex harmonic functlon in the variable
z, it follows from the order of the operator Dg* and the anticommutation relationship

within the Clifford algebra that this expression is.also annihilated by this operator.
. The exparision of (11) also contains the term 27.J 1(2) feea(27Y). As U (2) f(271) is a com-

plex 1-left regular function in'the variable 2z, it follows from the corollary to Proposi-
tion 4 that this e\pressmn 18 also a,nmhllated by the operator Dgk. As 202 € € and

: \ ; . | .
\ ! . N

[N

RN
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22eC, 1t may be observed that all other terms appealmg in the e\panswn of (11)
“are of the form 2,(229)? J,(2) fi(2), Aa24(220)% J5(2) f1(2), 232%:293J5(2) fi(z~1) and A.z‘i‘J,(z)
X f(z71), where 7y, 4y, 43,4 €T, 4,015, ¢ G €N, with g <p, ¢y =p — 1,
@:2=2p <1, ¢ =<p and ¢, < p. Consequently, we have that expression (11) is

' a.nmhllated by the operator Dg* when £ is odd.

. When k is even, we have; on placing k = 2p + 2, that the expansion of e\pressmu

(11) contains the terms (225)? J,(2) f-1(271), 2g(226)” = XJ fk—x(z 1), 20%(220)? J2(2) fe-1(2) ‘

and (292)?2¢/5(2) fy-1(z7!). By similar considerations to those used for the case where

k is odd it may be deduced that all of these terms are annihilated by the operator D¢*.

the expressron (11).is anmhxlated by the operator Dg¢¥ when k is even 1

domain K(z,, r) is contractible within itself to a point it follows that in the cases where

" n.is odd the function J,,(z) f(z~1) is uniquely défined on K- 1(zo, )t

e
~ .
Usmg PI‘OpOS]thn 9 We may now d(,duce ‘ ) " N

- \ =

' . Theorem 15: Suppose that n is even, and that Ug is a domam lying in (E"\N(O)

- Suppose also that f: Ug — A,,(C) isa complex k- left regular junclzon Then

'

() Ug™ = Au©):inv (1)) = @) fe™) .

isa. complex k-left regular /unctzon, where Ug! = {z € (E"\N(O) 271 € Ug).

. Proof> Consider a sequence of Lie ba.lls {K(z,, 7¢) 1152 suCh that U, K(z,, 7,)t = Uc

Then, on restricting f to K(z,7,)! for each ¢ we have from Proposition 9 that
inv f) K-z, 1)t — A,(C) is a complex . k-left regular function. Moreover,
Ug K7 (20, 7)T = Ug™. As n is even Ii(2) = G1(z) 2%~ is uniquely defined on Ug1.
Consequently, - inv (f) U — 4 (C) is a umquely defined conplex k-left regular
functlon ]

’

On combmmg Proposmons 6, 7 and 9, and Theorems 14 and 15 ‘and [24] lt lS

‘straightforward to deduce , \

Theorem: 16 Suppose that n is even, an(l that Z’ d

also that the function f((az + b) (cz + d)~ 1) is complex E-left regqular in the variable

(az +b) (cz + d)~'. Then the function Ji(cz + d) /((az + b) (cz + d)- ) is compiex
k-left regular in the variable 2 uhere

Ji(ez + d) = ((cz + d) (cz i d))"‘ w2k even, - ‘ (14).
Jilez 4 d) = (c2 T d) ((cz + d) (cz F d))*—1-"02, k odd. ' (151)'

‘As n is even, it may be observed from expressions (14) and (15) that the functions -
Jilez + d) are umquely determmed over each domam in C" for\each k.

Defmxtxon 8: Por ‘each domain U(~ c (E" the set’
{f: UC >'4,(C): fisa complex k- le/t reguler functlon} _ !
is denoted- by I, ,‘(UL) . _ .
It may be noted that this set isa right module over the algebra 4 ,(C).

c

. . X . . ,

L : v

b) is a Clifford matriz. Suppose -

s

- By similar arguments to those used in the first part of this proof it now follows that

- Note: As the map inv: K~ ‘(zo, W= K(zg, M : 2> z‘1 is a dlffeomorphlsm and the

\



e

~

1

- ~ . ‘ . Iterated Dirac Qpert;.tors inCc" 397

Theorem 17: Suppose that . z’s even and that U, ¢ and U, are domaz'ns lying'z’ﬁ Cr

such that for some Clszord matrzx : d
z+> (az 4 b) (cz + d)lisa homeamorphzsm Then the twomodules I (Uig), Tiu(Usg)
are zsomorphw via the linear map . , .

(a.o):,,r,.k(vz.c) - n.k(Ul.c): -T’(a 0)(/). (2)
¢ d . i , cd

b) the - transformation T(,, b) U c Uoc

¢

= Jilez + d) f((az + b) (ez + )71).
We now return to consider the cases where 7 is odd. We begin with

Theorem 18 Suppose that Ug is a domain lyzng in (E"\N(O) and Ug is contmclzble v
within ztsclf to'a point. Then' for each conplex k-left regular function f: Ug — A, (C) the
- functioninv (f): Ug™! — A,(C):inv (f) (2) = J{(2) f(z71) is complex k-left regular. '

Proof: As Ug is contractible within itself to a point it follows ffom the homeomor-
phism inv: Ug! — Uc z > z71that Ug~1is also eéntractible within itself to a point:
Consequently, J,&(3) is a well-defined functlon on Ug™!. The result now follows from
the proof of Theorem 15 1 -

More genemlly we have
Theorem 19: Supposéthal n is odd and that Ug S C" is a domain which is contrac-

. - \ - - ~
tible within z‘lself to a point. Suppose also that b) is a Clz‘f/ord malriz such that

a
cd ,
the tmns/ormatzon T(a ,,) J(Ug) — UC Z > (az + b)(cz + d) ! isa dz/feomorphzsm

" 'Then, for f: Uc — A,,((E) a complex k-left regular function the /unclzon '~\‘ .
J(f): J(Uc) 4 a(C): J(f) (2) = Jk(cz + d) /((az + b) (62 + d))
is complex k-left regu[ar, where '

((cz+d (cz +d))“< miz . ' o 'for'k even, s
(cz+ )((cz+d) (cz+d)”‘ =m0 for koodd.

-~

N : Jk(cz+d) {

Outline proof: As Ug is contractible within itself to a point, then it follows that
J(Ug) is also contractible within 1t,slelf to a point. Consequently, the function
Jilez + d) is well defined on the domain J(Ug). The result now follows from the same
reasonings as used to establish Theorem 16 ]

. Theorem 19 also, g_lves us -
T};eo rem’20: Suppose that n is 'odcl;a?\zd that U w¢ and Uag are domains in (I.:"r é;’uch
that' | for some Clifford matriz (Z 2) the tmns/ormalz‘\Mz. T(g z):_[j e > Vgt 2
> (az + b) (cz + d)~! is a komeomorphism. Suppose also that the domain U, g is con-

+ tractible within_ilself to .a point. "Then the two modules I'y (U, ¢) and F 1(Usg) are .
zsomo*rphw viathe linear map .

T rik(UxC)—’rlk(Uu*) Tiso () (2)
(¢a) (¢ )

cd

o = J(cz + d) f((az + l_)) (cz + d)) . .
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.

In.the. cases where L= 0 the function Jk(cz ---d) is a constant. Consequently, we .

have - . =
Proposrtron 10: Suppose lhat n.is odd and that Ul c and U20 are domams in (II" suck

that for some Clz//ord matriz (0 d

b\
) the tmnsformatzon T(a b) Uc > Usg:iz—
0d

(az + b)d-? is a homeomorpkzsm ’l’hen the two modules I'y, ,‘(U1 c) and, F, «(Uag)-are .

“isomorphic.

“In more general ci'rcumst-ances we have

T heo rem 21: Suppose that n is odd and that Ul and qu‘ are domams in €* such tkat ‘

§

for some Olszord mamx (q 2), with cé + 0, the lmns/ormatzon T (@ 3) c Uyg > Usip:
4

‘2> (az + b)(cz +d) ' isa homeomorphzsm Suppose also lhat for the inclusion map
i: Upp - (C"\N( ¢ id) the first singular homology  group homomorphzsm H,(%):

H(Uyg, Z) > H ((E"\N ¢ d) Z) is trivial. Then the function Jy(cz |-d) is uell
. defined on U2 o, and lhe modules Iy ,,(Ul <) and I, W(Uag) are zsomorphzc

Proof As ¢C = 0 then we have that 7', b (2) = ac™¥ + J{czé —1— dc) 1 ‘where

= ad — bé,-Asthe group homomorphlsmH (é): H,(Uz e Z)— H(C "\N(czc +dé), Z) -
s trrv:al it follows that for each closed loop p: §” — Uy ¢ there is a continudus exten-
sion p: D — €*\N(—c~1d) to the-disc D. As the function J,(cz +d) may be uniquely
defined on (D) S C"\N(—c1d), it follows that this function is well defined on each .

* closed loop lying in Us¢. Consequently, we have that for each comple\ k-left regular

function /((az + b) (cz + )‘1‘) defired on U, g, the function Ji(cz + d) f((az + b)
X (cz + d)~ ‘) is.a'well-defined complex k-left regular function on U, ¢, and the mo-
" dules' T, k(U,C) and I';,(Us ¢) are isomorphic 1 .

- In~order to describe what- happens in more general mrcumstances we. requrre the
followmg result ' J

Proposrtlon 11: For each mteger n > 2 we have that HI(C”\N(O), Z) ~7Z.
Proof: As shown in [26] the space C"\N(O) can be homotoplcally deformed within

| itself to the set B’ — {z€ C":z = 2ei®: z € S*! and 0.€ [0, 2z]}. From the set B’
we obtain the set B = {[z] z € B’ and [2) = {z —z}} Via the projection p: B’ — B"':

+> [2] we have that B’ is a double covering of B’”’. Moreover, it may be observed that

~

the set B"' is a fibre bundle with base space Rpr-1 \rea] prolectlve (n - 1) -dimensional

. space, and fibre the. ¢ircle, S1.

Suppose now that k': S — B" is a closed- loop. Then on composmg with the pro-
- Jection p we obtain a closed loop A'’: 8’ — B"-On _.composing this map with the fibre
bundle "projection p,: B"" — RPn—! we obtain a closed loop R": 8 — RP"~!. On
identifying RP"~1 with the (n — 1) dimensional disc K,_,, with antipodal points on
the boundary-identified, it may be deduced, by elementary’ homotopy deformation

arguments, that the loop k’"'(81) is either homotopic to a point or to a line segment By

passing through the centre of K,_, and ,extending from a point on the 'boundary to
- itsantipodal point. If this homotopy- deforms h'""(S!) to.a point [k] € RP"~! then there
"is an induced homotoplc deformation of &’"’(S!), within B”, to a closed loop lying in’

the fibre, S, covering k. Furthermore this homotopy deformation induces a-homotopy

" deformation of A’ (84, within B/, to a loop lying in the circle {ke?: 0 < 0 < 22} < B'.

it may also be observed that the winding number of this loop is even. If, on the othér
and A" S’) 1s homotopic to a line segment joining ant)podal points, then by similar

- -
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arguments to. those used in the previous paragraph, it may be deduced that- thls de-,

formation induces a deformation, of k’(SY) within B', to a loop which is homotopic _ -

to a loop which winds around {kei®: 0 < 6 <'2a} an even number of times and is
joined to two semicircles. One of these semicircles is the set {Le"’ 0 < 0 < @} and the
other is a semicircle lying in the sphere S"~! — IR", and joining k to'—k.

On consxderlng the map a': B’ - €"\{0}: n'(z) = 2%, it may be observed that of
these loops only the ones which lie entirely in {ke': 0 < 6-< 2a} and havmg Zero

winding number are contractible to a pomt On restrlctmg “the map z' to the set :

{keif: O<0£n}u{kcos()+lsm6 lES" ‘andlk—}—kl——O 030<n}

\

we obtam a loop in €\{0}. which winds once around the origin. As, the sphere Sr- ".

i3 snmp]y connected the result fo]loslvs LI ‘

Observation 5: For thc case where n = 2 it is stralghtforward to adapt the proof
of Proposmon 11 to show that H(C\N(©0),Z)=ZDZ.
" Asa consequence of Proposition 11 we have

T heorem 22: Suppose that n is odd and that U, ¢ and ng are domains m Cr such

lhat jor some, Clz/ford mat’rzz (Z 2), with ¢€ =0, the lmns/ormatum T (a o) : U,_C
. ' - _\d

. ¢ : .
- Usg:2z > (az + b) (cz + d)~1-is '« homeomorphism. Suppose also that for: the in-
clusion map i: Usg — C"\N(—c'd) the group homomorphism H\(i): H\(Uzq, Z)

~~H (G:"\N( c~d), Z) is- such that the image set H(2) ( (Ua.cs Z)) comprises solely

of even cycles (i.e. each closed loop has an even winding number). Then the function

Jilcz + d) is well de/med on ng, and the modules T'y ;(U,¢) and F, k(Uo c) are iso-

~ morphic. - . A

‘Proof Suppose that 1is a closed loop in U, q, Thén for the map P: Uzc — - CN{0 }

‘2 > (z + ¢71d)? the set p(l) is a closed loop which’ wmds\around the orlgm an even’

number of times! Consequently, the function
,((z + ¢71d)1 (z + c1d)- )1/2 = ((cz + eyl (2 Jé‘l)‘1)1’2 :
N . = ((z +c ’d) 1¢-1g- 1(z+ dc 1) )1/2 (95)1/2
) "i © o=z + d)7t (cF + d)) M2 (c) 2

is well dcfmed on each such loop. It follows that J(cz 4 d) is a welldefined functlon
on Usg. By similar arguments to those given in the pxoof of Theorem 2.1'it now-
follows that the modules I, ,,(U, ¢) and £(U, ¢) are isomorphic 1

‘' An example of a domain lying in cr which satisfy the properties described in Theo-

. rem 22 and contains closed loops which are ‘not homologous to zero in C*\N(—c-1d) ~

is C”‘:{ZEC”\N(O) z:#:ix-{—l,uy z, yeS" L-with 2y + yx =0, 4, ,uEIRand
141 > |ul}-

As shown in the proof of Proposmon 11 the domain €\ N(0) possesses.closed cycles
whose \vmdmg number i is odd. In order to deal thh dommnshke C"\N(0) we requxre

the followi ing

, Defmltlo n9: Suppose that(U is a domain in € such that with respcct to some point

z; € € 'we have U & €\ N(z,), and that for the inclusion map i: U — €"\N(z,) the
group homomorphism H,(3): H,(U,Z)— H ((E"N(zl), Z) is surjective. Then we deno-
te the Riemann surface, which is a two-fold covering of U, by U?,'and:we denote the
r1ght 4,(C) module of complezk-left regular functlons defmed on U? by I} k(U A,,(C))

[

[
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It is now a stralghtforward consequence of the constructions given in the proof of
Proposition 11 to deduce o

. Theorem 23: Suppose that  is odd and that U,gand Usg are d(mw,ms inC» such that

/or same Clifford malnx( b), with ¢€ % 0, the tmns/ormatzon 7 (a o)- U e > Usg:
d

cd
2> (az + b), (cz+ d)'isa homeomorphisin. Suppose also éhal for the mcluszon map i:
Use — C*\\N(—dé) the group homomorphism H,(3): H\(U,¢, Z) -'H ((D"\N dé), Z)
is surjective. Then the /zmclzon Jilez + d) is well defined on the Riemann surface Ulg
but not on U, ¢, and the modules F (Un,c, ,.(C)) and Iy, k(Uzc, ,,((E)) ure isomorphié. =
Moreover, the modules T, k(U, ©> A(C)) and I'} (U, ,,(C)) -are also z'somorphz’c

On combmmg the results obtained in this sectlon with Theorem 1 and Proposmon 1
we have . - ‘ o PR
_Theo rem 24: -The set of linear differential op_e_mtors whose solution spacé.§~are invaﬁant <

under conformal transformations in €" is-the set C = {AD*: ) € C\{0}.and k € Z+}.

For A,Dy,, 2,D;, € C we may define -the product A D¥ A, Dk = Ay Déithe € C.
Under this product it may be observed that C is a semlgroup which is canomcally
isomorphic to the semigroup (C\{O}) XZ*. -

Conc]udmg remark In thls paper we have used Clifford .analysis to classxfy
hnear conformally, invariant differential equations, and we have shown that each
such equation possesses a homotopy invariant Cauchy integral formula. It follows
that a large class of the results alrcady known within .Clifford analys1s, and within
potential theory, for the 1teratcs of the Laplacmn (e. g (5, 6]), carry through to this -
context. L , \

N L .
- o . R ] . : . -
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