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Wir geben eine Kiassifizierung der linearen konform-invarianten' Differentialoperatoren iber 
C", die ihre Wete in einer Cliffordschen Algebra annehmen. Solche Operatoren.schlielienden 
Dira'cschen Operator und seine Potenzen em. Wir zeigen, daB die mit dem Diracschen Operator 
in	und C" verbundene Funktionentheorie sich auf alle these Operatoren veraligemeinern 
lal3t.	 V.	 V 

Miii Ixaem IuIaccI44ntKaqulo Jmue(lHbix KoH4opMHo-m1BapHaHTuux J(i1 epeFI1uaaJ1bu[rx 
•	onepaopoe Hag C" Co iHaqeiini a aii'e6pe	Mop(a. 3TM onepaTopal, siuiio'iaior a 
•	ceGn onepa'rop Llupaxa it cr0 cTenelm. Mm joHaaaiBaeM, LITO Teopita yHKuuft, CBH3aHHaH e 
V onepaTOPOAt ,Lupana'nR" it C",'o6o611(aeTc1l Ha ace 3TH onepaTopal.	• 

We give a clssificatio'n of linear, conformally invariant, Clifford algebra valued'differenial 
operators 6ver C". Such operatórs comprise of the Diraô operator and its iterates. We show that 

• '
	the function theory, associated to the Dirac operator in IR" and C" can be generalized to all 

these operators.	 :	
V 
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By introducing complex Clifford algebras'it has been possible to introduce a first 
order differential operator, over IR", whose square is the Laplacian, and to study the 
properties of analytic continuations to CE" of functions which are annihilated by this 
operator [6-8, 13, 14, 21-24]. This operator gives a; natural generalization of loth, 
the classical Cauchy-Riemann equations and the massless Dirac equation. The study 
of properties of functions which re annihilated by this generalized CauchyRiemann: 
Dirac operator is referred to as Clifford analysis [6, 19, 20-24]. in the 1930s Clifford 
analysis had been deseloped by FUETER [11, 12], and his collaborators; as a function 
theory over the quaternions, and by Moisir5 and T1ODORESCU [18]. Also, earlier work 
on this analysis had been developed by]5ixoN [9]. More recently this -analysis ! ha 
been extended . to higher dimensions by a nuinbr of authors (eg [6-8, 13,14, 19, 
21-24,28]).  

In recent work [1 —3] AHLi'ORS, building on results'of VAHLEN [27] and MAASS [17], 
• "describes properties of MöBIus transformations in IR" by means of a . group of matrices 

with entries ina Clifford algebra.. Within mathematical physics the study' of confor-' 
•	mally invariant differential operators on Minkowski space, and analogues of these -. 

operators over curved spaces, has been extensiv,ely pursued (see for example,[l0, 151,' 
•	arid references therein). In [15] JAKOBSEN and VERGNE show tht powers ' of the 

ordinary d'Alemhertion acting on functions in Minkbwski space are conformally 
invariant in 'the sense described here. In this paper	use the complex extension of
the matrices apearing in [1— 3]to show that the class of linear, conformally in'a'riant, 

•	holoniorphic differential o.perators defined over C" comprises of a semigroup of iter-
ated Dirac operators. In [10] Verma modules are used to describe conformally invariant 
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differential operators on Minkowski space.. However, the methods used here are 
function theoretic in nature. We obtain our result by first deducing a generalized 
Cauchy integral formula, or /generalized Green's formula, for solutions to each such 
operator.. We then use these formula t give a characterization of solutions to these 
equation's over .the Lie ball and apply arguments given in [24] and [8] to deduce' the 
result.	 . 

In this paper we also' extend a number of results in complex Clifford analysis from 
everi dimensions to odd dimensions. This leads us to study particular types.of domains 
in C". and to study conformal transformations over twofold covering spaces of some 
don ains in C", when n,is,odd.  

Preliminaries 

.Let A(C) be the complex, 2" dimensional Clifford algebra described in [4, Part 1], 
[20, Chapter 131, and elsewhere.. This algebra has an identity 1 (='e0), and basis ele-
ments 1, e 1 , ..., e, e 1 e2 , ..., e_ 1e, . . ,,e1 ,..e1, , ..., e 1 ... e, where f <	< j. and 
I :E^ r n. The elements e 1 ,..., e satisfy theanticommutation relationship e,ej, + eke) 
= - 2ôi., where óm is the Kronecker delta. We call V. the complex space spanned. 
by e 1 , ..., e. We call IR" the real space, spanned by e 1 , .'., e. The isotropic, or null 
cone (z 1 e 1 + + z,,e,, E (E": z 1 2 ± z 2 = 0) is denoted byN(0), and a general 
vector z 1 e 1 --•••± zeE C" is denoted by z. It maybe noted that each vector  E C' 
\N(0) has a multiplicative inverse z(z2 ) 1 E C\.N(0). Consequently, we have the Clif-
ford group P(C)	{Z E A(C): Z = Zl . . .r c ,z1 E C"\N(0) for 1	/ k and k is an
arbitrary positive integer). On restricting the elements Z E Fn (C) so that for each z1 

•	we have that z1 2 ' = ± 1 we obtain a subgroup of i',,(C) which we denote by Pin(C"), 
and in the case where k is even we obtain , a subgroup of Pin(C") which we denote by 
Spin.(C").	 '	- 

Furthermore, we have [4 20] an antiautomorphism	: A(C) - 
e, , .. ,e1 ,. For a general element Z E A(C) we denote '-i (Z) by 2. Using the pre-

viously described anticommutation relationship it. may be observed that for each 
a'E.Pin (C") we have that aC"ã =" and for each .z E C", (azã) 2 = z2 . It follows 
that Pin((E") is closely related to the complex orthogonal group O(VI ) = {(a11): 
1 < ,/	n, a1 EC and (a1 ) (a1 ) 1 =. 1). In fact we have 

Lem ma 1: The group Pin(V) is a four-fold covering of the group 0(C")(i.e. there is  
' short exact sequence 0 --> Z4 - Pin(C") —f 0(C") - 0). 

Outline, proof: On considering the group homothorphism 0: Pin(C")  
canonically induced by'thç map 2: Pin((E")xC": (a, z)i-± azã it may be observed 
that the elemehts 1, —1, f_--le i . ..e,,, -]/-- 1e 1 . . .e,, E Pin(C") belong to the kernel 
of 0. It now follows from similar arguments to those detailed forthe Euclidean case 
in [4, Part 1] that the homomorphism 0 is surjeetive with kerriel {i, - 1, —•1e 1 ...e, 

-. 

Using the Clifford algebra's -anticommi;tatio' n relationship we may from IR" gene-
rate a real, 2"-dimensional subalgebra of A(C). This algebra is an example df a real 
Clifford algebra, and its properties are described in [4, Part 11, [20, Chapter 13] and 

-' elsewhere We denote it by An. The -group A,n.Spin.((E") is denoted by8pin(IR")and, 
as shown in [4 1 20], it is a double covering of the special orthogonal group 80(n), 
which-acts on IR". The group A n n Pin.(C") is denoted by Pin(IR") and it is  covering 
group of 0(n) (see [4, 20]).-
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Following results obtained by ALF0RS [1-3]; MAASS [17] and'VuLEN [27], we 
introduce the following type of matrices:	- 

/ab\  
Let (, c d) be a matrix such that a, b, c, d E A(C), 9,,nd a = a1 .. a1 , b = b 1 . . . bm, 

C	 ",l,m,p,q 

E	and a, ad, db, ba E C" and ad — M E (C\{O}. Then this m4rix is called a Clifford
matrix. As illustrated in [24], for each Clifford matrix the transformation 

(az'+)(cz.d) 1	 -c d) 

• - is well defined;and gives a Möbius transformation inCn./ 
Suppose now that U is a domain in IR", n-> 2, and that f: U —* A(C) is afunction 

for which all partial derivatives exist. Suppose that P is a Clifford algebra valued con-
stant coefficient differential operator of order p e , which acts on / on the left hand 
side (i.e. the operator P acting on / does not involve multiplying'/ on the right-hand 
side by an clement of the.honcommutative algebra A(C)). Then we may introduce 
the following definition.	 :	 • 

• Definitidn 1 [8]: Sppose that for each a E Spin(IR") and for each / with thepro-
perty Pf(axã) = 0 with respect to the vriable axã, where x E IR", we have that 
Paf(axa) = 0 with respect to the variable x. Then P is called a spin-Euclidean.diffe-
rential operator, and '/ is said to be spin, invariant with resepct to P.	. 

	

In [28], and elsewhere, it is 1 ob'erved that the operator .D	 _T=e,/8xis a spin-



Euclidean differential operator. It is also well-known (e.g. [28, Chapter 9] that the 
n	 -	-	 - 

Laplacian = —DD = ' a2laXj2 is invariant urder actions of the special orthogo-
nal .group., 80(n). As Spin(IR") is a double covering of the group S0(), and a is a 

• •constáiit, it follows that the Laplacian is a spinEuclidean differential operator. On 
placing D = 1 it is deduced in [8] that	,	-	•,, 

• Theorem 1: Every spin?-Euclidean differential operator of order p is of the form 

	

p .	•	-	 -.
E AkDk, with 4k = aok ± a l ... n k e l ... e,,, where ao k , al .. flk E C. 
k=O	 '• 

	

From the chain rule we have	V + 

Proposition 1: The only solutions to a spin-Euclidean differential operator which are 
invariant under dilation are solutions to an iterate of. the"operator' D. 

• Definition 2
*
 21]: A solution to the spin-Euclidean differential operatorDis called - 

a left regular fuction. A similar definition may be given fOr right regular functions. 
An example of a function which is both left andright regular is the function 

0(x) = xx", defined on 1R"\0}. Using this function we have [7].t4e following gene-
ralized Cauchy integral formula. -	-	•	 . --
Theorem 2: Suppose that f: U — A(C) is a left regular function, and M 9 U is a 
compact n-dimensional manifold. Then, for each pOint x E M, the interior of M, we have 

	

f(x0) = ii,,f 0(X,- x) Wx/(x), _	 (1) 

where w is the surface area of the unit sphere 8', and,Wx =' e j (— 1) 1 ax;. 

25*	•.	-•	-,	 -. 

	

•1	 •	 - -•-	 - 

•	 -	/	-
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It may be observed fro?n Theorem 2 that the operator D is a natural generaliza- 
tion of the Cauchy-Riemann operators. It may also be observed that this operator is 
also a Euclidean generalization of the Dirac operator described in [15] 'and elsewhei'e. 
• The opethtorD and the integral formula () have natural generalizations in t. 
Before introducing these generalizations we require..the following manifolds. 

Definition3 [21]: Supposethat M is a compact, -smooth; connected, real n-dimen-
sidnal manifold, with boundary, lying in,C" such thatfor each z € MVwe have (i) 

•	M  N(z) = {z} and (ii) TM. n'N(z) = {z}, where N(z) 	{z' € C":' (z - z') 2 = O},
then M is called a manifold of type one.  

V

	

	 Afiy compact, n-dinensional manifold lying in IR" is an example of a manifold of 
type one:. Further examples, and constructions of manifoldsof type one are given in •	[23].  

In . [21] we describe the following class of domains in V.	V	

V 

Definition 4: Suppose that M is a manifold of type one, then the component of C"\ 
{N(z) :.z € M} containing Al is called a cell of harmonicity of type one and we denote 

V	

itbyMt
V -

	

	 When M 9 IR" these cells of. harmonicity have previously been described j ii [5	V 

16, 26], and-when M is the unit disc, K, in lR", the domain M' is the Lie ball K 

. = {z € C: (2"IzI) 2 + ( (2"IzI) - z2 (z) 2 ) h / 2 . i} described in [26].  
V	 Dc f in it, iOn'5 [23]: Suppose that Uc is,a-domain in C" and that g: Uc > A(C)-is a 

- ,	holomorphic function which ,, satisfies. the equation D"g(z) = 0 for'. each . z E. Uc, 

where D =' e eJz and k € Zt Then g is called a complex klefl regular function, 

and the operator Dck is called the k-th order iterated Dirac oerator in V.	
-	V 

When k is even the equation Dc"g(z) = 0 corresponds to the k12 complex harmonic 
functions described by AvAicIssIAN iii [5]. The operator De. is a holomorphic generali- 
zation of the operator D.  
- In [23] we deduce the following Cauchy integral frmu1a. 

Theorem 3: Suppose that f: Uc - A(C) is a complex k-left regular function, with n 
eveh and,k n - 1. Suppose also Mat M 1	Uc is an n-dimensional manifold of type 
one. Then for each point z0 € M I n Uc we hav	.	- 

V	 f(z) = 11w f	ApGp-I - Z ) Wz 1(z),	- ' .	 ' (2) 

	

am	 -	 - 

where'A 1	( 1-)" I , G, + (z) = z"', G9 (z) = zT", A 5 is a constant with DcA5G5(z) 

	

- = A 51G 1 (z), and Wz	V_,1) ez1.  

Using tile formul (2) it is straightforward , to deduce the following holomorphic 
continuation.  

V 

Theorem 4 [23]: Suppose that, f: U -* A(C) is a complex k-left regular function, 
with n even and'k n - 1. Suppose also that M U is an n-dimensional manifold 
of type one lying in U. Then there is a holomorphic function f: U C u M + - A ,,(C) 
such that funM+  

V	

- 	 -.	

V	

V	

:+
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Theorem 5 [24]: Suppose that f: U4 "-> A (C) is acain'plex 1-left regular /unction

with respect to the variable (az + b) (cz + d)-', where ( ) is a Clifford matrix, and - 

nis even. Then the holo?norphic function. J 1 (cz + d) f((az + b) (fz + d)-') is a complex 
1-left regular function with respect to the variable z, where J 1 (cz + d)	(cz + d)
x I (cz ± d) (cz ± d)}"12. 

Generalized Cauchy integral formulae 

This section is divided into two parts. In Part A we consider the caseswhere n is even 
and greater than two, and in Part B we consider the cases where n is odd, and greater 
than two. 

Part A. We begin 'by deducing the following extension to Theorem 3. 

Theorem 6: Suppose that f: U -> A((E) is a complex k-left regular functim, with 
k^! n, UC n lR" == 0 and M a manifold of type one lying in UC n JR". Then, for each 
point x0 € M we have

k	 -\ 

	

•	f(x0) = 1/a,, f E. AG(x0 - x) WxD' I(x),	 (3)	-' 
am P=1 

where A 1 = 1, A is a constant with DAG(x) = .—A,G_1(x),' (1(x) = x" for 
1	p n - I, G(x) = l/2 log (—x2), and G(x) = 1/2 x'lpg (—x2) + , n-'(p - n) 

•	xxPfarn±I_^pk.' 

Outline proof: It follows from Stakes" heorcm that the integral (3) is equal to 

1/we f	AG(x0 - x) WxD P f(x),	-	 (4) - 
•	 SK(x,.r) p=1 

where K(x0, r) is the real, n-dimensional disc lying.inM, centred at x0 , and with radius 
r. As r log r ->0 for r ->0, it now follows from similar arguments to those uséd'to 
prove the generalized Cauchy integral formula in [6] that the integral (4) is equal 
tof(x0) I	 0 

Before generalizing Theorem 6 to arbitrary manifolds of type one e require 

•	Lemma 2: For each real n-dimensional manifold of type one lying in C" the expression, 
log (z -v-- zo) 2 may be uniquely defined on the set c9M xM, where z € M and z0 E M., 

Proof: As M is a manifold of type one, then it follows from [26] that the boundary; 
M, is homologous in C"\N(zö) to the unit sphere S"' -- z0 lying in IR" " z, for each 

z0 € M: AsS"'.is simply connected it follows that the expression log (_(z - z0)2) 
may be uniquely defined for each z € Sn— I +.zo. The result follows I 

Propositio n 2: Suppose that f: U -. A ,,((U) is a complex k-left regular function, with, 
k n. Suppose also that z0 E Uq, and K(0, r) + z0	U. Then the integral 

1/có	f	AG(z - z) WzD - '	- 
SK(O.r)+z, pi • -	 - 

evaluates to f(zo) /or each of the covering space values of G(z0 - z), with n :5: p	k. 

S 

	

7 .	 •	 S	 '•	•	 -
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Outline proof: On choosingdifferent co&ering values for G( 0 - z), forn p ^.k 
it follows from homogeneity arguments that the limit as r tends to zero for expression 
(5) is f(z0 ). The result now follows from Stokes' theorem I 

We now have  

Theorem 7: Suppose that f: U - A(C) is a complex k-left regular function, wth 
k ^! n, and M is a manifold of type one lying in U. Then, for each point z 0 E 111 and 
for each choice of covering space values for G(z - z0), with n ^ p k, we have 

f(z0) = 1/w f	AG(z0 - z) JVzD	f(z)	 (6)'" 
M p=i 

As is observed in [5] if M is a simply connected manifold of type one, it does not 
necessarily follow that the cell of harmonicity, M, is simply connected. For example, 
given the annulus A(1/2, 3/2) = {x E lR : -1/2 <—x2 < 3/2} the cell of harmoniciy 
A (1/2;3/2) + contains the path e2 "e 1 , where B E [0, 11. By considering the continuous 
function q: A(112, 3/2) -. C\{0}: z i-* Z2, it may be observed that this path is not 
homotopic to any path in R\{0}:	 S 

As a consequence we have from the integral (6) that even for simply connected 
- in 	of type one the complex k-left regular functions with k n, do not neces- 

sarily, have unique holornorphic continuations to the cell of harmonicity. For example 
the holomorphic continuation of log (—x2) is a complex n-left regular function which 
is not uniquely defined on A(1/2, 3/2). 

In order to introduce suitable subdomains of M+ over whi,chthese functions are 
uniquely defined we begin by introducing the following definitio ns 
Definition 6: Suppose that M-is a manifold of type one and z0 E M is a point such 
that for eaCh z E N(z0 ) n.M the line segment joining z0 to z lies in M. Then the point 

•	z0 is said to be null connected to M.	 •	 -' 

It is not in general the casethàt for an arbitrary manifold M of type one we have 
• that each 'z E M is null eorInected to M. Foi example, for the point ie 1 E A(1/2, 3/2) 

the point e2 E N(ie 1 ) n A(112, 3/2), but the point 1/2ie 1 .+ l/2e2 does not lie in 
A(11, 3/2) even though it does lie on the line segment joining ie, to e2. 

- Definition 7: Suppose that M is a manifold of type one then the set of points 
{z0 E Jpf : z0 is null connected to M)is called the null connected subdomain- of M+,and 
it is denoted by NMt	 -' 

We now deduce	S	 -	 S 

•	IL e mm a 3: Suppose that M is a manifold of type one. 7'hen the null connected subdomain 
of M is a domain.  

-Proof: Suppose that z0 E NM. Then, either z0 EM, or z0 E	Ifz0E Jtthri 
we may choose a neighbourhood B(z0)	M of z 0 such that for each pair of points 

•	 -	 z11 z2 E B(z0 ) the line segment {2z 1 + 67- 2) z2 : A 
E[0, 

1}} lies in'B(z0). In [23] we 
show that for each point z E M\M the set N(z) n M is a manifold homeomorphic to	-' 
the sphere 5_2• it also follows from [23] that we may choose B(z0 ) so that N(z) n M 

•	B(z) for each z E B(z0).,It now follows from the contruction of the neighbourhood 

	

- - -	B(z0 ). that each point z E B(z0) is null connected to M. Suppose now that z0 E M\M 
- then as the set of line segments joining z0 to the compact manifold M n N(z0 ) is com-

pact, and eoiitained in the open set M, it follows that there is an open subset U, •

 of M such that z0 E U2, and for each z € U, we'have that z E NM. Consequently, 
the set NMis an open set. -	/ ,	 -	- I	 • 

•	

--	 I	 '	
-,	0	 •
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I 

To show that this open set is connected corfsider ,first a point z0 E NM + \M. Then, 
from the open set U, we may construct the open subset of M\M

 
= 1 U	U	U Az ± (1 - A) z'\.	 •1 

z(U, Z'EN(z) flM 1E(0.11 -	 / 

Let U". = NM
I n U,, and suppose that U + U,. Then there exists a point 

21 E (ci (U)\UZ) n (U,'\UZ) such that a line segment joining z, to M n N(z1 ) is not 
entirely contained in M. Suppose now that z2 is a point on this line segment satis-
fying the condition z2 E ci (M + )\M+ . Then thereis a pointz 3 E aM such that 22 E N(z3). 
It may be observed that the complex hyperpine (23 + c(z2 — 23 ): c  (U), is a subset 
of N(z3). Now consider the real three-dimensional hyperplane,fl, containing this com-
plex hyperplane, and the vector 21. As z, € (ci(U).\UZ) and U is an open set it - 
follows that H n UZ + 0 and it is open. Therefore, we have that fdr each point 24 
E H n U.the line passing through z,, and parallel-to the line segment {Az, ± (1 - A) 

Cj X	A € [0, 1]), intersects with the complex hyperplane :1 23 + c(z2 — z3 ).: c 
Also, for; sufficiently closeto z, we have that these line segments also lie in ' VZ.	. 
Thus (H n U) n N(z3 )	0. As 23 € t9M this contradicts our . assumption that 
U U,. Consequently, each point z0 E NM\M is path connected to the set 1W. As 
M is connected it follows that NM I is 6opnected. Consequently, the set NM is a 
domain I  

In order to deduce hat k1h order complex left regular functions may be uniquely 
holomorphicaily extended to these domains we first requirethe following result.  

Proposition 3: For each closed pathh: 8' —* NMthere isahomotopyH:.S' x[O,1] 
NM I such that for each s E 8' (i)- H(s, 0) =h(s)and (ii) H(s, 1) € 1W. 

Proof: As observed in the proof of Lemma 3 we prove in [23] that-for each point 
zo € M\M the set N(z0) n M is a manifold hdmeomorphic to the sphere 5_2 it 
follows from the definition of a manifold of typ one that foi each point z E N(z0) n.M 
there does not exist any other point z'E N(z0) n M such that z' = 4 ± c(z— Z ) for, 
some ó E (E\{O}. Consequently, w have that for- each point 20 € M\M there is a urii- 
.que non-zero complex number c(z0) such that 20 ± c(z0 ) (e,.+ ie2 ) € N(z0) n M. It 
now follows fi'om,the proof 'of Lemma 3 that for each path .h: 8' -NM we may 

: produce a homotopy H: 8' x [0, 1] — NM, where H(s, t) = h(s) for.alI.s with h(s) 
€ M, and H(s, t) = h(s)+ tc(z0) (e, + ie,), otherwise. This hornotopy satisfies Con--. 
ditions (i)and (ii) •	 ,. 

Using Proppsition 3 and Theorem 7 it is now' straightforward to deduce. 

Theorem 8: 'Suppose that /: U	. A ,,(C) is a complex k-left regular function., with 
k n, and M , is a manifold of type one lying in U. Then the function / has a unique 
holomorphic continuation f to the domain Ug j U NM.	•. 

Part B; We begin-by introducing the following.extnsion to Theorem 6:' 

Theorem 9: Suppose that /: U —+ A(C) is a complex k-left regular function., U 
n IR" - 0

 ' 
'and M  amanifold of type one lying in U n R 11 .l'hen, for each point x0 € 1W, 

we have  
-	I 

f(xo)	1 / 0Ja f	BG'( 0 - x) TVxD P ' AX),  
f p= I	. 

where B, = 1, B is a constant 
= (x2 )_ 1 /2 x'for 1	p :E9 k.

with DBG'(z) =B_1G,_1(x) and . G1(x) 
5,
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The proof -follows the same lines s the outline proof of Theorem 6, so it is omitted. 
•	By equivalent arguments to those used to deduce Lemma 2 we also have 

•

	

	Lemma 4 For each real ndimen.sional manifold of type one lying in C n the expression 
((z_ z0) ( - z0)) 1 / 2 may be uniquely defined on the set &M xM, where z E aM and 
Z0 EM.	. 

- .
	Consequently, we now have	. 

•	Theorem. 10: Suppose that f: Uc -± An X) is a complex k-left regular function,-and 
M isa manifoictof type One lyiig in U. Then, for each point z0 E M we have 

f(z0 ) = t 1/wf	B;'G'+(0 —z) WzDc'f(z),	-S 

SMps=1 

where, G'(z0 — z) is the holomorphic continuation to M of G'(z0 — z), defined on 
S' +zo, obtained via the homological equivalence in C'\N(z 0) of aM and 8 11 - 1 -- z0. 

Observation 1: Both Definition 6 and 7 do not depend on the dimension of M 
being even. Also, the, statement and proof of Lemma 3 and Proposition 2 are valid for 
odd-dimensional manifolds of type one.	f	 . 

Consequently, we have the following extension to odd dimensions of Theorem 8. 

Theorem 11: Suppose that /: Uc A n (C) is a complex k-left regular function, and 
n = 1 mod 2. Suppose also that -M	Uc is a manifold of type one.. Then the function f 
has a unique holomorphic continuation, f", to the domain Uc' U NM.	 -. 

/.	. 

Conformal'inariance  

We begin this section by deducing the following result.	 - 

Proposition 4: Suppose that f: U - A n (e) is a complex 1-left regular function: 
Then for each positive integer k the function z' /(z) is complex 'k-left regular. 

-Prof: Supose first that k = 2p. Then Dek = ( _ 1)PE e 2Izi2)nd zk-1 f(z) 
= z(z 1 2 +...+ z 2 ) P ' (-1)P1f(z); Now	•	-	j1	

-	 .; - 

/ n 
. .
	(, '_j) (zi2 + .. .± z)P- I f(z)	- 

)1 Z) -	 •	 - 

= 2(p — 1) z(z12 +...+ z 2) P f(z)	-	•	 - • 

	

+ 2(p ,	1) (2p — 3) z(z12 +...- z2)P-3/(Z)	 •	 : 

n	•	 ?	 - 

	

+' z(z1 2 +•-f- ;2)P2 2(p — 1) z7 af(z)/az	 (7). 

provided p	3. If p = 1, then it is straightforward to determineby direct calcula-



tion that •
-	I	- 

- Ea2 (zf(z))/az .2	O.	 .•	 (8)' 
-	\	 •-•	 • 

a



/ 
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If p = 2, then E a2 ( 3 /(z))/az1 2 = 2z 1(z) + 2z E z1 a//az, it follows from expression 
(7).that-  

- (	
a2/az,2) (z3 1(z)) =2 $J a2/az.2) (z1;aI/azk). 

As f(z) is complex 1-left regular,

	

	a2/a 12 ( E Zk af(z)/azk) = 0. If, for p ^L 3, we,
k=1 

allow the pth	'complex Laplacian to act on the z(z 1 2 	part' of 
z(z12 +...± zZ)P-' f(z), then it may be observed from expression (8) that this term 
is an by. this operator. As /(z) is a complex 1-left regular function, we 
have that /(z) is also annihilated by the complex Laplacian. Consequently 
/ n	\p	/ n	\p-I	- 

(-' a21ez12 ) z ( \j 
z1 a/az1 )	/(z) = 0. It . may iow be observed from expressiçn (8) 

I	.	1	I	 - 
that,  

'I n '	\p  
.	

(,,' 
a2/az12).(_1)P-1 (Z

1 2 -1-	+z2)'"'t(z).= 0. 
/ 

Suppose now that k = 2p + 1. Then, as f(z) is a complex 1-left regular function we 
have .that D(zj 2 +.. + z 2 ) f(z) = 2pz(z,' + + z,, 2)P' f(z), aiid it follows from 
the previous arguments that 

I n. 

(' a2/az, 2 ) 2pz(z 1 2 +...+ 2)P1 f(z) = 0. 
I	 ' 

Consequently, Z2p /(z) is a complex k-left regular function U 

..Corollary: Suppose that for 0 1 k - 1 the /unctions I,: U -* A((E) are com-
plex 1-left regular. Then the function 

S	

-	 'k-I 
F: U -- A(C): F(z) = ,+ z 11 (z)	 .	 . '	(9) 

1=0	 . 
is complex k-left regular. 

Observation 2: It is not the case that every complex k-left regular function can be 
expressed in the form (9). From Theorem 4 we have that for n even each complex 

- 1-left regular function has a unique holomorphic continuation from a neighbourhood 
of a manifold of type one to its cell' of harmonicity. however, as observed earlier; 
log (—z2) is a complex ,-left regular function which is not uniquely defined on 
A(1/2,3/2).  

•	 .	 .	
.	 'I 

• As C is èontractible to a point we have from Theorems 7 and 10 

Pro p-o sit ion .5: Suppose that P(q) : C" -* A (C) is a complex, k-left regular polyno- - 
mi'al, homogeneous of degree q with respect to the origin. Then 

P(q)(Z) =Zz1Pi(z),  

where-P, is a complex 1-left regular function, homogeneous of degree ' q - 1. 

- As the disc lying in lR", of radius r E lR, is contractible within itself to a point, it 
follows from Theorems 8 and , 11, Proposition 5 and the Taylor expansion div6n in 
[7, Theorem 10] that



	

/	 S	 S 
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S	
S	 'S 

Theorem' 12: Suppose that K(r) is the Lie ball of radius r E lR, lying in C" and 
f: K(r) --* A((C)is a complex k-left regular function. Them  

1(z) = Ez'fz(z), 

	

S	
S1=0	

•5	 S 

	

•	for each z E K(r) 4 , where.eachf,: K(r) - A(C)is a complex 1-left regular /unction. 

As D' is a constant coefficient differential operator we have 

Proposition 6: Suppose that f: Uj -* A((E) is a complex k-left regular function with 
respect to the variable w = z + z0 for ome constant z0 E C"Then f'is complex k-left 
regular with respect to the 'variable z.	 -	

S 

From Proposition 6 and Theorem 12 we have	 - 

Theorem 13: Suppose thatK(z0 , r) is the Lie ball of radius r E & centred atz 0 E C", 
and f: K(z0 ,	- A,,(C) is a complex k-left regular /unction. Then	 S. 

k-i	
S	

- 

	

fC) =E(z—zo)'fz(z—zo),	 S 

1=0	 -	 S 

for each z E K(z0 , r), where 'each f: K(z0 , r) +	A,,((E) is a complex 1-left regular /unc-
tion.	 s.f	 S 

As DCk  a homogeneous differential operatorwc have	- 
Proposition 7: Suppose that f(w) is a complex k-left regular function with respect to' 
the variable w = ).z, where , E C\{0}. Then jz) is a complex k-left regular function with 
respect to the vdriable z.	 S 

We now deduce the Pin(C") invariance of-the complex k-left regular functions. We 
•	begin with,  

.Proposition 8: Suppose thata E Pin(C") and K(ãz0a, r) is a Lie ball of radius r E 1R 
• and cented at az0ã € C", ' Suppose also that f: K(az0ã, r) + ,-* A(C) is a complex k-left 

reuldr function with respect to the variable azã E K(azã, r). Then the function ãf(aza) 
is complex k-left regular with respect to the variable z.	 -	•' 

S	 -	 k-i	 I 
Proof: We have from Theorem 13 that f(&za) = E (azã - az0à) 1 f1 (azã), where 

S	 - 1=0 
. each h is  complex i-left regular function with -respect to the variable azã. Now.. 

k-i	 k-i	 . 
af(aza) = E ã(azã - az0ã) 1 f1 (aza) = L (all)' (z -' z0)' ll/,(azã).	/ • (10) 

1=0	 5	,10 
It follows from Theorem 5 that each ã/,(azll) is a complex 1-left regular function with - 
respect to the variable z. From expression (10).and the corollary to Propoition 4' 

	

-	we now have that the function ll/(azã) is complex k-left regular I	 S 
For each domain UC and each a E Pin(C'1 ) we, may take sets of points {z}_0 C 

• and {r(z)}	such that {azll} 0 . UandUK(az, r(z)) = U.	- 

As a consequence the following result follows from Proposition 8. S	,SS	 S 
Theorem 14: Suppose that f: U41. --* A(C) is t complex k-left regular function with 

• respect to the variable azã. Then, the function f a : llUca - A(C): f(z) = ll/(azll) is 
complex k-left regular with respect to the variable z.	 . 

S	-	-I
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• + Observation 3: Theorem 14 is also a consequence of Theorem - 1. However, the 
methods used here to establish Theorem .14 differ from those used in [8] to establish 
Theorem 1. Later in this section we shall adapt the methods used here to establish 
Theorem 14 to deduce other results which are not consequences of Theorem 1. 

In the cases where k is even the differentiable operator DC k is an iterate of the com-
plex Laplacian. As a E Pmn.(C') is a constant, it follows from Theorem .14, or by direct 
calculation, that the function f(azã) is complex k-left regular with respect to the varia-
ble z.	 •	 .	 + 

Observation 4: Projosition 8 may 	be deduced by using Lemma 1 anddirectly. 
•	+ applying the iterated complex Laplacian t6 the function f10(z).  

We now use our .previous arguments to deduce the' invariance of complex k-left 
regular functions under inversion. We begin with  

Proposition 9: Suppose that, K(z0 ,r) isaLie ball of radius  E 1R, and centred at z0, 
and lying in C"\N(0) Suppose also that f K(z0 , r) - A (C) is a complex klç/t regular 
'function in the variable 'w = z 1 . Them the function  

i nv. (/): K'(z0 , r)t	A(C): mv (/) (z) = jk(z) /(z"1),  

•	is complex k-left regular with respect to the variable z, where K 1 (z0 , r)t = {z E 
Z-1 E K(z0,r)t} and 'k(Z) = G t (z) z"/or m even, Jk(Z) = G' t(z) zL /or n odd. 

k—i 
Proof: From,  Theorem 13 we have that f(z) = E (z- 1 - z0 )' 11 (zr 1 ), where each -	'	,	,	1=0	 • 

•f,(z') is a complex k-left regular function in the variable z 1 . Now 'consider the fLinc-
tion	 •	 .'	 '	 '	 ' 

-	 k—I  

Jk() AZ ' I) =( E .J(z) (z' - zo) f,(z 1 )	 +•	 +-	 + 

1 = 0	 . 
k—i	 .	 •	+ 

,.^jk(z) (z/(z1 + i- z9 -	 (11) 

,A For the case where k	1 and ?I is even the result is a direct conseuence of Theorem
5. When k = 1 and n is odd, the result follows from direct analogues of the arguments 
given j [24]. 

Suppose now that k is odd and greater than one. Then on expanding the expression 
(11),'ve obtain, on placing k = 2p + 1, the terms  

•	 •,	
+ (zzQ ) P J j (z/kl (z 1 )	'	

S	 '	 •+	 (12) 
and  

z0 (zz0 ) P J2 (z) /k1 (Z 1 ).	 .	 . S	 -	 -	 -	 (13), 

As J 1 (z) tk_1(z1 ) and J2 (z) fk_I(z1 ) are both complek harmonic functions with respect 
to the variable z, then it follows from the anticommittation relationship within the 

• Clifford algebra, and the order of the operator.Dc" that both expressions (12) and (13) 
are annihilated by this oprator. The expansion of (11) also contains theterm' 
zP_ 'z PJ2 (z) fki(z ) and as'J(z) tk_i(z i) is a complex harmonic function in the variable 
z, it follows from the order of the operator D' and the anticoiIimutation relationship 
within the Clifford algebra that this expression is-also annihilated by this operator., 

• . 
The expansion of (11) also contains the term z PJ 1 (z) Ik_ i (z 1 ). As 'J(z) f(_1) is a com-
plex 1-left regular function in • the variable z, it follows from the corollary to Proposi-
tion 4 that this expression is also annihilated by the operator Dr,". As z02 E C and 

•	 •	 . 

	

•	 I	 -
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Z' E C, it may be observed that all other terms appearing in the efpansion of (11) 
are of the form A 1 (zz0) J 1 (z) / 1 (z), 2z0(zz0) J2 (z) /(z), ,.3z4z.J2(z) f(z 1 ) and A4z.J1(z) 
xf(z 1 ), where 2 1 ,,t2 ,4 3 ,, 4 E C,' q,q 1 ,q2 ,q3 ,q4 E IN, with q p, q 1 p - 1,. 

q2 ^ 2p -- 1, q3 p and q 4 5 p. Consequently, we have that expression (ii) is 
annihilated by the operator DCk when k is odd. 

When k is even, we have on placing k = 2p + 2, that the expansion of expression 
'	(11) contains the terms (zz0 ) P J 1 (z) tk_1(Z), Z0(ZZ0 )P 1 J(z) /k_1(z'), 02 ( 0) J2 (z) tk_1(z) 

and (z0z) Pz0J2 (z) /k_I(z'). By similar considerations to those used for the case where 
k is odd it may be deduced that all of these terms are annihilated by , he operator DC k. 
By similar arguments to those used in the first part of this proof it now follows that 
the expression (11), is annihilated by the operat&r Do" when k is even U 

Note: As the map mv: K_'1(z 0, r)t K(z0 , r)t: z i- z 1 is a diffeomorphism and the 
domain K(z0 , r) is contractible within itself to a point it follows that in the cases where 
n. is odd the function Jk(z) /(z -1 ) is uniquely defined on K- 1 (z0 , r)t. 

Using Proposition 9 we may now . deduce	 - 

Theorem 15: Suppose ihatu is even, and that U C is a domain lying in. C"\N(0)., 
Suppose also that /: U€ --> A((C) is a complex k-left regular function. Then 

mv, (I): U 1	A(C) :'inv (f) (z) = 'k (Z) f(z-1) 

is a.complex k-left regular /unction, where	= {z E C"\N(0): z' E Uc}. 

Proof' Consider a sequence of Lie balls {K(zq , rq) t}. 0 such that Uq K(zq , rq)t = 'Ut. 
Then, on restricting / to X(zq , rg ) i for each q we have from Proposition 9 that 
inv(/): K-'(z, rq)t -> A((E) is a complex k-left regular function. Moreover, 
Uq K' (z, r)t = U 1 . As n is even = G jt(z) 2k-1 is uniquely defined on U1. 
Consequently, mv (f): U; 1 —* A(C) is a uniquely defined conplex k .left regular 

	

•	function 

On combining Propositions 6, 7 and 9, and Theorems 14 and 15 and [24] it is 
straightforward to deduce'	 .. 

(c d) 
Theorem: 16 Suppose that 'n is even, and that ,, 4 is a CU/ford matrix. Suppose 

also that the function f((az + b) (cz + d) 1) is complex I-left regular in the variable 

	

•	(az +b) (cz ± d)- 1 . Then the function Jk (cz ± d) f((az,+ b) (cz + d) 1) is complex 
k-left regular in the variable z, where 

jk (Cz + d) = ((cz + d).(cz	d))(_)I2, k even,	 (14) 
•	Jk(cz - d) = (cz T d) ((cz + d) (cz j d))_ 1_ )I2 , k odd.	 (15) 

As his even, it may be observed from expressions (14) and (15) that the functions 
Jk(cz + d) are uniquely determined over each domain in C" foreach k.	- 

	

•	Definition 8: For each domain UC C" the set' 

{f: Uc -1' A(C): / is a bomplex k-left regular, function}	 . 

is denoted-by- rlk(uC).  

it my be notd that this set is- a right module over the algebra A(C).
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Theorem 17: Suppose that n,.is even and that U 1,C and U,.c are domains lying' in (E 

such that for some Clifford matrix (a b%) the- transformation T 1 b\: U1 -> U2.: 
\C d1	 ,cdJ 

(az .+ b) (cz + d)- 1 is a homeomorphism. Then the two modules fjk(UJ.c), P,.k(U2.) 
are isomorphic via the linear map	 - 

T (0 . b\ : Fj k (U2c) 5- P:(Ui.c): Ti a b\(/) (z) 
cd1	 cd/ 

= Jk(cz ± d) f((az + b) (cz ± d)-').  

We now return to consider the cases where n is odd. We begin with 

The ore ,m 18: Suppose that U is a domain lying inC"\N(0) and Uc is contractible
within itself to a point. Then' for each conpiex k-left regular function f: U -* A (C) the 
functioninv (f): U - ' --> A(C): mv (f) (z) = J(z) f(z') is complex k-left regular. 

Proof: As UC is contractible within itself to, a point it follows fiom the homeomor-
phism mv: U' --> U: z i-* z' that U' is also cdntractible within itself to a point: 
Consequently, JkC(z) is a well-defined function on U - '. The result now follows from 
the proof of Theorem 15 I  

More generally we have 

Theo rem 19: Suppose that n is odd and that,U	C' is a domain which is contrac- 
-	lab" tiblè within itself to a point. Suppose also that ( 4 is a Clifford matrix such that 

the transformation T 10 b\: J(U) -± Uj: z F-* (az + b) (cz + d)' is, a diffeomorphisin. 
cdJ  

'Then, for f: U 	A (C) a complex k-left regular function the functton 

J(f): J(U) -* A(C): J(f) (z) = jk(Cz + d)j((az ±' b) (cz + d))' 

is complex k-left regular, where	 . 

((cz + d) (cz T d),)( =n )I 2	for k even, 
I, (cz + d) ((cz ,+ d) (cz '4 d)-" 12 for k odd. 

Outline proof: As UC is contractible within itself to a point, then it follows-that 
• ' J(Uc) is also contractible within itself to a point. Consequently, the function 

Jk(cz + d) is well defined on the domain J(U). The result now follows from the same 
reasonins a used to establish Theorem 16 I 

Theorem 19 also, gives us  

Theorcm'20: Suppose that n is 'odd and that U,.c and U2.c are domains in (U n such 

(c d) 
that for some Clifford matrix	,j the transformation 'i' b\ : U. -* U, : z

\C (J_/	 '.	cdJ 

i- . (az ± b) (cz + d)' is a homeomorphism. Suppose also that the domain U 1,C is con-
tractible within-itself to a point. Then the two modules Fj,k(UI,c) and f'L,k(U2,c) are 
isomorjihic via the linear map	 .	 .' 

- '	T b\: f:,k(Uz.c) 5- F,.(U.c): T10 b\ (f) (z) •	
cd)

	T(. t) 

=Jk(cz+d)f((az+b)(cz+d)).	 •
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5-	 - 

•

	

	In-the.cases where ,c = 0 the function Jk(cz +-d) is a constant. Consequently, we
have 

Proposition 10: SuppOsethat iis odd and that U 1 ,C and U2c are domains in C n such 
that for some Clifford matrix	 (C transformation T10 b\: UI,C -* U2, :z -^ 

+\	"-+I	 ',OdJ 
(az + b) d 1 is a homeomorphisrn. Then the two modules I'1 . (U1) andFzk(Ul.C).are 
isomorphic.	 .	. 

In more general circumstances we have	- 

T h'eo rem 21: Suppose-that n is odd and that UI.0 and U2,q are domains in C" such that 
for some Clifford matrix (	, with c	

j 
0, the transformation T (0 b ULC - U2: 

c k/	
0	 \cd 

z -^ (az + b)_(cz + d)- 1 is a homeomorphism. Suppoe.also that for the inclusion'rhap 
i: U2 —* C"\N( — c 1d) the first siiigular homology grou homomorphism H1(i): 
H 1 (U2 , 71) —fl j (C n \N(_c_ 1d) 71) is trivial.. Then the function Jk(cz I- d) is well 
defined on U2., and the modules Pj k (Uj,c) and J,,k(U2,c) are isomorphic. 
Proof: As c6 0, then we have that T b\(Z) = ac- 1 + A(cz ± dE), where 

cd/ 
A ad — b.Asthegroup homomorphismH 1 (i): 11 1 (U2c, 71) H 1 (C"\N(czë + dE), 71) 
is trivial it follows that for each closed loop p: 8' -± U2,C there is a continiOus exten-
sion : D —> C"\N(—cd) to the -disc D. As th function Jk(cz + d) may be uniquely 
defined on p(D) C"\N(—c-d), it follows that this function is well defined on each 
closed loop lying in U2 . Consequently, we have that for each complex k-left regular 
function f((a ± b) (cz + d) 1) defined on U 2 , the function Jk(cz ± d) f((az + b) 
x (cz + d)') is a'well-defined complexjc-left'regular function on U1, and the mo- 
dules'I'lk (U I c) and J 

k (U2 c) are isomorphic I	. .'	
,• In-order to describe what-happens in nore general circumstances we require the 
following result.	 - 

Proposition 11: For each integer n> 2, we have that H1((E"\N(0), 71)	Z. 

Proof: As shown in [26] the space C"\N(0) can be homotopically deformed within 
itself to the set B' = {z E C": z = x& 0 : x E 5-1 and O-€ [0, 2]}. From th'e set B' 
we obtain the set B" = {[z]: z E B' and [z]- = {z; _z}}. Via the projection p: B' — B": 
-. [z] we have that B' is a double covering of B". Moreover, it may be obsrved that 
the set B" is a fibre bundle -with base space RP" 1, real projective (n — I)-dimensional 
space, and fibre the circle, 51	 S 

Suppose now that h': 81 — B' is a closed - loop. Then on composing with . the pro- 
•	jection p we obtain a closed loop h": 8' --> B".- On composing this.map with the fibre 

bundle projection p: B" --* RP" we obtain a closed loop h": 8' — RP'. On 
identifying RP"' with the (n — 1) dimensional disc K_ 1 , with antipodal points on 
the boundary , identified, it may be deduced, by elementary honiotopy deformation 
arguments, that the loop h"(.S") is eithei homotopie to a point or to a line segment 

	

- passing though the , centre of K_ 1 and extending from a point on the boundary to	•!

its antipodal point. If this homotopy-deforms h"(S') toa point [k] ( RP"',then there 
• is an induced lomotopic deformation of-h"(S'), within B-", to a closed loop lying in 

the fibre, 81 , covering k. Furthermore, this homotopy deformation induces a'homotopy 
• deformation of h'(Sl), within B', to a loop lying in the circle {ke 18 : 0	0	221}	B'.

Jt may also be observed that the winding number of this loop is even. If, on the other 
•	hand, h ... (S1 ) is homotopic to a line segment joining antipodal points, then by similar 

S	 •5
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argumentso, those used in the previous paragraph, it may be deduced that this de-1 
foiriation induces a deformation, of h'(S') within B', to a loop which is homotopic, 
to a loop which winds around ke'°: 0 :!^ 0 :5-, ' 2i} an even number of times and is 
joined to two semicircles. One of these semicircles is the set {ke10 : 0 :5,- 0 ^ } and the 
other is a semicircle lying in the sphere 5ti1	IR", and joining k to '—k.	- 

'On considering the map n': B' . -. * C"\{O}: 'i'(Z) = z2 , it may be observed that of 
these loops only the ones which lie entirely in {ke°: 0 0 2ri} and having zero 
winding number are contractible to a point. On restricting the map -' to the set 

{ke°: 0	0	u {k cos'O + lsin 0:- 1 ES"' and 1k +kl = 0,0	0'^ t} 

we obtain a loop in C\0}, which winds once around the origin. As.the sphere 5n"l 

is simply connected the result follows I •, 

Observa tion 5: For the case where n = 2 it is §traightforward 'to adapt the proof 
of Prop6sition 11 to show that H 1 (C2\N(0), 71) 71 Z. 

• As a consequence of Proposition 11 we have	 -. 

Theorem 22: Suppose that n is odd and that U, ' and U2.0 are domains in C" such 

that for some Clifford matrix (a b with cE 0, the transformation T b\: 
V	 •c d1	 - 

U2.: z (az + &) (cz + d)'-is.'a homeomorphism. Suppose also that for, , the in-
clusion map i: U2 —* C"\N(—c'd) the group homomorphism H 1 (i): H,(U2., 71) 
-* H1(C"\.N(_cd), 71) is-such that the image set 11(i) (H,(U2 .c, 71)) comprises solely 
of even cycles (i.e. each closed loop 'has an even winding number). Then 'the function 
Jk(cz + d) is well defined on U2, and the modules r,(u,,) and Pgk(U2.) are iso-
morphic.	 '	+•	 .	 ,+	

0 

Proof: Suppose that 1 is a closed loop in U2. . Then for the map p: U2, --> 
'z	(z + cd) 2 the set p(l) is a closed loop which' winds \around the origin an even 
number of times' Consequntly, the function 

.((z + c'd)' (z ± cd)) 1 I2 = ((CZ + c'd) (z •+ dE- 1 ) 1 ) 1 / 2	 S 

•	 •; -	 ,.	'	 •'	
((	

c 1 d):' c1E1(z +	11)/2 (CE)1/2 

= ((z + d)-' (c + d)) h 1 2 (cc)1/2 

is well defined on each such loop. It follows that Jk(cz + d) is a weildefined function 
on U2.. By similar arguments to those given in the proof of The 2.1 it now. 
follows that the modules rlk(UI.C) and 1'1k(U2.c) are isomorphic I 

An example of a domain lying in C" which s atisfy the properties described in Theo-
rem 22 and contains closed loops which arc not homologous to zero in C"\IV(—c'd) 
is C" = (z E C"'\NfO): z = 2x + iuy: z,'y E S"',-with xy + yx = 0, ),,a E IR and . 

I>	j}... 
As shown in the proof of Proposition 11 the domain C".\N(0) .possesses,closed cycles 

whose winding number is odd. In order to deal with domains like ç"\N(0) we require - 
the follo':ving	 .	.	.	. 

Definition 9: Suppose, that(U is a domain in 02" such that with respect to some point 
z 1 E (l21 wé have U 9 C"\N(z,), and that for the inclusion map i: U —i- C"\N(z,) the 
group homomorphism H,(i): H,(U, 71) -. H,(C"N(z,), '71) is surjective. Then we deno-
te the Riemaiin surface, which is a two-fold covering of U. by U2, 'and we denote the 
right ;4,,(C) module of complex'k-left regular functions defined on U2 by f?k( U, 'A (C)).
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It is now a straightforward consequence of the constructions given in the proof of 
Proposition 11 to' deduce	-	 - 

• Theorem 23: Suppose that ii is odd and that U and U 2 j are domains in en such that 
fo same Clifford matrix (a ), with cE	0, the transformation 7 (a : U1  

z F-* (az -+ b)(cz + d) is a hoimeomorphisin. Suppose also that for the inclusion map i: 
U2. -s.C'\'N(-dë)the group homomorphism H 1 (i): H 1 (U2 c, 7L) -*'Hj(C\N(dc), ) 
is surfeclive. Then the function Jk(c + d) is well defined on the Riemann surface 
but not on U 1 , and the nodules f' k( U1, A(C)) and I'jk(U2c, A(C)) are isomorphi." 
Moreover, the modules r(u1, A(C)) and rk(u2C, A(C)) are also isomorphic. 

On combining the results obtained in this section with TheOrem 1 and Proposition 1' 
we have	 - 

• Theorem 24: The set of linear differential operators whose solution spaces-are invariant 
under conformal transformations in (U n is-the set C = {2D": 2. E C\(91 , and k € 7L}. 

For A lDk , 22D,, E C we may ' define 'the product 11Dc,' 22D = 11 A2D' + E C. 
Under this product it may be observed that C is a semigroup which is canonically 
isomorphic to the semigroup ((C\{0}) x7Lt 

Concluding remark: In this paper we have used Clifford analysis to classify' 
• linear, conformally , invariant differential equations, and we have shown that each 

such equation possesses a homotopy invariant Cauehy integral formula. It follows 
that a large class of the results already known within .Clifford analysis, andvithin 

•	potential theory, for the iterates of the Laplacian (e.g. [5, 6]), carry through to this 

'	
context.  
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